Andrzej Szalas

Journal Publications

Show abstracts (where available) BibTeX entries
[43] Linh Anh Nguyen, Thi-Bich-Loc Nguyen and Andrzej Szalas. 2015.
Editorial Material: Towards richer rule languages with polynomial data complexity for the Semantic Web in DATA and KNOWLEDGE ENGINEERING, vol 96-97, issue , pp 57-77.
Data & Knowledge Engineering, 96-97(??):57–77. ELSEVIER SCIENCE BV.
DOI: 10.1016/j.datak.2015.04.005.
[42] Barbara Dunin-Keplicz, Alina Strachocka, Andrzej Szalas and Rineke Verbrugge. 2015.
Paraconsistent semantics of speech acts.
Neurocomputing, 151(2):943–952. Elsevier.
DOI: 10.1016/j.neucom.2014.10.001.
[41] Son Thanh Cao, Linh Anh Nguyen and Andrzej Szalas. 2014.
WORL: a nonmonotonic rule language for the semantic web.
Vietnam Journal of Computer Science, 1(1):57–69. Springer Berlin/Heidelberg.
DOI: 10.1007/s40595-013-0009-y.
[40] Andrzej Szalas. 2013.
How an agent might think.
Logic journal of the IGPL (Print), 21(3):515–535. Oxford University Press (OUP): Policy A - Oxford Open Option A.
DOI: 10.1093/jigpal/jzs051.
[39] Barbara Dunin-Keplicz, Anh Linh Nguyen and Andrzej Szalas. 2011.
Converse-PDL with Regular Inclusion Axioms: A Framework for MAS Logics.
Journal of Applied Non-Classical Logics, 21(1):61–91. Lavoisier.
DOI: 10.3166/JANCL.21.61-91.
[38] Linh Anh Nguyen and Andrzej Szalas. 2011.
ExpTime Tableau Decision Procedures for Regular Grammar Logics with Converse.
Studia Logica: An International Journal for Symbolic Logic, 98(3):387–428. Springer Berlin/Heidelberg.
DOI: 10.1007/s11225-011-9341-3.
[37] Jan Maluszynski and Andrzej Szalas. 2011.
Logical Foundations and Complexity of 4QL, a Query Language with Unrestricted Negation.
Journal of Applied Non-Classical Logics, 21(2):211–232. Lavoisier.
DOI: 10.3166/JANCL.21.211-232.
[36] Anh Linh Nguyen and Andrzej Szalas. 2010.
Tableaux with Global Caching for Checking Satisfiability of a Knowledge Base in the Description Logic SH.
Transactions on Computational Collective Intelligence, 1(1):21–38. Springer. ISBN: 978-3-642-15033-3.
DOI: 10.1007/978-3-642-15034-0_2.
[35] Linh Anh Nguyen and Andrzej Szalas. 2010.
Checking Consistency of an ABox w.r.t. Global Assumptions in PDL.
Fundamenta Informaticae, 102(1):97–113. IOS Press.
DOI: 10.3233/FI-2010-299.
[34] Barbara Dunin-Keplicz, Linh Anh Nguyen and Andrzej Szalas. 2010.
A Framework for Graded Beliefs, Goals and Intentions.
Fundamenta Informaticae, 100(1-4):53–76. IOS Press.
DOI: 10.3233/FI-2010-263.
[33] Barbara Dunin-Keplicz, Linh Anh Nguyen and Andrzej Szalas. 2010.
A Layered Rule-Based Architecture for Approximate Knowledge Fusion.
DOI: 10.2298/CSIS100209015D.
[32] Barbara Dunin-Keplicz, Linh Anh Nguyen and Andrzej Szalas. 2010.
Tractable approximate knowledge fusion using the Horn fragment of serial propositional dynamic logic.
International Journal of Approximate Reasoning, 51(3):346–362. Elsevier.
DOI: 10.1016/j.ijar.2009.11.002.
[31] Dov Gabbay and Andrzej Szalas. 2009.
Annotation Theories over Finite Graphs.
Studia Logica: An International Journal for Symbolic Logic, 93(2-3):147–180. Springer.
DOI: 10.1007/s11225-009-9220-3.
[30] Andrzej Szalas and Dov Gabbay. 2009.
Voting by Eliminating Quantifiers.
Studia Logica: An International Journal for Symbolic Logic, 92(3):365–379. Springer.
DOI: 10.1007/s11225-009-9200-7.
[29] Andrzej Szalas. 2008.
Towards Incorporating Background Theories into Quantifier Elimination.
Journal of applied non-classical logics, 18(2-3):325–340. ├ëditions Herm├Ęs-Lavoisier.
DOI: 10.3166/jancl.18.325-340.
[28] Full text  Patrick Doherty, Witold Lukaszewicz and Andrzej Szalas. 2007.
Communication between agents with heterogeneous perceptual capabilities.
Information Fusion, 8(1):56–69. Elsevier.
DOI: 10.1016/j.inffus.2005.05.006.
[27] Full text  D.M. Gabbay and Andrzej Szalas. 2007.
Second-order quantifier elimination in higher-order contexts with applications to the semantical analysis of conditionals.
Studia Logica: An International Journal for Symbolic Logic, 87(1):37–50. Springer.
DOI: 10.1007/s11225-007-9075-4.
[26] Full text  Patrick Doherty and Andrzej Szalas. 2007.
A correspondence framework between three-valued logics and similarity-based approximate reasoning.
Fundamenta Informaticae, 75(1-4):179–193. IOS Press.
[25] Andrzej Szalas. 2006.
Second-order Reasoning in Description Logics.
Journal of applied non-classical logics, 16(3 - 4):517–530. ├ëditions Herm├Ęs-Lavoisier.
DOI: 10.3166/jancl.16.517-530.
[24] Full text  Patrick Doherty, Martin Magnusson and Andrzej Szalas. 2006.
Approximate Databases: A support tool for approximate reasoning.
Journal of applied non-classical logics, 16(1-2):87–118. ├ëditions Herm├Ęs-Lavoisier.
DOI: 10.3166/jancl.16.87-117.
Note: Special issue on implementation of logics
[23] Full text  Patrick Doherty, M Grabowski, Witold Lukaszewicz and Andrzej Szalas. 2003.
Towards a framework for approximate ontologies.
Fundamenta Informaticae, 57(2-4):147–165. IOS Press.
[22] Full text  Patrick Doherty, Jaroslaw Kachniarz and Andrzej Szalas. 1999.
Meta-queries on deductive databases.
Fundamenta Informaticae, 40(1):17–30. IOS Press.
DOI: 10.3233/FI-1999-40102.
[21] Full text  Patrick Doherty, Witold Lukaszewicz and Andrzej Szalas. 1999.
Declarative PTIME queries for relational databases using quantifier elimination.
Journal of logic and computation (Print), 9(5):737–758. Oxford University Press.
DOI: 10.1093/logcom/9.5.737.
[20] Patrick Doherty, Witold Lukaszewicz and Andrzej Szalas. 1998.
General domain circumscription and its effective reductions.
Fundamenta Informaticae, 36(1):23–55. IOS Press.
DOI: 10.3233/FI-1998-3612.
[19] Full text  Patrick Doherty, Witold Lukaszewicz and Andrzej Szalas. 1997.
Computing circumscription revisited: A reduction algorithm.
Journal of automated reasoning, 18(3):297–336. Kluwer Academic Publishers.
DOI: 10.1023/A:1005722130532.
[18] Andrzej Szalas. 1996.
On Natural Deduction in First-Order Fixpoint Logics.
Fundamenta Informaticae, 26(1):81–94. IOS Press.
DOI: 10.3233/FI-1996-2616.
[17] Full text  Patrick Doherty, Witold Lukaszewicz and Andrzej Szalas. 1996.
A reduction result for circumscribed semi-horn formulas.
Fundamenta Informaticae, 28(3,4):261–272. IOS Press.
DOI: 10.3233/FI-1996-283404.
[16] Andrzej Szalas. 1994.
On an Automated Translation of Modal Proof Rules into Formulas of the Classical Logic.
Journal of Applied Non-Classical Logics, 4(2):119–127. ├ëditions Herm├Ęs-Lavoisier.
[15] Andrzej Szalas. 1993.
On the Correspondence between Modal and Classical Logic: An Automated Approach.
Journal of logic and computation (Print), 3(6):605–620. Oxford University Press.
DOI: 10.1093/logcom/3.6.605.
[14] Andrzej Szalas. 1992.
Axiomatizing Fixpoint Logics.
Information Processing Letters, 41(4):175–180. Elsevier.
DOI: 10.1016/0020-0190(92)90175-U.
[13] Andrzej Szalas. 1991.
On Strictly Arithmetical Completeness in Logics of Programs.
Theoretical Computer Science, 79(2):341–355. Elsevier.
DOI: 10.1016/0304-3975(91)90336-Z.
[12] Uwe Petermann and Andrzej Szalas. 1989.
On Temporal Logic for Distributed Systems and its Application to Processes Communicating by Interrupts.
Fundamenta Informaticae, 12(2):191–204. IOS Press.
[11] Andrzej Szalas. 1988.
Towards the Temporal Approach to Abstract Data Types.
Fundamenta Informaticae, 11(1):49–64. IOS Press.
[10] Andrzej Szalas. 1988.
An Incompleteness Result in Process Algebra.
Information Processing Letters, 29(2):67–70. Elsevier.
DOI: 10.1016/0020-0190(88)90030-0.
[9] Leszek Holenderski and Andrzej Szalas. 1988.
Propositional Description of Finite Cause-Effect Structures.
Information Processing Letters, 27(3):111–117. Elsevier.
DOI: 10.1016/0020-0190(88)90064-6.
[8] Andrzej Szalas and Leszek Holenderski. 1988.
Incompleteness of First-Order Temporal Logic with Until.
Theoretical Computer Science, 57(2-3):317–325. Elsevier.
DOI: 10.1016/0304-3975(88)90045-X.
[7] Andrzej Szalas. 1987.
A Complete Axiomatic Characterization of First-Order Temporal Logic of Linear Time.
Theoretical Computer Science, 54(2-3):199–214. Elsevier.
DOI: 10.1016/0304-3975(87)90129-0.
[6] Andrzej Szalas. 1987.
Arithmetical Axiomatization of First-Order Temporal Logic.
Information Processing Letters, 26(3):111–116. Elsevier.
DOI: 10.1016/0020-0190(87)90047-0.
[5] Andrzej Szalas. 1986.
Concerning the Semantic Consequence Relation in First-Order Temporal Logic.
Theoretical Computer Science, 47(3):329–334. Elsevier.
DOI: 10.1016/0304-3975(86)90157-X.
[4] Uwe Petermann and Andrzej Szalas. 1985.
A Note on PCI: Distributed Processes Communicating by Interrupts.
SIGPLAN notices, 20(3):37–46. ACM Press.
DOI: 10.1145/382284.382390.
[3] Andrzej Szalas and Danuta Szczepaska. 1985.
Exception Handling in Parallel Computations.
SIGPLAN notices, 20(10):95–104. ACM Press.
DOI: 10.1145/382286.382385.
[2] Andrzej Szalas. 1984.
On an Application of Algorithmic Theory of Stacks.
Fundamenta Informaticae, 7(3):378–388. IOS Press.
[1] Andrzej Szalas. 1981.
Algorithmic Logic with Recursive Functions.
Fundamenta Informaticae, 4(4):975–995. IOS Press.