
A Natural Language Shell and Tools for Customizing the Dialogue
in Natural Language Interfaces

Arne Jönsson
Department of Computer and Information Science

Linköping University
S- 581 83 LINKÖPING, SWEDEN

Phone: +46 13281717
Email: ARJ@IDA.LIU.SE

Abstract
The language used in an interaction between a human

and a computer depends on the application as well as the
user. This paper describes a method for building domain
specific natural language interfaces by updating knowl-
edge bases for a domain independent natural language
shell.

The interface uses a uniform knowledge representa-
tion for linguistic, dialogue and domain knowledge. Fur-
ther, it contains a dialogue manager which can be
customized for different applications by changing or up-
dating dialogue objects describing different interaction
situations. Information about the interactions is gathered
from experiments with a simulated human-computer in-
terface, Wizard of Oz experiments. These are incorporat-
ed into the interface using a system which extracts
information from a tagged corpus and inserts it into the
knowledge bases. Information on all the different levels
of an NLI can be extracted from the corpus in this way,
but in this paper emphasis is laid on extracting and in-
corporating dialogue management information.

1 Introduction
The building of one single domain independent natu-

ral language interface is becoming less interesting today.
Instead it is agreed that one needs to build a new system
for each new application. This can be done in different
ways, either by updating an existing system with domain
specific information or by rewriting the whole system.
Our approach favours the former.

1.1 Acquisition of Sublanguages
Natural language interfaces can be used in many dif-

ferent applications, e.g. data base systems, consultation
systems and configuration systems. Each new applica-
tion has its own vocabulary, phrase structure and interac-
tion style. This is what is called a sublanguage
(Grishman & Kittredge, 1987), i.e. a subset of a natural
language. A sublanguage is not only defined by its gram-
mar and lexicon, but also by its form of interaction, i.e
factors like how the user and system handle clarifica-
tions, who takes the initiative, what is cooperative in a
certain application, what are the user categories etc. This
means that we are interested in finding which sublan-
guages that are used in various domains. We do this by

simulations where users interact with what they believe
is a natural language interface but in fact their utterances
are interpreted by a human. These experiments are often
called Wizard of Oz-experiments. In Jönsson & Dahl-
bäck (1988) and Dahlbäck & Jönsson (1989) we have
presented the results of our experiments conducted with
the purpose of studying human-computer interaction in
general. Jönsson (1990) did some initial analysis with
the purpose of developing strategies for dialogue man-
agement for different natural language interfaces.

1.2 Transportable Natural Language
Interfaces

Transportable natural language interfaces do not at-
tempt to deal with a complete natural language but rather
a sublanguage as described above.

The problem of adapting a database domain descrip-
tion is studied in systems like TEAM and TELI and is
also used in commercial NLI’s like IBM’s LanguageAc-
cess. TEAM (Martin, Appelt, Grosz & Pereira 1985) is a
system designed for customization to different data base
applications. TEAM allows the end user to update the in-
terface with new concepts and also to integrate these into
the domain knowledge base. One of the requirements
was that the information necessary to adapt to a new da-
tabase should be acquired from the end user. Hence
TEAM does not consider information relating to the
grammar or dialogue behaviour. The same aim lies be-
hind the TELI system (Ballard & Stumberger, 1986),
namely that the end-users do the customization. TELI
uses a set of tools to aid the end-user in the customiza-
tion of domain concepts. The idea is somewhat similar to
the ones on user-derived interfaces, (see section 1.3) but
it still only allows adding new concepts by an end-user
who is not a linguist.

 Another problem is to allow for domain dependent
lexicon, syntax and semantics customization. The prob-
lem of syntactic-semantic role relations is addressed in
LUKE (Wroblewski & Rich, 1989), where linguistic
knowledge and domain knowledge are integrated in the
same knowledge-base, allowing for simultaneous devel-
opment and interleaving of syntactic and semantic proc-
esses. This requires a more sophisticated system builder.

However, a cooperative NLI must be more than a
simple question-answering system, it must also partici-
pate in a coherent dialogue with the user. Many solutions

to this problem are centered around the idea that the dia-
logue is planned by recognizing the users’ goals and in-
tentions, Carberry (1990) presents an overview. These
approaches deal with general discourse and hence the
problem of transportability is not addressed.

The HAM-ANS project (Hoeppner,et al 1983) took
an even broader view. Here the interest was not only in
adapting the system to a new database, but instead they
realized that there are different interaction situations that
differ not only with respect to the background system but
also with respect to dialogue type, user type, intended
system behaviour and discourse domain. In HAM-ANS
a core system was developed which could be adapted to
different applications. The idea was that the core system
should be the same for every application. This is then en-
hanced with new information for a new application.
HAM-ANS separates out the processes from the differ-
ent knowledge sources which makes it easier to adapt a
knowledge base to a new application, as no processing
mechanisms needs updating. They use the core to devel-
op NLI’s to a hotel reservation system, a system for ana-
lysing traffic scenes and a consultations system on
fishery data. There is no tool for customization and the
knowledge sources are of different types, which makes it
difficult to develop tools for customization.

1.3 A Methodology for Customization
In software engineering the notion of rapid prototyp-

ing is a well-known concept meaning that a system is de-
veloped in cooperation with the end user. The idea is to
build a prototype that is enhanced with new features as
the end users use the system. The final system will thus
hopefully reflect the users’ needs instead of those of the
system engineers’.

A similar approach was taken by Kelley (1983)
where he used a method for developing a natural lan-
guage interface in six steps. The first step is to analyse
the task and the second to develop semantic primitives
for that task. The third step then is called the first Wizard
of Oz-step. In this step Kelley lets the subject interact
with what they believe is a natural language interface but
which in fact is a human simulating such an interface.
This provides data that are used to build a first version of
the interface, step four. Kelley starts without any gram-
mar or lexicon. The rules and lexical entries are those
used by the users during the simulation.

Next, in step 5, Kelley starts to improve his interface
by conducting new Wizard of Oz simulations, this time
with the interface running. However, when the user/sub-
ject enters a query that the system cannot handle, the
Wizard takes over and produces an appropriate response.
This interaction is logged and later the system is updated
to be able to handle the situations where the wizard was
responding, step six. The advantage is that the user’s in-
teraction is not interrupted and a more realistic dialogue
is thus obtained.

The method used by Kelley of running a simulation
in parallel with the interface was developed by Chapanis
(1982) and used in his experiments on human-computer
interaction. It was also used by Good, Whiteside, Wixon
& Jones (1984). They developed a command language
interface to an e-mail system by this iterative design
method which they call UDI (User-derived Interface).
Kelley and Goodet al focus on updating the lexical and
grammatical knowledge and are not concerned with dia-
logue behaviour.

In this paper we go further by using a natural lan-
guage interface system which is based on modern lin-
guistic theories, which use an object-oriented knowledge
representation language throughout and which is capable
of participating in a coherent dialogue with the user,
LINLIN (LInköping Natural Language INterface)
(Ahrenberg, Jönsson & Dahlbäck, 1990). In LINLIN the
interface is customized to a certain application using a
process inspired by the method of user-derived interfac-
es. The paper will focus on the dialogue management
part of the interface.

2 LINLIN
In LINLIN linguistic knowledge and domain knowl-

edge are integrated in the same knowledge base allowing
interleaving of syntactic and semantic processes (Ahren-
berg, 1989). Semantic interpretation is object-oriented
(Hirst, 1987) and involves the linking of linguistic ob-
jects (parts of utterances) to objects (instances, classes,
properties) of the universe of discourse, of which the
system may have independent knowledge.

In LINLIN we regard a dialogue manager (hence-
forth: DM) as the central controlling module which di-
rects the dialogue and keeps a record of the dialogue
history. It can be viewed as a controller of resources
(parser, instantiator, deep generator, surface generator
and translator). The resources are regarded as domain in-
dependent processes accessing different application and
domain dependent knowledge sources (grammar, lexi-
con, domain objects, dialogue objects and translation
principles), see figure 2.

DM uses information from three knowledge sources;
domain object descriptions which describe the domain
concepts and their relations, dialogue object descrip-
tions, and finally information about the ongoing dialogue
modelled in a dialogue tree.

2.1 The dialogue manager
The dialogue manager is presented in Jönsson (1991)

but some of its distinguishing features needs to be pre-
sented before we can discuss how the DM is customized.

Reichman (1985) describes a discourse grammar
based on the assumption that a conversation can be de-
scribed using conventionalized discourse rules. We ar-
gue similarly (Ahrenberg, Jönsson & Dahlbäck, 1990)
that a segment structure inferred from the structure and
content of the utterances is primary when describing a
dialogue. This proposal has been criticized by for in-
stance Levinson (1981) as not accurately describing a
naturally occurring discourse, but for a restricted sublan-
guage in a limited domain even Levinson agrees that a
speech act theory of dialogue may have its utility. Reich-
man uses surface linguistic phenomena for recognizing
the speakers structuring of the discourse. However, we
found very little use of surface linguistic cues in our dia-
logues (Jönsson, 1990). Instead the users often follow a
local discourse plan with a clear goal such as obtaining
information about some items. This does not mean that
the users always fulfil one plan or that there are no clari-
fications, but they can be handled using the same mecha-
nisms, as described below.

We structure the communication hierarchically using
three different categories of dialogue objects. Instances
of dialogue objects form a dialogue tree which represent
the dialogue as it develops in the interaction, see figure
1. The root category is called Dialogue (D), the interme-

diate category Initiative-Response (IR) and the smallest
unit handled by our dialogue manager is the move. An
utterance can consist of more than one move and is thus
regarded as a sequence of moves. A move object con-
tains information about a move. Moves are categorized
according to type of illocutionary act and topic. Some
typical move types are: Question (Q), Assertion and dec-
laration of intent (AS), Answer (A) and Directive (DI).
Topic describes which knowledge source to consult —
the background system, i.e. solving a task (T), the ongo-
ing discourse (D) or the organisation of the background
system (S). For brevity when we refer to a move with its
associated topic, the move type is subscribed with topic,
e.g. QT.

Normally two moves constitute an exchange of infor-
mation which begin with an initiative followed by a re-
sponse (IR). The initiative can come from the system or
the user. A typical IR-unit in a question-answer data base
application is a task related question followed by a suc-
cessful answer QT/AT. Other typical IR-units are: QS/AS
for clarification request, QT/ASS when the requested in-
formation is not in the data base, QD/AD for questions
about the ongoing dialogue.

A dialogue object has two parts. One part contains in-
formation about static properties like type, topic, initia-
tor, responder, salient objects and attributes and
contextual information. Another part of the dialogue ob-
ject is a process description of the actions performed
when executing the object, we call this an action plan.
The different action plans are simple sequences of ac-
tions, e.g. the action plan for a user initiated IR-unit is:

(create-move user)
 (access)

 (create-move system)
 (up).

The execution of this action plan, however, is context
dependent, i.e. the behaviour depends on the information
in the static part. For instance the action(access) uses
information about topic to access the appropriate knowl-
edge base.

The action plan is pushed on to a stack and execution
is controlled from the stack of the current active node.
Actually we have one stack for each node in the tree, see
figure 1. This reflects our distributed approach and has
the advantage that we do not need to manipulate one sin-
gle global stack with a complex control mechanism.
Every action plan terminates with the execution of an ac-
tion which transfers control to a node above the current
node, often the father node, and then execution is re-
sumed from the action plan of that node.

One important feature of the dialogue manager is that
every node in the tree is responsible for its own correct-
ness. For instance the plan for a QT/AT, i.e. a normal task
related question-answer, contains no reparation strate-
gies for missing information to the background system.
If the interpreter fails to access the background system
due to lack of information, the translator signals this to
the DM which creates an instance of an IR-unit for clari-
fication request (say QD/AD) and inserts it into the con-
text of QT/AT. The action plan for clarification request
then generates a move explaining the missing informa-
tion and creates an instance of a user move waiting for
user input. This has the advantage that the plans can be
made very simple, as they need only be aware of their
own local behaviour and context. Further, the plans are
more generally applicable; the plan for a clarification re-
quest is similar for any level in the dialogue tree.

3 Customization
 Customizing LINLIN means augmenting the various

knowledge sources seen to the right in figure 2. LINLIN
is not to be regarded as having a completely empty
knowledge base. Rather we start with a basic lexicon and
grammar and also some dialogue object descriptions that
are common to many applications. These knowledge
sources constitute a shell which needs to be updated with
domain dependent concepts, rules and interaction princi-
ples. This is done by a person, or a team of persons, cf.
Wroblewski & Rich (1989), with some background in
linguistics. I refer to such a person as alanguage engi-
neer.

 However, the language engineer is not to be regarded
as the only person involved in the customization. The
translator, i.e. the module interfacing the background
system, needs to be rewritten for each new application.
The same translator can, however, be used in different
domains using the same application through the means
of translation rules for a specific domain, e.g. different
SQL databases. There should also be a tool for end user
customization, like the ones used by TEAM or LUKE.

One novel aspect of our approach is that the informa-
tion available to the language engineer does not only
consist of the requirements and application descriptions
from the customer, but also a corpus collected using Wi-
zard of Oz-experiments with the end-users, see the upper
right in figure 2. This information is integrated into the
system’s knowledge bases using two different tools, a
knowledge base tool and a system for acquiring informa-
tion from a corpus. Adding the information provided by
the customer using a knowledge base tool is a well-
known, although not in any respect solved, task, and is
not elaborated further upon in this paper.

Another aspect of the customization, deals with per-
formance improvement. This can in part be achieved by
reducing the size of the knowledge bases. Kelley (1983)
developed his interface with no initial knowledge, thus
the only concepts were those found during the simula-
tions. This will give a limited, but hopefully sufficient,
knowledge base for one application, which was Kelley’s
goal. However, my purpose is to develop an interface
which can be customized to many different applications
and thus I would like to reuse as much previous informa-
tion as possible. One way to achieve this efficiently is to

Dialogue treeScoreboard
Speaker:
Hearer:
CurrentRequest:
Current Segment:
Current Move:
CurrentObject:
CurrentSet:
Current Attribute:
.
.

D

QT AT

IR2

Action i
Action i - 1
Action i - 2

.
Action 1

QT/AT

QT

Action Plan

Figure 1. The Internal structures used by the dialogue
manager.

structure the knowledge bases into two levels. One pri-
mary level for knowledge that is found to be relevant in
the current application, either given by the customer or
through the simulations, and another secondary level
containing the rest. Thus, the use of simulations can also
be used for improving performance. However, we have
as yet no knowledge base that is large enough to be con-
sidered for such modifications.

3.1 The tagging system
For analysis of the corpus we use an interactive

graphical tagging system called DagTag (Ahrenberg &
Jönsson, 1989). In DagTag the tag is a directed acyclic
graph, a dag, used in the encoding of information. Dag-
Tag allows tagging on various levels of description, e.g.
lexical, syntactic/semantic and dialogue. Thus, we can
use the same tool to encode information for all the differ-
ent knowledge sources utilized in our interface. First the
segment to be tagged, e.g a move, is marked, and then
the tagging information is assigned, e.g. QT. This process
is much speeded up with the use of templates. A tem-
plate is a ready-made dag of arbitrary complexity and
specification. For the most common tags the dag is fully
specified, but for the least frequently used it is better to
use a general dag which is specified when used. The
templates are constructed using a graphical dag-editor.

Further, as the tags have the structure of dags, which
is the same format as used in LINLINs knowledge bases,
we can extract information from a tagged corpus to be
incorporated into LINLINs knowledge bases. We have
carried out initial experiments on the acquisition of
grammar and lexicon from a tagged corpus (Jönsson &
Ahrenberg 1990).

The task at hand now is how to do this for the other
knowledge bases, initially the dialogue objects.

3.2 Customizing the dialogue
The use of dialogue objects makes it possible for us

to also customize the interaction principles from a
tagged corpus. As said above, the dialogue objects con-
sisted of one static part containing contextual informa-
tion and one part describing a prototypical behaviour.
Now, the process part is the same for dialogue objects
with the same basic behaviour, c.f. the action plan for a
user initiated IR-unit described in section 2.1. The
number of such generic dialogue objects is very small.
For a database information retrieval application the dif-
ferent types are: D-unit, system initiated IR-unit, user in-
itiated IR-unit, generate move and interpret move. These
generic dialogue objects are used to create instances of
specific dialogue objects for a certain situation, e.g. a
QT/AT. They are constructed as templates in DagTag, i.e.
the same tool that is used in the subsequent knowledge
acquisition phase.

The dialogue is manually tagged using descriptors for
move types and IR-units. Figure 3 shows a simplified
dag corresponding to a QT/AT initiated by the system1.
The information in this dag is used to describe one in-
stance of a dialogue object. The general plan for a sys-
tem initiated IR-unit is specified as a QT/AT by extracting
information from this dag and encode it in the static part
of the dialogue object as values to the different at-
tributes. This then provides information to the DM for
instance on what type of move that is legal in this situa-

1. This example is meant to illustrate how the information is
extracted. The Q/A IR-unit is such a basic IR-unit that it is
probably regarded as domain independent.

PARSER

INSTANTIATOR

DEEP GENERATOR

SURFACE GENERATOR

DIALOGUE-
MANAGER

LEXICON

GRAMMAR

DIALOGUE-
OBJECTS

BACKGROUND-
SYSTEM

DOMAIN-
OBJECTS

TRANSLATOR

DEVELOPMENT INFORMATION AND TOOLS

TAGGING

Corpus End User

SYSTEM
LANGUAGE ENGINEER

END USER

KB TOOL

LINLIN

Customer

Figure 2. A Natural Language Development Environment

TRANSLATION-
PRINCIPLES

tion, the value in theResponse slot. In this case it says
that the user may respond with an A.

Suppose we encounter an utterance where the user re-
sponds to a QT with an AST, i.e. we have a QT/AST as a
legal IR-unit. For simplicity we ignore the other proper-
ties. This new IR-unit does not constitute a new IR-unit
of type QT/AST instead it corresponds to modifying the
previously created QT/AT to something like QT/(AT ∨
AST). The (A∨ AS) is a value in theResponse slot al-
lowing also an AS to be a legal move to a question with
topic T.

The dag in figure 3 also contains information about
relevant properties for a move-unit, i.e. the values to the
attributes I and R. This information can be used for spec-
ifying the move dialogue objects by extracting informa-
tion like type, topic, addressee and speaker.

Further, as the customization is carried out by a lan-
guage engineer, it is possible to define move and IR units
consisting of new action sequences. This can be used for
instance to build more complex IR-units like DIT/ACKT/
ACKD.

It is also possible to customize the referent resolution
algorithms used by the NLI. Information about salient
objects is represented in the dialogue tree and is used by
the instantiator and deep generator through a scoreboard,
see figure 1. Associated with the slots on the scoreboard
are access functions. The access functions can be altered,
allowing the search for a referent to an anaphoric expres-
sion to be application dependent.

4 Discussion and current status
We have collected and analysed a number of dia-

logues. In the corpus most of the utterances are user-ini-
tiated task questions provoking a response which is
retrieved from the data base. The response is mostly an
AT and in some cases an ASS (i.e. no information). The
number of clarifications is low and, interestingly, when
the system has initiated the clarification, the user does
not respond to the clarification, instead he starts a new
initiative. Further, there are some ending and greeting
sequences and one instance where the system/wizard
opens a new IR-unit.

I have partially analysed a small part of the corpus
consisting of three Wizard of Oz dialogues with the pur-
pose of developing dialogue objects. The application is
information retrieval from a data base containing infor-
mation on properties of used car models. My intention
is, however, to investigate the other types of applications

TYPE Q/A
INITIATOR [1] System
RESPONDER [2] User
I TYPE Q

TOPIC T
SPEAKER [1]
ADDRESSEE [2]

R TYPE A
TOPIC T
SPEAKER [2]
ADDRESSEE [1]

Figure 3. A simplified dag for a QT/AT IR-unit

that we are dealing with, such as advisory systems and
configuration systems.

In the work by Kelley (1983) and Goodet al. (1984)
the customization process was saturated after a certain
number of dialogues. We have not analyzed the corpus
enough to say whether this will happen to the dialogue
objects, too. However, for data base systems there seems
to be a limited set of move and IR-unit types, but wheth-
er this is true for other applications is an open question.

The current status of LINLIN is that, except for the
deep generator, there are pilot versions of the different
processes, running with small knowledge bases. There is
also a pilot version of the dialogue manager, but it is not
yet integrated with the other modules. The tagging sys-
tem has been used with a very small portion of the cor-
pus for augmenting the lexicon and grammar. Currently
we are working on using the tagging system to create the
generic dialogue objects and we will also use DagTag to
specify the dialogue objects.

5 Acknowledgements
This work is part of a larger project carried out at the

Natural Language Processing Laboratory, Linköping,
sponsored by the Swedish National Board for Technical
Development, STU and Swedish Council for Research
in the Humanities and Social Sciences (HSFR). Many of
the ideas on dialogue management and customization
have evolved during discussions with my colleagues in
the lab, especially Lars Ahrenberg and Nils Dahlbäck.

Åke Thurée did most of the coding for the DM in
Xerox Common Lisp on a Sun Sparc Station. Ivan
Rankin, Mats Wirén and Richard Hirsch have read previ-
ous versions of the paper and provided many valuable
comments.

References
Ahrenberg, L. (1989). On the integration of linguistic

knowledge and world knowledge in natural language un-
derstanding. In Ö. Dahl & K. Fraurud (eds.)Papers from
the First Nordic Conference on Text Comprehension in
Man and Machine, Institute of Linguistics, University of
Stockholm, pp. 1-11.

Ahrenberg, L. and Jönsson, A. (1989) An interactive
system for tagging dialogues.Literary and Linguistic
Computing3(2), 66-70.

Ahrenberg, L., Jönsson, A. & Dahlbäck, N. (1990)
Discourse Representation and Discourse Management
for a Natural Language Dialogue System,To appear in
Proceedings of the Second Nordic Conference on Text
Comprehension in Man and Machine, Täby, Stockholm.

Ballard, B. W. & Stumberger, D. E. (1986) Semantic
Acquisition in TELI: A Transportable, User-Customized
Natural Language Processor,Proceedings of the 24th An-
nual Meeting of the ACL,New York.

Carberry, S. (1990)Plan Recognition in Natural Lan-
guage Dialogue,MIT Press.

Chapanis, A. (1982) Appendix: Man-Computer Re-
search at Johns Hopkins,Information Technology and
Psychology,Kasschau, Lachman & Laugherty (Eds),
Raeger Publishers.

Dahlbäck, N. & Jönsson, A. (1989) Empirical Studies
of Discourse Representations for Natural Language Inter-

faces, Proceedings of the Fourth Conference of the Euro-
pean Chapter of the ACL, Manchester. 1989.

Good, M. D., Whiteside, J. A., Wixon, D. R. & Jones,
S. J., (1984) Building a User-Derived Interface,Commu-
nications of the ACM, Vol. 27, No 10, pp 1032-1043.

Grishman, R. & Kittredge, R. (eds.) 1986.Analysing
language in restricted domains. Hillsdale, N.J.: Erlbaum.

Hirst, G. (1987).Semantic Interpretation and the Res-
olution of Ambiguity. Cambridge University Press.

Hoeppner, W., Christaller, T., Marburger, H., Morik,
K., Nebel, B., O’Leary, M. & Wahlster, W. (1983) Be-
yond Domain Experience: Experience with the Develop-
ment of a German Language Access System To Highly
Diverse Background Systems, Research Report, Univer-
sity of Hamburg, Bericht ANS-16.

Jönsson, A. (1991) A Dialogue Manager Using Initi-
ative-Response Units and Distributed Control,Proceed-
ings of the 5th Conference of the European Chapter of the
ACL,Berlin, Germany.

Jönsson, A. (1990) Application-Dependent Discourse
Management for Natural Language Interfaces: An Em-
pirical Investigation,Papers from the Seventh Scandina-
vian Conference of Computational Linguistics,
Reykjavik, Island.

Jönsson, A. & Ahrenberg, L. (1990) Extensions of a
descriptor-based tagging system into a tool for the gener-
ation of unification-based grammars. To appear in Re-
search in Humanities Computing 1.

Jönsson, A. & Dahlbäck, N. (1988) Talking to a Com-
puter is not Like Talking to Your Best Friend.Proceed-
ings of The first Scandinivian Conference on Artificial
Intelligence, Tromsø, Norway.

Kelley, J. F. (1983) Natural Language and Computers:
Six Empirical Steps for Writing an Easy-to-Use Compu-
ter Application, PhD thesis, The Johns Hopkins Univer-
sity.

Levinson, S. C. (1981) Some Pre-Observations on the
Modelling of Dialogue,Discourse Processes,No 4, pp
93-116.

Martin, P., Appelt, D. E., Grosz, B. J. & Periera, F.
(1985) TEAM: An Experimental Transportable Natural-
Language Interface, IEEE quarterly bulletin on Data-
base Engineering, Vol. 8, No. 3.

Reichman, R. (1985)Getting Computers to Talk Like
You and Me,MIT Press, Cambridge, MA.

Wroblewski, D. A. and Rich, E. A. (1989) LUKE: An
Experiment in the Early Integration of Natural Language
Processing.Proceedings of the Second Conference on
Applied Natural Language Processing, Austin, Texas pp.
186-191.

A Natural Language Shell and Tools for Customizing the Dialogue
in Natural Language Interfaces

Arne Jönsson
Department of Computer and Information Science

Linköping University
S- 581 83 LINKÖPING, SWEDEN

Phone: +46 13281717
Email: ARJ@IDA.LIU.SE

Abstract
The language used in an interaction between a human

and a computer depends on the application as well as the
user. This paper describes a method for building domain
specific natural language interfaces by updating knowl-
edge bases for a domain independent natural language
shell.

The interface uses a uniform knowledge representa-
tion for linguistic, dialogue and domain knowledge. Fur-
ther, it contains a dialogue manager which can be
customized for different applications by changing or up-
dating dialogue objects describing different interaction
situations. Information about the interactions is gathered
from experiments with a simulated human-computer in-
terface, Wizard of Oz experiments. These are incorporat-
ed into the interface using a system which extracts
information from a tagged corpus and inserts it into the
knowledge bases. Information on all the different levels
of an NLI can be extracted from the corpus in this way,
but in this paper emphasis is laid on extracting and in-
corporating dialogue management information.

1 Introduction
The building of one single domain independent natu-

ral language interface is becoming less interesting today.
Instead it is agreed that one needs to build a new system
for each new application. This can be done in different
ways, either by updating an existing system with domain
specific information or by rewriting the whole system.
Our approach favours the former.

1.1 Acquisition of Sublanguages
Natural language interfaces can be used in many dif-

ferent applications, e.g. data base systems, consultation
systems and configuration systems. Each new applica-
tion has its own vocabulary, phrase structure and interac-
tion style. This is what is called a sublanguage
(Grishman & Kittredge, 1987), i.e. a subset of a natural
language. A sublanguage is not only defined by its gram-
mar and lexicon, but also by its form of interaction, i.e
factors like how the user and system handle clarifica-
tions, who takes the initiative, what is cooperative in a
certain application, what are the user categories etc. This
means that we are interested in finding which sublan-
guages that are used in various domains. We do this by

simulations where users interact with what they believe
is a natural language interface but in fact their utterances
are interpreted by a human. These experiments are often
called Wizard of Oz-experiments. In Jönsson & Dahl-
bäck (1988) and Dahlbäck & Jönsson (1989) we have
presented the results of our experiments conducted with
the purpose of studying human-computer interaction in
general. Jönsson (1990) did some initial analysis with
the purpose of developing strategies for dialogue man-
agement for different natural language interfaces.

1.2 Transportable Natural Language
Interfaces

Transportable natural language interfaces do not at-
tempt to deal with a complete natural language but rather
a sublanguage as described above.

The problem of adapting a database domain descrip-
tion is studied in systems like TEAM and TELI and is
also used in commercial NLI’s like IBM’s LanguageAc-
cess. TEAM (Martin, Appelt, Grosz & Pereira 1985) is a
system designed for customization to different data base
applications. TEAM allows the end user to update the in-
terface with new concepts and also to integrate these into
the domain knowledge base. One of the requirements
was that the information necessary to adapt to a new da-
tabase should be acquired from the end user. Hence
TEAM does not consider information relating to the
grammar or dialogue behaviour. The same aim lies be-
hind the TELI system (Ballard & Stumberger, 1986),
namely that the end-users do the customization. TELI
uses a set of tools to aid the end-user in the customiza-
tion of domain concepts. The idea is somewhat similar to
the ones on user-derived interfaces, (see section 1.3) but
it still only allows adding new concepts by an end-user
who is not a linguist.

 Another problem is to allow for domain dependent
lexicon, syntax and semantics customization. The prob-
lem of syntactic-semantic role relations is addressed in
LUKE (Wroblewski & Rich, 1989), where linguistic
knowledge and domain knowledge are integrated in the
same knowledge-base, allowing for simultaneous devel-
opment and interleaving of syntactic and semantic proc-
esses. This requires a more sophisticated system builder.

However, a cooperative NLI must be more than a
simple question-answering system, it must also partici-
pate in a coherent dialogue with the user. Many solutions

to this problem are centered around the idea that the dia-
logue is planned by recognizing the users’ goals and in-
tentions, Carberry (1990) presents an overview. These
approaches deal with general discourse and hence the
problem of transportability is not addressed.

The HAM-ANS project (Hoeppner,et al 1983) took
an even broader view. Here the interest was not only in
adapting the system to a new database, but instead they
realized that there are different interaction situations that
differ not only with respect to the background system but
also with respect to dialogue type, user type, intended
system behaviour and discourse domain. In HAM-ANS
a core system was developed which could be adapted to
different applications. The idea was that the core system
should be the same for every application. This is then en-
hanced with new information for a new application.
HAM-ANS separates out the processes from the differ-
ent knowledge sources which makes it easier to adapt a
knowledge base to a new application, as no processing
mechanisms needs updating. They use the core to devel-
op NLI’s to a hotel reservation system, a system for ana-
lysing traffic scenes and a consultations system on
fishery data. There is no tool for customization and the
knowledge sources are of different types, which makes it
difficult to develop tools for customization.

1.3 A Methodology for Customization
In software engineering the notion of rapid prototyp-

ing is a well-known concept meaning that a system is de-
veloped in cooperation with the end user. The idea is to
build a prototype that is enhanced with new features as
the end users use the system. The final system will thus
hopefully reflect the users’ needs instead of those of the
system engineers’.

A similar approach was taken by Kelley (1983)
where he used a method for developing a natural lan-
guage interface in six steps. The first step is to analyse
the task and the second to develop semantic primitives
for that task. The third step then is called the first Wizard
of Oz-step. In this step Kelley lets the subject interact
with what they believe is a natural language interface but
which in fact is a human simulating such an interface.
This provides data that are used to build a first version of
the interface, step four. Kelley starts without any gram-
mar or lexicon. The rules and lexical entries are those
used by the users during the simulation.

Next, in step 5, Kelley starts to improve his interface
by conducting new Wizard of Oz simulations, this time
with the interface running. However, when the user/sub-
ject enters a query that the system cannot handle, the
Wizard takes over and produces an appropriate response.
This interaction is logged and later the system is updated
to be able to handle the situations where the wizard was
responding, step six. The advantage is that the user’s in-
teraction is not interrupted and a more realistic dialogue
is thus obtained.

The method used by Kelley of running a simulation
in parallel with the interface was developed by Chapanis
(1982) and used in his experiments on human-computer
interaction. It was also used by Good, Whiteside, Wixon
& Jones (1984). They developed a command language
interface to an e-mail system by this iterative design
method which they call UDI (User-derived Interface).
Kelley and Goodet al focus on updating the lexical and
grammatical knowledge and are not concerned with dia-
logue behaviour.

In this paper we go further by using a natural lan-
guage interface system which is based on modern lin-
guistic theories, which use an object-oriented knowledge
representation language throughout and which is capable
of participating in a coherent dialogue with the user,
LINLIN (LInköping Natural Language INterface)
(Ahrenberg, Jönsson & Dahlbäck, 1990). In LINLIN the
interface is customized to a certain application using a
process inspired by the method of user-derived interfac-
es. The paper will focus on the dialogue management
part of the interface.

2 LINLIN
In LINLIN linguistic knowledge and domain knowl-

edge are integrated in the same knowledge base allowing
interleaving of syntactic and semantic processes (Ahren-
berg, 1989). Semantic interpretation is object-oriented
(Hirst, 1987) and involves the linking of linguistic ob-
jects (parts of utterances) to objects (instances, classes,
properties) of the universe of discourse, of which the
system may have independent knowledge.

In LINLIN we regard a dialogue manager (hence-
forth: DM) as the central controlling module which di-
rects the dialogue and keeps a record of the dialogue
history. It can be viewed as a controller of resources
(parser, instantiator, deep generator, surface generator
and translator). The resources are regarded as domain in-
dependent processes accessing different application and
domain dependent knowledge sources (grammar, lexi-
con, domain objects, dialogue objects and translation
principles), see figure 2.

DM uses information from three knowledge sources;
domain object descriptions which describe the domain
concepts and their relations, dialogue object descrip-
tions, and finally information about the ongoing dialogue
modelled in a dialogue tree.

2.1 The dialogue manager
The dialogue manager is presented in Jönsson (1991)

but some of its distinguishing features needs to be pre-
sented before we can discuss how the DM is customized.

Reichman (1985) describes a discourse grammar
based on the assumption that a conversation can be de-
scribed using conventionalized discourse rules. We ar-
gue similarly (Ahrenberg, Jönsson & Dahlbäck, 1990)
that a segment structure inferred from the structure and
content of the utterances is primary when describing a
dialogue. This proposal has been criticized by for in-
stance Levinson (1981) as not accurately describing a
naturally occurring discourse, but for a restricted sublan-
guage in a limited domain even Levinson agrees that a
speech act theory of dialogue may have its utility. Reich-
man uses surface linguistic phenomena for recognizing
the speakers structuring of the discourse. However, we
found very little use of surface linguistic cues in our dia-
logues (Jönsson, 1990). Instead the users often follow a
local discourse plan with a clear goal such as obtaining
information about some items. This does not mean that
the users always fulfil one plan or that there are no clari-
fications, but they can be handled using the same mecha-
nisms, as described below.

We structure the communication hierarchically using
three different categories of dialogue objects. Instances
of dialogue objects form a dialogue tree which represent
the dialogue as it develops in the interaction, see figure
1. The root category is called Dialogue (D), the interme-

diate category Initiative-Response (IR) and the smallest
unit handled by our dialogue manager is the move. An
utterance can consist of more than one move and is thus
regarded as a sequence of moves. A move object con-
tains information about a move. Moves are categorized
according to type of illocutionary act and topic. Some
typical move types are: Question (Q), Assertion and dec-
laration of intent (AS), Answer (A) and Directive (DI).
Topic describes which knowledge source to consult —
the background system, i.e. solving a task (T), the ongo-
ing discourse (D) or the organisation of the background
system (S). For brevity when we refer to a move with its
associated topic, the move type is subscribed with topic,
e.g. QT.

Normally two moves constitute an exchange of infor-
mation which begin with an initiative followed by a re-
sponse (IR). The initiative can come from the system or
the user. A typical IR-unit in a question-answer data base
application is a task related question followed by a suc-
cessful answer QT/AT. Other typical IR-units are: QS/AS
for clarification request, QT/ASS when the requested in-
formation is not in the data base, QD/AD for questions
about the ongoing dialogue.

A dialogue object has two parts. One part contains in-
formation about static properties like type, topic, initia-
tor, responder, salient objects and attributes and
contextual information. Another part of the dialogue ob-
ject is a process description of the actions performed
when executing the object, we call this an action plan.
The different action plans are simple sequences of ac-
tions, e.g. the action plan for a user initiated IR-unit is:

(create-move user)
 (access)

 (create-move system)
 (up).

The execution of this action plan, however, is context
dependent, i.e. the behaviour depends on the information
in the static part. For instance the action(access) uses
information about topic to access the appropriate knowl-
edge base.

The action plan is pushed on to a stack and execution
is controlled from the stack of the current active node.
Actually we have one stack for each node in the tree, see
figure 1. This reflects our distributed approach and has
the advantage that we do not need to manipulate one sin-
gle global stack with a complex control mechanism.
Every action plan terminates with the execution of an ac-
tion which transfers control to a node above the current
node, often the father node, and then execution is re-
sumed from the action plan of that node.

One important feature of the dialogue manager is that
every node in the tree is responsible for its own correct-
ness. For instance the plan for a QT/AT, i.e. a normal task
related question-answer, contains no reparation strate-
gies for missing information to the background system.
If the interpreter fails to access the background system
due to lack of information, the translator signals this to
the DM which creates an instance of an IR-unit for clari-
fication request (say QD/AD) and inserts it into the con-
text of QT/AT. The action plan for clarification request
then generates a move explaining the missing informa-
tion and creates an instance of a user move waiting for
user input. This has the advantage that the plans can be
made very simple, as they need only be aware of their
own local behaviour and context. Further, the plans are
more generally applicable; the plan for a clarification re-
quest is similar for any level in the dialogue tree.

3 Customization
 Customizing LINLIN means augmenting the various

knowledge sources seen to the right in figure 2. LINLIN
is not to be regarded as having a completely empty
knowledge base. Rather we start with a basic lexicon and
grammar and also some dialogue object descriptions that
are common to many applications. These knowledge
sources constitute a shell which needs to be updated with
domain dependent concepts, rules and interaction princi-
ples. This is done by a person, or a team of persons, cf.
Wroblewski & Rich (1989), with some background in
linguistics. I refer to such a person as alanguage engi-
neer.

 However, the language engineer is not to be regarded
as the only person involved in the customization. The
translator, i.e. the module interfacing the background
system, needs to be rewritten for each new application.
The same translator can, however, be used in different
domains using the same application through the means
of translation rules for a specific domain, e.g. different
SQL databases. There should also be a tool for end user
customization, like the ones used by TEAM or LUKE.

One novel aspect of our approach is that the informa-
tion available to the language engineer does not only
consist of the requirements and application descriptions
from the customer, but also a corpus collected using Wi-
zard of Oz-experiments with the end-users, see the upper
right in figure 2. This information is integrated into the
system’s knowledge bases using two different tools, a
knowledge base tool and a system for acquiring informa-
tion from a corpus. Adding the information provided by
the customer using a knowledge base tool is a well-
known, although not in any respect solved, task, and is
not elaborated further upon in this paper.

Another aspect of the customization, deals with per-
formance improvement. This can in part be achieved by
reducing the size of the knowledge bases. Kelley (1983)
developed his interface with no initial knowledge, thus
the only concepts were those found during the simula-
tions. This will give a limited, but hopefully sufficient,
knowledge base for one application, which was Kelley’s
goal. However, my purpose is to develop an interface
which can be customized to many different applications
and thus I would like to reuse as much previous informa-
tion as possible. One way to achieve this efficiently is to

Dialogue treeScoreboard
Speaker:
Hearer:
CurrentRequest:
Current Segment:
Current Move:
CurrentObject:
CurrentSet:
Current Attribute:
.
.

D

QT AT

IR2

Action i
Action i - 1
Action i - 2

.
Action 1

QT/AT

QT

Action Plan

Figure 1. The Internal structures used by the dialogue
manager.

structure the knowledge bases into two levels. One pri-
mary level for knowledge that is found to be relevant in
the current application, either given by the customer or
through the simulations, and another secondary level
containing the rest. Thus, the use of simulations can also
be used for improving performance. However, we have
as yet no knowledge base that is large enough to be con-
sidered for such modifications.

3.1 The tagging system
For analysis of the corpus we use an interactive

graphical tagging system called DagTag (Ahrenberg &
Jönsson, 1989). In DagTag the tag is a directed acyclic
graph, a dag, used in the encoding of information. Dag-
Tag allows tagging on various levels of description, e.g.
lexical, syntactic/semantic and dialogue. Thus, we can
use the same tool to encode information for all the differ-
ent knowledge sources utilized in our interface. First the
segment to be tagged, e.g a move, is marked, and then
the tagging information is assigned, e.g. QT. This process
is much speeded up with the use of templates. A tem-
plate is a ready-made dag of arbitrary complexity and
specification. For the most common tags the dag is fully
specified, but for the least frequently used it is better to
use a general dag which is specified when used. The
templates are constructed using a graphical dag-editor.

Further, as the tags have the structure of dags, which
is the same format as used in LINLINs knowledge bases,
we can extract information from a tagged corpus to be
incorporated into LINLINs knowledge bases. We have
carried out initial experiments on the acquisition of
grammar and lexicon from a tagged corpus (Jönsson &
Ahrenberg 1990).

The task at hand now is how to do this for the other
knowledge bases, initially the dialogue objects.

3.2 Customizing the dialogue
The use of dialogue objects makes it possible for us

to also customize the interaction principles from a
tagged corpus. As said above, the dialogue objects con-
sisted of one static part containing contextual informa-
tion and one part describing a prototypical behaviour.
Now, the process part is the same for dialogue objects
with the same basic behaviour, c.f. the action plan for a
user initiated IR-unit described in section 2.1. The
number of such generic dialogue objects is very small.
For a database information retrieval application the dif-
ferent types are: D-unit, system initiated IR-unit, user in-
itiated IR-unit, generate move and interpret move. These
generic dialogue objects are used to create instances of
specific dialogue objects for a certain situation, e.g. a
QT/AT. They are constructed as templates in DagTag, i.e.
the same tool that is used in the subsequent knowledge
acquisition phase.

The dialogue is manually tagged using descriptors for
move types and IR-units. Figure 3 shows a simplified
dag corresponding to a QT/AT initiated by the system1.
The information in this dag is used to describe one in-
stance of a dialogue object. The general plan for a sys-
tem initiated IR-unit is specified as a QT/AT by extracting
information from this dag and encode it in the static part
of the dialogue object as values to the different at-
tributes. This then provides information to the DM for
instance on what type of move that is legal in this situa-

1. This example is meant to illustrate how the information is
extracted. The Q/A IR-unit is such a basic IR-unit that it is
probably regarded as domain independent.

PARSER

INSTANTIATOR

DEEP GENERATOR

SURFACE GENERATOR

DIALOGUE-
MANAGER

LEXICON

GRAMMAR

DIALOGUE-
OBJECTS

BACKGROUND-
SYSTEM

DOMAIN-
OBJECTS

TRANSLATOR

DEVELOPMENT INFORMATION AND TOOLS

TAGGING

Corpus End User

SYSTEM
LANGUAGE ENGINEER

END USER

KB TOOL

LINLIN

Customer

Figure 2. A Natural Language Development Environment

TRANSLATION-
PRINCIPLES

tion, the value in theResponse slot. In this case it says
that the user may respond with an A.

Suppose we encounter an utterance where the user re-
sponds to a QT with an AST, i.e. we have a QT/AST as a
legal IR-unit. For simplicity we ignore the other proper-
ties. This new IR-unit does not constitute a new IR-unit
of type QT/AST instead it corresponds to modifying the
previously created QT/AT to something like QT/(AT ∨
AST). The (A∨ AS) is a value in theResponse slot al-
lowing also an AS to be a legal move to a question with
topic T.

The dag in figure 3 also contains information about
relevant properties for a move-unit, i.e. the values to the
attributes I and R. This information can be used for spec-
ifying the move dialogue objects by extracting informa-
tion like type, topic, addressee and speaker.

Further, as the customization is carried out by a lan-
guage engineer, it is possible to define move and IR units
consisting of new action sequences. This can be used for
instance to build more complex IR-units like DIT/ACKT/
ACKD.

It is also possible to customize the referent resolution
algorithms used by the NLI. Information about salient
objects is represented in the dialogue tree and is used by
the instantiator and deep generator through a scoreboard,
see figure 1. Associated with the slots on the scoreboard
are access functions. The access functions can be altered,
allowing the search for a referent to an anaphoric expres-
sion to be application dependent.

4 Discussion and current status
We have collected and analysed a number of dia-

logues. In the corpus most of the utterances are user-ini-
tiated task questions provoking a response which is
retrieved from the data base. The response is mostly an
AT and in some cases an ASS (i.e. no information). The
number of clarifications is low and, interestingly, when
the system has initiated the clarification, the user does
not respond to the clarification, instead he starts a new
initiative. Further, there are some ending and greeting
sequences and one instance where the system/wizard
opens a new IR-unit.

I have partially analysed a small part of the corpus
consisting of three Wizard of Oz dialogues with the pur-
pose of developing dialogue objects. The application is
information retrieval from a data base containing infor-
mation on properties of used car models. My intention
is, however, to investigate the other types of applications

TYPE Q/A
INITIATOR [1] System
RESPONDER [2] User
I TYPE Q

TOPIC T
SPEAKER [1]
ADDRESSEE [2]

R TYPE A
TOPIC T
SPEAKER [2]
ADDRESSEE [1]

Figure 3. A simplified dag for a QT/AT IR-unit

that we are dealing with, such as advisory systems and
configuration systems.

In the work by Kelley (1983) and Goodet al. (1984)
the customization process was saturated after a certain
number of dialogues. We have not analyzed the corpus
enough to say whether this will happen to the dialogue
objects, too. However, for data base systems there seems
to be a limited set of move and IR-unit types, but wheth-
er this is true for other applications is an open question.

The current status of LINLIN is that, except for the
deep generator, there are pilot versions of the different
processes, running with small knowledge bases. There is
also a pilot version of the dialogue manager, but it is not
yet integrated with the other modules. The tagging sys-
tem has been used with a very small portion of the cor-
pus for augmenting the lexicon and grammar. Currently
we are working on using the tagging system to create the
generic dialogue objects and we will also use DagTag to
specify the dialogue objects.

5 Acknowledgements
This work is part of a larger project carried out at the

Natural Language Processing Laboratory, Linköping,
sponsored by the Swedish National Board for Technical
Development, STU and Swedish Council for Research
in the Humanities and Social Sciences (HSFR). Many of
the ideas on dialogue management and customization
have evolved during discussions with my colleagues in
the lab, especially Lars Ahrenberg and Nils Dahlbäck.

Åke Thurée did most of the coding for the DM in
Xerox Common Lisp on a Sun Sparc Station. Ivan
Rankin, Mats Wirén and Richard Hirsch have read previ-
ous versions of the paper and provided many valuable
comments.

References
Ahrenberg, L. (1989). On the integration of linguistic

knowledge and world knowledge in natural language un-
derstanding. In Ö. Dahl & K. Fraurud (eds.)Papers from
the First Nordic Conference on Text Comprehension in
Man and Machine, Institute of Linguistics, University of
Stockholm, pp. 1-11.

Ahrenberg, L. and Jönsson, A. (1989) An interactive
system for tagging dialogues.Literary and Linguistic
Computing3(2), 66-70.

Ahrenberg, L., Jönsson, A. & Dahlbäck, N. (1990)
Discourse Representation and Discourse Management
for a Natural Language Dialogue System,To appear in
Proceedings of the Second Nordic Conference on Text
Comprehension in Man and Machine, Täby, Stockholm.

Ballard, B. W. & Stumberger, D. E. (1986) Semantic
Acquisition in TELI: A Transportable, User-Customized
Natural Language Processor,Proceedings of the 24th An-
nual Meeting of the ACL,New York.

Carberry, S. (1990)Plan Recognition in Natural Lan-
guage Dialogue,MIT Press.

Chapanis, A. (1982) Appendix: Man-Computer Re-
search at Johns Hopkins,Information Technology and
Psychology,Kasschau, Lachman & Laugherty (Eds),
Raeger Publishers.

Dahlbäck, N. & Jönsson, A. (1989) Empirical Studies
of Discourse Representations for Natural Language Inter-

faces, Proceedings of the Fourth Conference of the Euro-
pean Chapter of the ACL, Manchester. 1989.

Good, M. D., Whiteside, J. A., Wixon, D. R. & Jones,
S. J., (1984) Building a User-Derived Interface,Commu-
nications of the ACM, Vol. 27, No 10, pp 1032-1043.

Grishman, R. & Kittredge, R. (eds.) 1986.Analysing
language in restricted domains. Hillsdale, N.J.: Erlbaum.

Hirst, G. (1987).Semantic Interpretation and the Res-
olution of Ambiguity. Cambridge University Press.

Hoeppner, W., Christaller, T., Marburger, H., Morik,
K., Nebel, B., O’Leary, M. & Wahlster, W. (1983) Be-
yond Domain Experience: Experience with the Develop-
ment of a German Language Access System To Highly
Diverse Background Systems, Research Report, Univer-
sity of Hamburg, Bericht ANS-16.

Jönsson, A. (1991) A Dialogue Manager Using Initi-
ative-Response Units and Distributed Control,Proceed-
ings of the 5th Conference of the European Chapter of the
ACL,Berlin, Germany.

Jönsson, A. (1990) Application-Dependent Discourse
Management for Natural Language Interfaces: An Em-
pirical Investigation,Papers from the Seventh Scandina-
vian Conference of Computational Linguistics,
Reykjavik, Island.

Jönsson, A. & Ahrenberg, L. (1990) Extensions of a
descriptor-based tagging system into a tool for the gener-
ation of unification-based grammars. To appear in Re-
search in Humanities Computing 1.

Jönsson, A. & Dahlbäck, N. (1988) Talking to a Com-
puter is not Like Talking to Your Best Friend.Proceed-
ings of The first Scandinivian Conference on Artificial
Intelligence, Tromsø, Norway.

Kelley, J. F. (1983) Natural Language and Computers:
Six Empirical Steps for Writing an Easy-to-Use Compu-
ter Application, PhD thesis, The Johns Hopkins Univer-
sity.

Levinson, S. C. (1981) Some Pre-Observations on the
Modelling of Dialogue,Discourse Processes,No 4, pp
93-116.

Martin, P., Appelt, D. E., Grosz, B. J. & Periera, F.
(1985) TEAM: An Experimental Transportable Natural-
Language Interface, IEEE quarterly bulletin on Data-
base Engineering, Vol. 8, No. 3.

Reichman, R. (1985)Getting Computers to Talk Like
You and Me,MIT Press, Cambridge, MA.

Wroblewski, D. A. and Rich, E. A. (1989) LUKE: An
Experiment in the Early Integration of Natural Language
Processing.Proceedings of the Second Conference on
Applied Natural Language Processing, Austin, Texas pp.
186-191.

