1

2
Implementation of dialogue systems for new applications

A Method for Iterative Implementation of Dialogue Management

Lars Degerstedt and Arne bnsson
Department of Computer and Information Science
Linkoping University, Sweden
larde@ida.liu.se, arnjo@ida.liu.se

Abstract

This paper presents an approach to implementation
of dialogue management modules for dialogue sys-
tems. The implementation method is divided into
two distinct, but correlated, steps; Conceptual de-
sign and Framework customisation. Conceptual de-
sign and framework customisation are two mutu-
ally dependent sides of the same phenomena, where
the former is an on-paper activity that results in a
design document and the latter results in the actual
program code. The method is iterative and con-
forms with software development methods, such as,
extreme programming, scenario-based design and
reusable object-oriented software development. In
the paper, this is further elaborated and how it re-
lates to dialogue systems development.

Introduction

et al, 2001. However, this vision rests ofihe Domain-
Independence Hypothedisllen et al, 2001, e.g. that the
complexity in the language interpretation and dialogue is in-
dependent of the task being performed, which still needs to
be verified.

In Section 2 we briefly present our own experience from
developing dialogue systems which also motivated our need
for a more systematic method. Section 3 presents an overview
of the implementation method. One novelty is the separa-
tion of the conceptual design from framework customisation,
discussed in Section 4. Our aim is to formulate a working
method that supports the creative process rather than giving a
set of mechanical rules. In Section 5 we introduce a set of ca-
pabilities that is used to organise the implementation work of
the dialogue management module. These capabilities are dis-
cussed subsequently in Section 6-8. In Section 9 we briefly
present initial experience from using the method and discuss,
in Section 10, the method as a software development method.

Background

could be viewed as a process of customising a generic framghe method is based on our experience from develop-
work to fit the needs of a more specific application. Foring dialogue systems for various applications and purposes.
fairly simple applications this can be carried out using predeThe need for a framework and corresponding development
fined building blocks, e.gcsLu [McTear, 1999 However, method emanates from a re—|mplemgntat|on ofpur I|sp?based
although we conform tdhe Practical Dialogue Hypothe- dialogue systemCARS, to Java.CARS s a typed interaction
sis[Allen et al, 2001, e.g. that conversational competenceOnly natural language dialogue system developed from the
for practical dialogues is significantly simpler to achieve thantINLIN dialogue modél [J6nsson, 1997to an application
general human conversation, realisation of more advanced dillowing fairly simple information requests from an SQL-
alogue systems still involves substantial work, [dflcRoy data_baseCARs utilised a parser tool, but had no framework
and Ali, 2001. for dialogue management.

In this paper we will outline a method for the imple- The cARs dialogue system served as inspiration for the
mentation of dialogue managemeram), moduled for di- ~ MALIN ® [Dahlbéicket al, 1999 framework.MALIN was de-
alogue systems,DE), from generic frameworks, such as, veloped as a framework by generalising from the develop-
TRIPS [Allen et al, 2004, and TRINDIKIT [Larssonet al., ment of CARS to a system for local bus time table informa-
2001. We see the contribution of our implementation methodtion, OTRAF. Time table information systems require more
as a step towards a tool for building dialogue systems thagomplexrequests as the system needs to handle various tasks,
can be “adapted to each new task relatively ed#ifen not only simple information retrieval and, thusNLIN , was
- modified to account for this, and more. The development of
We will not use the term Dialogue Manager as it, in this pa-——
per, is important to distinguish between the running module in the By modelwe understand a formal or informal theoretical anal-
customised dialogue system and the generic framework from whiclysis of dialogue. Such a model can be present in a system either
it is developed. We will instead use the termg module andcom implicit as abasis for the system desigor explicit as knowledge
framework to denote the running module and the framework to bemodel Km) e.g. a grammar.
customised respectively. 3Multi-modal application oLINLIN .

OTRAF was the starting point for our need for methods for
implementation of dialogue system modules, but the method
was not really used in that project.

The method has, however, been utilised in two other
projects,ScIN and a project on developing a natural language
interface for a digital TV box.SCIN is an interactive news
reader with amongst other things a talking hesdiN will be
based on thaALIN framework. The iterative nature of the ~ ~---------p oo
method presented in this paper is, however, more prominent
in that work. scIN is developed in steps, where a simple in-
terface will be iteratively refined by adding more and more
functionality, see Section 9. The TV box project instead cus-
tomised themALIN framework into a working system by it-
eratively refining the knowledge sources. Little added func-
tionality was needed as the application very much resembles
the previously developedars dialogue system.

Both the TV box system andciN was developed itera-
tively from prototypes that were evaluated and gradually re-
fined, cf.[Hulstijn, 200Q. Such evaluations need not neces-

sarily be carried out with end users, especially not the first s§{e a5 concrete as possible w.r.t. the implementationmi a

of prototypes. _ module. Therefore, we introduce an aukxiliary notion of more
Itis our aim that the method shoyld give concrete sUPPOrtefined ancbm dependent steps, called capability steps

as concerns both attitude and working steps. This boils dow{ithin each iteration. These steps are centered around a set of

to the following contributions concerning implementation of prototypicalpom capabilities that we introduce — a set that can

a dialogue management module in this paper: be updated, refined or changed when needed. In this way, the
e asimple and natural implementation work chart. method is generic but can be adjusted to fittivemodule at

e a prototypical work flow schema from prerequisites to hand.
final design and framework customisation.

» guidelines for application-specific points for the imple- 3.1 Method Prerequisites
mentation work.

DM theory DS Requirements specification

Conceptual design

Framework
customisation

DM module

Figure 1: The Dialogue Management (DM) iteration

. The suggested implementation method is open for adjust-
3 Method Overview ments of its prerequisites within a particular project. The se-
The implementation of a dialogue managemem mod- |ection of bm theory andbm framework chiefly affects the
ule should be done with specific means but yet conform taepresentation of the dialogue and how its associated func-
a generic working schema to be in harmony with realisationality is attached. The choice is based partly on previous
tion of other modules. Through iterative thinking the reali- experience and partly on applicability.

sation process can be divided into more manageable pieces
(cf. [Krutchen, 2000). Through successive refinements and

incremental development, the solution can be reached gradi}ic+ijiations [J6nsson and Dahtik, 2000, and guidelines

ally, as the understanding of the problem increases, in an evo- : -)
lutionary manner. Our method suggests to work iterativer?Cf' [DISC, 1999). By analysis of the material we may for

. mulate the requirements specification. We suggest to include
from the two anglesonceptual desigrandframework cus- q P 99

A . . the followin r minimum, in th ification:
tomisation. Conceptual design and framework customlsa—t e following two parts, as a um, in the specificatio

tion are seen as two mutually dependent aspects of the same o . . . e
phenomena. Thus, just as advocates of extreme program-® classification of possible dialogues and identification of

System requirements is mainly acquired using suitable
empirical methods such agoz experiments and dialogue

ming [Beck, 2000, we view coding and design as a joint the mainuse-cases
activity. o o

Prerequisites for them design is a requirements specifi- ® SPecification of theystem behaviourin terms of the se-
cation of the dialogue system and selected dialogue theory. ~ lectedbm theory, for each identified class of dialogues.

The framework customisation starts out from a selected
framework (i.e. some development environment and tools)se-case-based development {farroll, 1995) fits nicely
and (some version of) the other modules of the dialogue syswith the design of multi-modal dialogue systems using our
tem. Figure 1 shows the twofold charactermok iteration. iterative implementation method. In our case the use-cases
The solid lines depict the creative progression step. The dotonsist of selected central examples of user-system dialogues.
ted lines show, point-by-point, how the two levels of the iter- These dialogues serve as the starting point of the transition
ation correlate. from Ds requirements toM design. The selected dialogues
At the level of the iterative scheme, our method seemsan be refined iteratively during the implementation as our
fairly module independent. However, it is our final aim to understanding of the system increases.

DM framework
customisation

3.2 Our DM Framework

We mainly use concepts from thevLIN model together with
the MALIN -DM* dialogue management framework. It is not
our intention to describe theiNLIN dialogue model or the T
- . ools — X X X

MALIN framework. However, to illustrate our method we will
use concepts and notations from thaLIN dialogue model Framework
upon which thevALIN -DM framework is based. templates |~ X X X

In the LINLIN dialogue model the dialogue is structured Code
in terms of discourse segments, and a discourse segment in paterns | X X X
terms of moves and embedded segments. Utterances are 1 1 1 DM
analysed as linguistic objects which function as vehicles for { { { " design

atomic move segments. An initiative-responsg §tructure S g £
determines the compound discourse segments, where an ini- é\d} @Q\\ é;\’&
tiative opens ther-segment by introducing a new goal and N \L_oo \Qf;?? &

the response closes thr-segment. TheINLIN dialogue ° &K

model c_Iassifies the disc_:ourse segments by general speech act

categories, such agiestion(Q) andanswer(A), rather than igyre 2: Development space for the twofaist iteration
specialised (cf[Hagen, 1998, or domain relatedAlexan-
dersson and Reithinger, 1995

The dialogue segments form a dialogue tree. The nodes ify,ofold implementation iteration. We view these subdivi-
the tree, termed dialogue objects, hold information such a§jons as two orthogonal parameters which forms the space
the current objects and properties, the user request in focug, explore during the implementation process, as shown in
information on speaker, hearer, type of general speech aqtigyre 2. Each tuple within this space represents a special
etc. TheLINLIN dialogue tree is naturally specified in terms gy p_issue that should be tackled during the realisation of the
of a grammar. ThevALIN -DM framework expects such & py module, e.g. how to structure the dialogue grammar us-

grammar for the top-level control of them module. The g themaLIN -DG tool at the tuple ofools andknowledge
system design is thereby kept in close relation with the eMrepresentation.

pirically developed models. The grammar is represented in
a formalism for so-calledlialogue grammarsaising a Java- 4.1 DM Design

basedm™ tool calledMALIN -DG. . .
The model assumes that decisions as to what to do next aTheDM design is suggested to focus on the representation and

made on the basis of focus information (dfeceucheet al,

200Q), i.e. depending on how the focal parameters have be
specified. Focus information can be copied between nodeg

in the dialogue tree, either horisontally fpcus inheritance
from onelr-segment to the next, or vertically lanswer in-
tegrationto handle sub-dialogues.

4 The Twofold DM lIteration
Design and customisation of tbe& module are performed by

point-wise connecting conceptual issues with those of the s
lectedbm framework. Conceptuam design is an on-paper

activity that results in @aesign document The result of the
DM framework customisation is the actuabdule code At

the end of each iteration we expect to have a readable ver-

sion of thebm design document and a runnalle module
prototype.

The DM design constructs must be effectively realisable

within the selected framework. Thmv framework customi-

sation should strive for a visible connection to the design.
Moreover, the design and customisation should strive for a

visible connection to them theory andbs requirements
from which they start.

The remains of this section contains a subdivision of both
the design and customisation that describes the results of the

“The MALIN -DM framework is a sub-framework of theALIN
framework.

en

e_

ffow of information in theom module. Theom design docu-
ment is recommended to be relatively brief, since its contents
will be iteratively refined. There is no need to put down near-
oding information on paper since tba1 module is built in
parallel with the design. However, a mature version of the
DM design preferably establishes some notion of correctness
and completeness. This is typically done by identifying a set
of expected user-system dialogues and verifying that the de-
signed system behaves in accordance with the requirements
specification.

The finished design document for tber module should
normally include discussions on:

e DM modularisation: identification of central sub-units
of thebm module and definition of their responsibilities.
Submodules are suggested to be identified on three lev-
els: control, handlers and methods. For theLIN -DM
framework, examples from these levels are the descrip-
tion of the dialogue tree construction process, the focus
inheritance algorithms, and a method for background
system access, respectively.

DM knowledge representation identification and ab-
stract formulation of data items for tilmv module. The
formulation is preferably kept in formal or semi-formal
terms and based on the selected use-cases. With the
MALIN -DM framework, an example of such formulation

is the representation of the user request in focus.

e DM interfaces formulation of interface functionality

and (sub)module dependencies that defines the central The overall aim of the customisation process is to increase
data flows of thebm module, both internally and to- re-use during implementation afM modules for different
wards other modules. For theaLIN-DM framework, Ds applications (cf[Karlsson, 1995. Clear-cut borders be-
this includes definitions of the formats for interaction tween thebm framework and th@m module is crucial for a
with other modules, such as the parsing module and thhigh degree of re-use. A sign of successful customisation is a
domain knowledge module. clear separation of the directory trees for the framework

That is, we suggest a light-weight design document wher&nd thebM module in the final system.
knowledge representation has been emphasized and issues re-
lated to flow of (_:ontrol_ de-emphasized. This is motivated bys Our View of DM Capabilities
the knowledge intensive character oba interface and its

lack of complex subsystem cooperation. We define a set abm capabilities that further instantiate the
method scheme of Figure 2. The identifiesh capabilities
4.2 DM Framework Customisation should be viewed as notions wfodule requirementsrather

Coding of abm module starts off from the selectemv than design concepts. That is, these capabilities are only
framework. ThepM module is created iteratively by vari- 100sely related to system design choices such as the choice of
ous customisation steps. We distinguish between three formaM architecture. The capabilities are intended to support the

of re-use from @M framework that complement each other: Organisation of specification properties fobs module, not
to give the final implementation automatically. We have, so

* DM tools: customisation through well-defined parametertay “found it sufficient to focus the design and coding around

settings and data representation files. The main tool ifhe following fairly general types aim capabilities:
theMALIN -DM framework is thevALIN -DG compiler.

e DM framework templates: framework templates and
application-specific code are kept in separate code trees
with clear-cut borders and only one-way module depen-
dencies from framework to application (EFayadet al.,
1999). A central example of such a template in the
MALIN -DM framework is the domain-independent tax-
onomy of Java classes for dialogue objects. The hier-
archy can be further instantiated at application level, if e user request handling the bm module groups and in-
needed. terprets each user action as a user request and coordi-

nates the corresponding system task. TeIN-DM

framework contains a collection of request handlers for

this purpose. The request handling of theLIN -DM

framework include formats for. query-answering, slot-

filler-request, and command-execution.

e dialogue history modelling®: the bm module creates
and holds a knowledge modetn) that represents the
dialogue history for the current user session. The dia-
logue historykM is accessible both internally mm and
externally through search interfaces. In theLIN -DM
framework it is the dialogue tree that constitutes the di-
alogue historykm.

e DM code patterns submodules, edited code patterns
and other forms of textual re-use (¢fsammaet al,
1993). For instance, code patterns are useful in more
domain-dependent parts of request handling and focus
inheritance, with the current version of tl&LIN -DM
framework. e sub-dialogue control the bM module adjusts the di-

Tools are a strong form of re-use but often limited in scope ~ @logue strategy at each dialogue state. In particular,
and flexibility. The use of framework templates is typicallya thereis a choice whether to proceed with a user-initiative
more complex process but offers more support for construc- ~ OF @ System-initiative sub-dialogue. ~ In theaLIN -

tion of a complete application. A code pattern is the weakest DM framework the top-level control of the sub-dialogue
form of re-use. It yields an important prototypical code or ~ Structure is contained in the dialogue grammar.

data skeleton to work from. _ This distinction divides the implementation process into three
A tool that introduces a new formalism pays off for con- york steps. The work steps focus on a high-level picture of

ceptually important notions only. The gain of using a newtne dialogue management trajectory, spedificfunctionali-

representation language lies mainly in increased conceptufifs, and the centralm sub-processes, respectively.

clarity. For theMALIN -DM framework, the dialogue tree \ye gyggest to organise the implementation work mainly

and the request formats are examples of such clarifying conom the perspective of thesem capabilities. For each ca-

cepts. - Framework templates are useful for more systemsapijity it is suggested to solve the related specification

related tasks, such as module communication. They argquirements from the two viewpoints of design and customi-

the glue between them tools and the underlying system. qiinn | as given by the tuples of Figure 2. The capabilities

In the MALIN -DM framework, this is the case with, for in- -5 pe seen as a third, maver specific, dimension that is

stance, templates for incoming messages from the interpresihogonal with the design and customisation dimensions of
tation module and handling of user-threads. A code patFigure 2

tern is useful for principal parameters of tibe1 module,

i.e. application-dependent pieces of _dat_a or code. For the 5By the termdialogue historywe understand the interplay be-
MALIN -DM framework, examples of principal parameters areyyeen the user and system in terms of user utterances and system
the dialogue grammar and the representation of focused olesponses. That is, the term denotes the actual phenomena, and not
jects and properties. a knowledge model.

The DM capability steps split the iterative implementation the format levels of sub-dialogue, utterance, and part of ut-
schema into more manageable pieces. Each suclapa- terance. Horisontal interfaces concerns the transformations
bility step constitutes a work flow step during an iteration orbetween the formats of the layers of interpretation, such as
a use-case realisation. Subsequently, in Section 6-8, we elalfte parser interpretation format, the request format, and the
orate on these capability steps, one by one, from our dualystem response format.

erspective of design and framework customisation. . L
persp g 6.2 Dialogue Knowledge Model Customisation

6 The Dialogue History Modelling Step The majn focus ir.DM'framework customisation of the dia.—
logue historyk™ lies in the framework templates. Generic

The work step for dialogue history modelling concerns ideny,ajue domains of tokens of interpretation should be used
tifying a set of tokens and their definitions that reflects thecoherently for all subsystems in ties application. For

DM interpretation o_f the on-going dialogue between user anghe MALIN -DM framework, examples of such domains are
system. Taxonomies of such tokens are normally given byhe names of system commands, and requests that relate to
generic categories of thv framework andbwm theory that gatabase field names and values. There is a trade-off between
need to be further instantiated to be useful for the appllcatlorlljsing weak generic types, or stronger more robust typing. For

at hand.]] . theMALIN -DM framework, the use of a strong type has often
Typically a dialogue historgm includes tokens at the fol- - proved more effective in the long run. The use of explicit do-
lowing levels: main definitions in the code of the system means that domains

¢ sub-dialogue A non-terminal category symbol of the can be lifted out comple'gely from the design dog:ument:
dialogue grammar is an example of a sub-dialogue token The DM tools and their formats are often fairly straight-
from theMALIN -DM framework. forward to use, since they have a strong connection to the

« utterance. A terminal category symbol of the dialogue selectedM theory. The main choice is here whether to repre-

grammar is an example of an utterance token from th ent dialogue phenomenon explicit or implicit. Explicit struc-
MALIN -DM framework ures are favorable as a way of documentation and thus useful

for structures that are shared by several modules. Implicitness
» part of utterance: A focal parameter for a dialogue ob- s preferable to keep down size and thereby improve on read-
jectis an example of a token that represents a part of agbility and maintainability of the dialogue histoky. When
utterance in the4ALIN -DM framework. using themALIN -DG tool one such issue is whether to repre-

Dialogue history modelling determines the overall structuresent error and system messages explicitly in the dialogue tree
of the bM module. Thus, modelling of the dialogue history Of not. _
is normally important in the beginning of the implementation ~ Code patterns occur on both the declarative, or data, level
process. and the imperative level for the dialogue histoty. Parts

The dual implementation step of dialogue history mod-that lie close to the grammatical side of the dialogue sys-
elling is a combination of conceptual data modelling andt€m tend to become declarative. Fpr parts that are related
abstract datatype definition. Tev design is naturally fo- to the background system, however, imperative structures of-
cused around the use-cases from the requirements specifid@ Seem more adequate. For theLiN -DM framework we
tion. Thepm framework customisation is mainly concerned typically get declarative notions for request structures and im-

with value domains for the generic parameters of the Perative notions for system responses. The interplay between
framework. these levels, e.g. for focus inheritance, is often a non-trivial

part of the customisation coding.
6.1 Dialogue Knowledge Model Design

Knowledge representation is the main issueindesign for 7 The User Request Handling Step

dialogue history modelling. Each phenomena that occurs ifhe user request handling step mainly concerns classifica-
the dialogue should be placed at one of the levels of subtion of each user action in terms ofraquest typein order
dialogue, utterance or part of utterance. Fortze.IN -DM to group request structures with similar computational con-
framework, for instance, issues of filling a complex requestent. The computational behaviour associated with the re-
structure occur at the level of the sub-dialogue; issues of clasjuest type should be defined and implemented. In general,
sifying a user sentence according to theLIN speech acts we distinguish between the following classes of request types,
occur at the level of the utterance; issues of how to represesf. [Allen and Core, 1997

the focal content of a user phrase occur at the level of the part o task requests requests that involve the background, or
of utterance. task-execution, subsystem.

Modularisation issues for the dialogue history mainly con- | system information: requests for help and explanations
cerns the separation of different interpretation layers of the in- Y ' '

coming user sentences. For thaLiN -DM framework, such e communication management user discourse signals

separations concerns the role of, for instance, the linguistic ~ that control the flow of the dialogue, e.g. greetings and

interpretation, reference resolution, and the request interpre- farewells.

tation. Strategies for request handling is often directly connected
Interfaces should be defined both vertically and horison{o notions of the dialogue historym at the level of sub-

tally. Vertical interfaces concerns the interaction betweerdialogue or utterance.

The starting point of the user request handling design is theaternal tobm if the module uses global references to the di-
system behaviour, as described in tieerequirements spec- alogue history.
ification. The customisation process typically starts from the Code patterns have to be used where tve framework
generic task management modules of the selemteframe- fails to support. This is typically the case if tlmav mod-

work. ule deals with a form of request that has not been attempted
before with the framework.
7.1 User Request Handler Design Domain-independent user request handlers may need sim-

Modularisation is the main issue of user request handler d oler forms of knowledge representation structures to be easy

sign. Task modules that meet the request types should b§ adjust. It may be worthwhile to develop or use a simple

. o . . : M tool for this purpose, especially for task requests with
identified and t_he|r behawour described. In teLIN -DM . complex focus inheritance and request constructions. For the
framework we identifypm sub-modules for request coordi-

nation that controls task execution in external sources, whely. -\ -OM f.ramework, we are thinking about su_ch effor'gs

X : WNEgL, domain-independent focus management of information
more than one request type is present in the system. For iNatrieval
formation retrieval requests complexity normally lies in the '
guery expression. The focal parameters of the request strug- .
tures becomes fairly large and focus management can becorfe The Sub-dialogue Control Step
an intricate problem. For theALIN -DM framework, a care- The control of sub-dialogue strategy constitutes a major con-
ful design of a focus handler has been needed in some caseml unit of dialogue management. In the sub-dialogue con-
Moreover, for more command-oriented tasks the design proltrol step the possible dialogue situations that may occur are
lem rather lies in the selection of the “right command”. With grouped and realised according to a suitable dialogue strat-
themALIN -DM framework, this is reflected by the need for a egy. We suggest to use the following generic grouping of
command interpretation sub-module. sub-dialogues as a starting point for this work:

For system information and communication management, o ihe request types decide upon a suitable dialogue be-

knowledge representation also become an important iSSU. payiour for each type of request that the system handles.
For system information requests the problem is to represent

an open-ended domain — the domain of help-questions. The ® €xceptional system responsesiecide upon a suitable
problem mainly lies in how to define a taxonomy of helptexts ~ dialogue behaviour for each type of exceptional system
and how to map questions into that taxonomy. Inkt#.IN - response.

pm framework we designate an auxiliary handler for system e clarifications and error handling: decide upon a suit-

information, although the handler output is only tokens for able strategy for each type of clarification and system
which concrete language maps must be performed later by error situation.

the generation module. The selection mechanism for COMMYs e alisation of the control of sub-dialogues follows the guide-

nication management for user dialogue control is yet anothe”f . ; ; -
. X ; ~ines concerning dialogue system functionalities ofisee-
handler in thewALIN -DM framework with focus on knowl quirements specification (dDISC, 1999).

edge representation for dialogue control. This communica- The sub-dialogue control design starts off identifying the

tion management madule handles hoth high-level dlalogu?nechanisms that underlie the extraction of user request for

ziatfggigtﬁg ssgghaassgrree;g:ltgasnznedrggrre\évr?(l:ls,s?gdsnear—syst% each class of sub-dialogues. The customisation of the step
P ' gency Stops. mainly has its starting point in looking at the dialogue strate-

Interfaces between request formats and task executiofes that occur in the selectet theory and in the use-cases
modules should be defined. In systems other than those for i f the DS requirement specification

formation retrieval this means an interface from data to more
procedural behaviour, such as command execution. Taskhag:1 Sub-dialogue Control Design

dlers that rely on information from the dialogue history, such

as focus management, also need an interface for the dialoga—Pe.Sub'd'alogu.e control design has its focus mainly on mod-
historykm. Ularisation and interfaces. The characteristics of entry and

exit points are interface points for the flow of information
between sub-dialogues. For theaLIN -DM framework the
sub-dialogue control is designed in close connection with the
The main issue of user request handler customisation is dialogue grammar. Modularisation definitions for the sub-
mixture of re-use through framework templates and code patdialogue strategies for system-initiative segments often need
terns. There is a double choice of request handler modularimore effort than those for user-initiative, since the former
sation within thebm module — in terms of modules applied tend to be more elaborate. Moreover, it is important to iden-
in sequence and in terms of branching during module applicaify how user-initiative and system-initiative segments are in-
tion. There are a number of programming rules of thumb thatertwined.

are often helpful here: Place all related stuff in one place to For sub-dialogues dealing with exceptional responses, clar-
avoid redundant if-cases. Perform transformations as early acation and error, the design of knowledge representation
possible (but not too early). Modules should be logical unitsalso plays an important role. It is important that the formats
with a simply formulated responsibility (preferably in close of such messages are kept in a form that guides the excep-
connection with the usenm theory). Keep smaller modules tional sub-dialogues. Handling of empty or too large results

7.2 User Request Handler Customisation

are examples of such exceptional responses. One may distif-:2 The DM Capability Steps
guish between repairable and not repairable exceptional sujy,, design ofs was done in parallel with the implementa-

dialogues. In the first case a sub-dialogue strategy shoulgy, - Forthe most basic parts tioa1 module has only been
be suggested, in the latter a suitable sub-dialogue exitis prey, empryo. The initial use-cases have concerned straight-

ferred. forward search for and reading of news telegrams. Our initial

) o work with the dialogue history modelling has been performed
8.2 Sub-dialogue Control Customisation mainly on the level of singular utterances, more specifically
ofn the request formats. Our initial dialogue histemy will
ﬁ)g further extended at the level of sub-dialogue representation
nd part of utterance as we proceed. For request handling, we

The sub-dialogue customisations mainly deal with issues
DM code patterns. Strategies for sub-dialogues depend on t

type of request athand, i.e. whether they concern informatio ave initially focused on the basic task execution modules of

retrieval, operational control, problem solving or some othe backaround database svstem with news texts. and the user
type of functionality. Sub-dialogues follow patterns that may > acKk9rou Y wi WS 1exts, u
pterface for the read commands. A first prototype version

be re-used in other applications that share dialogue behaviol . .
For the MALIN -DM framework these patterns are found as°f parser interpretations and request formats have been sug-

fragments of the dialogue grammar that can be re-used b(g_ested, but we expect to refine these formats iteratively as the
tween grammars of differem modules project continues. Much of the basic functionality of s@nN

There is often a need for a new sub-dial ntrol f rsystem concerns the user interface, so the initial work has fo-
ere Is often a need for a new sub-dlalogue control 1ol 4q g mostly on those issues. The role oftiivemodule will
each newly introduced request type in& module, such as

. X r Il me mor ntral when new dial havior
a slot-filler frame for systeme-initiative sub-dlalogueforcom-g adually become more central when new dialogue behavio

, ; is added, as the project continues.
plex information requests or ordersm framework templates
can be developed for this purpose. For instancemiieN - . .
pm framework includes a generic handler handling slot-filer 10 Discussion

requests that supports system-driven request formulation. e have presented a method for implementation of dialogue
management modules. The method unifies issues of concep-
9 An Example — SCIN tual design _vvith aclear corres_pondence to the components of
the customisation of a generic framework. In this paper we
The sciN dialogue system is the first system where thehave focused on the dialogue management module, but we
method is used. ThecIN system consists of an interactive believe that the method applies to other modules in a dialogue
news reader using a multi-modal interface with an animategystem as well.
face, in a way similar to an ordinary news program. A user The method advocates that coding and design goes together
of the SCIN system is able to not only find and read news,and that a dialogue system is implemented iteratively with cu-
but also, for instance, to retrieve background to news articlegnulatively added capabilities. Coding should be carried out
analyses and encyclopedic information related to a news iten®s soon as possible, before all details of the system’s design
are ready; coding instead of chart diagrams. A prototype is
9.1 The lterative Process developed from the start which is gradually refined based on
evaluations of its behaviour. The prototype should use an ex-
A first prototype is up and running, utilising only very few isting framework, or tools if such exists, which imports re-
of the features to be included in the final version. This is insults from previous projects. The framework might well be
line with the our implementation method; i.e. instead of com-further developed, but we believe that this shall be carried out
pletely specifying the final system, we develop afirst runningas a separate project. Within one dialogue systems develop-
prototype which is to be further refined. One reason for wantment project only existing frameworks and tools are used.
ing to have a running prototype before the whole system was The method conforms with general software development
specified was that we did not know what services to include irmethods, but is tailored to fit dialogue systems development.
SCIN when the project started. Thus, instead of discussionpialogue systems are characterised by having processes for
on, and specifications of, capabilities of an intelligent newshe various dialogue system’s tasks, such as parsing, di-
service, we developed our first prototype, the intelligent tapelogue control and domain knowledge management being
recorder,iB, which is to be iteratively enhanced with more fairly complex but small, i.e. not much code. Instead, as
capabilities. 1B does not have much advanced functionality, many Al systems, dialogue systems are knowledge intensive.
in fact it hardly has capabilities to render it to be called a di-Furthermore, much knowledge is acquired during the devel-
alogue systemiB can understand a limited set of written in- opment of the system. This motivates our view of evolution-
put commands such &ead next; What is there about Telia; ary development based on running prototypes capable of han-
Stop However, this made it much easier for us to develop alling more and more dialogue phenomenon. However, pro-
first running prototype where we, for instance, had to spend &otype refinement often involves re-design of various aspects,
considerable amount of time on interfaces between moduleghus design and coding are carried out together.
code that is useful for all further prototypes. The method has gradually grown from our work on imple-
1B will be evaluated and function as a framework when it-mentation of dialogue systems, and we will not claim that it
erating the method a second time, adding more functionalitys ready yet, but believe that it provides a step towards a soft-
towards a fully interactive news system. ware engineering method for dialogue systems development.

We have not yet been able to verify the method, but once thBJénsson, 1997 Arne Iinsson. A model for habitable and
SCINinteractive news reader is complete, or near completion, efficient dialogue management for natural language inter-
we have a chance to do a more systematic evaluation of the action. Natural Language Engineerindg3(2/3):103-122,

method. 1997.
[Karlsson, 199F Even-Andg Karlsson.Software Reuse — A
References holistic approach John Wiley & Sons, 1995.

[Alexandersson and Reithinger, 1995an Alexandersson [k yytchen, 200D Philippe Krutchen. The Rational Unified
and Norbert Reithinger. Designing the dialogue com-" process, An Introduction, 2nd editiorAddison-Wesley,

ponent in a speech translation system. Pimceedings 2000.
of the Ninth Twente Workshop on Language TechnologYL tal, 2001 Staffan L Robin C Ei
(TWLT-9) pages 35-43, 1995. arssoret al, affan Larsson, Robin Cooper, Elis-

abet Engdahl, and Peter Ljufl” Information state and
dialogue move engine&lectronic Transactions on Artifi-
cial Intelligence 2001.

eceucheet al, 2000 Renaud Leceuche, Dave Robertson,

[Allen and Core, 1997 James Allen and Mark CoreDraft
of DAMSL: Dialog Act Markup in Several Lay-
ers http://www.cs.rochester.edu/research/cisd/resourceﬁ/_

damsl/RevisedManual/RevisedManual.html, 1997. Catherine B d Chris Mellish. Evaluating f h
atherine Barry, and Chris Mellish. Evaluating focus the-
[Al:gznig\?sl& sooge‘é?&eslzg‘lrlgel?éo?]onEﬁc?gr:mga'\lgrgjlavsn 4 Ories for dialogue managemerinternational Journal on
Amanda Stent. An architecture for a generic dialogue Human—ComputerStud|$2.23—76, 2000.)
shell. Natural Language Engineering(3):1-16, 2000. [McRoy and Ali, 200] Susan W. McRoy and Syed S. Ali. A

practical declarative model of dialo&lectronic Transac-
[Allen etal, 2001 James Allen, Donna Byron, Myroslava tions on Artificial Intelligence2001.
Dzikovska, George Ferguson, Lucian Galescu, and)
Amanda Stent. Towards conversational human-computdMcTear, 1999 Michael F. McTear. Software to support re-
interaction.Al Magazine 2001. search and development of spoken dialogue systems. In

[Beck, 2000 Kent Beck. extreme Programming explained Proceedings of Eurospeech’99, Budapest, Hungadpo.

Addison-Wesley, 2000.

[Carroll, 1993 John M. Carroll. Scenario-Based design —
Envisioning Work and Technology in System Development
John Wiley & Sons, 1995.

[Dahlkécket al, 1999 Nils Dahléick, Annika Flycht-
Eriksson, Arne diisson, and Pernilla Qvarfordt. An
architecture for multi-modal natural dialogue systems. In
Proceedings of ESCA Tutorial and Research Workshop
(ETRW) on Interactive Dialogue in Multi-Modal Systems,
Germany 1999.

[DISC, 1999 DISC. Dialogue management grid. Technical
report, http://www.disc2.dk/slds/dm/dmgrid-details.html,
available February 2001, 1999.

[Fayadet al, 1999 Mohamed E. Fayad, Douglas C.
Schmidt, and Ralph E. JohnsonBuilding Application
Frameworks: Object-Oriented Foundations of Framework
Design Wiley, 1999.

[Gammeet al, 1999 Erich Gamma, Richard Helm, Ralph
Johnson, and John VlissideBesign Patterns: Elements
of Reusable Object-Oriented Softwardddison-Wesley
Professional Computing Series, 1995.

[Hagen, 199P Eli Hagen. An approach to mixed initiative
spoken information retrieval dialogu&ser modeling and
User-Adapted Interactiqr9(1-2):167-213, 1999.

[Hulstijn, 200Q Joris Hulstijn.Dialogue Models for Inquiry
and TransactionPhD thesis, Universiteit Twente, 2000.

[J6nsson and Dah#ixk, 2000 Arne Dnsson and Nils
Dahlkéck. Distilling dialogues - a method using natural
dialogue corpora for dialogue systems development. In
Proceedings of 6th Applied Natural Language Processing
Conferencepages 44-51, 2000.

