
Integrated Model-Driven Development Environments
for

Equation-Based Object-Oriented Languages

Adrian Pop
Programming Environment Laboratory
Department of Computer and Information Science
Linköping University

2008-06-05

2

Outline

Introduction

Equation-Based Object-Oriented Languages

The MetaModelica Language
Idea, Language constructs, Compiler Prototype, OpenModelica Bootstrapping

Debugging of Equation-Based Object-Oriented Languages
Debugging of EOO Meta-Programs (Late vs. Early instrumentation)
Runtime debugging

Integrated Environments for Equation-Based Object-Oriented Languages

ModelicaML – A UML/SysML profile for Modelica

Conclusions and Future Work

Thesis Contributions

3

Thesis Motivation

Current state-of-the art EOO languages are supported
by tools that have fixed features and are hard to extend

The existing tools do not satisfy different user requirements
Management of models: creation, query, manipulation, composition.

Query of model equations for: optimization purposes, parallelization,
model checking, simulation with different solvers, etc.

Model configuration for simulation purposes

Simulation features: running a simulation and displaying a result,
running more simulations in parallel, possibility to handle simulation
failures and continue the simulation on a different path, possibility to
generate only specific data within a simulation, possibility to
manipulate simulation data for export to another tool.

Model transformation and refactoring: export to a different tool,
improve the current model or library but retain the semantics, model
composition and invasive model composition.

4

Research Questions

Can we deliver a new language that allows people to build their own
solution to their problems without having to go via tool vendors?

What is expected from such a language?

What properties should the language have based on the requirements
for it? This includes language primitives, type system, semantics, etc.

Can such a language combined with a general tool be better than a
special-purpose tool?

What are the steps to design and develop such a language?

What methods and tools should support debugging of the new
language?

How can we construct advanced interactive development
environments that support such a language?

5

Outline

Introduction

Equation-Based Object-Oriented Languages

The MetaModelica Language
Idea, Language constructs, Compiler Prototype, OpenModelica Bootstrapping

Debugging of Equation-Based Object-Oriented Languages
Debugging of EOO Meta-Programs (Late vs. Early instrumentation)
Runtime debugging

Integrated Environments for Equation-Based Object-Oriented Languages

ModelicaML – A UML/SysML profile for Modelica

Conclusions and Future Work

Thesis Contributions

6

Examples of Complex Systems

Robotics
Automotive
Aircrafts
Satellites
Biomechanics
Power plants
Hardware-in-the-
loop,
real-time
simulation

7

Stored Knowledge

Model knowledge is stored in books and human
minds which computers cannot access

“The change of motion is proportional
to the motive force impressed “
– Newton

8

The Form – Equations

Equations were used in the third millennium B.C.
Equality sign was introduced by Robert Recorde in 1557

Newton still wrote text (Principia, vol. 1, 1686)
“The change of motion is proportional to the motive force impressed ”

CSSL (1967) introduced a special form of “equation”:
variable = expression
v = INTEG(F)/m

Programming languages usually do not allow equations!

9

Modelica

Declarative language
Equations and mathematical functions allow acausal modeling,
high level specification, increased correctness

Multi-domain modeling
Combine electrical, mechanical, thermodynamic, hydraulic,
biological, control, event, real-time, etc...

Everything is a class
Strongly typed object-oriented language with a general class
concept, Java & Matlab like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, nonproprietary
Efficiency comparable to C; advanced equation compilation, e.g.
300 000 equations

10

What is acausal modeling/design?

Why does it increase reuse?
The acausality makes Modelica library classes
more reusable than traditional classes
containing assignment statements where the
input-output causality is fixed.

Example: a resistor equation:
R*i = v;

can be used in three ways:
i := v/R;
v := R*i;
R := v/i;

Modelica Acausal Modeling

11

Modelica - Reusable Class Libraries

Info
R= C= L=

G

A
C=

DC=

V
s Is

S

D T

-
+

Op
V i

E

 : 1

Info
shaft3DS=

S
shaft3D= shaftS=

S

shaft=

gear1=

gear2=

planetary=
diff=

sun=

planet=
ring=

bearing fixTooth

S
moveS move

torque

c= d=

fric=

fricTab clutch=
converter

r

w a t
fixedBase

S
state

Info
inertial

bar= body= bodyBar=

cylBody=bodyShape=

revS=
S

prismS=
S

screw S=

S
cylS=

S

univS

S
planarS=

S

sphereS

S

freeS

S
rev= prism=

screw =

cyl= univ planar= sphere
free

C

barC=

barC2=
x

y

C

sphereC c= d= cSer=

force

torque

lineForce=

lineTorque=

sensor

s sd

lineSensor

Library

advanced

Library

drive

Library

translation

12

inertial
x

y

axis1

axis2

axis3

axis4

axis5

axis6
r3Drive1

1
r3Motor

r3ControlqdRef
1

S

qRef
1

S

k2

i

k1

i

qddRef cut joint

l

qd

tn

Jmotor=J

gear=i

spring=c

fr
ic

=R
v0

S
rel

joint=0

S

V
s

-

+
diff

-

+
pow er

emf

La=(250/(2*D*w
m

))
Ra=250

Rd2=100

C=0.004*D/w m

-

+
OpI

Rd1=100

Ri=10

Rp1=200

Rp
2=

50

Rd4=100

hall2

Rd
3=

10
0

g1

g2

g3

hall1

g4

g5

rw

qd q

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

Srel = n*n' + (identity(3) - n*n')*cos(q) - skew(n)*sin(q);
wrela = n*qd;
zrela = n*qdd;
Sb = Sa*Srel';
r0b = r0a;
vb = Srel*va;
wb = Srel*(wa + wrela);
ab = Srel*aa;
zb = Srel*(za + zrela + cross(wa, wrela));
fa = Srel'*fb;
ta = Srel'*tb;

Hierarchical Composition Diagram

13

Multi-Domain Modelica Model - DCMotor

A DC motor can be thought of as an electrical circuit
which also contains an electromechanical component.

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
ElectroMechanicalElement EM(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, EM.n);
connect(EM.p, DC.n);
connect(DC.n,G.p);
connect(EM.flange,load.flange);

end DCMotor

load

EM
DC

G

R L

14

Outline

Introduction

Equation-Based Object-Oriented Languages

MetaModelica
Idea, Language constructs, Compiler Prototype, OpenModelica Bootstrapping

Debugging of Equation-Based Object-Oriented Languages
Debugging of EOO Meta-Programs (Late vs. Early instrumentation)
Runtime debugging

Integrated Environments for Equation-Based Object-Oriented Languages

ModelicaML – A UML/SysML profile for Modelica

Conclusions and Future Work

Thesis Contributions

15

MetaModelica

Research Question
Can we deliver a new language that allows
users to build their own solutions to their
problems?

Our idea - extend Modelica with support for
Meta-Modeling – represent models as data
Meta-Programming – transform or query models

The new language - MetaModelica

16

Meta-Modeling and Meta-Programming

Model1 Model2 ModelN...

Meta-Model1 Meta-Model2

Meta- Meta Model

Modelica
models

Modelica
language

specification

MetaModelica and
Natural Semantics

Specification
formalisms

Meta-programming:
transformationPhysical system

W
or

ld
Th

e
M

od
el

in
g

Sp
ac

e

17

MetaModelica - Context

Syntax - there are many efficient parser
generator tools

lex (flex), yacc (bison), ANTLR, Coco, etc.

Semantics:
there are no standard efficient and easy to use
compiler-compiler tools

18

MetaModelica - Motivation

Can we adapt the Modelica equation-based
style to define semantics of programming
languages?

Answer: Yes!

MetaModelica Language
executable language specification based on

a model (abstract syntax tree)
semantic functions over the model

elaboration and typechecking
translation, transformation, querying
etc.

19

MetaModelica - Idea

We started from
The Relational Meta-Language (RML)

A system for building executable natural semantics
specifications
Used to specify Java, Pascal-subset, C-subset, Mini-ML, etc.

The OpenModelica compiler for Modelica specified in
RML

Idea: integrate the RML meta-modeling and
meta-programming facilities within the Modelica
language. The notion of equation is used as the
unifying feature

20

MetaModelica extensions to Modelica (I)

Modelica
classes, models, records, functions, packages
behavior is defined by equations or/and functions
equations

differential equations
algebraic equations
difference equations
conditional equations

MetaModelica extensions
local equations
pattern equations
match expressions
high-level data structures: lists, tuples, option and
uniontypes

21

MetaModelica extensions to Modelica (II)

pattern equations
unbound variables get their value by unification

Env.BOOLVAL(x,y) = eval_something(env, e);

match expressions
pattern matching
case rules

pattern = match expression optional-local-declarations
case pattern-expression opt-local-declarations
optional-local-equations then value-expression;

case ...
...
else optional-local-declarations
optional-local-equations then value-expression;

end match;

22

MetaModelica – Example (I)

package ExpressionEvaluator

// abstract syntax declarations
...
// semantic functions
...

end ExpressionEvaluator;

23

package ExpressionEvaluator

// abstract syntax declarations

// semantic functions
...

end ExpressionEvaluator;

MetaModelica – Example (II)

uniontype Exp
record RCONST Real x1; end RCONST;
record PLUS Exp x1; Exp x2; end PLUS;
record SUB Exp x1; Exp x2; end SUB;
record MUL Exp x1; Exp x2; end MUL;
record DIV Exp x1; Exp x2; end DIV;
record NEG Exp x1; end NEG;

end Exp;
Expression: 12+5*13
Representation:
PLUS(
RCONST(12),
MUL(
RCONST(5),
RCONST(13)
)

)

PLUS

MULRCONST

RCONST RCONST12

5 13

24

MetaModelica – Example (III)
package ExpressionEvaluator
// abstract syntax declarations
...

// semantic functions
function eval
input Exp in_exp;
output Real out_real;

algorithm
out_real := match in_exp

local Real v1,v2,v3; Exp e1,e2;
case RCONST(v1) then v1;
case ADD(e1,e2) equation

v1 = eval(e1); v2 = eval(e2); v3 = v1 + v2; then v3;
case SUB(e1,e2) equation

v1 = eval(e1); v2 = eval(e2); v3 = v1 - v2; then v3;
case MUL(e1,e2) equation

v1 = eval(e1); v2 = eval(e2); v3 = v1 * v2; then v3;
case DIV(e1,e2) equation

v1 = eval(e1); v2 = eval(e2); v3 = v1 / v2; then v3;
case NEG(e1) equation

v1 = eval(e1); v2 = -v1; then v2;
end match;

end eval;

end ExpressionEvaluator;

25

MetaModelica Compiler Prototype

Based on the RML compiler with a new
front-end

Can handle large specifications

Supports debugging, mutable arrays

Supports only a subset of MetaModelica

26

OpenModelica Bootstrapping

To support the full MetaModelica language
Integrate the meta-modeling and meta-
programming facilities in the OpenModelica
compiler

New features in OpenModelica targeting
the MetaModelica Language

Pattern matching
High-level data structures (list, option, union
types, tuples)
Exception handling

27

Outline

Introduction

Equation-Based Object-Oriented Languages

MetaModelica
Idea, Language constructs, Compiler Prototype, OpenModelica Bootstrapping

Debugging of Equation-Based Object-Oriented Languages
Debugging of EOO Meta-Programs (Late vs. Early instrumentation)
Runtime debugging

Integrated Environments for Equation-Based Object-Oriented Languages

ModelicaML – A UML/SysML profile for Modelica

Conclusions and Future Work

Thesis Contributions

28

Debugging EOO Languages

Static aspect
Overconstrained system: the number of variables is smaller than the
number of equations
Underconstrained system: the number of variables is larger than the
number of equations
Solved partially by Modelica 3.0 that requires models to be balanced

Dynamic (run-time) aspect
Handles errors due to:

model configuration: when parameters values for the model
simulation are incorrect.
model specification: when the equations that specify the model
behavior are incorrect.
algorithmic code: when the functions (either native or external)
called from equations return incorrect results.

29

Portable Debugging of EOO Meta-Programs

Why we need debugging
To debug large meta-programs
The OpenModelica Compiler Specification

4,65 MB of MetaModelica sources, ~140 000 LOC
52 Packages, 5422 Functions

Debugging strategy: Code Instrumentation
Early instrumentation

Debugging instrumentation at the AST level
Slow compilation and execution time

Late instrumentation
Debugging instrumentation at the C code level
Acceptable compilation and execution time

30

Early Instrumentation – AST level
function bubbleSort

input Real [:] unordElem;
output Real [size(unordElem, 1)] ordElem;
protected

Real tempVal;
Boolean isOver = false;

algorithm
ordElem := unordElem;
while not isOver loop

isOver := true;
for i in 1:size(ordElem, 1)-1 loop
if ordElem[i] > ordElem[i+1]
then

tempVal := ordElem[i];
ordElem[i] := ordElem[i+1];
ordElem[i+1] := tempVal;
isOver := false;

end if;
end for;

end while;
end bubbleSort;

function bubbleSort
input Real [:] unordElem;
output Real [size(unordElem, 1)] ordElem;
protected

Real tempVal;
Boolean isOver = false;

algorithm
Debug.register_in("unordElem",unordElem);
Debug.step(...);
ordElem := unordElem;
Debug.register_out("ordElem", ordElem);
Debug.register_in("isOver", isOver);
Debug.step(...);
while not isOver loop
isOver := true;
Debug.register_out("isOver", isOver);
Debug.register_in("ordElem",ordElem);
Debug.step(...);
for i in 1:size(ordElem, 1)-1 loop

Debug.register_out("i", i);
Debug.register_in("i", i);
Debug.register_in("ordElem[i]",

ordElem[i]);
Debug.register_in("ordElem[i+1]",

ordElem[i+1]);
Debug.step(...);

...
end bubbleSort;

31

Late Instrumentation – C level
function bubbleSort

input Real [:] unordElem;
output Real [size(unordElem, 1)] ordElem;
protected

Real tempVal;
Boolean isOver = false;

algorithm
ordElem := unordElem;
while not isOver loop

isOver := true;
for i in 1:size(ordElem, 1)-1 loop
if ordElem[i] > ordElem[i+1]
then

tempVal := ordElem[i];
ordElem[i] := ordElem[i+1];
ordElem[i+1] := tempVal;
isOver := false;

end if;
end for;

end while;
end bubbleSort;

bubbleSort_rettype _bubbleSort(real_array unordElem)
{

size_t tmp2;
bubbleSort_rettype tmp1;
real_array ordElem; /* [:] */
modelica_boolean isOver;
...
Debug.register_in("unordElem",unordElem);
Debug.step(...);
copy_real_array_data(&unordElem, &ordElem);
Debug.register_out("ordElem", ordElem);
Debug.register_in("isOver", isOver);
Debug.step(...);
while ...

}

32

Debugging - Performance Evaluation (I)

The test case
Meta-Program: The OpenModelica Compiler

4,65 MB of MetaModelica sources, ~140 000 lines of code
52 Packages, 5422 Functions

Compilation times (seconds)

Generated C Code Compilation time

No debugging 37 (MB) 269.86 (s)

130+ (MB)

103 (MB)

Early instrumentation 850.35 (s)

Late instrumentation 610.61 (s)

33

Debugging - Performance Evaluation (II)

The test case
RRLargeModel2.mo - model with 1659 equations/variables

Execution time for the OpenModelica Compiler while
checking RRLargeModel2.mo

No debugging 223.01 (s)

Early instrumentation 5395.47 (s)

Late instrumentation 864.36 (s)

34

Eclipse Debugging Environment

Type
information
for all
variables

Browsing of
complex data
structures

35

SML.NET Debugger

No type
information
for variables

36

Why do we need Equation-based debugging?

Easy to build large systems
Drag and Drop composition
Hierarchical Modeling

Model behavior depends on
data from various sources
(xml, databases, files, etc)
Models could be external
(Hardware in the loop, co-
simulation, etc)

You build your model by connecting components together
You simulate (hopefully there are no compilation errors)
The result you get back is wrong!

Why is the result wrong?
Where is the error?
How can I pin-point the error?

37

Modelica Specific General

Translation process

EOO

EOO System

Simulation
System

Simulation
Result

Modelica

OpenModelica

OpenModelica
Simulation
Runtime

Simulation
Result

C
om

pilation &
 Sim

ulation
D

ebugging &
 Tracing

38

Modelica Specific

Existing Debugging Strategies Do Not Suffice

Modelica

OpenModelica

OpenModelica
Simulation
Runtime

Simulation
Files

Error Discovered

How do we fix it?
Where is the actual

code that caused this
error?

D
ebugging &

 Tracing
C

om
pilation &

 Sim
ulation

Where is the actual
code that caused this

error?
How do we go back?

How can we automate
the round trip?

model Apollo
…
equation

…
gravity = …;
…

end Apollo;
Error

?

?

39

Debugging method

Interactive Dependency Graph
These equations contributed to the result

Code viewer
Show which model or function
the equation node belongs to

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

Follow if error
is in an equation

Simulation Results
These are the intermediate simulation
results that contributed to the result

Follow if error
is in a function

Algorithmic Code Debugging
Normal execution point debugging of

functions

Build graph

Error Discovered
What now?

Where is the equation or code that
generated this error?

Interactive Dependency Graph
These equations contributed to the result

Code viewer
Show which model or function
the equation node belongs to

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

Follow if error
is in an equation

Simulation Results
These are the intermediate simulation
results that contributed to the result

Follow if error
is in a function

Algorithmic Code Debugging
Normal execution point debugging of

functions

Build graph

Error Discovered
What now?

Where is the equation or code that
generated this error?

Mark the error
Build an interactive
graph containing the
evaluation
Walk the graph
interactively to find
the error

40

Modelica Specific

Debugging Strategy: Compiling With Debugging In Mind

Modelica

OpenModelica

OpenModelica
Simulation
Runtime

Simulation
Files

Error Discovered

How do we fix it?
Where is the actual

code that caused this
error?

model Apollo
…
equation

…
gravity = …;
…

end Apollo;
Error

Com
pilation &

 Sim
ulation

D
ebugging &

 Tracing

41

Translation Phases with Debugging

Save element position

Normal Translation ProcessDebugging Translation
Process Additional Steps

Save element origin
(model and position)

Save equation elements origin
(model and position)

Executable

C Code

Optimized sorted
equations

Sorted equations

Flat Model

Modelica model

Modelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

Save the optimizer
transformations changes

Save all the available
origin information

Executable with all the
available origin information

Simulation with run-time
debugging functionality

Include
debugging
support
within the
translation
process

42

Outline

Introduction

Equation-Based Object-Oriented Languages

MetaModelica
Idea, Language constructs, Compiler Prototype

OpenModelica Bootstrapping
High Level Data Structures, Pattern Matching, Exception Handling

Debugging of Equation-Based Object-Oriented Languages
Debugging of EOO Meta-Programs (Late vs. Early instrumentation)
Runtime debugging

Integrated Environments for Equation-Based Object-Oriented Languages

ModelicaML – A UML/SysML profile for Modelica

Conclusions and Future Work

Thesis Contributions

43

OpenModelica

Advanced Interactive Modelica compiler (OMC)
Supports most of the Modelica Language

Basic environments for creating models
OMShell – an interactive command handler
OMNotebook – a literate programming notebook
MDT – an advanced textual environment in Eclipse

http://www.ida.liu.se/~adrpo/mdt/mdt-0.6.8.1/MDT-0.6.8.1-ClassElementsCompletion.JPG
http://www.ida.liu.se/~adrpo/mdt/mdt-0.6.8.1/MDT-0.6.8.1-CodeAssist-CTRL+SPACE.JPG

44

OpenModelica Context

Parse

Client: Eclipse
Plugin

Corba

Client: OMShell
Interactive

Session Handler

Server: Main Program
Including Compiler,

Interpreter, etc.

Interactive

SCode

Inst

Ceval
plot

system

etc.

Untyped API

Typed Checked Command API

Client: Graphic
Model Editor

45

Modelica Development Tooling (MDT)

Supports textual editing of Modelica/MetaModelica
code

Was created to ease the development of the
OpenModelica development (~140 000 lines of
code) and to support advanced Modelica library
development

It has most of the functionality expected from a
Development Environment

code browsing, assistance, indentation, highlighting
error detection and debugging
automated build of Modelica/MetaModelica projects

46

Modelica Perspective

The MDT Eclipse Environment (I)

Modelica Editor

Modelica Browser

Modelica Code Assistant

MetaModelica Debugging

47

The MDT Eclipse Environment (II)

.mo file

OMC
Compiler

Small Modelica Parser

Eclipse

Modelica model

AST
Information

Modelica
Browser

Modelica
Code Assistant

Modelica
Editor

MetaModelica
Builder

MetaModelica
Build console

MMC
Compiler

MetaModelica
Debugging

48

The MDT Eclipse Environment (III)

.mo file
MMC

Compiler

Eclipse

MetaModelica
Debugging

Modelica
Editor

Executable
+

Debugging
runtime

49

Creating Modelica projects (I)

Creation of Modelica
projects using
wizards

50

Creating Modelica projects (II)

Modelica project

51

Creating Modelica packages

Creation of Modelica
packages using
wizards

52

Creating Modelica classes

Creation of Modelica
classes, models, etc,
using wizards

53

Code browsing

Code Browsing for
easy navigation within
Modelica files.
Automatic update on
file save.

54

Error detection (I)

Parse error
detection on
file save

55

Error detection (II)

Semantic error
detection on
compilation

56

Code assistance (I)

Code Assistance on
imports

57

Code assistance (II)

Code Assistance on
assignments

58

Code assistance (III)

Code Assistance on
function calls

59

Code indentation

Code
Indentation

60

Code Outline and Hovering Info

Code Outline for
easy navigation within
Modelica files

Identifier Info on
Hovering

61

Go to definition

Identifier Info on
Hovering

CTRL+Click on
identifer goes to
definition

62

Outline

Introduction

Equation-Based Object-Oriented Languages

MetaModelica
Idea, Language constructs, Compiler Prototype

OpenModelica Bootstrapping
High Level Data Structures, Pattern Matching, Exception Handling

Debugging of Equation-Based Object-Oriented Languages
Debugging of EOO Meta-Programs (Late vs. Early instrumentation)
Runtime debugging

Integrated Environments for Equation-Based Object-Oriented Languages

ModelicaML – A UML/SysML profile for Modelica

Conclusions and Future Work

Thesis Contributions

63

System Modeling Language (SysML™)

Graphical modeling language for Systems
Engineering constructed as a UML2 Profile

Designed to provide simple but powerful
constructs for modeling a wide range of systems
engineering problems

Effective in specifying requirements, structure,
behavior, allocations, and constraints on system
properties to support engineering analysis

Intended to support multiple processes and
methods such as structured, object-oriented, etc.

64

ModelicaML - a UML profile for Modelica

Supports modeling with all Modelica constructs i.e. restricted
classes, equations, generics, discrete variables, etc.

Multiple aspects of a system being designed are supported
system development process phases such as requirements analysis,
design, implementation, verification, validation and integration.

Supports mathematical modeling with equations (to specify
system behavior). Algorithm sections are also supported.

Simulation diagrams are introduced to configure, model and
document simulation parameters and results in a consistent
and usable way.

The ModelicaML meta-model is consistent with SysML in
order to provide SysML-to-ModelicaML conversion and back.

65

ModelicaML - Purpose

Targeted to Modelica and SysML users

Provide a SysML/UML view of Modelica for
Documentation purposes
Language understanding

To extend Modelica with additional design
capabilities (requirements modeling, inheritance
diagrams, etc)

To support translation between Modelica and
SysML models via XMI

66

ModelicaML - Overview

67

ModelicaML – Package Diagram

The Package Diagram groups logically connected user
defined elements into packages.
The primarily purpose of this diagram is to support the
specifics of the Modelica packages.

68

ModelicaML – Class Diagram
ModelicaML provides
extensions to SysML in order
to support the full set of
Modelica constructs.

ModelicaML defines unique
class definition types
ModelicaClass,
ModelicaModel,
ModelicaBlock,
ModelicaConnector,
ModelicaFunction and
ModelicaRecord that
correspond to class,
model, block,
connector, function and
record restricted Modelica
classes.

Modelica specific restricted
classes are included because
a modeling tool needs to
impose their semantic
restrictions (for example a
record cannot have equations,
etc).

Class Diagram defines Modelica
classes and relationships between
classes, like generalizations,
association and dependencies

69

ModelicaML - Internal Class Diagram

Internal Class Diagram shows the internal
structure of a class in terms of parts and
connections

70

ModelicaML – Equation Diagram

behavior is specified using Equation Diagrams
all Modelica equations have their specific diagram:

initial, when, for, if equations

71

ModelicaML – Simulation Diagram

Used to model, configure and document simulation
parameters and results
Simulation diagrams can be integrated with any Modelica
modeling and simulation environment (OpenModelica)

72

Eclipse environment for ModelicaML

73

Requirements Modeling

Requirements
can be modeled
hierarchically
can be traced
can be linked with
other ModelicaML
models
can be queried
with respect of
their attributes and
links (coverage)

74

Requirements Modeling in Eclipse

75

Outline

Introduction

Equation-Based Object-Oriented Languages

MetaModelica
Idea, Language constructs, Compiler Prototype

OpenModelica Bootstrapping
High Level Data Structures, Pattern Matching, Exception Handling

Debugging of Equation-Based Object-Oriented Languages
Debugging of EOO Meta-Programs (Late vs. Early instrumentation)
Runtime debugging

Integrated Environments for Equation-Based Object-Oriented Languages

ModelicaML – A UML/SysML profile for Modelica

Conclusions and Future Work

Thesis Contributions

76

Conclusions

EOO languages can be successfully
generalized to also support software
modeling, thus addressing the whole
product modeling process.

Integrated environments that support such
a generalized EOO language can be created
and effectively used on real-sized
applications.

77

Future Work

Conclude the OpenModelica bootstrapping

Further develop the EOO debugging
framework

Modularity and scalability of MetaModelica
language

78

Outline

Introduction

Equation-Based Object-Oriented Languages

MetaModelica
Idea, Language constructs, Compiler Prototype

OpenModelica Bootstrapping
High Level Data Structures, Pattern Matching, Exception Handling

Debugging of Equation-Based Object-Oriented Languages
Debugging of EOO Meta-Programs (Late vs. Early instrumentation)
Runtime debugging

Integrated Environments for Equation-Based Object-Oriented Languages

ModelicaML – A UML/SysML profile for Modelica

Conclusions and Future Work

Thesis Contributions

79

Thesis Contributions

The design, implementation, and evaluation of
a new, general, executable mathematical modeling and semantics
meta-modeling language called MetaModelica. The MetaModelica
language extends the existing Modelica language with support for meta-
modeling, meta-programming, and exception handling

advanced portable debugging methods and frameworks for runtime
debugging of MetaModelica and semantic specifications

several integrated model-driven environments supporting creation,
development, refactoring, debugging, management, composition,
serialization, and graphical representation of models in EOO languages.
Additionally, an integrated model-driven product design and
development environment based on EOO languages is also contributed

Alternative representation of Modelica EOO models based on XML and
UML/SysML are investigated and evaluated

Transformation and invasive composition of EOO models has also been
investigated

80

End

Thank you!
Questions?

http://www.OpenModelica.org

http://www.ida.liu.se/labs/pelab/rmlhttp

81

Thesis Structure

Modelica

ModelicaXML

MetaModelica/RML
System

MetaModelica/RML
Specification of Modelica

Modelica
Parser

C
Compiler

C Code

Open
Modelica
Compiler

Meta-Modeling

Meta-Programming

C
Compiler

C Code

Modelica
Simulation

XML
Tools

Modelica Database

Debugging
runtime

Product
Design
Tools

Simulation
Tools

Product Concept

Virtual Product

COMPOST

Composition
Program

Part III

Chapter 12

Chapter 13
Part IV

Part I Motivation, Introduction, Background and Related Work
Chapter 1. Introduction
Chapter 2. Background and Related Work
Part II Extending EOO Languages for Safe Symbolic Processing
Chapter 3. Extending Equation-based Object-oriented Languages
Chapter 4. Efficient Implementation of Meta-Programming EOO Languages
Part III Debugging of Equation-based Object Oriented Languages
Chapter 5. Portable Debugging EOO Meta-programs
Chapter 6. Run-time Debugging of EOO Languages
Chapter 7. Debugging Natural Semantics Specifications
Part IV Advanced Integrated Environments
Chapter 8. Modelica Development Tooling (MDT)
Chapter 9. Parsing-Unparsing and Refactoring
Chapter 10. UML and Modelica System Modeling with ModelicaML
Chapter 11. Integrated Framework for Model-driven Product Design and Development
Part V Meta-programming and Composition of EOO Languages
Chapter 12. ModelicaXML: A ModelicaXML Representation with Applications
Chapter 13. Composition of XML dialects: A ModelicaXML case study
Part VI Conclusions and Future Work
Chapter 14. Conclusions and Future Work

Thesis Structure

Part V

Part II

Modelica
Development

Tooling

Chapter 11
ModelicaML

SysML

Chapter 10Chapter 9 Chapter 8

Part IV

Simulation
runtime

	Integrated Model-Driven Development Environments �for �Equation-Based Object-Oriented Languages
	Outline
	Thesis Motivation
	Research Questions
	Outline
	Examples of Complex Systems
	Stored Knowledge
	The Form – Equations
	Modelica
	Modelica Acausal Modeling
	Modelica - Reusable Class Libraries
	Hierarchical Composition Diagram
	Multi-Domain Modelica Model - DCMotor
	Outline
	MetaModelica
	Meta-Modeling and Meta-Programming
	MetaModelica - Context
	MetaModelica - Motivation
	MetaModelica - Idea
	MetaModelica extensions to Modelica (I)
	MetaModelica extensions to Modelica (II)
	MetaModelica – Example (I)
	MetaModelica – Example (II)
	MetaModelica – Example (III)
	MetaModelica Compiler Prototype
	OpenModelica Bootstrapping
	Outline
	Debugging EOO Languages
	Portable Debugging of EOO Meta-Programs
	Early Instrumentation – AST level
	Late Instrumentation – C level
	Debugging - Performance Evaluation (I)
	Debugging - Performance Evaluation (II)
	Eclipse Debugging Environment
	SML.NET Debugger
	Why do we need Equation-based debugging?
	Translation process
	Existing Debugging Strategies Do Not Suffice
	Debugging method
	Debugging Strategy: Compiling With Debugging In Mind
	Translation Phases with Debugging
	Outline
	OpenModelica
	OpenModelica Context
	Modelica Development Tooling (MDT)
	The MDT Eclipse Environment (I)
	The MDT Eclipse Environment (II)
	The MDT Eclipse Environment (III)
	Creating Modelica projects (I)
	Creating Modelica projects (II)
	Creating Modelica packages
	Creating Modelica classes
	Code browsing
	Error detection (I)
	Error detection (II)
	Code assistance (I)
	Code assistance (II)
	Code assistance (III)
	Code indentation
	Code Outline and Hovering Info
	Go to definition
	Outline
	System Modeling Language (SysML™)
	ModelicaML - a UML profile for Modelica
	ModelicaML - Purpose
	ModelicaML - Overview
	ModelicaML – Package Diagram
	ModelicaML – Class Diagram
	ModelicaML - Internal Class Diagram
	ModelicaML – Equation Diagram
	ModelicaML – Simulation Diagram
	Eclipse environment for ModelicaML
	Requirements Modeling
	Requirements Modeling in Eclipse
	Outline
	Conclusions
	Future Work
	Outline
	Thesis Contributions
	End
	Thesis Structure

