Current Status of the DAE Mode for Solving Large-Scale Simulation Models

Recent Developments

Willi Braun Bernhard Bachmann

University of Applied Sciences Bielefeld Bielefeld, Germany

February 5, 2018

Motivation

DAE mode is quite useful for large models.

Network	Gen's	Lines	Trafo's	Equations
RETE_C	74	369	583	56386
RETE_E	267	1458	1202	157022
RETE_G	407	6833	2824	593886

Network	Rel. tol.	No. of steps	Sim. time [s]
RETE_C	10^{-6}	146	3.18
RETE_E	10^{-6}	364	15.22
RETE_G	10^{-6}	615	123.19

Motivation

DAE mode is quite useful for large models.

Benchmark	NE	NS	OD	OS	DA	DD
SimpleAdvection_N_3200	6402	3199	20.81	4.851	3.087	2.561
SimpleAdvection_N_6400	12802	6399	104.9	13.27	6.107	6.781
SimpleAdvection_N_12800	25602	12799	642.2	41.15	19.17	18.38
SteamPipe_N_640	8966	1280	169.2	148.4	158.7	139.3
SteamPipe_N_1280	17926	2560	395.8	316.8	357.8	302.9
SteamPipe_N_2560	35846	5120	1165	651.0	801.9	679.9

Motivation

DAE mode is quite useful for large models.

Benchmark	NE	NS	OD	OS	DA	DD
SimpleAdvection_N_3200	6402	3199	20.81	4.851	3.087	2.561
SimpleAdvection_N_6400	12802	6399	104.9	13.27	6.107	6.781
$SimpleAdvection_N_12800$	25602	12799	642.2	41.15	19.17	18.38
SteamPipe_N_640	8966	1280	169.2	148.4	158.7	139.3
SteamPipe_N_1280	17926	2560	395.8	316.8	357.8	302.9
SteamPipe_N_2560	35846	5120	1165	651.0	801.9	679.9

These results have been presented in Prag, where the focus has been on simulation time.

Next step is to enhance the compiling process.

Outline

- Outline
 - ► Implementation Overview
 - Deal with Events
 - Preliminary Results

Outline

- Outline
 - ► Implementation Overview
 - ► Deal with Events
 - Preliminary Results

First Approach

Frontend

Backend

Code-Generation

Simulation

First Approach

Frontend

Pre-Optimization

Causalization

Post-Optimization

Code-Generation

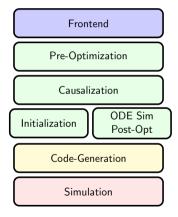
Simulation

First Approach

Frontend

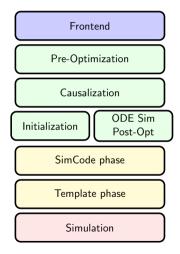
Pre-Optimization

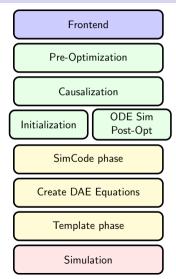
Code-Generation


Simulation

Ideal DAE mode

- Use the system generated by the Frontend and push it to the code generation.
- Skip the causelization process and other time consuming tasks in the Backend
- This should reduce the compilation time.


First Approach


First Approach

First Approach

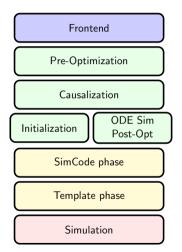
Generate residual equations

- Generation has made based on sorted equations
- The sorting allows to select only dynamic part
- Causelized system is used for the event handling

First Approach

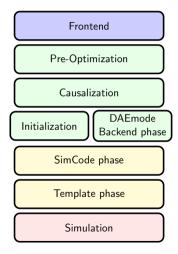
Frontend Pre-Optimization Causalization ODE Sim Initialization Post-Opt SimCode phase Create DAE Equations Template phase Simulation

Generate residual equations

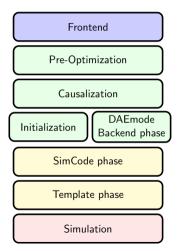

- Generation has made based on sorted equations
- The sorting allows to select only dynamic part
- Causelized system is used for the event handling

Issues

- Additional compilation work
- Needs still Backend modules (e.g. sparsity detection)


New Approach

New Approach



New DAE mode

- Added appropriate Backend modules
- Resolve all equation by adding residual variables
- Introducing auxiliary variables for e.g. CSE variables

New Approach

New DAE mode

- Added appropriate Backend modules
- Resolve all equation by adding residual variables
- Introducing auxiliary variables for e.g.
 CSE variables

How to proceed with events and the discrete variables?

Event handing in a nutshell

$$0 = F(\underline{\dot{x}}(t), \underline{x}(t), \underline{y}(t), \underline{u}(t), \underline{q}(t_e), \underline{q_{pre}}(t_e), \underline{c}(t_e), \underline{p}, t)$$

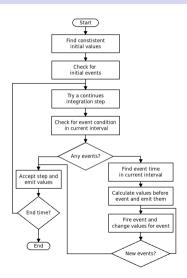
$$\downarrow \text{ matching and sorting algorithms transform to}$$

$$\underline{z} = \begin{pmatrix} \underline{\dot{x}}(t) \\ \underline{y}(t) \\ \underline{q}(t_e) \end{pmatrix} = \begin{pmatrix} \underline{f}(\underline{x}(t), \underline{u}(t), \underline{q_{pre}}(t_e), \underline{c}(t_e), \underline{p}, t) \\ \underline{g}(\underline{x}(t), \underline{u}(t), \underline{q_{pre}}(t_e), \underline{c}(t_e), \underline{p}, t) \\ \underline{h}(\underline{x}(t), \underline{u}(t), \underline{q_{pre}}(t_e), \underline{c}(t_e), \underline{p}, t) \end{pmatrix}$$

Event handing in a nutshell

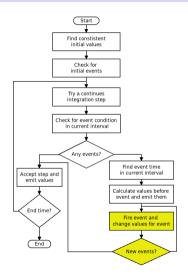
$$0 = F(\underline{\dot{x}}(t), \underline{x}(t), \underline{y}(t), \underline{u}(t), \underline{q}(t_e), \underline{q}_{pre}(t_e), \underline{c}(t_e), \underline{p}, t)$$

 \downarrow matching and sorting algorithms transform to

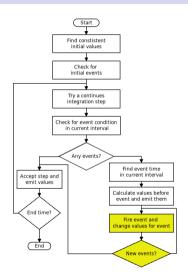

$$\underline{z} = \begin{pmatrix} \underline{\dot{x}}(t) \\ \underline{y}(t) \\ \underline{q}(t_e) \end{pmatrix} = \begin{pmatrix} \underline{f}(\underline{x}(t), \underline{u}(t), \underline{q_{pre}}(t_e), \underline{c}(t_e), \underline{p}, t) \\ \underline{g}(\underline{x}(t), \underline{u}(t), \underline{q_{pre}}(t_e), \underline{c}(t_e), \underline{p}, t) \\ \underline{h}(\underline{x}(t), \underline{u}(t), \underline{q_{pre}}(t_e), \underline{c}(t_e), \underline{p}, t) \end{pmatrix}$$

We get four blocks:

continuous $\underline{f} \to ({}_{\mathrm{functionODE}})$ to evaluate derivative states $\underline{g} \to ({}_{\mathrm{functionAlgebraics}})$ to evaluate algebraic variables discrete $\underline{h} \to \mathrm{discrete}$ algebraic variables included in z all $z \to ({}_{\mathrm{functionDAE}})$ all three blocks together


Event handing in a nutshell

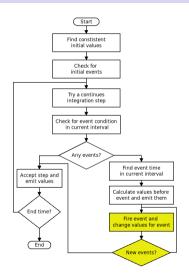
Event handing in a nutshell


ODE-Mode:

• evaluate $\underline{z} \to \mathsf{with}$ (functionDAE).

$$\underline{z} = \left(\begin{array}{c} \underline{\dot{x}}(t_e) \\ \underline{y}(t_e) \\ \underline{q}(t_e) \end{array}\right) = \left(\begin{array}{c} \underline{f}(\underline{x}(t_e), \underline{q_{pre}}(t_e), \underline{c}(t_e), t) \\ \underline{g}(\underline{x}(t_e), \underline{q_{pre}}(t_e), \underline{c}(t_e), t) \\ \underline{h}(\underline{x}(t_e), \underline{q_{pre}}(t_e), \underline{c}(t_e), t) \end{array}\right)$$

Event handing in a nutshell


DAE-Mode: CASE *h* is empty

- ullet Use $z_{res} o$ (evaluateResiduals) to solve for $\underline{x}(t_e), \underline{\dot{x}}(t_e), \underline{y}(t_e)$
- e.g. with IDACalcIC.

$$\underline{z_{res}} = \underline{k}(\underline{x}(t_e), \underline{\dot{x}}(t_e), y(t_e), \underline{c}(t_e), t)$$

Event handing in a nutshell

DAE-Mode: CASE h non empty, but without algebraic loops

- Causelize only h
- Evaluate h together with $z_{res} \rightarrow$ (evaluateResiduals).
- Solve for $\underline{x}(t_e), \underline{\dot{x}}(t_e), y(t_e)$ as in the case above.

$$\left(\begin{array}{c} \underline{q}(t_e) \\ \underline{z_{res}} \end{array} \right) = \left(\begin{array}{c} \underline{h}(\underline{x}(t_e), \underline{\dot{x}}(t_e), \underline{y}(t_e), \underline{q_{pre}}(t_e), \underline{c}(t_e), t) \\ \underline{k}(\underline{x}(t_e), \underline{\dot{x}}(t_e), \underline{y}(t_e), \underline{q_{pre}}(t_e), \underline{c}(t_e), t) \end{array} \right)$$

Preliminary Results

CascadedFirstOrder

Stage: new DAE mode:

	time in s				
N eqns	6400	12800	25600		
Backend	3.316	7.359	15.31		
SimCode	0.882	1.728	3.65		
Template	1.807	2.709	5.391		
Compile	9.427	15.88	28.57		
Simulate	2.815	10.69	43.64		

old DAE mode:

	time in s						
6400	12800	25600					
3.142	6.773	14.78					
2.15	3.99	7.972					
1.843	3.685	7.361					
12.5	21.54	39.92					
2.961	10.89	43.67					

ODE mode:

time in s						
6400	12800	25600				
3.117	7.078	13.97				
0.963	1.516	3.394				
1.748	2.627	5.194				
10.18	17.23	31.04				
4.893	17.31	80.17				

Preliminary Results

Distribution System AC. Scaled Experiments. Distribution System Linear

Stage: new DAE mode: old DAE mode: ODE mode:

N eqns
Backend
SimCode
Template
Compile
Simulate

time in s							
49016	99776	195232					
14.17	33.18	71					
3.022	6.47	20.6					
5.22	9.216	17					
14.88	30.48	55.74					
Х	X	Х					

	time in s	5
49016	99776	195232
19.95	59.49	225.7
5.827	14.76	52.01
7.366	13.24	34.92
20.33	39.81	72.3
1.287	2.939	5.602

time in s						
49016	99776	195232				
18.02	56.6	217.5				
3.524	9.697	42.22				
5.552	9.427	26.84				
14.84	28.43	55.26				
39.04	155.6	588.7				

Preliminary Results

OneDHeatTransferTT FD

Stage: new DAE mode:

	time in s			
N eqns	320	640	1280	
Backend	0.391	0.984	2.5	
SimCode	0.064	0.147	0.32	
Template	0.117	0.268	0.48	
Compile	2.755	4.012	4.69	
Simulate	0.056	0.068	0.13	

old DAE mode:

time in s		
320	640	1280
0.356	0.836	2.049
0.253	0.416	1.292
0.154	0.486	0.740
3.593	5.277	7.277
0.089	0.355	0.449

ODE mode:

time in s		
320	640	1280
0.362	0.847	1.635
0.067	0.155	0.390
0.153	0.224	0.565
3.02	3.81	5.372
0.211	0.497	0.817

Plans and Outlook

- Add symbolic Jacobian support
- Tweak the compile performance
- Further development of event handling

Plans and Outlook

Questions

- Add symbolic Jacobian support
- Tweak the compile performance
- Further development of event handling

