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Abstract

Document classification using automated
linguistic analysis and machine learning
(ML) has been shown to be a viable road
forward for readability assessment. The
best models can be trained to decide if a
text is easy to read or not with very high
accuracy, e.g. a model using 117 parame-
ters from shallow, lexical, morphological
and syntactic analyses achieves 98,9% ac-
curacy.

In this paper we compare models created
by parameter optimization over subsets of
that total model to find out to which extent
different high-performing models tend to
consist of the same parameters and if it is
possible to find models that only use fea-
tures not requiring parsing. We used a ge-
netic algorithm to systematically optimize
parameter sets of fixed sizes using accu-
racy of a Support Vector Machine classi-
fier as fitness function.

Our results show that it is possible to find
models almost as good as the currently
best models while omitting parsing based
features.

1 Introduction

The problem of readability assessment is the prob-
lem of mapping from a text to some unit repre-
senting the text’s degree of readability. Measures
of readability are mostly used to inform a reader
how difficult a text is to read, either to give them
a hint that they may try to find an easier to read
text on the same topic or simply to inform them
that a text may take some time to comprehend.
Readability measures are mainly used to inform

persons with reading disabilities on the complex-
ity of a text, but can also be used to, for instance,
assist teachers with assessing the reading ability of
a student. By measuring the reading abilities of a
person, it might also be possible to automatically
find texts that fits that persons reading ability.

Since the early 2000s the speed and accuracy
of text analysis tools such as lemmatizers, part-
of-speech taggers and syntax parsers have made
new text features available for readability assess-
ment. By using machine learning a number of
researchers have devised innovative ways of as-
sessing readability. For instance, phrase grammar
parsing has been used to find the average number
of sub-clauses, verb phrases, noun phrases and av-
erage tree depth (Schwarm and Ostendorf, 2005).

The use of language models to assess the de-
gree of readability was also introduced in the early
2000s (Collins-Thompson and Callan, 2004) and
later combined with classification algorithms such
as support vector machines to further increase ac-
curacy (Petersen, 2007; Feng, 2010).

In this paper we investigate if it is possible to
find a set of parameters for easy-to-read classifica-
tion, on par with the best models used today, with-
out using parsing based features. Finding such a
set would facilitate portability and provide faster
assessment of readability.

2 Method

To train and test our classifier we used one easy-
to-read corpus and five corpora representing ordi-
nary language in different text genres. The latter
corpora is referred to as non-easy-to-read in this
paper. For each category we used 700 texts.

Our source of easy-to-read material was the
LäSBarT corpus (Mühlenbock, 2008). LäSBarT
consists of manually created easy-to-read texts



from a variety of sources and genres.

The non-easy-to-read material comprised texts
from a variety of corpora. This material con-
sisted of 215 news text articles from GP2007 (The
Swedish news paper Göteborgs Posten), 34 whole
issues of the Swedish popular science magazine
Forskning och Framsteg, 214 articles from the
professional news magazine Läkartidningen 05
(physician news articles), 214 public information
notices from The Public Health Agency of Swe-
den (Smittskyddsinstitutet) and 23 full fiction nov-
els from a Swedish book publisher (the Norstedts
publishing house).

By using a corpus with such a variety of doc-
uments we got non-easy-to-read documents from
different genres which is important as we want to
be able to use the same model on all types of text.
We also lowered the risk of genre classification
rather than degree of readability classification.

The texts were preprocessed using the Korp cor-
pus import tool (Borin et al., 2012). Steps in the
preprocessing chain relevant for this study were
tokenization, lemmatisation, part-of-speech tag-
ging and dependency grammar parsing.

We used a large number of different text fea-
tures proposed for readability assessment for both
Swedish and English. We use both the term’s
feature (property of the text) and parameter (in-
put to the ML-system). Some features consist of
more than one parameter. In the paper we use
the terms features and parameters somewhat in-
terchangeably. However, technically, a feature is
a property of the text, a parameter is input to the
machine learning system. A few of the text fea-
tures we use are represented as a combination of
parameters and in these cases we select single pa-
rameters, not full features.

2.1 Non-parsing features

The three most used traditional text quality metrics
used to measure readability for Swedish are:

LIX Läsbarhetsindex, readability index. Ratio of
words longer than 6 characters coupled with
average sentence length, Equation 1. This
is the standard readability measure used for
Swedish and can be considered baseline sim-
ilar to the Flesch-Kincaid formula (Kincaid
et al., 1975).

lix =
n(w)

n(s)
+(

n(words > 6 chars)

n(w)
×100)

(1)

where n(s) denotes the number of sentences
and n(w) the number of words.

OVIX Ordvariationsindex, word variation index,
related to type-token ratio. Logarithms are
used to cancel out type-token ratio problems
with variable text length, Equation 2.

ovix =
log(n(w))

log(2− log(n(uw))
log(n(w)) )

(2)

where n(w) denotes the number of words and
n(uw) the number of unique words.

NR Nominal ratio, the ratio of nominal word,
used to measure formality of text rather than
readability, however, this is traditionally as-
sumed to correlate to readability, Equation 3.

Nr =
n(noun) + n(prep) + n(part)

n(pro) + n(adv) + n(v)
(3)

where n(noun) denotes the number of
nouns, n(prep) the number of prepositions,
n(part) the number of participles, n(pro) the
number of pronouns, n(adv) the number of
adverbs, and n(v) the number of verbs.

2.1.1 Shallow features
The shallow text features are the main features
traditionally used for simple readability metrics.
They occur in the "shallow" surface structure of
the text and can be extracted after tokenization by
simply counting words and characters. They in-
clude:

AWLC Average word length calculated as the av-
erage number of characters per word.

AWLS Average word length calculated as the av-
erage number of syllables per word. The
number of syllables is approximated by
counting the number of vowels.

ASL Average sentence length calculated as the
average number of words per sentence.



Longer sentences, as well as longer words, tend
to predict a more difficult text as exemplified by
the performance of the LIX metric and related met-
rics for English. These types of features have
been used in a number of readability studies based
on machine learning (Feng, 2010) and as baseline
when evaluating new features (Pitler and Nenkova,
2008).

2.1.2 Lexical features
Our lexical features are based on categorical word
frequencies. The word frequencies are extracted
after lemmatization and are calculated using
the basic Swedish vocabulary SweVoc (Heimann
Mühlenbock, 2013). SweVoc is comparable to the
list used in the classic Dale-Chall formula for En-
glish (Dale and Chall, 1949). Though developed
for similar purposes, special sub-categories have
been added (of which three are specifically consid-
ered). The following frequencies are calculated,
based on different categories in SweVoc:

SweVocC SweVoc lemmas fundamental for com-
munication (category C).

SweVocD SweVoc lemmas for everyday use (cat-
egory D).

SweVocH SweVoc other highly frequent lemmas
(category H).

SweVocT Unique, per lemma, SweVoc words (all
categories, including some not mentioned
above) per sentence.

A high ratio of SweVoc words should indicate a
more easy-to-read text. The Dale-Chall metric
(Chall and Dale, 1995) has been used as a simi-
lar feature in a number of machine learning based
studies of text readability for English (Feng, 2010;
Pitler and Nenkova, 2008). The SweVoc metrics
are also related to the language model features
used in a number of studies (Schwarm and Osten-
dorf, 2005; Heilman et al., 2008).

2.1.3 The morpho-syntactic features
The morpho-syntactic features concern a morphol-
ogy based analysis of text. For the purposes of
this study the analysis relies on previously part-of-
speech annotated text, which is investigated with
regard to the following features:

Part-of-speech tag ratio Unigram probabilities
for the different parts-of-speech tags in the

document, that is, the ratio of each part-of-
speech, on a per token basis, as individual
parameters. This is viewed as a single feature
but is represented by 26 parameters, see Ta-
ble 2. Such a language model based on part-
of-speech, and similar metrics, has shown to
be a relevant feature for readability assess-
ment for English (Heilman et al., 2007; Pe-
tersen, 2007; Dell’Orletta et al., 2011) and
for Swedish (Falkenjack et al., 2013).

RC The ratio of content words (nouns, verbs, ad-
jectives and adverbs), on a per token basis,
in the text. Such a metric has been used in
a number of related studies (Alusio et al.,
2010).

2.2 Parsing based features
These features are estimable after syntactic pars-
ing of the text. The syntactic feature set is ex-
tracted after dependency parsing using the Malt-
parser (Nivre et al., 2006). Such parsers have been
used for preprocessing texts for readability assess-
ment for Italian (Dell’Orletta et al., 2011). The
dependency based features consist of:

ADDD The average dependency distance in the
document on a per dependent basis. A longer
average dependency distance could indicate a
more complex text (Liu, 2008).

ADDS The average dependency distance in the
document on a per sentence basis. A
longer average total dependency distance
per sentence could indicate a more complex
text (Liu, 2008).

RD The ratio of right dependencies to total num-
ber of dependencies in the document. A high
ratio of right dependencies could indicate a
more complex text.

SD The average sentence depth. Sentences with
deeper dependency trees could be indicative
of a more complex text in the same way
as phrase grammar trees has been shown to
be (Petersen and Ostendorf, 2009).

Dependency type tag ratio Unigram probabili-
ties for the dependency type tags resulting
from the dependency parsing, on a per to-
ken basis, as individual parameters. This
is viewed as a single feature but is repre-
sented by 63 parameters, see Tables 4 and 5.



These parameters make up a unigram lan-
guage model and is comparable to the phrase
type rate based on phrase grammar pars-
ing used in earlier research (Nenkova et al.,
2010). Such a language model was shown to
be a good predictor for degree of readability
in Swedish text (Falkenjack et al., 2013).

VR The ratio of sentences with a verbal root, that
is, the ratio of sentences where the root word
is a verb to the total number of sentences
(Dell’Orletta et al., 2011).

AVA The average arity of verbs in the document,
calculated as the average number of depen-
dents per verb (Dell’Orletta et al., 2011).

UVA The ratio of verbs with an arity of 0-7 as
distinct features (Dell’Orletta et al., 2011).
This is viewed as a single feature but is rep-
resented by 8 parameters.

TPC The average number of tokens per clause in
the document. This is related to the shallow
feature average number of tokens per sen-
tence.

PreM The average number of nominal pre-
modifiers per sentence.

PostM The average number of nominal post-
modifiers per sentence.

PC The average number of prepositional comple-
ments per sentence in the document.

Compound models We have also created a num-
ber of compound models, comprising metrics
from sets of features; all traditional measures,
all shallow features, all lexical features, all
morpho-syntactic features, all syntactic fea-
tures, and all features (Total), see Table 3.
Falkenjack et al. (2013) also looked at incre-
mental combinations of these same models.

2.3 Parameter optimization
The models for parameter optimization are cre-
ated from various subsets of the text features us-
ing a genetic algorithm. Lau (2006) performed
experiments on using genetic algorithms to select
significant features that are useful when assessing
readability for Chinese. Starting with 64 features,
mainly various stroke features but also more tra-
ditional features, such as, measuring amount of
familiar and common words, a genetic algorithm

was used to find optimal feature subsets. Based on
investigations of using three different fitness func-
tions it was shown that a set of 15 features is suffi-
cient and the best feature set for each fitness func-
tion is selected for further studies. These feature
sets are then evaluated using SVR (Support Vector
Regression) to train readability models and finally
test them on the texts.

In our work we do not first select feature sets
and then train the model on them. Instead feature
sets, generated by genetic search, are used to train
the readability model, using SVM, and then the
models are tested.

We performed a number of trials based on dif-
ferent base sets of parameters. In each case the
space we searched through had the size

(|b|
s

)
,

where b is the base set of parameters and s is the
size of the model we were searching for.

We performed genetic searches through model
spaces for 1000 generations. Each generation con-
tained 10 chromosomes, i.e. models, 7 created by
crossover and 3 randomly generated to avoid get-
ting stuck in local maxima.

The crossover worked by randomly selecting
parameters from the locally optimal parameter set
of the prior generation. This locally optimal pa-
rameter set was created by taking the union of the
best performing chromosomes until the size of the
set exceeded the size of the target selection plus 4.

In the rare cases where the parameters in the
total parent generation did not exceed this num-
ber all parameters from the parent generation were
used.

The fitness function consisted of a 7-fold cross-
validation test run of a Support Vector Ma-
chine trained by Sequential Minimal Optimization
(Platt, 1998). For this we used the Waikato Envi-
ronment for Knowledge Analysis, or Weka. The
accuracy of a model was used as its fitness and
used to order each generation from best to worst
performing.

3 Results

We first present results from using only the sin-
gle features and the compound models. We then
present the results from the various models gener-
ated by our method.

We provide performance measures for single
features for comparison in Tables 1 and 2. The
performance for the 63 dependency types are pre-
sented in Tables 4 and 5.



LäSBarT Other
Model Accuracy Prec. Rec. Prec. Rec.

LIX 84.6 (1.9) 87.9 80.4 82.0 88.9
OVIX 85.6 (2.3) 86.8 84.4 84.9 86.9
NR 55.3 (9.1) 53.5 99.1 96.0 11.4

AWLC 79.6 (2.6) 82.3 75.7 77.4 83.4
AWLS 75.6 (2.6) 78.7 70.3 73.1 80.9
ASL 62.4 (8.1) 58.0 98.7 97.8 26.1

SweVocC 79.3 (0.8) 84.3 72.0 75.6 86.6
SweVocD 57.6 (3.8) 63.1 37.9 55.5 77.4
SweVocH 63.1 (4.5) 63.1 63.4 63.2 62.9
SweVocT 75.2 (1.4) 80.6 66.7 71.6 83.7
POS-tags 96.8 (1.6) 96.9 96.7 96.7 96.9

RC 50.4 (1.8) 50.4 52.7 50.4 48.1
ADDD 88.5 (2.0) 88.5 88.6 88.6 88.4
ADDS 53.9 (10.2) 52.8 99.7 28.1 8.1

RD 68.9 (2.1) 70.6 65.1 67.7 72.7
SD 75.1 (3.5) 79.1 68.4 72.2 81.9

Dep-tags 97.9 (0.8) 97.7 98.0 98.0 97.7
VR 72.6 (2.0) 77.0 64.6 69.5 80.6

AVA 63.4 (3.0) 64.9 58.4 62.3 68.4
UVA 68.6 (1.7) 70.2 65.0 67.4 72.3
TPC 71.4 (4.7) 64.2 98.6 97.0 44.3
PreM 83.4 (2.9) 78.1 93.0 91.3 73.9
PostM 57.4 (4.3) 54.1 99.9 98.4 15.0

PC 83.5 (3.5) 80.1 89.1 88.1 77.9

Table 1: Performance of the single feature models.
The accuracy represents the average percentage of
texts classified correctly, with the standard devia-
tion within parentheses. Precision and Recall are
also provided for both easy-to-read (LäSBarT) and
non-easy-to-read (Other) sets. Italicized features
consist of more than one parameter.

The results from using the full sets before pa-
rameter optimization are listed in Table 3. Using
all features provides the best model with 98.9%
accuracy which could be considered the target ac-
curacy of our parameter optimization.

3.1 POS-ratio features
The first trial we performed was a search through
the parameter space containing ratios of part-of-
speech unigrams. As our data contained 26 differ-
ent POS-tags (additional morphological data was
ignored in this search) the size of the spaces were(
26
s

)
where s is the size of the model we were op-

timizing. For 3-parameter models this is no larger
than

(
26
3

)
= 2600 while the maximum size is(

26
13

)
= 10400600. We searched for optimal sub-

sets of sizes from 1 to 25. The best models are
presented in Table 6 and the performance results
in Table 8. Models comprising more than 10 fea-

LäSBarT Other
Model Accuracy Prec. Rec. Prec. Rec.

VB 87.6 (1.7) 89.2 85.9 86.5 89.4
MAD 87.1 (0.9) 91.1 82.3 83.9 91.9
PAD 79.5 (1.6) 71.8 97.4 96.0 61.6
MID 76.6 (2.9) 78.6 73.3 74.9 79.9
PP 72.4 (3.8) 73.7 69.7 71.4 75.0
PN 72.1 (2.7) 79.2 60.4 67.9 83.9
NN 70.4 (2.6) 75.4 61.4 67.3 79.4
DT 67.7 (3.3) 67.9 67.6 67.6 67.9
PL 65.6 (2.5) 70.4 53.9 62.8 77.4
JJ 64.1 (4.3) 63.6 65.7 64.7 62.4

HA 62.4 (1.1) 66.5 49.9 59.9 74.9
SN 59.4 (3.7) 64.7 42.1 57.0 76.7
UO 58.2 (8.2) 55.1 98.4 94.6 18.0
KN 56.6 (3.0) 57.9 48.9 55.7 64.4
AB 56.0 (3.2) 58.4 43.0 54.7 69.0
IN 53.0 (5.1) 60.0 78.7 16.1 27.3
IE 52.6 (2.4) 61.5 19.0 51.5 86.1
PS 52.6 (1.4) 59.4 17.7 51.5 87.4
HP 52.5 (5.4) 69.9 24.0 47.2 81.0
HS 52.4 (2.0) 51.2 99.7 89.3 5.0
RG 51.6 (3.5) 51.1 96.9 69.6 6.4
HD 50.4 (0.7) 50.2 31.7 35.9 69.1

PLQS 50.0 (0.0) 50.0 100.0 0.0 0.0
RO 49.7 (0.9) 49.8 89.3 48.8 10.1
PM 49.7 (1.3) 49.8 95.0 54.9 4.4

Table 2: Performance of the POS-tag ratio param-
eters ordered by performance. The various mod-
els are tags used in the SUC corpus (Ejerhed et
al., 2006), normally part of speech tags, e.g. VB is
verb, with some extensions, but the tags comprise
other features as well e.g. MAD comprises sen-
tence terminating delimiters, PAD pair-wise de-
limiters such as parentheses and MID other delim-
iters such as comma and semicolon. Measures as
described in Table 1.

LäSBarT Other
Model Acc. Pre. Rec. Pre. Rec.

TradComb 91.4 (3.0) 92.0 91.0 91.1 91.9
Shallow 81.6 (2.7) 83.3 79.4 80.3 83.9
Lexical 78.4 (2.2) 81.8 73.0 75.6 83.7
Morpho 96.7 (1.6) 96.8 96.7 96.7 96.7

Syntactic 98.0 (1.1) 97.9 98.1 98.1 97.9
Total 98.9 (1.0) 98.9 98.9 98.9 98.9

Table 3: Performance of the full feature sets. Mea-
sures as described in Table 1.

tures are omitted as no significant performance im-
provement is measured beyond this point. See Ta-
ble 7 for sizes.



LäSBarT Other
# Accuracy Prec. Rec. Prec. Rec.
IP 89.4 (1.7) 92.9 85.3 86.5 93.4
SS 87.4 (2.9) 88.2 86.4 86.7 88.3

ROOT 83.0 (2.4) 88.0 76.4 79.2 89.6
AT 78.1 (4.0) 75.9 82.9 81.0 73.3
ET 77.7 (2.4) 79.6 74.7 76.3 80.7
JR 76.4 (6.4) 69.0 97.7 96.0 55.0
AN 76.2 (2.5) 72.3 85.6 82.4 66.9
IQ 73.1 (2.1) 67.0 90.7 85.9 55.4
IK 72.5 (2.5) 75.0 67.9 70.6 77.1
OO 72.2 (5.3) 74.4 67.4 70.4 77.0
IR 72.1 (3.4) 64.7 97.9 95.6 46.3
DT 70.4 (1.4) 73.4 64.4 68.3 76.4
VG 70.0 (2.4) 81.1 52.1 64.8 87.9
PL 66.8 (2.7) 70.8 57.7 64.3 75.9
JC 64.8 (4.3) 59.1 97.4 92.4 32.1
CJ 64.0 (3.6) 62.2 71.7 66.6 56.3
HD 62.5 (2.7) 59.0 84.7 73.2 40.3
IC 61.3 (4.3) 56.8 97.1 90.8 25.4
OA 61.0 (3.4) 66.9 43.3 58.2 78.7
SP 60.7 (2.0) 67.4 42.4 57.9 79.0
I? 60.6 (1.3) 78.4 29.3 56.5 91.9

+A 60.1 (2.3) 58.6 68.9 62.4 51.4
TA 59.8 (2.5) 63.9 46.0 57.7 73.6
AG 59.7 (2.2) 57.0 81.6 68.4 37.9
NA 59.5 (3.5) 63.3 45.0 57.5 74.0
+F 59.0 (3.3) 64.4 40.4 56.6 77.6
UA 58.6 (3.9) 63.7 41.1 56.3 76.1
VA 58.2 (6.1) 56.2 85.3 67.1 31.1
MS 57.5 (1.8) 62.5 38.3 55.4 76.7
KA 57.5 (3.6) 75.6 35.4 47.3 79.6

Table 4: Performance of the Dependency type ra-
tio attributes ordered by performance. Measures
as described in Table 1 Continued in table 5.

3.2 Non-syntactic features

The second trial we performed was a search
through the parameter space of all non-syntactic
features. As our data contained 37 such param-
eters the size of the spaces were

(
37
s

)
where s

is the size of the model we were optimizing.
For 3-parameter models this is no larger than(
37
3

)
= 7770 while the maximum size is

(
37
19

)
=

17672631900. We searched for optimal subsets
of sizes from 1 to 25. The best models are pre-
sented in Table 9 and the performance results in
Table 10. Models larger than 8 are omitted as no
significant performance improvement is measured
beyond this point.

LäSBarT Other
# Accuracy Prec. Rec. Prec. Rec.
IT 56.5 (1.8) 54.1 86.7 66.6 26.3
PT 55.7 (2.9) 53.6 85.0 63.7 26.4
IS 55.6 (5.9) 53.1 99.9 85.0 11.3
JT 55.5 (3.8) 53.0 99.6 94.0 11.4
AA 55.4 (3.1) 57.4 42.1 54.3 68.7
IG 55.4 (2.8) 52.9 99.4 97.0 11.3
IU 55.1 (2.4) 82.4 26.1 45.6 84.0
RA 54.8 (2.5) 65.7 31.4 53.8 78.1
IO 54.4 (2.3) 63.6 33.4 45.5 75.4

MA 54.3 (3.3) 68.4 18.0 52.4 90.6
FS 53.8 (2.3) 72.9 12.0 52.1 95.6
CA 53.6 (3.9) 53.2 60.3 54.1 46.9
XX 53.0 (1.6) 69.4 24.7 44.5 81.3
ES 52.9 (1.7) 77.0 22.1 44.4 83.7
EF 52.4 (4.4) 52.4 75.4 41.4 29.4
++ 52.3 (1.7) 51.3 93.6 65.0 11.0
XA 52.1 (1.7) 51.1 97.6 65.4 6.7
XT 52.1 (2.2) 51.2 97.0 50.9 7.3
EO 51.8 (2.4) 36.7 70.4 60.4 33.1
IF 51.2 (2.3) 55.4 39.7 48.1 62.7
FP 51.0 (1.3) 61.3 60.1 22.0 41.9
JG 51.0 (1.7) 29.1 57.0 48.6 45.0
DB 50.6 (0.9) 63.5 48.7 28.9 52.6
IV 50.5 (0.5) 75.0 44.0 28.8 57.0
OP 50.4 (0.9) 36.0 65.3 21.8 35.4
FO 50.2 (0.3) 57.1 29.0 35.8 71.4
VS 50.1 (0.4) 43.8 72.7 14.4 27.6
YY 50.0 (0.0) 50.0 100.0 0.0 0.0
XF 49.9 (0.2) 50.0 85.1 14.1 14.7
FV 49.8 (1.0) 55.6 57.9 21.3 41.7
VO 49.8 (3.3) 52.9 73.3 15.6 26.3

Table 5: Performance of the Dependency type ra-
tio attributes ordered by performance. Measures
as described in Table 1. Continued from table 4.

# Set
2 VB, MAD
3 MAD, VB, MID
4 VB, PAD, MID, MAD
5 MAD, VB, MID, PAD, PM
6 MID, VB, HA, PAD, AB, MAD
7 PAD, JJ, PN, VB, MAD, KN, MID
8 PAD, HD, PM, MID, PN, VB, PL, MAD
9 PAD, SN, PLQS, MAD, DT, VB, RG, PM, MID
10 MAD, PM, PAD, KN, MID, PLQS, IE, VB, HA, DT

Table 6: Features in the best performing sets found
for each size by the genetic search through the
POS-ratio space.

4 Discussion

From the models using POS-ratio features, Tables
6 and 8, we see that it is possible to find models



# Size
1 and 25 26
2 and 24 325
3 and 23 2 600
4 and 22 14 950
5 and 21 65 780
6 and 20 230 230
7 and 19 657 800
8 and 18 1 562 275
9 and 17 3 124 550
10 and 16 5 311 735
11 and 15 7 726 160
12 and 14 9 657 700

13 10 400 600

Table 7: Sizes of model space based on number of
attributes in the target model.

LäSBarT Other
Model Accuracy Prec. Rec. Prec. Rec.

2 95.4 (1.5) 94.7 96.3 96.2 94.6
3 96.4 (0.9) 96.2 96.7 96.7 96.1
4 96.9 (1.0) 97.0 96.9 96.9 97.0
5 97.0 (1.1) 97.0 97.0 97.0 97.0
6 97.0 (1.2) 97.6 96.4 96.5 97.6
7 97.0 (1.1) 96.8 97.3 97.3 96.7
8 96.9 (1.1) 96.9 97.0 97.0 96.9
9 96.9 (1.3) 96.8 97.1 97.1 96.7

10 97.4 (1.1) 97.6 97.1 97.2 97.6
All(26) 96.8 (1.6) 96.9 96.7 96.7 96.9

Table 8: Performance of the feature sets selected
from the set of POS-tag ratio features ordered by
number of parameters. Measures as described in
Table 1.

# Set
2 OVIX, MAD
3 OVIX, MAD, MID
4 MID, PAD, MAD, OVIX

5 MAD, OVIX, VB, SN, SweVocT
6 MAD, HD, MID, PL, OVIX, SweVocC
7 MAD, AB, PP, HD, MID, OVIX, DT
8 MID, AB, PAD, OVIX, MAD, SweVocH, HS, RG

Table 9: Features in the best performing sets found
for each size by the genetic search through the
non-syntactic space.

that outperform most single feature models. We
have in Table 8 included the performance of the
full, 26 feature, model which shows that perfor-
mance might be increased slightly by filtering out
confusing features.

LäSBarT Other
Model Accuracy Prec. Rec. Prec. Rec.

2 96.6 (1.0) 95.5 98.0 98.0 95.3
3 97.4 (1.3) 97.3 97.4 97.5 97.3
4 98.2 (1.3) 97.8 98.7 98.7 97.7
5 97.9 (1.2) 97.1 98.9 98.8 97.0
6 98.0 (1.0) 97.2 98.9 98.8 97.1
7 97.8 (1.3) 97.1 98.6 98.6 97.0
8 98.5 (1.0) 97.9 99.1 99.1 97.9

All (37) 98.3 (1.0) 97.4 99.3 99.3 97.3

Table 10: Performance of the feature sets selected
from the set of all non- syntactic features ordered
by number of parameters. Measures as described
in Table 1.

We can also see that the sets beyond 4 param-
eters do not fully correlate to the best performing
single parameters in the parameter space. This im-
plies that combinations of some features may be
better predictors than the individual features.

When we search through all non-syntactic fea-
tures we get results similar to the POS-ratio space
search. While the first generated sets seem to
consist of the best performing single parameters,
larger models seem to be more "exotic" using low
performing single parameters to create stronger
combination effects, see Table 9.

The most interesting result here is that a model
with 8 non-syntactic parameters, model 8 in Ta-
ble 10, performs almost as well (-0.4 pp) as the
117 parameter total model, see Table 3.

Another interesting result is that the ratio
of verbs (VB in Table 2) has an accuracy of
87.6%, only outperformed by the syntactic feature
ADDD.

Even more interesting is the fact that the ratio
of sentence terminating delimiters (MAD in Table
2) has such high performance. Especially as the
average sentence length (ASL) is not a very good
predictor of readability, see Table 3 and Falken-
jack et al. (2013).

Theoretically, the ratio of MADs is the inverse
of the ASL and as such their performance should
align. However, the two metrics are calculated
differently, sentence length is based on parsing
data and MAD ratio is based on POS-tagging data.
While a sentence should contain exactly one MAD
there are instances where more than one (informal
language, transcribed spoken language, misiden-
tified ellipsis, quotations etc.) or less than one
(bullet points, tables etc.) might occur in the ac-



tual text. It should be noted that if the aforemen-
tioned is true MAD might rather be a style predic-
tor than a direct readability predictor. However, in
that case style and readability appears to correlate
which is not surprising.

We further note how much accuracy can be im-
proved by combining very few measures. For in-
stance, OVIX gives an accuracy of only 85.6% and
MAD gives 87.1%, but combined they give 96.6%,
set 2 in Table 10

5 Conclusion

In this paper we introduced and evaluated a
method for finding optimal subsets of text features
for readability based document classification. The
method uses genetic search to systematically gen-
erate models using various sets of text features. As
fitness function for the genetic algorithm we used
SVM created models that were 7-fold cross vali-
dated on one easy-to-read corpus and one corpus
of regular texts.

Our results show that, at least for Swedish, it
is possible to find models almost as good the cur-
rently best models while omitting parsing based
features. Our algorithm found a model of 8 non-
syntactic parameters which predicted readability
with an accuracy of 98.5%. This is almost as accu-
rate as a 117 parameter model, including parsing
based features, with an accuracy of 98.9%

Our study was conducted for Swedish texts but
only a few of the metrics used are specific to
Swedish and the optimization method itself is lan-
guage independent, thus, the method can easily
be applied to other languages. The method can
be used for optimization of readability assessment
systems as well as for basic linguistic research into
readability.
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