
Enhancing extraction based summarization with outside word space

Christian Smith, Arne Jönsson
Santa Anna IT Research Institute AB

Linköping, Sweden
christian.smith@liu.se, arnjo@ida.liu.se

Abstract

We present results from improving vec-
tor space based extraction summarizers.
The summarizer uses Random Indexing
and Page Rank to extract those sentences
whose importance are ranked highest for
a document, based on vector similarity.
Originally the summarizer used only word
vectors based on the words in the docu-
ment to be summarized. By using a larger
word space model the performance of the
summarizer was improved. Along with the
performance, robustness was improved as
random seeds did not affect the summa-
rizer as much as before, making for more
predictable results from the summarizer.

1 Introduction

Many persons have, for various reasons, problems
assimilating long complex texts. Not only persons
with visual impairments or dyslexia, but also, for
instance, those having a different mother tongue
or persons in need of a quick summary of a text.
A tool for automatic summarization of texts from
different genres as an aid in reading can thus be
useful for many persons and purposes.

Automatic summarization can be done in vari-
ous ways. A common distinction is extract versus
abstract summaries. An extract summary is cre-
ated by extracting the most important sentences
from the original text so that the result is a shorter
version of the original text with some information
still present, for instance the most important sen-
tences or words. An abstract summary on the other
hand is a summary where the text has been broken
down and rebuilt as a complete rewrite to convey
a general idea of the original text. Furthermore,
the summaries can be indicative (for instance only
providing keywords as central topics) or informa-
tive (content focused) (Firmin and Chrzanowski,

1999). The former might be more usable when a
reader needs to decide whether or not the text is in-
teresting to read and the latter when a reader more
easily needs to get a grasp of the meaning of a text
that is supposed to be read.

In this paper we will examine and try to increase
the performance of an automatic extraction-based
summarizer. Previously, the summarizer has been
functioning without aid of outside corpora or train-
ing material. While the performance have been
good, some improvements utilizing an outside cor-
pus can be achieved.

The technique behind the summarizer will first
be described in more detail, after which some re-
sults are presented which indicates that the perfor-
mance can be enhanced by using outside training
material.

2 The word space model

The word space model, or vector space
model (Eldén, 2007), is a spatial representa-
tion of a word’s meaning that can reduce the
linguistic variability and capture semantically
related concepts by taking into account the
positioning of words in a multidimensional space,
instead of looking at only shallow linguistic
properties. This facilitates the creation of sum-
maries, since the positioning in the word space
can be used to evaluate the different passages
(words or sentences for instance) in relation to
a document with regards to informational and
semantic content.

Every word in a given context occupies a spe-
cific point in the space and has a vector associated
to it that can be used to define its meaning.

Word spaces are constructed according to the
distributional hypothesis and the proximity hy-
pothesis. In the distributional hypothesis, words
that occur in similar contexts have similar mean-
ings so that a word is the sum of its contexts and
the context is the sum of its words, where the con-

text can be defined as the surrounding words or the
entire document. The proximity hypothesis states
that words close to each other in the word space
have similar meaning while those far from each
other have dissimilar meaning.

The word space can be constructed from a ma-
trix where text units are columns and the words in
all text units are rows in the matrix. A certain entry
in the matrix is nonzero iff the word correspond-
ing to the row exists in the text unit represented by
the column. The resulting matrix is very large and
sparse which makes for the usage of techniques
for reducing dimensionality and get a more com-
pact representation. Latent Semantic Analysis is
one such technique that, however, can be com-
putationally expensive unless used with alterna-
tive algorithms (Gorrell, 2006). Random Index-
ing (Sahlgren, 2005; Kanerva, 1988) is another di-
mension reduction technique based on sparse dis-
tributed representations that provide an efficient
and scalable approximate solution to distributional
similarity problems.

3 The summarizer

COGSUM is an extraction based summarizer, us-
ing the word space model Random Indexing (RI),
c.f. Hassel (2007) and a modified version of
PageRank (Brin and Page, 1998).

In Random Indexing context vectors are accu-
mulated based on the occurrence of words in con-
texts. Random Indexing can be used with any type
of linguistic context, is inherently incremental,
and does not require a separate dimension reduc-
tion phase as for instance Latent Semantic Analy-
sis.

Random Indexing can be described as a two-
step operation:

Step 1 A unique d-dimensional index vector is
assigned and randomly generated to each
context (e.g. each document or each word).
These index vectors are sparse and high-
dimensional. They consist of a small number,
ρ, of randomly distributed +1s and -1s, with
the rest of the elements of the vectors set to
0.

Step 2 Context vectors are produced on-the-fly.
As scanning the text, each time a word occurs
in a context, that context’s d-dimensional in-
dex vector is added to the context vector for

the word. The context window defines a re-
gion of context around each word, and the
number of adjacent words in a context win-
dow is called the context window size,w. For
example, with w = 2, i.e. a 2x2 context win-
dow, the word on is represented by the con-
text window cm as:

cm = [(on−2)(on−1)on(on+1)(on+2)],

and the context vector of on in cm would be
updated with:

Cm =

R(on−2) +R(on−1) +R(on+1) +R(on+2),

where R(x) is the random index vector of x.
This process is repeated every time we ob-
serve on in our data, adding the correspond-
ing information to its existing context vector
C. If the context cm is encountered again, no
new index vector will be generated. Instead
the existing index vector for cm is added to C
to produce a new context vector for on.

Words are thus represented by d-dimensional
context vectors that are effectively the sum of
the index vectors of all the contexts in which
the word appears.

Additionally, the vectors within the sliding
contex window can be weighted according to
the distance to the focus word. One example
is 2(1−distance), or [0.5, 1, 0, 1, 0.5] for a 2x2
context window providing a larger weight for
words closest to the focus word (Karlgren
and Sahlgren, 2001).

After the creation of word context vectors, the
similarity between words could be measured by
calculating the cosine angle between their word
vectors, by taking the scalar product of the vectors
and dividing by their norms such as:

cos(x, y) =
x · y
|x| |y|

(1)

Random Indexing is useful for acquiring the
context vectors of terms, it is however not clear
how a bigger context, such as a sentence, could be
built from the word vectors. A crude way of cre-
ating sentence vectors from word vectors would
be to simply summarize the vectors of the words
in the sentence after they have been normalized to
unit length. However, as the number of words in

a sentence increases, so will the sentence similar-
ity to the mean vector. Comparing sentences or
documents in this way using cosine will make for
larger similarity just by a larger number of words,
regardless of relatedness. To alleviate this prob-
lem, the mean document vector is subtracted from
each of the sentence’s word vectors before sum-
marizing the vectors (Higgins and Burstein, 2007),
see Equation 2.

~sentj =
1

S

S∑
i=1

(~wi − ~doc) (2)

where S denotes the number of words, w, in sen-
tence j and ~doc is calculated as in Equation 3.

~doc =
1

N

N∑
i=1

~wi (3)

where N denotes the number of unique words.
Words that are similar to the document vector

will come closer to the zero vector, while those
dissimilar to the document vector will increase in
magnitude. When later summarizing the vectors,
those of greater magnitude will have increased im-
pact on the total sentence vector so that common,
non-distinct, words not contribute as much to the
sentence vector. As this reduces the impact of
common non-distinct words, there is essentially no
need for a stop word list.

COGSUM also uses the Weighted PageRank al-
gorithm in conjunction to its RI-space to rank the
sentences (Chatterjee and Mohan, 2007).

The method of using graph-based ranking algo-
rithms for extracting sentences in summarization
purposes was proposed by Mihalcea (2004), who
introduce the TextRank model. In graph-based al-
gorithms such as TextRank the text need to be rep-
resented as a graph, where each vertex depicts a
unit of text and the edges between the units repre-
sent a connection between the corresponding text
units. Graph-based ranking algorithms may be
used to decide the importance of a vertex within
a graph, by taking into account global information
from the entire graph, rather than from only the
local context of the vertices. The ranks are thus
recursively computed so that the rank of a vertex
depends on all the vertices’ ranks. In TextRank,
PageRank is used to rank the sentences, although
it is noted that other ranking algorithms are possi-
ble. PageRank is a graph-based ranking algorithm
which originally was used to rank home pages au-
tomatically and objectively in the Google search

engine (Brin and Page, 1998). In TextRank, for
the task of sentence extraction, each sentence in
a text is represented as a vertex and the relation
between sentences are based on their overlap or
”similarity”, denoted by Equation 4.

Similarity(Si, Sj) =
|{wk|wk ∈ Si&wk ∈ Sj}|
log(|Si|) + log(|Sj |)

(4)
Thus, if a sentence adresses certain concepts,

the other sentences that share content will get rec-
ommended by that sentence in the recursive fash-
ion provided by PageRank.

To use PageRank and Random Indexing for
summaries an undirected fully connected graph is
created where a vertex depicts a sentence in the
current text and an edge between two different ver-
tices is assigned a weight that depicts how similar
these are based on a cosine angle comparison of
their meaning vectors, see Figure 1. As it is fully
connected, all vertices are connected with each
other and all out-links are also considered as in-
links.

cosij

coshj
coshi

cosbj

coskj

cosgi
sentencei

sentenceb

sentenceh

sentencek
sentencej

sentenceg

cosbk

cosbg

cosbh

cosik

coshg

cosgj

cosgk

coshk

Figure 1: A simplified graph where sentences are
linked and weighted according to the cosine values
between them.

The algorithm rank ingoing and outgoing links
to pages depending on the number of links as fol-
lows, Equation 5:

PRW (si) = (1−d)+d∗
∑

sjIn(si)

wji
PRW (sj)∑
sk∈Out(sj)wkj

(5)
where si is the sentence under consideration,
In(si) is the set of sentences that link to si,
Out(sj) is the set of sentences that link from si
and d is the damping factor.

The damping factor was originally set to ac-
count for the possibility of a surfer clicking a ran-
dom web link when (s)he gets bored (Brin and
Page, 1998). With regards to the ranking of sen-
tences, we see the damping factor as the possi-
bility of a sentence containing some implicit in-
formation that a certain reader might consider
more important at the time, following an analogy
by Mihalcea and Tarau (2004). The PageRank-
algorithm utilizes the ”random surfer model” and
using weighted PageRank in text comparison uti-
lizes ”text surfing” in the context of text cohesion.
The links in the sentence graph might be attributed
to links between connected concepts or topics se-
mantically, creating a ”web” of understanding on
which a reader might surf.

The computation is carried out on all sentences
iteratively until node weights converge, see Fig-
ure 2.

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Iterations

Fi
na

l r
an

ks

Figure 2: Each line represents a sentence from a
single text with its weight plotted on the y-axis on
each iteration on the x-axis. 50 iterations are plot-
ted.

The ranking algorithm does not rely only on lo-
cal context information (vertex) but draws infor-
mation recursively from the entire graph. Sen-
tences with similar content will then contribute
with positive support to each other through a rec-
ommendation process, where the sentences’ ranks
are increased or decreased each iteration. This
does not exclusively depend on the number of sen-
tences supporting a sentence, but also on the rank
of the linking sentences. This means that a few

high-ranked sentences provide bigger support than
a greater number of low-ranked sentences. This
leads to a ranking of the sentences by their impor-
tance to the document at hand and thus to a sum-
mary of desired length only including the most im-
portant sentences.

When the text has been processed using RI and
PageRank, the most important sentences are ex-
tracted using the final ranks on the sentences, for
instance 30% of the original text, resulting in a
condensed version of the original text with the
most important information intact, in the form
of extracted sentences. Since all sentences are
ranked, the length of the summary is easy to spec-
ify, in COGSUM this is implemented as a simple
slider. COGSUM is designed for informative sum-
maries, but it is also possible to have indicative
summaries by clicking a ”keywords” check box.

COGSUM is written in Java and utilizes a Ran-
dom Indexing toolkit available at Hassel (2011a).
No outside material is used which makes the sum-
marizer highly portable and usable for several lan-
guages and domains.

Previous evaluations of COGSUM with human
users show that summaries produced by COG-
SUM are useful, considered informative enough
and readable (Jönsson et al., 2008). COGSUM has
also been evaluated on gold standards for news
texts and authority texts showing that it is bet-
ter than another Swedish summarizer, SweSum,
(Dalianis, 2000) on authority texts and almost as
good on news texts, texts that the other summa-
rizer was especially adapted to handle (Gustavsson
and Jönsson, 2010).

4 Multi-document word vectors

COGSUM has previously worked without aid from
any outside source making it highly portable and
more or less language independent. However,
some problems have been detected. We identified
some abruptness in the resulting summaries, af-
fected by the random factor of the index vectors.
This was regardless of setting of dimensionality
and other parameters.

To investigate the effect of randomness several
summaries with different index vectors were cre-
ated. The final ranks of the sentences in a text
after the summarization process were calculated
and plotted on each random seed that held its own
distribution of the ones in the index vectors, Fig-
ure 3. The figure shows 10 different summaries

with their own seeds. The final values after the
ranking are plotted on the y-axis mapped to each
seed on the x-axis. A straight line would mean
that the results are predictable and not affected as
much by randomness. As can be seen in Figure 3
there is quite some randomness in which sentences
that are chosen depends on the seed to the Random
Indexing algorithm.

2 4 6 8 10

−
1

0
1

2

Seeds

F
in

al
 r

an
k

Figure 3: Ten different seeds without pretrained
space. Each series represents a sentence in a text.
The values on the y-axis are the final values of
each sentence after the PageRank-algorithm.

For COGSUM, we wanted to extend the method
by using an outside larger RI-space. Using a
large RI-space, a better semantic representation of
the words can be acquired (Sahlgren, 2006). By
extending the method to use an outside training
space we thus believe that the quality and robust-
ness of the summaries can be improved.

COGSUM takes as input the text to be summa-
rized, but now also a previously trained RI-space
is supplied, containing the semantic vectors of the
words.

The RI-space was created from several Swedish
texts from different genres, all in all approxi-
mately 240 000 words. The articles consisted of
a number of novels in a subset of the Stockholm-
Umeå Corpus (Ejerhed et al., 2006), a set of
newspaper articles available at the concordances
of Språkbanken, specifically from the Parole cor-
pus (Ridings, 2011), and some popular science ar-
ticles from the same place.

The text is processed by assigning each of the

words the corresponding semantic vector from the
space. Sentence vectors are constructed as pro-
posed by Chatterjee and Mohan (2007) and Hig-
gins and Burstein (2007), i.e. the words in a sen-
tence are summarized after the subtraction of the
mean space vector, and divided by the number of
words in the sentence, as in Equation 2.

To investigate the effect on randomness we cre-
ated 10 summaries with different seeds, the same
way as in Figure 3. Figure 4 shows 10 trials on
different seeds as before on the same text, but us-
ing the larger outside RI-space described above.
Comparing figures 3 and 4 reveals a more straight
line when using a large RI-space. Thus, by us-
ing an outside RI-space, the effect of randomness
is reduced and a more predictable result between
seeds is achieved.

2 4 6 8 10

0.
7

0.
8

0.
9

1.
0

1.
1

Seeds

F
in

al
 r

an
k

Figure 4: Ten different seeds with pretrained
space, each line representing a sentence in a text.
The values are the final ranks of each sentence af-
ter the PageRank algorithm.

Another problem that has emerged is that
the weighted PageRank sometimes fail to con-
verge. This might happen in the original PageR-
ank when the number of outlinks from a vertex
is zero (Eldén, 2007). The corresponding phe-
nomenon in the weighted PageRank-algorithm is
when the sum of the out weights from a given
sentence is zero or close to zero. One reason is
that since sentence similarity can be both posi-
tive and negative it is possible that they even out.
Also, nearly orthogonal sentence vectors makes
for weights around zero. This only happens when

not using an outside space. Since a small docu-
ment does not contain the distribution of words
across a large number of context, it is likely that
several sentences contain words that occur only in
that sentence. When the context vectors for the
sentences thereby are created, their vectors may
be too sparse and the angle between them becomes
nearly orthogonal, and the weights sum up to zero.

Figure 5 is produced similar to Figure 2 , where
each line represents a sentence. The ranks in the
graph are plotted on the y-axis and each itera-
tion on the x-axis. It is clear that the values fail
to converge and stabilize which might be a prob-
lem when extracting sentences based on the ranks.
This does not happen when using a large RI-space,
since the sentence vectors are built from context
vectors using a large number of contexts.

The problem can be alleviated simply by redo-
ing the random indexing-phase using a different
random seed, which is what is done in the cur-
rent implementation when not using any outside
source.

2 4 6 8 10

-4
0

-3
0

-2
0

-1
0

0
10

20
30

Iterations

Fi
na

l r
an

ks

Figure 5: No convergence during the weighted
PageRank-algorithm. Each line represents a sen-
tence in a text with the rank plotted on the y-axis
and the corresponding iteration during the PageR-
ank on the x-axis. The first ten iterations are plot-
ted.

5 Evaluation

By equipping the summarizer with a better se-
mantic understanding an evaluation was also per-
formed investigating the information quality of the

summarizer.
By using a pre-trained RI-space it was hypoth-

esized not only that the random factor could be
eliminated, but also that the quality of the sum-
maries would improve. A comparison was made
between using an outside text source and using
only the document to be summarized to build the
RI-space. Since several random seeds provided
different summaries on the same text, the average
performance measure of 10 seeds for each text was
calculated when not using an outside random in-
dex space.

The pre-trained RI-space used a dimensionality
of 1800, a window size, w = 2 with a weighting
of [0.5, 1, 0, 1, 0.5], and 8 non-zeroes in the index
vectors, similar to Karlgren and Sahlgren (2001).

Using no pre-trained space, the dimensionality
was set to 100, window size, w = 2 with the same
weighting as above, and 4 non-zeroes, to account
for a much smaller space, as in Chatterjee and Mo-
han (2007).

For the evaluation 13 Swedish newspaper arti-
cles with a length ranging from 100 to 800 words,
see Table 1, were summarized to 30% and com-
pared to human created gold standard summaries
of the same length, available at KTHeXtractCor-
pus (Hassel, 2011b).

Several automatic evaluation packages are
available, most notably ROUGE (Lin, 2004). We
used, however, also the more recent package Auto-
SummENG (Giannakopoulos et al., 2008) since it
is reported as having a higher correlation with hu-
man evaluations than ROUGE (Giannakopoulos,
2009). For AutoSummENG, the comparison was
performed by means of graph-value similarity tak-
ing content similarity between different texts on
character level into consideration. The texts are
represented as graphs where each vertex depicts a
character n-gram. The graphs from the model and
system summaries are then compared resulting in
a similarity measure denoting the performance of
the system.

It should be noted that no preprocessing in
terms of stop word removal and stemming were
performed during the ROUGE evaluation since the
package is tuned for English and no Swedish lexi-
con for that purpose were available at the time.

Table 2 shows the values acquired using Auto-
SummENG for each text and we see that for most
texts the summaries produced using the larger RI-
space are better than the ones without RI-space.

Words Sentences
Text1 110 7
Text2 688 40
Text3 701 37
Text4 400 27
Text5 227 13
Text6 153 9
Text7 441 24
Text8 179 10
Text9 483 33
Text10 838 67
Text11 388 24
Text12 169 9
Text13 471 32

Table 1: Text characteristics, the number of words
and sentences on each text.

Using no space, the mean value from all texts of
the comparison was 0.420. By using an outside
space, the mean value was 0.547 which is a signif-
icant improvement (p < .05).

As a comparison, evaluations using the more
known ROUGE package was performed. When
using ROUGE a similar result is obtained, see ta-
ble 3. Comparing the results of AutoSummENG
and ROUGE yields a correlation of ≈ .96.

6 Conclusion

By using a large word space model the perfor-
mance of the extraction based summarizer COG-
SUM could be improved. Along with the per-
formance, robustness was improved, as the ran-
dom factor between seeds was reduced, making
for more predictable results from the summarizer.
The performance was evaluated using AutoSum-
mENG, a tool to compare generated texts with
gold standard texts created by humans. The eval-
uation was performed without input from humans,
although humans created the gold standard and
thus affected the results indirectly, no measures re-
garding readability were taken. Thus, the measure
does not capture readability, only that the extracted
sentences can be seen as the most important for the
document and that they correspond to human cre-
ated gold standards.

Evaluations were also performed using ROUGE
to have a point of reference since AutoSummENG
is a lesser known method of evaluation and the re-
sults from these two different packages correlated
strongly.

AutoSummEnG Without space With space
Text1 0.301 0.751
Text2 0.484 0.484
Text3 0.497 0.509
Text4 0.569 0.447
Text5 0.276 0.556
Text6 0.321 0.520
Text7 0.510 0.502
Text8 0.239 1.000
Text9 0.340 0.465
Text10 0.347 0.419
Text11 0.487 0.556
Text12 0.574 0.384
Text13 0.520 0.517
Mean 0.420 0.547

Table 2: Evaluation of each summary. Each sum-
mary has been compared to a gold standard cre-
ated by humans. The left column shows the values
acquired for the summaries using no outside ran-
dom indexing-space and the right column shows
the values after using an outside space. The values
are acquired by means of graph value similarity
using AutoSummENG.

ROUGE-1 Without space With space
Text1 0.386 0.695
Text2 0.538 0.551
Text3 0.570 0.540
Text4 0.647 0.522
Text5 0.290 0.590
Text6 0.368 0.599
Text7 0.600 0.573
Text8 0.359 0.975
Text9 0.452 0.541
Text10 0.454 0.560
Text11 0.574 0.665
Text12 0.682 0.369
Text13 0.599 0.625
Mean 0.502 0.600

Table 3: Evaluation of each summary using
ROUGE-1 n-gram. Each summary has been com-
pared to a gold standard created by humans. The
left column shows the ROUGE scores acquired for
the summaries using no outside random indexing-
space and the right column shows the scores after
using an outside space.

Further improvements can be seen with regards
to stabilizing weights in the weighted PageRank-
algorithm. By using a large word space the sen-
tence vectors become more dense since they are
built from context vectors from a large number
of contexts. The sentence vectors are thus not
as likely to be nearly orthogonal which becomes
a problem when summarizing the weights as out-
links, since the sum then might be close to zero.

An increased quality in semantic representa-
tion however comes with some tradeoffs. A large
word space reduces the portability somewhat, and
increases the computational effort since a large
space uses a much larger dimensionality. Also, the
word space makes it language dependent, a previ-
ously strong argument for this method. Creating
a larger RI-space for a new language is, however,
not such a difficult task if a large enough corpus is
available.

The word space that was used was produced
from rather general texts and it would be interest-
ing for the future to investigate the effect of dif-
ferent RI-spaces on different genres and domains,
both in terms of training material but also on the
quality of the summaries. Since Random Indexing
is incremental, it is easy to add documents to the
semantic space.

Although previous work (Smith and Jönsson,
2011) have looked at readability and concluded
that the readability may be increased using extrac-
tion based summarization, it is still unclear ex-
actly how cohesive they are. Mihalcea and Tarau
(2004) draws an analogy between the PageRank
”random surfer model” and ”text surfing” which
relates to the concept of text cohesion. The links
in the graph might be attributed to links between
connected concepts or topics in a semantic way
so it would not be surprising to find that the sum-
maries have acceptable cohesion. Future research
will have to conclude the cohesiveness of the sum-
maries and how they may need to be improved.

We have, however, shown that the quality and
robustness can be improved by using an outside
previously trained random indexing space in the
process of vector space model extraction based au-
tomatic summarization.

Acknowledgments

This research was partly supported by a research
grant from The Swedish Post and Telecom Agency
(PTS).

References
Sergey Brin and Lawrence Page. 1998. The

anatomy of a large-scale hypertextual web search
engine. Computer Networks and ISDN Systems,
30(1-7):107–117.

Nilhadri Chatterjee and Shiwali Mohan. 2007.
Extraction-based single-document summarization
using random indexing. In Proceedings of the 19th
IEEE international Conference on Tools with Artifi-
cial intelligence – (ICTAI 2007), pages 448–455.

Hercules Dalianis. 2000. Swesum – a text summarizer
for swedish. Technical Report TRITA-NA-P0015,
IPLab-174, NADA, KTH, Sweden.

Eva Ejerhed, Gunnel Källgren, and Benny Brodda.
2006. Stockholm umeå corpus version 2.0.

Lars Eldén. 2007. Matrix Methods in Data Mining
and Pattern Recognition. Society for Industrial &
Applied Mathematics (SIAM).

Thérese Firmin and Michael J Chrzanowski, 1999. An
Evaluation of Automatic Text Summarization Sys-
tems, volume 6073, pages 325–336. SPIE.

George Giannakopoulos, Vangelis Karkaletsis, George
Vouros, and Panagiotis Stamatopoulos. 2008. Sum-
marization system evaluation revisited: N-gram
graphs. ACM Transactions on Speech Language
Processing, 5(3):1–39.

George Giannakopoulos. 2009. Automatic Summa-
rization from Multiple Documents. Ph.D. thesis,
University of the Aegean.

Genevieve Gorrell. 2006. Generalized Hebbian Algo-
rithm for Dimensionality Reduction in Natural Lan-
guage Processing. Ph.D. thesis, Linköping Univer-
sity.

Pär Gustavsson and Arne Jönsson. 2010. Text sum-
marization using random indexing and pagerank. In
Proceedings of the third Swedish Language Technol-
ogy Conference (SLTC-2010), Linköping, Sweden.

Martin Hassel. 2007. Resource Lean and Portable
Automatic Text Summarization. Ph.D. thesis, ISRN-
KTH/CSC/A–07/09-SE, KTH, Sweden.

Martin Hassel. 2011a. Java random indexing toolkit,
January 2011. http://www.csc.kth.se/
˜xmartin/java/.

Martin Hassel. 2011b. Kth extract corpus (kthxc),
January 2011. http://www.nada.kth.se/
˜xmartin/.

Derrick Higgins and Jill Burstein. 2007. Sentence sim-
ilarity measures for essay coherence. In Proceed-
ings of the 7th International Workshop on Computa-
tional Semantics (IWCS), Tilburg, The Netherlands.

Arne Jönsson, Mimi Axelsson, Erica Bergenholm,
Bertil Carlsson, Gro Dahlbom, Pär Gustavsson,
Jonas Rybing, and Christian Smith. 2008. Skim
reading of audio information. In Proceedings of the
The second Swedish Language Technology Confer-
ence (SLTC-08), Stockholm, Sweden.

Pentii Kanerva. 1988. Sparse distributed memory.
Cambridge MA: The MIT Press.

Jussi Karlgren and Magnus Sahlgren. 2001. From
words to understanding. In Y. Uesaka, P.Kanerva,
and H. Asoh, editors, Foundations of Real-World
Intelligence, chapter 26, pages 294–308. Stanford:
CSLI Publications.

Chin-yew Lin. 2004. Rouge: a package for automatic
evaluation of summaries. In ACL Text Summariza-
tion Workshop, pages 25–26.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing order into texts. In Conference on Em-
pirical Methods in Natural Language Processing,
Barcelona, Spain.

Rada Mihalcea. 2004. Graph-based ranking al-
gorithms for sentence extraction, applied to text
summarization. In Proceedings of the ACL 2004
on Interactive poster and demonstration sessions,
ACLdemo ’04, Morristown, NJ, USA. Association
for Computational Linguistics.

Daniel Ridings. 2011. Parole corpus at språkbanken.
http://spraakbanken.gu.se/parole/.

Magnus Sahlgren. 2005. An Introduction to Random
Indexing. Methods and Applications of Semantic
Indexing Workshop at the 7th International Confer-
ence on Terminology and Knowledge Engineering,
TKE 2005.

Magnus Sahlgren. 2006. The Word-Space Model: Us-
ing distributional analysis to represent syntagmatic
and paradigmatic relations between words in high-
dimensional vector spaces. Ph.D. thesis, Stockholm
University, Department of Linguistics.

Christian Smith and Arne Jönsson. 2011. Auto-
matic summarization as means of simplifying texts,
an evaluation for swedish. In Proceedings of the
18th Nordic Conference of Computational Linguis-
tics (NoDaLiDa-2010), Riga, Latvia.

