
pelabPeter Fritzson1

OpenModelica Compiler OpenModelica Compiler
(OMC) Overview(OMC) Overview

Peter Fritzson, Adrian Pop, Peter AronssonPeter Fritzson, Adrian Pop, Peter Aronsson

OpenModelica Course at INRIA, 2006 06 08OpenModelica Course at INRIA, 2006 06 08

pelabPeter Fritzson2

OpenModelica Environment ArchitectureOpenModelica Environment Architecture

Modelica
Compiler

Interactive
session handler

Execution

Graphical Model
Editor/Browser

Textual
Model Editor

Modelica
Debugger

Emacs
Editor/Browser

DrModelica
OMNoteBook
Model Editor

Eclipse Plugin
Editor/Browser

pelabPeter Fritzson3

OpenModelica Compiler/InterpreterOpenModelica Compiler/Interpreter

• New version (1.4.0) released May 15, 2006
• Currently implemented in 100 000 lines of

MetaModelica

• Includes code generation, BLT-transformation,
index reduction, connection to DASSL, etc.

• Most of the Modelica language including classes,
functions, inheritance, modifications, import, etc.

• Hybrid/Discrete event support

pelabPeter Fritzson4

Invoking OMC Invoking OMC –– two Methodstwo Methods

• Calling OMC from the command line

• Calling OMC as a server via the Corba interface

pelabPeter Fritzson5

Command Line Invokation of OMCCommand Line Invokation of OMC

• omc file.mo
• Return flat Modelica by code flattening of the class in the file file.mo

which is a the top of the instance hierarchy (toplevel class)

• omc file.mof
• Put the flat Modelica produced by flattening of the toplevel class within

file.mo in the file named file.mof.

• omc file.mos
• Run the Modelica script file called file.mos.

pelabPeter Fritzson6

Some General OMC FlagsSome General OMC Flags

• omc +s file.mo/.mof
• Generate simulation code for the model last in file.mo or file.mof. The following files

are generated: modelname.cpp, modelname.h, modelname_init.txt,
modelname.makefile.

• omc +q
• Quietly run the compiler, no output to stdout.

• omc +d=blt
• Perform BLT transformation of the equations.

• omc +d=interactive
• Run the compiler in interactive mode with Socket communication. This functionality is

depreciated and is replaced by the newer Corba communication module, but still
useful in some cases for debugging communication. This flag only works under Linux
and Cygwin.

• omc +d=interactiveCorba
• Run the compiler in interactive mode with Corba communication. This is the standard

communication that is used for the interactive mode.

pelabPeter Fritzson7

OpenModelica ClientOpenModelica Client--Server ArchitectureServer Architecture

Parse

Client: Eclipse
Plugin MDT

Corba

Client: OMShell
Interactive

Session Handler

OMC Server
Including Compiler,

Interpreter, etc.

Interactive

SCode

Inst

Ceval
plot

system

etc.

Untyped API

Typed Checked Command API

Client: Graphic
Model Editor

pelabPeter Fritzson8

OMC Corba ClientOMC Corba Client--Server APIServer API

• Simple text-based (string) communication in
Modelica Syntax

• API supporting model structure query and
update

Example Calls:
Calls fulfill the normal Modelica function call syntax.:

saveModel("MyResistorFile.mo",MyResistor)

will save the model MyResistor into the file “MyResistorFile.mo”.

For creating new models it is most practical to send a model, e.g.:

model Foo end Foo;
or, e.g.,
connector Port end Port;

pelabPeter Fritzson9

Some of the Corba API functionsSome of the Corba API functions

Returns the type name of the nth inherited class of a class. The first class has number 1.getNthInheritedClass(A1<cref>,

Returns the number (as a string) of inherited classes of a class.getInheritanceCount(A1<cref>)

Returns the modification of the nth component (A2) where the first has no 1) of class/component
A1.

getNthComponentModification(
A1<cref>,A2<int>)??

Returns the flattened annotation record of the nth component (A2) (the first is has no 1) within
class/component A1. Consists of a comma separated string of 15 values, see Annotations in
Section 2.4.4 below, e.g “false,10,30,...”

getNthComponentAnnotation(
A1<cref>,A2<int>)

Returns the belonging class, component name and type name of the nth component of a class, e.g.
“A.B.C,R2,Resistor”, where the first component is numbered 1.

getNthComponent(A1<cref>,A2<int>)

Returns the number (as a string) of components in a class, e.g return “2” if there are 2 components.getComponentCount(A1<cref>)

Returns a list {...} of all annotations of all components in A1, in the same order as the
components, one annotation per component.

getComponentAnnotations(A1<cref>)

Returns a list of the component declarations within class A1:
{{Atype,varidA,”commentA”},{Btype,varidB,”commentB”}, {...}}

getComponents(A1<cref>)

Adds annotation given by A2(in the form annotate= classmod(...)) to the model definition
referenced by A1. Should be used to add Icon Diagram and Documentation annotations.

addClassAnnotation(A1<cref>,
annotate=<expr>)

Updates an already existing component with name (A1), type (A2), and class (A3) as arguments.
Optional annotations are given with the named argument annotate.

updateComponent(A1<ident>,
A2<cref>,
A3<cref>,annotate=<expr>)

Deletes a component (A1) within a class (A2).deleteComponent(A1<ident>,
A2<cref>)

Adds a component with name (A1), type (A2), and class (A3) as arguments. Optional annotations
are given with the named argument annotate.

addComponent(A1<ident>,A2<cref>,
A3<cref>,annotate=<expr>)

Deletes the class from the symbol table.deleteClass(A1<cref>)

Loads the model (A1) by looking up the correct file to load in $MODELICAPATH. Loads all models
in that file into the symbol table.

loadModel(A1<cref>)

Loads all models in the file. Also in typed API. Returns list of names of top level classes in the
loaded files.

loadFile(A1<string>)

Saves the model (A2) in a file given by a string (A1). This call is also in typed API.saveModel(A1<string>,A2<cref>)

pelabPeter Fritzson10

Detailed Architecture of OMC Detailed Architecture of OMC
(OpenModelica Compiler)(OpenModelica Compiler)

SCode
/explode

Lookup

Parse DAELowInst

Ceval

Static

Absyn SCode
DAE: Equations

Algorithms

(Env, name)
SCode.Class

Exp.Exp

Values.Value

SCode.Exp
(Exp.Exp,

 Types.Type)

(Env, name)

Mod Connect

Derive

CodeGen

VarTransform

ClassInf

Prefix

SimCodeGen

DAE: Functions

Absyn

Data Type
Modules:

SCode

Types

Algorithm

DAE

Exp

DAEEXT

Dump

Utility
Modules:

Debug

ModUtil

SystemPrint RTOpts

Builtin

DAELow.DAELow

C code

DAE,
substlist

DAE
Exp.Exp Exp.Exp

ClassInf.Event

Exp.Ident Prefix.Prefix

Types.Mod SCode.Mod Exp.Componentref DAE

ClassInf.State

.mo

Main

Util

ClassLoader

DumpDAE
Flat Modelica

pelabPeter Fritzson11

Three Kinds of Modules in OMCThree Kinds of Modules in OMC

• Function modules that perform a specified
function, e.g. Lookup, code instantiation, etc.

• Data type modules that contain declarations of
certain data types, e.g. Absyn that declares the
abstract syntax.

• Utility modules that contain certain utility
functions that can be called from any module,
e.g. the Util module with list processing funtions.

• Note: Some modules perform more than one
kind of function

pelabPeter Fritzson12

Approximate DescriptionApproximate Description
• The Main program calls a number of modules, including the parser (Parse),

SCode, etc.
• The parser generates abstract syntax (Absyn) which is converted to the

simplified (SCode) intermediate form.
• The model flattering module (Inst) is the most complex module, and calls

many other modules. It calls Lookup to find a name in an environment,
calls Prefix for analyzing prefixes in qualified variable designators
(components), calls Mod for modifier analysis and Connect for connect
equation analys. It also generates the DAE equation representation which is
simplified by DAELow and fed to the SimCodeGen and CodeGen code
generators

• The Ceval module performs compile-time or interactive expression
evaluation and returns values. The Static module performs static semantics
and type checking.

• The DAELow module performs BLT sorting and index reduction. The DAE
module internally uses Exp.Exp, Types.Type and Algorithm.Algorithm; the
SCode module internally uses Absyn

• The Vartransform module called from DAELow performs variable
substitution during the symbolic transformation phase (BLT and index
reduction).

pelabPeter Fritzson13

Short Overview of OMC Modules (AShort Overview of OMC Modules (A--D)D)

• Absyn – Abstract Syntax
• Algorithm – Data Types and Functions for Algorithm Sections
• Builtin – Builtin Types and Variables
• Ceval – Evaluation/interpretation of Expressions.
• ClassInf – Inference and check of class restrictions for

restricted classes.
• ClassLoader – Loading of Classes from $MODELICAPATH
• Codegen – Generate C Code from functions in DAE

representation.
• Connect – Connection Set Management
• Corba – Modelica Compiler Corba Communication Module

pelabPeter Fritzson14

Short Overview of OMC Modules (DShort Overview of OMC Modules (D--G)G)

• DAE – DAE Equation Management and Output
• DAEEXT – External Utility Functions for DAE Management
• DAELow – Lower Level DAE Using Sparse Matrises for BLT
• Debug – Trace Printing Used for Debugging
• Derive – Differentiation of Equations from DAELow
• Dump – Abstract Syntax Unparsing/Printing
• DumpGraphviz – Dump Info for Graph visualization of AST
• Env – Environment Management
• Exp – Typed Expressions after Static Analysis /*updated)
• Graphviz – Graph Visualization from Textual Representation

pelabPeter Fritzson15

Short Overview of OMC Modules (IShort Overview of OMC Modules (I--P)P)

• Inst – Flattening of Modelica Models
• Interactive – Model management and expression evaluation

Keeps interactive symbol tables. Contains High performance
API, etc.

• Lookup – Lookup of Classes, Variables, etc.
• Main – The Main Program. Calls Interactive, the Parser, the

Compiler, etc.
• Mod – Modification Handling
• ModSim – /*Depreciated, not used). Previously

communication for Simulation, Plotting, etc.
• ModUtil – Modelica Related Utility Functions
• Parse – Parse Modelica or Commands into Abstract Syntax
• Prefix – Handling Prefixes in Variable Names
• Print – Buffered Printing to Files and Error Message Printing

pelabPeter Fritzson16

Short Overview of OMC Modules (RShort Overview of OMC Modules (R--V)V)
• SCode – Simple Lower Level Intermediate Code Representation.
• SimCodegen – Generate simulation code for solver from equations and

algorithm sections in DAE.
• Socket – (Partly Depreciated) OpenModelica Socket Communication
• Static – Static Semantic Analysis of Expressions
• System – System Calls and Utility Functions
• TaskGraph – Building Task Graphs from Expressions and Systems of

Equations. Optional module.
• TaskGraphExt – External Representation of Task Graphs. Optional

module.
• Types – Representation of Types and Type System Info
• Util – General Utility Functions
• Values – Representation of Evaluated Expression Values
• VarTransform – Binary Tree Representation of Variable Transformations

