
Lutz Berger
Bernhard Thiele

Model Driven Design of a Test Automation
Software using OpenModelica

Abstract

• Model Driven Design (MDD): Architecture design as model which is
used for the verification of requirements
• Design of test automation software

• Simulation of design in simulation environment

• Find faults in early stage => time to market, costs

Introduction

• Case study on test automation software “Carpe Noctem” (CN)
• Some Requirements

• Test-sets shall be queued when starting on same Machine

• Test-sets shall start not before a configurable start time

• Test-sets shall stop when exceeding a configurable stop time

• Test-sets shall restart if a system error is detected if configured

• Each test shall stop with a configurable time-out

• Each test shall repeat until successful (configurable)

• Each test shall repeat not more times than a configurable parameter

• Realization with Hierarchical State Machine

Introduction

• Modelica states

• Embedded in environment model

• Contribution to state-machine implementation in OpenModelica

• Final successful running on v1.13.0-dev-122-gfba8150

Test Automation of Flight Simulator

Modelling and Testing Environment (MaTE)

User Work Area (UWA)

Test System
(TS)

Test automation Carpe Noctem (CN)

Modelling
Environment

(ME)
Simulation

• UWA’s run on
• Different Machines

• Each Machine is dedicated for special tests of software parts

• The TS communicates to the UWA via sockets. It executes test scripts written
in a domain specific language

• Each UWA contains several programs spawned by the ME

• Two instances of UWA’s should not run on the same machine at the
same time

• ME schedules the programs of the UWA, provides API for programs,
manages transactions on the simulated avionics bus.

Linux Server 1 Linux Server 2 Linux Server 3

Window
PC 1,2 or 3

TS

Window
PC 1,2 or 3

TS

Window
PC 1,2 or 3

TS

CN UWA ME CN UWA ME CN UWA ME

Deployment

Cron Job Cron Job Cron Job

cron job starts CN’s at
desired start time and

stops them at stop
time when not finished

CN Starts
UWA and TS

(via rpc)

User configures
Test Sets and

cron Job entries

User edits testscripts
 Modelica Simulation focuses on this

Linux Server

Window
PC 1

Window
PC 2

TS TS

CN CN

No parallel execution of CN
i.e. MaTE , only sequential
is allowed

• CN (Linux server) starts UWA(Linux server) and TS(Windows PC)

• UWA start ME and Simulation with rehosted1 SW from aircraft and
simulation software

• CN connects via remote procedure call (rpc) the UWA one TS

• CN starts all tests in a test set via rpc on that TS and collects the
results

1rehosted means: code from aircraft transferred to and adopted for the
simulator

Model Design

• CN designed with Modelica’s state machines

• UWA and TestSystem start simulated with fixed delays

• Test runs simulated with fixed delay of 10 s

• Several instances of CN modelled with connectors

Software Design

Handle Scripts

Handle Scripts

• Initial State: FetchNextTestScript

• Tick/TimeInState not available in sub states => use counters
• stepEnterCheckResult, stepFetchNextTestScript, timecount

• Entry/Exit Action not available in Modelica => extra Enter State e.g.
stepEnterCheckResult with one iteration.

• Rough state flow description:
FetchNextTestScript=>RunTestScript=>CheckResult=>RunTestScript or
FetchNextTestScript

Remark

• scriptTime: time of simulated script execution

• finished: in Modelica code finished = count>=
set.numSuccess[index] and

set.returnOnSuccess[index] or timeOut or

repetition or set.scriptError[index];

Environment Simulation

• Challenge: only one instance can run at the same time on one
machine => Mechanism has to be implemented

• Solution: Producer-Consumer Problem

Producer Consumer Problem

Partial Class without initial state

Derived class with initial state producing => Producer
Derived class with initial state block_ => Consumer

Producer

Consumer

Only one instance can produce
 at the same time => pattern realized with semaphores

Modeling Start and Stop Parameter

Realised with Boolean expressions
 “attemptStart” and “InitiateStop”

Partial Class ScriptScheduler

Simulation Constants

• Simulation constants for test purpose in “TestSet.mo” parsed in SM
• Integer numSuccess[numTestCases]: After which repetition the test returns

SUCCESS

• Integer numMaTEError[numTestCases]: After which repetition a MaTE Error is
detected

• Boolean scriptError[numTestCases]: Which test has a script error

Test Cases

1. success after 3rd repetition of test, returnOnSuccess enabled

2. success after 1st repetition of test and timeout after 5 s

3. success after 1st repetition but run 6 times, returnOnSuccess
disabled

4. Script error

5. what happens if none is configured? – infinite loop, ensure
repetitionCount min 1!

6. application error after first run

Simulation Results

Test case 5: test repeats all the time till simulation end
 => at least repetition count 1

Simulation time Index (Test case) Description

2 - 42 s 1 First test is repeated for 3 times

43 - 50 s 2 Time out a.er 5 s, 2nd test is aborted

51 - 130 s 3 Repeat 3rd test 6 times

130 - 144 s 4 script error, test runs only one time (remark: real test
can’t run, simplification in simulation)

145 - 159 s 5 repetitionCount must be 1,
otherwise endless repetition

160 - 171 s 6 MaTE error simulated, all test will rerun
as soon as resource is available

175 - 520 s 1 till 6 repetition with same test set
in scriptLastScheduler1/2

520 - 600 s 1 till 3 stopTime is 600, scheduler stops

600 - 700 s 1 till 3 stopTime is 700, scheduler stops

Test Results Successful

• 3 Instances of CN with start time of 2 s:
• scriptSchedulerFirst1, scriptSchedulerLast1 and scriptSchedulerLast2.

Although they start all at the same time, they are queued. Since the time of
script execution is not relevant, it is configured constant as 10 s for each test.

• At ca. 520 s the scriptSchedulerFirst1 starts again because of a detected
system error, but stops at the configured stop time of 600s.

• scriptSchedulerLast1 starts and stops at its configured stop time of 700 s.

Conclusions

• Problems found at an early stage
• Mechanism for queueing applications with semaphore needed
• repetitionCount must be at least 1.
• => Detecting errors at an early stage saves cost and time in development cycle

• Vision: Modelica based Model Driven Development
• The Modelica design model becomes the actual “source-code” of the

application
• E.g., Real-time synchronization and non-Modelica based application code

realized using external objects and C-function code like in the Modelica
Device Drivers library

• No manual coding of state machines
• Simplification of maintenance and development cycle

