
A Method for Iterative Implementation of Dialogue Management

Lars Degerstedt and Arne J̈onsson
Department of Computer and Information Science

Linköping University, Sweden
larde@ida.liu.se, arnjo@ida.liu.se

Abstract

This paper presents an approach to implementation
of dialogue management modules for dialogue sys-
tems. The implementation method is divided into
two distinct, but correlated, steps; Conceptual de-
sign and Framework customisation. Conceptual de-
sign and framework customisation are two mutu-
ally dependent sides of the same phenomena, where
the former is an on-paper activity that results in a
design document and the latter results in the actual
program code. The method is iterative and con-
forms with software development methods, such as,
extreme programming, scenario-based design and
reusable object-oriented software development. In
the paper, this is further elaborated and how it re-
lates to dialogue systems development.

1 Introduction
Implementation of dialogue systems for new applications
could be viewed as a process of customising a generic frame-
work to fit the needs of a more specific application. For
fairly simple applications this can be carried out using prede-
fined building blocks, e.g.CSLU [McTear, 1999]. However,
although we conform toThe Practical Dialogue Hypothe-
sis [Allen et al., 2001], e.g. that conversational competence
for practical dialogues is significantly simpler to achieve than
general human conversation, realisation of more advanced di-
alogue systems still involves substantial work, cf.[McRoy
and Ali, 2001].

In this paper we will outline a method for the imple-
mentation of dialogue management, (DM), modules1 for di-
alogue systems, (DS), from generic frameworks, such as,
TRIPS [Allen et al., 2000], and TRINDIKIT [Larssonet al.,
2001]. We see the contribution of our implementation method
as a step towards a tool for building dialogue systems that
can be “adapted to each new task relatively easy”[Allen

1We will not use the term Dialogue Manager as it, in this pa-
per, is important to distinguish between the running module in the
customised dialogue system and the generic framework from which
it is developed. We will instead use the termsDM module andDM
framework to denote the running module and the framework to be
customised respectively.

et al., 2001]. However, this vision rests onThe Domain-
Independence Hypothesis[Allen et al., 2001], e.g. that the
complexity in the language interpretation and dialogue is in-
dependent of the task being performed, which still needs to
be verified.

In Section 2 we briefly present our own experience from
developing dialogue systems which also motivated our need
for a more systematic method. Section 3 presents an overview
of the implementation method. One novelty is the separa-
tion of the conceptual design from framework customisation,
discussed in Section 4. Our aim is to formulate a working
method that supports the creative process rather than giving a
set of mechanical rules. In Section 5 we introduce a set of ca-
pabilities that is used to organise the implementation work of
the dialogue management module. These capabilities are dis-
cussed subsequently in Section 6–8. In Section 9 we briefly
present initial experience from using the method and discuss,
in Section 10, the method as a software development method.

2 Background
The method is based on our experience from develop-
ing dialogue systems for various applications and purposes.
The need for a framework and corresponding development
method emanates from a re-implementation of our lisp-based
dialogue system,CARS, to Java.CARS is a typed interaction
only natural language dialogue system developed from the
LINLIN dialogue model2 [Jönsson, 1997] to an application
allowing fairly simple information requests from an SQL-
database.CARS utilised a parser tool, but had no framework
for dialogue management.

The CARS dialogue system served as inspiration for the
MALIN 3 [Dahlbäcket al., 1999] framework.MALIN was de-
veloped as a framework by generalising from the develop-
ment ofCARS to a system for local bus time table informa-
tion, ÖTRAF. Time table information systems require more
complex requests as the system needs to handle various tasks,
not only simple information retrieval and, thus,LINLIN , was
modified to account for this, and more. The development of

2By modelwe understand a formal or informal theoretical anal-
ysis of dialogue. Such a model can be present in a system either
implicit as abasis for the system design, or explicit as aknowledge
model (KM ) e.g. a grammar.

3Multi-modal application ofLINLIN .



ÖTRAF was the starting point for our need for methods for
implementation of dialogue system modules, but the method
was not really used in that project.

The method has, however, been utilised in two other
projects,SCIN and a project on developing a natural language
interface for a digital TV box.SCIN is an interactive news
reader with amongst other things a talking head.SCIN will be
based on theMALIN framework. The iterative nature of the
method presented in this paper is, however, more prominent
in that work. SCIN is developed in steps, where a simple in-
terface will be iteratively refined by adding more and more
functionality, see Section 9. The TV box project instead cus-
tomised theMALIN framework into a working system by it-
eratively refining the knowledge sources. Little added func-
tionality was needed as the application very much resembles
the previously developedCARS dialogue system.

Both the TV box system andSCIN was developed itera-
tively from prototypes that were evaluated and gradually re-
fined, cf.[Hulstijn, 2000]. Such evaluations need not neces-
sarily be carried out with end users, especially not the first set
of prototypes.

It is our aim that the method should give concrete support
as concerns both attitude and working steps. This boils down
to the following contributions concerning implementation of
a dialogue management module in this paper:

� a simple and natural implementation work chart.

� a prototypical work flow schema from prerequisites to
final design and framework customisation.

� guidelines for application-specific points for the imple-
mentation work.

3 Method Overview
The implementation of a dialogue management (DM) mod-
ule should be done with specific means but yet conform to
a generic working schema to be in harmony with realisa-
tion of other modules. Through iterative thinking the reali-
sation process can be divided into more manageable pieces
(cf. [Krutchen, 2000]). Through successive refinements and
incremental development, the solution can be reached gradu-
ally, as the understanding of the problem increases, in an evo-
lutionary manner. Our method suggests to work iteratively
from the two anglesconceptual designandframework cus-
tomisation. Conceptual design and framework customisa-
tion are seen as two mutually dependent aspects of the same
phenomena. Thus, just as advocates of extreme program-
ming [Beck, 2000], we view coding and design as a joint
activity.

Prerequisites for theDM design is a requirements specifi-
cation of the dialogue system and selected dialogue theory.

The framework customisation starts out from a selected
framework (i.e. some development environment and tools)
and (some version of) the other modules of the dialogue sys-
tem. Figure 1 shows the twofold character ofone iteration.
The solid lines depict the creative progression step. The dot-
ted lines show, point-by-point, how the two levels of the iter-
ation correlate.

At the level of the iterative scheme, our method seems
fairly module independent. However, it is our final aim to

DM theory

C
on

ce
pt

ua
l d

es
ig

n
F

ra
m

ew
or

k
cu

st
om

is
at

io
n

DS Requirements specification

DM design

Other modulesDM framework

DM module

Figure 1: The Dialogue Management (DM) iteration

be as concrete as possible w.r.t. the implementation of aDM
module. Therefore, we introduce an auxiliary notion of more
refined andDM dependent steps, calledDM capability steps,
within each iteration. These steps are centered around a set of
prototypicalDM capabilities that we introduce – a set that can
be updated, refined or changed when needed. In this way, the
method is generic but can be adjusted to fit theDM module at
hand.

3.1 Method Prerequisites

The suggested implementation method is open for adjust-
ments of its prerequisites within a particular project. The se-
lection of DM theory andDM framework chiefly affects the
representation of the dialogue and how its associated func-
tionality is attached. The choice is based partly on previous
experience and partly on applicability.

System requirements is mainly acquired using suitable
empirical methods such asWOZ experiments and dialogue
distillations [Jönsson and Dahlb¨ack, 2000], and guidelines
(cf. [DISC, 1999]). By analysis of the material we may for-
mulate the requirements specification. We suggest to include
the following two parts, as a minimum, in the specification:

� classification of possible dialogues and identification of
the mainuse-cases.

� specification of thesystem behaviourin terms of the se-
lectedDM theory, for each identified class of dialogues.

Use-case-based development (cf.[Carroll, 1995]) fits nicely
with the design of multi-modal dialogue systems using our
iterative implementation method. In our case the use-cases
consist of selected central examples of user-system dialogues.
These dialogues serve as the starting point of the transition
from DS requirements toDM design. The selected dialogues
can be refined iteratively during the implementation as our
understanding of the system increases.



3.2 Our DM Framework
We mainly use concepts from theLINLIN model together with
the MALIN -DM4 dialogue management framework. It is not
our intention to describe theLINLIN dialogue model or the
MALIN framework. However, to illustrate our method we will
use concepts and notations from theLINLIN dialogue model
upon which theMALIN -DM framework is based.

In the LINLIN dialogue model the dialogue is structured
in terms of discourse segments, and a discourse segment in
terms of moves and embedded segments. Utterances are
analysed as linguistic objects which function as vehicles for
atomic move segments. An initiative-response (IR) structure
determines the compound discourse segments, where an ini-
tiative opens theIR-segment by introducing a new goal and
the response closes theIR-segment. TheLINLIN dialogue
model classifies the discourse segments by general speech act
categories, such asquestion(Q) andanswer(A), rather than
specialised (cf.[Hagen, 1999]), or domain related[Alexan-
dersson and Reithinger, 1995].

The dialogue segments form a dialogue tree. The nodes in
the tree, termed dialogue objects, hold information such as
the current objects and properties, the user request in focus,
information on speaker, hearer, type of general speech act,
etc. TheLINLIN dialogue tree is naturally specified in terms
of a grammar. TheMALIN -DM framework expects such a
grammar for the top-level control of theDM module. The
system design is thereby kept in close relation with the em-
pirically developed models. The grammar is represented in
a formalism for so-calleddialogue grammarsusing a Java-
basedDM tool calledMALIN -DG.

The model assumes that decisions as to what to do next are
made on the basis of focus information (cf.[Leceucheet al.,
2000]), i.e. depending on how the focal parameters have been
specified. Focus information can be copied between nodes
in the dialogue tree, either horisontally byfocus inheritance,
from oneIR-segment to the next, or vertically byanswer in-
tegrationto handle sub-dialogues.

4 The Twofold DM Iteration
Design and customisation of theDM module are performed by
point-wise connecting conceptual issues with those of the se-
lectedDM framework. ConceptualDM design is an on-paper
activity that results in adesign document. The result of the
DM framework customisation is the actualmodule code. At
the end of each iteration we expect to have a readable ver-
sion of theDM design document and a runnableDM module
prototype.

The DM design constructs must be effectively realisable
within the selected framework. TheDM framework customi-
sation should strive for a visible connection to the design.
Moreover, the design and customisation should strive for a
visible connection to theDM theory andDS requirements
from which they start.

The remains of this section contains a subdivision of both
the design and customisation that describes the results of the

4The MALIN -DM framework is a sub-framework of theMALIN
framework.

DM
design

Kno
wled

ge

rep
res

en
tat

ion

x x

x

xx x

xx

xpatterns

Tools

Code

In
ter

fac
es

M
od

ula
ris

ati
on

DM framework
customisation

templates
Framework

Figure 2: Development space for the twofoldDM iteration

twofold implementation iteration. We view these subdivi-
sions as two orthogonal parameters which forms the space
to explore during the implementation process, as shown in
Figure 2. Each tuple within this space represents a special
sub-issue that should be tackled during the realisation of the
DM module, e.g. how to structure the dialogue grammar us-
ing theMALIN -DG tool at the tuple oftools andknowledge
representation.

4.1 DM Design
TheDM design is suggested to focus on the representation and
flow of information in theDM module. TheDM design docu-
ment is recommended to be relatively brief, since its contents
will be iteratively refined. There is no need to put down near-
coding information on paper since theDM module is built in
parallel with the design. However, a mature version of the
DM design preferably establishes some notion of correctness
and completeness. This is typically done by identifying a set
of expected user-system dialogues and verifying that the de-
signed system behaves in accordance with the requirements
specification.

The finished design document for theDM module should
normally include discussions on:

� DM modularisation: identification of central sub-units
of theDM module and definition of their responsibilities.
Submodules are suggested to be identified on three lev-
els: control, handlers and methods. For theMALIN -DM
framework, examples from these levels are the descrip-
tion of the dialogue tree construction process, the focus
inheritance algorithms, and a method for background
system access, respectively.

� DM knowledge representation: identification and ab-
stract formulation of data items for theDM module. The
formulation is preferably kept in formal or semi-formal
terms and based on the selected use-cases. With the
MALIN -DM framework, an example of such formulation
is the representation of the user request in focus.

� DM interfaces: formulation of interface functionality



and (sub)module dependencies that defines the central
data flows of theDM module, both internally and to-
wards other modules. For theMALIN -DM framework,
this includes definitions of the formats for interaction
with other modules, such as the parsing module and the
domain knowledge module.

That is, we suggest a light-weight design document where
knowledge representation has been emphasized and issues re-
lated to flow of control de-emphasized. This is motivated by
the knowledge intensive character of aDS interface and its
lack of complex subsystem cooperation.

4.2 DM Framework Customisation
Coding of a DM module starts off from the selectedDM
framework. TheDM module is created iteratively by vari-
ous customisation steps. We distinguish between three forms
of re-use from aDM framework that complement each other:

� DM tools: customisation through well-defined parameter
settings and data representation files. The main tool in
theMALIN -DM framework is theMALIN -DG compiler.

� DM framework templates: framework templates and
application-specific code are kept in separate code trees
with clear-cut borders and only one-way module depen-
dencies from framework to application (cf.[Fayadet al.,
1999]). A central example of such a template in the
MALIN -DM framework is the domain-independent tax-
onomy of Java classes for dialogue objects. The hier-
archy can be further instantiated at application level, if
needed.

� DM code patterns: submodules, edited code patterns
and other forms of textual re-use (cf.[Gammaet al.,
1995]). For instance, code patterns are useful in more
domain-dependent parts of request handling and focus
inheritance, with the current version of theMALIN -DM
framework.

Tools are a strong form of re-use but often limited in scope
and flexibility. The use of framework templates is typically a
more complex process but offers more support for construc-
tion of a complete application. A code pattern is the weakest
form of re-use. It yields an important prototypical code or
data skeleton to work from.

A tool that introduces a new formalism pays off for con-
ceptually important notions only. The gain of using a new
representation language lies mainly in increased conceptual
clarity. For theMALIN -DM framework, the dialogue tree
and the request formats are examples of such clarifying con-
cepts. Framework templates are useful for more system-
related tasks, such as module communication. They are
the glue between theDM tools and the underlying system.
In the MALIN -DM framework, this is the case with, for in-
stance, templates for incoming messages from the interpre-
tation module and handling of user-threads. A code pat-
tern is useful for principal parameters of theDM module,
i.e. application-dependent pieces of data or code. For the
MALIN -DM framework, examples of principal parameters are
the dialogue grammar and the representation of focused ob-
jects and properties.

The overall aim of the customisation process is to increase
re-use during implementation ofDM modules for different
DS applications (cf.[Karlsson, 1995]). Clear-cut borders be-
tween theDM framework and theDM module is crucial for a
high degree of re-use. A sign of successful customisation is a
clear separation of the directory trees for theDM framework
and theDM module in the final system.

5 Our View of DM Capabilities

We define a set ofDM capabilities that further instantiate the
method scheme of Figure 2. The identifiedDM capabilities
should be viewed as notions ofmodule requirementsrather
than design concepts. That is, these capabilities are only
loosely related to system design choices such as the choice of
DM architecture. The capabilities are intended to support the
organisation of specification properties for aDM module, not
to give the final implementation automatically. We have, so
far, found it sufficient to focus the design and coding around
the following fairly general types ofDM capabilities:

� dialogue history modelling5: the DM module creates
and holds a knowledge model (KM) that represents the
dialogue history for the current user session. The dia-
logue historyKM is accessible both internally inDM and
externally through search interfaces. In theMALIN -DM
framework it is the dialogue tree that constitutes the di-
alogue historyKM.

� user request handling: the DM module groups and in-
terprets each user action as a user request and coordi-
nates the corresponding system task. TheMALIN -DM
framework contains a collection of request handlers for
this purpose. The request handling of theMALIN -DM
framework include formats for: query-answering, slot-
filler-request, and command-execution.

� sub-dialogue control: the DM module adjusts the di-
alogue strategy at each dialogue state. In particular,
there is a choice whether to proceed with a user-initiative
or a system-initiative sub-dialogue. In theMALIN -
DM framework the top-level control of the sub-dialogue
structure is contained in the dialogue grammar.

This distinction divides the implementation process into three
work steps. The work steps focus on a high-level picture of
the dialogue management trajectory, specificDM functionali-
ties, and the centralDM sub-processes, respectively.

We suggest to organise the implementation work mainly
from the perspective of theseDM capabilities. For each ca-
pability it is suggested to solve the relatedDS specification
requirements from the two viewpoints of design and customi-
sation, as given by the tuples of Figure 2. TheDM capabilities
can be seen as a third, moreDM specific, dimension that is
orthogonal with the design and customisation dimensions of
Figure 2.

5By the termdialogue historywe understand the interplay be-
tween the user and system in terms of user utterances and system
responses. That is, the term denotes the actual phenomena, and not
a knowledge model.



The DM capability steps split the iterative implementation
schema into more manageable pieces. Each suchDM capa-
bility step constitutes a work flow step during an iteration or
a use-case realisation. Subsequently, in Section 6–8, we elab-
orate on these capability steps, one by one, from our dual
perspective of design and framework customisation.

6 The Dialogue History Modelling Step
The work step for dialogue history modelling concerns iden-
tifying a set of tokens and their definitions that reflects the
DM interpretation of the on-going dialogue between user and
system. Taxonomies of such tokens are normally given by
generic categories of theDM framework andDM theory that
need to be further instantiated to be useful for the application
at hand.

Typically a dialogue historyKM includes tokens at the fol-
lowing levels:

� sub-dialogue. A non-terminal category symbol of the
dialogue grammar is an example of a sub-dialogue token
from theMALIN -DM framework.

� utterance. A terminal category symbol of the dialogue
grammar is an example of an utterance token from the
MALIN -DM framework.

� part of utterance: A focal parameter for a dialogue ob-
ject is an example of a token that represents a part of an
utterance in theMALIN -DM framework.

Dialogue history modelling determines the overall structure
of the DM module. Thus, modelling of the dialogue history
is normally important in the beginning of the implementation
process.

The dual implementation step of dialogue history mod-
elling is a combination of conceptual data modelling and
abstract datatype definition. TheDM design is naturally fo-
cused around the use-cases from the requirements specifica-
tion. TheDM framework customisation is mainly concerned
with value domains for the generic parameters of theDM
framework.

6.1 Dialogue Knowledge Model Design
Knowledge representation is the main issue inDM design for
dialogue history modelling. Each phenomena that occurs in
the dialogue should be placed at one of the levels of sub-
dialogue, utterance or part of utterance. For theMALIN -DM
framework, for instance, issues of filling a complex request
structure occur at the level of the sub-dialogue; issues of clas-
sifying a user sentence according to theLINLIN speech acts
occur at the level of the utterance; issues of how to represent
the focal content of a user phrase occur at the level of the part
of utterance.

Modularisation issues for the dialogue history mainly con-
cerns the separation of different interpretation layers of the in-
coming user sentences. For theMALIN -DM framework, such
separations concerns the role of, for instance, the linguistic
interpretation, reference resolution, and the request interpre-
tation.

Interfaces should be defined both vertically and horison-
tally. Vertical interfaces concerns the interaction between

the format levels of sub-dialogue, utterance, and part of ut-
terance. Horisontal interfaces concerns the transformations
between the formats of the layers of interpretation, such as
the parser interpretation format, the request format, and the
system response format.

6.2 Dialogue Knowledge Model Customisation
The main focus inDM framework customisation of the dia-
logue historyKM lies in the framework templates. Generic
value domains of tokens of interpretation should be used
coherently for all subsystems in theDS application. For
the MALIN -DM framework, examples of such domains are
the names of system commands, and requests that relate to
database field names and values. There is a trade-off between
using weak generic types, or stronger more robust typing. For
theMALIN -DM framework, the use of a strong type has often
proved more effective in the long run. The use of explicit do-
main definitions in the code of the system means that domains
can be lifted out completely from the design document.

The DM tools and their formats are often fairly straight-
forward to use, since they have a strong connection to the
selectedDM theory. The main choice is here whether to repre-
sent dialogue phenomenon explicit or implicit. Explicit struc-
tures are favorable as a way of documentation and thus useful
for structures that are shared by several modules. Implicitness
is preferable to keep down size and thereby improve on read-
ability and maintainability of the dialogue historyKM. When
using theMALIN -DG tool one such issue is whether to repre-
sent error and system messages explicitly in the dialogue tree
or not.

Code patterns occur on both the declarative, or data, level
and the imperative level for the dialogue historyKM. Parts
that lie close to the grammatical side of the dialogue sys-
tem tend to become declarative. For parts that are related
to the background system, however, imperative structures of-
ten seem more adequate. For theMALIN -DM framework we
typically get declarative notions for request structures and im-
perative notions for system responses. The interplay between
these levels, e.g. for focus inheritance, is often a non-trivial
part of the customisation coding.

7 The User Request Handling Step
The user request handling step mainly concerns classifica-
tion of each user action in terms of arequest type in order
to group request structures with similar computational con-
tent. The computational behaviour associated with the re-
quest type should be defined and implemented. In general,
we distinguish between the following classes of request types,
cf. [Allen and Core, 1997]:
� task requests: requests that involve the background, or

task-execution, subsystem.

� system information: requests for help and explanations.

� communication management: user discourse signals
that control the flow of the dialogue, e.g. greetings and
farewells.

Strategies for request handling is often directly connected
to notions of the dialogue historyKM at the level of sub-
dialogue or utterance.



The starting point of the user request handling design is the
system behaviour, as described in theDS requirements spec-
ification. The customisation process typically starts from the
generic task management modules of the selectedDM frame-
work.

7.1 User Request Handler Design

Modularisation is the main issue of user request handler de-
sign. Task modules that meet the request types should be
identified and their behaviour described. In theMALIN -DM
framework we identifyDM sub-modules for request coordi-
nation that controls task execution in external sources, when
more than one request type is present in the system. For in-
formation retrieval requests complexity normally lies in the
query expression. The focal parameters of the request struc-
tures becomes fairly large and focus management can become
an intricate problem. For theMALIN -DM framework, a care-
ful design of a focus handler has been needed in some cases.
Moreover, for more command-oriented tasks the design prob-
lem rather lies in the selection of the “right command”. With
theMALIN -DM framework, this is reflected by the need for a
command interpretation sub-module.

For system information and communication management,
knowledge representation also become an important issue.
For system information requests the problem is to represent
an open-ended domain – the domain of help-questions. The
problem mainly lies in how to define a taxonomy of help texts
and how to map questions into that taxonomy. In theMALIN -
DM framework we designate an auxiliary handler for system
information, although the handler output is only tokens for
which concrete language maps must be performed later by
the generation module. The selection mechanism for commu-
nication management for user dialogue control is yet another
handler in theMALIN -DM framework with focus on knowl-
edge representation for dialogue control. This communica-
tion management module handles both high-level dialogue
statements, such as greetings and farewells, and near-system
expressions, such as restart and emergency stops.

Interfaces between request formats and task execution
modules should be defined. In systems other than those for in-
formation retrieval this means an interface from data to more
procedural behaviour, such as command execution. Task han-
dlers that rely on information from the dialogue history, such
as focus management, also need an interface for the dialogue
historyKM.

7.2 User Request Handler Customisation

The main issue of user request handler customisation is a
mixture of re-use through framework templates and code pat-
terns. There is a double choice of request handler modulari-
sation within theDM module – in terms of modules applied
in sequence and in terms of branching during module applica-
tion. There are a number of programming rules of thumb that
are often helpful here: Place all related stuff in one place to
avoid redundant if-cases. Perform transformations as early as
possible (but not too early). Modules should be logical units
with a simply formulated responsibility (preferably in close
connection with the usedDM theory). Keep smaller modules

internal toDM if the module uses global references to the di-
alogue history.

Code patterns have to be used where theDM framework
fails to support. This is typically the case if theDM mod-
ule deals with a form of request that has not been attempted
before with the framework.

Domain-independent user request handlers may need sim-
pler forms of knowledge representation structures to be easy
to adjust. It may be worthwhile to develop or use a simple
DM tool for this purpose, especially for task requests with
complex focus inheritance and request constructions. For the
MALIN -DM framework, we are thinking about such efforts
for domain-independent focus management of information
retrieval.

8 The Sub-dialogue Control Step
The control of sub-dialogue strategy constitutes a major con-
trol unit of dialogue management. In the sub-dialogue con-
trol step the possible dialogue situations that may occur are
grouped and realised according to a suitable dialogue strat-
egy. We suggest to use the following generic grouping of
sub-dialogues as a starting point for this work:

� the request types: decide upon a suitable dialogue be-
haviour for each type of request that the system handles.

� exceptional system responses: decide upon a suitable
dialogue behaviour for each type of exceptional system
response.

� clarifications and error handling : decide upon a suit-
able strategy for each type of clarification and system
error situation.

Realisation of the control of sub-dialogues follows the guide-
lines concerning dialogue system functionalities of theDS re-
quirements specification (cf.[DISC, 1999]).

The sub-dialogue control design starts off identifying the
mechanisms that underlie the extraction of user request for
the each class of sub-dialogues. The customisation of the step
mainly has its starting point in looking at the dialogue strate-
gies that occur in the selectedDM theory and in the use-cases
of theDS requirement specification.

8.1 Sub-dialogue Control Design
The sub-dialogue control design has its focus mainly on mod-
ularisation and interfaces. The characteristics of entry and
exit points are interface points for the flow of information
between sub-dialogues. For theMALIN -DM framework the
sub-dialogue control is designed in close connection with the
dialogue grammar. Modularisation definitions for the sub-
dialogue strategies for system-initiative segments often need
more effort than those for user-initiative, since the former
tend to be more elaborate. Moreover, it is important to iden-
tify how user-initiative and system-initiative segments are in-
tertwined.

For sub-dialogues dealing with exceptional responses, clar-
ification and error, the design of knowledge representation
also plays an important role. It is important that the formats
of such messages are kept in a form that guides the excep-
tional sub-dialogues. Handling of empty or too large results



are examples of such exceptional responses. One may distin-
guish between repairable and not repairable exceptional sub-
dialogues. In the first case a sub-dialogue strategy should
be suggested, in the latter a suitable sub-dialogue exit is pre-
ferred.

8.2 Sub-dialogue Control Customisation

The sub-dialogue customisations mainly deal with issues of
DM code patterns. Strategies for sub-dialogues depend on the
type of request at hand, i.e. whether they concern information
retrieval, operational control, problem solving or some other
type of functionality. Sub-dialogues follow patterns that may
be re-used in other applications that share dialogue behaviour.
For the MALIN -DM framework these patterns are found as
fragments of the dialogue grammar that can be re-used be-
tween grammars of differentDM modules.

There is often a need for a new sub-dialogue control for
each newly introduced request type in aDM module, such as
a slot-filler frame for system-initiative sub-dialogue for com-
plex information requests or orders.DM framework templates
can be developed for this purpose. For instance, theMALIN -
DM framework includes a generic handler handling slot-filler
requests that supports system-driven request formulation.

9 An Example – SCIN

The SCIN dialogue system is the first system where the
method is used. TheSCIN system consists of an interactive
news reader using a multi-modal interface with an animated
face, in a way similar to an ordinary news program. A user
of the SCIN system is able to not only find and read news,
but also, for instance, to retrieve background to news articles,
analyses and encyclopedic information related to a news item.

9.1 The Iterative Process

A first prototype is up and running, utilising only very few
of the features to be included in the final version. This is in
line with the our implementation method; i.e. instead of com-
pletely specifying the final system, we develop a first running
prototype which is to be further refined. One reason for want-
ing to have a running prototype before the whole system was
specified was that we did not know what services to include in
SCIN when the project started. Thus, instead of discussions
on, and specifications of, capabilities of an intelligent news
service, we developed our first prototype, the intelligent tape
recorder,IB, which is to be iteratively enhanced with more
capabilities. IB does not have much advanced functionality,
in fact it hardly has capabilities to render it to be called a di-
alogue system.IB can understand a limited set of written in-
put commands such asRead next; What is there about Telia;
Stop. However, this made it much easier for us to develop a
first running prototype where we, for instance, had to spend a
considerable amount of time on interfaces between modules;
code that is useful for all further prototypes.

IB will be evaluated and function as a framework when it-
erating the method a second time, adding more functionality
towards a fully interactive news system.

9.2 The DM Capability Steps
The design ofIB was done in parallel with the implementa-
tion. For the most basic parts theDM module has only been
an embryo. The initial use-cases have concerned straight-
forward search for and reading of news telegrams. Our initial
work with the dialogue history modelling has been performed
mainly on the level of singular utterances, more specifically
on the request formats. Our initial dialogue historyKM will
be further extended at the level of sub-dialogue representation
and part of utterance as we proceed. For request handling, we
have initially focused on the basic task execution modules of
background database system with news texts, and the user
interface for the read commands. A first prototype version
of parser interpretations and request formats have been sug-
gested, but we expect to refine these formats iteratively as the
project continues. Much of the basic functionality of theSCIN
system concerns the user interface, so the initial work has fo-
cused mostly on those issues. The role of theDM module will
gradually become more central when new dialogue behavior
is added, as the project continues.

10 Discussion
We have presented a method for implementation of dialogue
management modules. The method unifies issues of concep-
tual design with a clear correspondence to the components of
the customisation of a generic framework. In this paper we
have focused on the dialogue management module, but we
believe that the method applies to other modules in a dialogue
system as well.

The method advocates that coding and design goes together
and that a dialogue system is implemented iteratively with cu-
mulatively added capabilities. Coding should be carried out
as soon as possible, before all details of the system’s design
are ready; coding instead of chart diagrams. A prototype is
developed from the start which is gradually refined based on
evaluations of its behaviour. The prototype should use an ex-
isting framework, or tools if such exists, which imports re-
sults from previous projects. The framework might well be
further developed, but we believe that this shall be carried out
as a separate project. Within one dialogue systems develop-
ment project only existing frameworks and tools are used.

The method conforms with general software development
methods, but is tailored to fit dialogue systems development.
Dialogue systems are characterised by having processes for
the various dialogue system’s tasks, such as parsing, di-
alogue control and domain knowledge management being
fairly complex but small, i.e. not much code. Instead, as
many AI systems, dialogue systems are knowledge intensive.
Furthermore, much knowledge is acquired during the devel-
opment of the system. This motivates our view of evolution-
ary development based on running prototypes capable of han-
dling more and more dialogue phenomenon. However, pro-
totype refinement often involves re-design of various aspects,
thus design and coding are carried out together.

The method has gradually grown from our work on imple-
mentation of dialogue systems, and we will not claim that it
is ready yet, but believe that it provides a step towards a soft-
ware engineering method for dialogue systems development.



We have not yet been able to verify the method, but once the
SCIN interactive news reader is complete, or near completion,
we have a chance to do a more systematic evaluation of the
method.

References
[Alexandersson and Reithinger, 1995] Jan Alexandersson

and Norbert Reithinger. Designing the dialogue com-
ponent in a speech translation system. InProceedings
of the Ninth Twente Workshop on Language Technology
(TWLT-9), pages 35–43, 1995.

[Allen and Core, 1997] James Allen and Mark Core.Draft
of DAMSL: Dialog Act Markup in Several Lay-
ers. http://www.cs.rochester.edu/research/cisd/resources/
damsl/RevisedManual/RevisedManual.html, 1997.

[Allen et al., 2000] James Allen, Donna Byron, Myroslava
Dzikovska, George Ferguson, Lucian Galescu, and
Amanda Stent. An architecture for a generic dialogue
shell. Natural Language Engineering, 6(3):1–16, 2000.

[Allen et al., 2001] James Allen, Donna Byron, Myroslava
Dzikovska, George Ferguson, Lucian Galescu, and
Amanda Stent. Towards conversational human-computer
interaction.AI Magazine, 2001.

[Beck, 2000] Kent Beck. extreme Programming explained.
Addison-Wesley, 2000.

[Carroll, 1995] John M. Carroll. Scenario-Based design –
Envisioning Work and Technology in System Development.
John Wiley & Sons, 1995.

[Dahlbäcket al., 1999] Nils Dahlbäck, Annika Flycht-
Eriksson, Arne J¨onsson, and Pernilla Qvarfordt. An
architecture for multi-modal natural dialogue systems. In
Proceedings of ESCA Tutorial and Research Workshop
(ETRW) on Interactive Dialogue in Multi-Modal Systems,
Germany, 1999.

[DISC, 1999] DISC. Dialogue management grid. Technical
report, http://www.disc2.dk/slds/dm/dmgrid-details.html,
available February 2001, 1999.

[Fayadet al., 1999] Mohamed E. Fayad, Douglas C.
Schmidt, and Ralph E. Johnson.Building Application
Frameworks: Object-Oriented Foundations of Framework
Design. Wiley, 1999.

[Gammaet al., 1995] Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides.Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series, 1995.

[Hagen, 1999] Eli Hagen. An approach to mixed initiative
spoken information retrieval dialogue.User modeling and
User-Adapted Interaction, 9(1-2):167–213, 1999.

[Hulstijn, 2000] Joris Hulstijn.Dialogue Models for Inquiry
and Transaction. PhD thesis, Universiteit Twente, 2000.

[Jönsson and Dahlb¨ack, 2000] Arne Jönsson and Nils
Dahlbäck. Distilling dialogues - a method using natural
dialogue corpora for dialogue systems development. In
Proceedings of 6th Applied Natural Language Processing
Conference, pages 44–51, 2000.

[Jönsson, 1997] Arne Jönsson. A model for habitable and
efficient dialogue management for natural language inter-
action. Natural Language Engineering, 3(2/3):103–122,
1997.

[Karlsson, 1995] Even-André Karlsson.Software Reuse – A
holistic approach. John Wiley & Sons, 1995.

[Krutchen, 2000] Philippe Krutchen. The Rational Unified
Process, An Introduction, 2nd edition. Addison-Wesley,
2000.

[Larssonet al., 2001] Staffan Larsson, Robin Cooper, Elis-
abet Engdahl, and Peter Ljungl¨of. Information state and
dialogue move engines.Electronic Transactions on Artifi-
cial Intelligence, 2001.

[Leceucheet al., 2000] Renaud Leceuche, Dave Robertson,
Catherine Barry, and Chris Mellish. Evaluating focus the-
ories for dialogue management.International Journal on
Human-Computer Studies, 52:23–76, 2000.

[McRoy and Ali, 2001] Susan W. McRoy and Syed S. Ali. A
practical declarative model of dialog.Electronic Transac-
tions on Artificial Intelligence, 2001.

[McTear, 1999] Michael F. McTear. Software to support re-
search and development of spoken dialogue systems. In
Proceedings of Eurospeech’99, Budapest, Hungary, 1999.


