Semantic Web and Natural Semantics

Adrian Pop IDA/PELAB adrpo@ida.liu.se

Outline

- Semantic Web
- Natural Semantics
- Relational Meta-Language (RML)
- Semantic Web Layers
- Tools
 - Ontology Checkers
 - Checking Semantics of Websites
- Conclusions

Semantic Web

- The information in the current web:
 - has meaning for human only
 - is not machine processable
- Semantic Web brings:
 - semi-structured information
 - means to add structure (semantics/constrains) on data, with the use of:
 - languages: XML, XMLSchema, RDF, RDFS, DAML+OIL, OWL

Natural Semantics

- Based on
 - Gordon Plotkin's Structural Operational Semantics (SOS)
 - Gentzen's Sequent Calculus for Natural Deduction.
- "Natural Semantics" (NS)
 - term by Gilles Kahn
 - formalism for specifications of:
 - type systems
 - programming languages

Natural Semantics - Syntax

- Hi are hypotheses (environments with bindings)
- Ti are terms (pieces of abstract syntax)
- Ri are results (types, run-time values, changed environments)
- Hj |- Tj : Rj are sequents
- Premises or preconditions are above the line
- Conclusion is below the line
- Condition on the side if exists must be satisfied

Natural Semantics vs RML

RML has the same visual syntax as NS

Natural Semantics vs RML

 rules and propositions are grouped into relations

```
relation negate: bool => bool =
  axiom negate true => false
  axiom negate false => true
end
```

axioms are rules with no premises

RML datatypes, types, tuples

datatype declaration

type declaration (aliases)

```
type Constant = int
type Identifier = string
```

tuples declaration

```
type Point = int * int
type Bag = string * int * Exp
```

RML example: the Exp language

Abstract syntax

RML example: the Exp language

Relation eval

```
relation eval: Exp => int =
 axiom eval(INTconst(ival)) => ival
 rule eval(e1) \Rightarrow v1 & eval(e2) \Rightarrow v2 & int add(v1,v2) \Rightarrow v3
       eval (PLUSop(e1,e2)) => v3
 rule eval(e1) \Rightarrow v1 & eval(e2) \Rightarrow v2 & int sub(v1,v2) \Rightarrow v3
       ______
       eval (SUBop(e1,e2)) \Rightarrow v3
 rule eval(e1) \Rightarrow v1 & eval(e2) \Rightarrow v2 & int mul(v1,v2) \Rightarrow v3
       eval (MULop(e1,e2)) => v3
 rule eval(e1) \Rightarrow v1 & eval(e2) \Rightarrow v2 & int div(v1,v2) \Rightarrow v3
       eval (DIVop(e1,e2)) => v3
 rule eval(e) \Rightarrow v1 & int neg(v1) \Rightarrow v2
       eval (NEGop(e)) => v2
end
```

Form alism Generator tool

Compiler phase Program representation RML overview

Regular Lex expressions

BNF grammar Yacc

Natural semantics rm 12c, in RM L

Optimizer
specification Optimix
(or rm 12c)

Instruction set
description BEC

RML Tools for Semantic Web Layer

Ontology Checkers

DAML+OIL Checkers Ontology translate RML Specification generate Ontology DAML+OIL Checker file (AST) report errors

Ontology Checkers - directions & problems

Directions

- building the DAML2RML translator
 - finding a mapping between DAML and RML can be problematic

Problems

- RML is not user friendly
- The internal RML library is not very powerful
- An RML debugger exists but has to be improved

Related Work - Checking Semantics of Websites

- Thierry Despeyroux Brigitte Trousse
- http://www-rocq.inria.fr/~tdespeyr/papers/riao2000-2
- Applications of NS to Markup Language Based Documents
 - specifying the semantics of new XML languages with Natural Semantics
 - translation from DTD to a form of Abstract Syntax Tree
- Maintaining of Web Sites Examples
 - Specifying a Thematic Directory
 - Specifying the Coherence of an Institutional Site

Future Work

- Applying RML to check ontologies
- RML vs RuleML (differences & similarities)

Conclusions

- Natural Semantics is a powerful formalism to used to specify semantics of programming languages
- RML (Relational Meta-Language) can generate executabile specifications
- Building a paralel between programming languages and Semantic Web languages one could find places where RML can prove useful.