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ABSTRACT 

Integrated development environments are essential for efficient realization of complex industrial 
products, typically consisting of both software and hardware components. Powerful equation-
based object-oriented (EOO) languages such as Modelica are successfully used for modeling and 
virtual prototyping increasingly complex physical systems and components, whereas software 
modeling approaches like UML, especially in the form of domain specific language subsets, are 
increasingly used for software systems modeling.  

A research hypothesis investigated to some extent in this thesis is if EOO languages can be 
successfully generalized also to support software modeling, thus addressing whole product 
modeling, and if integrated environments for such a generalized EOO language tool support can 
be created and effectively used on real-sized applications. 

However, creating advanced development environments is still a resource-consuming error-
prone process that is largely manual. One rather successful approach is to have a general 
framework kernel, and use meta-modeling and meta-programming techniques to provide tool 
support for specific languages. Thus, the main goal of this research is the development of a meta-
modeling approach and its associated meta-programming methods for the synthesis of model-
driven product development environments that includes support for modeling and simulation. 
Such environments include components like model editors, compilers, debuggers and simulators. 
This thesis presents several contributions towards this vision in the context of EOO languages, 
primarily the Modelica language. 

Existing state-of-the art tools supporting EOO languages typically do not satisfy all user 
requirements with regards to analysis, management, querying, transformation, and configuration 
of models. Moreover, tools such as model-compilers tend to become large and monolithic. If 
instead it would be possible to model desired tool extensions with meta-modeling and meta-
programming, within the application models themselves, the kernel tool could be made smaller, 
and better extensibility, modularity and flexibility could be achieved. 

We argue that such user requirements could be satisfied if the equation-based object-oriented 
languages are extended with meta-modeling and meta-programming. This thesis presents a new 
language that unifies EOO languages with term pattern matching and transformation typically 
found in functional and logic programming languages. The development, implementation, and 
performance of the unified language are also presented.  

The increased ease of use, the high abstraction, and the expressivity of the unified language are 
very attractive properties. However, these properties come with the drawback that programming 
and modeling errors are often hard to find. To overcome these issues, several methods and 
integrated frameworks for run-time debugging of the unified language have been designed, 
analyzed, implemented, and evaluated on non-trivial industrial applications. 

To fully support development using the unified language, an integrated model-driven 
development environment based on the Eclipse platform is proposed, designed, implemented, and 
used extensively. The development environment integrates advanced textual modeling, code 
browsing, debugging, etc. Graphical modeling is also supported by the development environment 



based on a proposed ModelicaML Modelica/UML/SysML profile. Finally, serialization, 
composition, and transformation operations on models are investigated. 
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Background and Related Work

 





Chapter 1  
 
 
Introduction 

Motto:  
Models..., models everywhere.  

Meta-models model models 
Meta-MetaModels models Meta-Models. 

Attempt at a Definition of the Term "meta-model" (www.metamodel.com):  
A meta-model is a precise definition of the constructs  

and rules needed for creating semantic models. 

Integrated development environments are essential for efficient realization of 
complex industrial products, typically consisting of both software and hardware 
components. Powerful equation-based object-oriented (EOO) languages such as 
Modelica are successfully used for modeling and virtual prototyping increasingly 
complex physical systems and components, whereas software modeling approaches 
like UML, especially in the form of domain specific language subsets, are 
increasingly used for software systems modeling.  

A research hypothesis investigated to some extent in this thesis is if EOO 
languages can be successfully generalized also to support software modeling, thus 
addressing whole product modeling, and if integrated environments for such a 
generalized EOO language tool support can be created and effectively used on real-
sized applications. 

However, creating advanced development environments is still a resource-
consuming error-prone process that is largely manual. One rather successful 
approach is to have a general framework kernel, and use meta-modeling and meta-
programming techniques to provide tool support for specific languages. Thus, the 
main goal of this research is the development of a meta-modeling approach and its 
associated meta-programming methods for the synthesis of model-driven product 
development environments that includes support for modeling and simulation. Such 
environments include components like model editors, compilers, debuggers and 
simulators. This thesis presents several contributions towards this vision in the 
context of EOO languages, primarily the Modelica language.  

 

http://www.metamodel.com/
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1.1 Research Objective (Motivation) 

Current state-of-the art equation-based object-oriented languages are supported by 
tools that have fixed features and are hard to extend. The modeling community 
needs better tools to support creation, querying, manipulation, composition and 
simulation of models in equation-based object-oriented languages.  

The current state-of-the art tools supporting EOO languages do not satisfy all 
the different requirements users expect, for example the following: 

• Creation, query, manipulation, composition and management of models. 
• Query of model equations for: optimization purposes, parallelization, model 

checking, simulation with different solvers, etc. 
• Model configuration for simulation purposes: initial state, initialization via 

xml files or databases. 
• Simulation features: running a simulation and displaying a result, running 

more simulations in parallel, possibility to handle simulation failures and 
continue the simulation on a different path, possibility to generate only 
specific data within a simulation, possibility to manipulate simulation data 
for export to another tool. 

• Model transformation and refactoring: export to a different tool, improve 
the current model or library but retain the semantics, model composition 
and invasive model composition. 

• Continuous partial differential equations (PDEs) transformed into: 
Discretized, finite difference, Discretized, Finite Elements (FEM), 
Discretized, finite volume. 

Traditionally, a model compiler performs the task of translating a model into 
executable code, which then is executed during simulation of the model. Thus, the 
symbolic translation step is followed by an execution step, a simulation, which 
often involves large-scale numeric computations. 

However, as requirements on the usage of models grow, and the scope of 
modeling domains increases, the demands on the modeling language and 
corresponding tools increase. This causes the model compiler to become large and 
complex. 

Moreover, the modeling community needs not only tools for simulation but also 
languages and tools to create, query, manipulate, and compose equation-based 
models. Additional examples are optimization of models, parallelization of models, 
checking and configuration of models. 

If all this functionality is added to the model compiler, it tends to become large 
and complex. 

An alternative idea is to add features to the modeling language such that for 
example a model package can contain model analysis and translation features that 
therefore are not required in the model compiler. An example is a PDEs 
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discretization scheme that could be expressed in the modeling language itself as 
part of a PDE package instead of being added internally to the model compiler. 

The direct questions arising from the research objective are:  

• Can we deliver a new language that allows people to build their own 
solution to their problems without having to go via tool vendors? 

• What is expected from such a language? 
• What properties should the language have based on the requirements for it? 

This includes language primitives, type system, semantics, etc. 
• Can such a language combined with a general tool be better than a special-

purpose tool? 
• What are the steps to design and develop such a language? 
• What methods and tools should support the debugging of the new language? 
• How can we construct advanced interactive development environments that 

support such a language? 

1.2 Contributions 

The integrated model-driven environments and the new MetaModelica language 
presented in this thesis provide efficient and effective methods for designing and 
developing complex product models. Methods and tools for debugging, 
management, serialization, and composition of models are additional contributions. 

The research contributions of the thesis are: 

• The design, implementation, and evaluation of a new general executable 
mathematical modeling and semantics meta-modeling language called 
MetaModelica. The MetaModelica language extends the existing Modelica 
language with support for meta-modeling, meta-programming, and 
exception handling facilities.  

• The design, implementation and evaluation of advanced portable debugging 
methods and frameworks for runtime debugging of MetaModelica and 
semantic specifications.  

• The design, implementation and evaluation of several integrated model-
driven environments supporting creation, development, refactoring, 
debugging, management, composition, serialization, and graphical 
representation of models in EOO languages. Additionally, an integrated 
model-driven product design and development environment based on EOO 
languages is also contributed. 

• Alternative representation of Modelica EOO models based on XML and 
UML/SysML are investigated and evaluated. Transformation and invasive 
composition of EOO models has also been investigated. 
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1.3 Thesis Structure 

In this section we give a short overview of each of the parts in the thesis. At the end 
of this section we also present visually, in Figure 1-1, an overview of the structure 
of this thesis.  

The thesis consists of six main parts: 

• Part I presents the thesis motivation, its introduction, the background and 
related work. 

• Part II focuses on the design and implementation of an general-purpose 
unified EOO language called MetaModelica 

• Part III introduces our work with regards to run-time debugging of meta-
programs, equation based languages and semantic specifications. 

• Part IV presents the design and implementation of several integrated 
development environments for EOO languages. 

• Part V presents contributions to serialization, invasive composition and 
transformation of EOO models. 

• Part VI concludes the thesis and gives future work directions. 
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Figure 1-1. Thesis structure. 
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Chapter 2  
 
 
Background and Related Work 

2.1 Introduction 

The research work in this thesis is cross-cutting several research fields, which we 
introduce in this section. Here we give a more detailed presentation of the specific 
background and related work of the several areas in which we address problems.  

2.1.1 Systems, Models, Meta-Models, and Meta-Programs 

Understanding existing systems or building new ones is a complex process. When 
dealing with this complexity people try to break large systems into manageable 
pieces. In order to experiment with systems people create models that can answer 
questions about specific system properties. As a simple example of a system we can 
take a fish; our mental model of a fish is our internal mind representation, 
experiences, and beliefs about this system. In other words, a model is an abstraction 
of a system which mirrors parts or all its characteristics we are interested in. Models 
are created for various reasons from proving that a particular system can be built to 
understanding complex existing systems. Modeling – the process of model creation 
– is often followed by simulation performed on the created models. A simulation 
can be regarded as an experiment applied on a model. 

Meta-modeling is still a modeling activity but its aim is to create meta-models. 
A meta-model is one level of abstraction higher than its described models.  

• If a model MM is used to describe a model M, then MM is called the meta-
model of M.  

• Alternatively one can consider a meta-model as the description of the syntax 
and/or meaning (semantics) of concepts that are used in the underlying level 
to construct models (model families). 
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The usefulness of meta-models highly depends on the purpose for which they are 
created and what they attempt to describe. In general, a meta-model can be regarded 
as:  

• A schema for data (here data can mean anything from information to 
programs, models, meta-models, etc) that needs to be exchanged, stored, or 
transformed. 

• A language that is used to describe a specific process or methodology. 
• A language for expressing (additional) meaning (semantics) or syntax of 

existing information, e.g. information present on the World Wide Web 
(WWW). 

Thus, meta-models are ways to express and share some kind of knowledge that 
helps in the design and management of models.  

When the models are programs, the programs that manipulate them are called 
meta-programs and the process of their creation is denoted as meta-programming. 
As examples of meta-programs we can include program generators, interpreters, 
compilers, static analyzers, and type checkers. In general meta-programs do not act 
on the source code directly but on a representation (model) of the source code, such 
as abstract syntax trees. The abstract syntax trees together with the meta-program 
that manipulates them can be regarded as a meta-model.  

One can make a distinction between general purpose modeling and domain 
specific modeling, for example physical systems modeling. General purpose 
modeling is concerned with expressing and representing any kind of knowledge, 
while domain specific modeling is targeted to specific domains. Lately, approaches 
that use general purpose modeling languages (meta-metamodels) to define domain 
specific modeling languages (meta-models) together with their environments have 
started to emerge. The meta-metamodeling methodology is used to specify such 
approaches. 

Combining different models that use different formalisms and different levels of 
abstraction to represent aspects of the same system is highly desirable. Computer 
aided multi-paradigm modeling is a new emerging field that is trying to define a 
domain independent framework along several dimensions such as multiple levels of 
abstraction, multi-formalism modeling, meta-modeling, etc. 

2.1.2 Meta-Modeling and Meta-Programming Approaches 

Hardly anyone can speak of general purpose modeling without mentioning the 
Unified Modeling Language (UML) (OMG [115]). UML is by far the most used 
specification language used for modeling. UML together with the Meta-Object 
Facility (MOF) (OMG [112]) forms the bases for the Model-Driven Architecture 
(MDA) (OMG [113]) which aims at unifying the design, development, and 
integration of system modeling. The architecture has four layers, called M0 to M3 
presented in Figure 2-1 and below:  
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• M3 is the meta-metamodel which is an instance of itself. 
• M2 is the level where the UML meta-model is defined. The concepts used 

by the designer, such as Class, Attribute, etc., are defined at this level. 
• M1 is the level where the UML models and domain-specific extensions of 

the UML language reside. 
• M0 is the level where the actual user objects reside (the world). 

An instance at a certain level is always an instance of something defined at one 
level higher. An actual object at M0 is an instance of a class defined at M1. The 
classes defined in UML models at M1 are instances of the Class concept defined at 
M2. The UML meta-model itself is an instance of M3. Other meta-models that 
define other modeling languages are also instances of M3. 
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Figure 2-1. The Object Management Group (OMG) 4-Layered 
Model Driven Architecture (MDA). 

Within the MDA framework, UML Profiles are used to tailor the general UML 
language to specific areas (domain specific modeling).  

Modeling environment configuration approaches similar to the UML Profiles, 
are present within the Generic Modeling Environment (GME) (Ledeczi et al. 2001 
[82], Ledeczi et al. 2001 [83]) which is a configurable toolkit for creating domain-
specific modeling and program synthesis environments. Here, the configuration is 
accomplished through meta-models specifying the modeling paradigm (modeling 
language) of the application domain.  

Computer-aided Multi-paradigm Modeling and Simulation (CaMpaM) (Lacoste-
Julien et al. 2004 [79], Lara et al. 2003 [80]) supported by tools such as the ATOM3 
environment (A Tool for Multi-formalism and Meta-Modeling) (Vangheluwe and 
Lara 2004 [170]) is aiming at combining several dimensions of modeling (levels of 
abstractions, multi-formalisms and meta-modeling) in order to configure 
environments tailored for specific domains. 
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We have already described what meta-modeling and meta-programming are. From 
another point of view meta-modeling and meta-programming are orthogonal 
solutions to system modeling (Figure 2-2) that can be combined to achieve model 
definition and transformation at several abstraction levels.  

By using meta-programming it is possible to achieve transformation between 
models or meta-models. The meta-models one level up can be used to enforce the 
correctness of the transformation. Translation and transformation between models 
are highly desirable as new models appear and solutions to system modeling require 
different modeling languages and formalisms together with their environments. 

Meta-Modeling 

Model1 Model2 ModelN ... 

Meta-Model1 Meta-Model2 

MetaMeta-Model1 

Transformation 

... 

Meta-Programming  
Figure 2-2. Meta-Modeling and Meta-Programming dimensions. 

2.2 The Modelica Language 

Starting 1989, our group developed an equation-based specification language for 
mathematical modeling called ObjectMath (Fritzson et al. 1995 [53], Viklund et al. 
1992 [173]), using Mathematica as a basis and a frontend, but adding object 
orientation and efficient code generation. Following this path, in 1996 our group 
joined efforts with several other groups in object-oriented mathematical modeling 
to start a design-group for developing an internationally viable declarative 
mathematical modeling language. This language, called Modelica, has been 
designed by the Modelica Design Group, initially consisting mostly of the 
developers of a number of different equation-based object-oriented modeling 
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languages like Allan, Dymola, NMF, ObjectMath, Omola, SIDOPS+, Smile, as 
well as other modeling and simulation experts. In February 2000, a non-profit 
organization named “Modelica Association” was founded in Linköping, Sweden, 
for further development and promotion of Modelica. Modelica (Elmqvist et al. 1999 
[35], Fritzson 2004 [44], Fritzson and Engelson 1998 [50], Modelica.Association 
1996-2008 [99], Tiller 2001 [152]) is an object-oriented modeling language for 
declarative equation-based mathematical modeling of large and heterogeneous 
physical systems. For modeling with Modelica, commercial software products such 
as MathModelica (MathCore [91]) or Dymola (Dynasim 2005 [27]) have been 
developed. Also open-source implementations like the OpenModelica system 
(Fritzson et al. 2002 [46], PELAB 2002-2008 [118]) are available.  

The Modelica language has been designed to allow tools to automatically 
generate efficient simulation code with the main objective of facilitating exchange 
of models, model libraries, and simulation specifications. The definition of 
simulation models is expressed in a declarative manner, modularly and 
hierarchically. Various formalisms can be expressed in the more general Modelica 
formalism. In this respect Modelica has a multi-domain modeling capability which 
gives the user the possibility to combine electrical, mechanical, hydraulic, 
thermodynamic, etc., model components within the same application model. 
Compared to most other modeling languages available today, Modelica offers 
several important advantages from the simulation practitioner’s point of view: 

• Object-oriented mathematical modeling. This technique makes it possible to 
create model components, which are employed to support hierarchical 
structuring, reuse, and evolution of large and complex models covering 
multiple technology domains. A general type system that unifies object-
orientation, multiple inheritance, and generics templates within a single 
class construct. This facilitates reuse of components and evolution of 
models. 

• Acausal modeling based on ordinary differential equations (ODE) and 
differential algebraic equations (DAE) together with discrete equations 
forming a hybrid DAE.. There is also ongoing research to include partial 
differential equations (PDE) in the language syntax and semantics (Saldamli 
et al. 2002 [142]), (Saldamli 2002 [140], Saldamli et al. 2005 [141]). 

• Multi-domain modeling capability, which gives the user the possibility to 
combine electrical, mechanical, thermodynamic, hydraulic etc., model 
components within the same application model. 

• A strong software component model, with constructs for creating and 
connecting components. Thus the language is ideally suited as an 
architectural description language for complex physical systems, and to 
some extent for software systems. 

• Visual drag & drop and connect composition of models from components 
present in different libraries targeted to different domains (electrical, 
mechanical, etc). 
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The language is strongly typed and declarative. See (Modelica.Association 1996-
2008 [99]), (Modelica-Association 2005 [101]), (Tiller 2001 [153]), and (Fritzson 
2004 [44]) for a complete description of the language and its functionality from the 
perspective of the motivations and design goals of the researchers who developed it. 
Shorter overviews of the language are available in (Elmqvist et al. 1999 [35]), 
(Fritzson and Engelson 1998 [50]), and (Fritzson and Bunus 2002 [49]). 

The Modelica component model includes the following three items: a) 
components, b) a connection mechanism, and c) a component framework. 
Components are connected via the connection mechanism realized by the Modelica 
system, which can be visualized in connection diagrams. The component framework 
realizes components and connections, and ensures that communication works over 
via the connections.  

For systems composed of acausal components with behavior specified by 
equations, the direction of data flow, i.e., the causality is initially unspecified for 
connections between those components. Instead the causality is automatically 
deduced by the compiler when needed. Components have well-defined interfaces 
consisting of ports, also known as connectors, to the external world. A component 
may internally consist of other connected components, i.e., hierarchical modeling is 
possible. Figure 2-3 shows a hierarchical component-based modeling of an industry 
robot. 

 

 
Figure 2-3. Hierarchical model of an industrial robot, including components such as 
motors, bearings, control software, etc. At the lowest (class) level, equations are 
typically found.
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2.2.1 An Example Modelica Model 

The following is an example Lotka Volterra Modelica model containing two 
differential equations relating the sizes of rabbit and fox populations which are 
represented by the variables rabbits and foxes: The model was independently 
developed by Alfred J Lotka (1925) and Vito Volterra (1926): The rabbits multiply 
(by breeding); the foxes eat rabbits. Eventually there are enough foxes eating 
rabbits causing a decrease in the rabbit population, etc., causing cyclic population 
sizes. The model is simulated and the sizes of the rabbit and fox populations are 
plotted in Figure 2-4 as a function of time. 

 
Figure 2-4. Number of rabbits – prey animals, and foxes – predators, as a function 

of time simulated from the predator-prey LotkaVolterra model.

The notation der(rabbits) means time derivative of the rabbits (population) 
variable. 
model LotkaVolterra
  parameter Real g_r =0.04 "Natural growth rate for rabbits"; 
  parameter Real d_rf=5e-5 "Death rate of rabbits due to  
                            foxes"; 
  parameter Real d_f =0.09 "Natural death rate for foxes"; 
  parameter Real g_fr=0.1 "Efficiency in growing foxes from 
                           rabbits"; 
  Real rabbits(start=700) "Rabbits with start population 700"; 
  Real foxes(start=10)    "Foxes,  with start population 10"; 
equation 
  der(rabbits) = g_r*rabbits - d_rf*rabbits*foxes; 
  der(foxes)   = g_fr*d_rf*rabbits*foxes - d_f*foxes; 
end LotkaVolterra; 
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2.2.2 Modelica as a Component Language 

Modelica offers quite a powerful software component model that is on par with 
hardware component systems in flexibility and potential for reuse. The key to this 
increased flexibility is the fact that Modelica classes are based on equations, i.e., 
acausal connections for which the direction of data flow across the connection is not 
fixed. Components are connected via the connection mechanism, which can be 
visualized in connection diagrams. The component framework realizes components 
and connections, and ensures that communication works and constraints are 
maintained over the connections. For systems composed of acausal components the 
direction of data flow, i.e., the causality is automatically deduced by the compiler at 
composition time. 

Two types of coupling can be established by connections depending on whether 
the variables in the connected connectors are non-flow (default), or declared using 
the flow prefix: 

1. Equality coupling, for non-flow variables, according to Kirchhoff’s first law. 
2. Sum-to-zero coupling, for flow variables, according to Kirchhoff’s current law. 

For example, the keyword flow for the variable i of type Current in the Pin 
connector class indicates that all currents in connected pins are summed to zero, 
according to Kirchhoff’s current law. 

 
pin1 pin2 

+ + 

pin2.i 

pin2.vpin1.v

pin1.i 
 

Figure 2-5. Connecting two components that have electrical pins.

Connection equations are used to connect instances of connection classes. A 
connection equation connect(pin1,pin2), with pin1 and pin2 of connector 
class Pin, connects the two pins (Figure 2-5) so that they form one node. This 
produces two equations, namely: 

pin1.v = pin2.v  
pin1.i + pin2.i = 0  

The first equation says that the voltages of the connected wire ends are the same. 
The second equation corresponds to Kirchhoff's second law, saying that the currents 
sum to zero at a node (assuming positive value while flowing into the component). 
The sum-to-zero equations are generated when the prefix flow is used. Similar 
laws apply to flows in piping networks and to forces and torques in mechanical 
systems. 
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2.3 Modelica Environments 

For modeling with Modelica, commercial software products such as MathModelica 
(MathCore [91]) (Figure 2-9), Dymola (Dynasim 2005 [27]) or SimulationX 
(ITI.GmbH 2008 [71]) have been developed. Also open-source implementations 
like the OpenModelica system (Fritzson et al. 2002 [46], Fritzson et al. 2005 [47], 
PELAB 2002-2008 [118]) are available.  

2.3.1 OpenModelica 

The OpenModelica environment is a complete Modelica modeling, compilation and 
simulation environment based on free software distributed in binary and source 
code form. The components of the OpenModelica environment are: 

• OpenModelica Interactive Compiler (OMC) is the core component of the 
environment.   OMC provides advanced interactive functionality for model 
management: loading, instantiation, query, checking and simulation. The 
OMC functionality is available via command line scripting or - when run as 
a server - via the CORBA (OMG [111]) (or socket) interface. The other 
environment components presented below are using OMC as a server to 
access its functionality. 

• OMShell is an interactive command handler that provides very basic 
functionality for loading and simulation of models. 

• OMNotebook adds interactive notebook functionality (similar to the 
Mathematica environment) to the environment. OMNotebook documents 
blend together evaluation cells with explanation text. The evaluation cells 
can be executed directly in the notebook and their results incorporated. The 
OMNotebook component is very useful for teaching, model explanation and 
documentation because all the information regarding a model (including 
simulation results) can be included in the same document.   

• Modelica Development Tooling (MDT) is an Eclipse plug-in that integrates 
the OpenModelica compiler with Eclipse. MDT, together with the 
OpenModelica compiler, provides an environment for working with 
Modelica and MetaModelica projects. Advanced textual (code browsing, 
syntax highlighting, syntax checking, code completion and assistance, 
automatic code indentation, etc) and UML/SysML editing features for 
developing models are available. The environment also provides debugging 
features. 
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Figure 2-6. OMShell Figure 2-7. OMNotebook

 
Figure 2-8. Modelica Development Tooling (MDT).

2.3.2 MathModelica, Dymola, SimulationX 

MathModelica is an integrated problem-solving environment (PSE) for full system 
modeling and simulation (Fritzson 2006 [45]). The environment integrates 
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Modelica-based modeling and simulation with graphic design, advanced scripting 
facilities, integration of code and documentation, and symbolic formula 
manipulation provided via Mathematica (Wolfram 2008 [175]). The MathModelica 
environment is based on the OpenModelica compiler (OMC) but also provides 
additional commercial capabilities like graphical editor and simulation center. 

 
Figure 2-9. MathModelica modeling and simulation environment. (courtesy of 

MathCore AB) 

Dymola (Dynamic Modeling Laboratory) described by (Elmqvist et al. 2003 [34]) 
is probably one of the most well known multi-domain modeling and simulation 
environments that supports the Modelica language.  

The environment allows the analysis of complex systems that incorporate 
mechanical, hydraulic, electrical, and thermal components as well as control 
systems. Dymola does not feature any debugging techniques for possible structural 
and numerical errors.  

For dynamic debugging the simulation environment offers the possibility of 
logging discrete events. This functionality is useful in tracking down errors in the 
discrete part of hybrid system models.  

The analysis facilities of Dymola concentrate more on profiling. Details of 
execution times for each block are available. Numeric model instabilities have to be 
detected in Dymola by directly examining the simulation results. 

 



22   Chapter 2   Background 

 
Figure 2-10. Dymola Modeling and Simulation Environment  

(courtesy of Dynasim AB). 

 
Figure 2-11. SimulationX modeling and simulation environment   

(courtesy of ITI GmbH) 

SimulationX is a software environment for valuation of the interaction of all 
components of technical systems. SimulationX provides a CAE tool for modeling, 
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simulation and analyzing of physical effects – with ready-to-use model libraries for 
1D mechanics, 3D multibody systems, power transmission, hydraulics, pneumatics, 
thermodynamics, electrics, electrical drives, magnetics as well as controls – post 
processing included.  

2.4 Related Equation-based languages: gProms, 
VHDL-AMS and the χ language 

In the area of mathematical modeling the most important general de-facto standards 
for different dynamic simulation modes are: 

• Continuous: Matlab/Simulink, MatrixX/SystemBuild, Scilab/Scicos for 
general systems, SPICE and its derivates for electrical circuits, ADAMS, 
DADS/Motion, SimPack for multi-body mechanical systems. 

• Discrete: general-purpose simulators based on the discrete-event GPSS line, 
VHDL- and Verilog simulators in digital electronics, etc. 

• Hybrid (discrete + continuous): Modelica/Dymola, AnyLogic, VHDL-AMS 
and Verilog-AMS simulators (not only for electronics but also for multi-
physics problems). 

The insufficient power and generality of the former modeling languages stimulated 
the development of Modelica (as a true object-oriented, multi-physics language) 
and VHDL-AMS/Verilog-AMS (multi-physics but strongly influenced by 
electronics).  

The rapid increase in new requirements to handle the dynamics of highly 
complex, heterogeneous systems requires enhanced efforts in developing new 
language features (based on existing languages!). Especially the efficient simulation 
of hardware-software systems and model structural dynamics are yet unsolved 
problems. In electronics and telecommunications, therefore, the development of 
SystemC-AMS has been launched but these attempts are far from the multi-physics 
and multi-domain applications which are addressed by Modelica. 

gProms (general Process Modeling Systems) (Min and Pantelides 1996 [98]) 
provides a set of advanced tools for supporting model development and 
maintenance. Several techniques are provided for model validation, dynamic 
optimization, optimal experiment design, and life cycle modeling, but unfortunately 
gProms lacks support for debugging simulation models when structural or 
numerical failures occur.  

VHDL-AMS (Christen and Bakalar 1999 [22]) is the IEEE-endorsed standard 
modeling language (standard 1076.1) created to provide a general-purpose, easily 
exchangeable and open language for modern analog-mixed-signal designs. Models 
can be exchanged between all simulation tools that adhere to the VHDL-AMS 
standard. Advantages of VHDL-AMS are: 
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• Model Exchangeability. Free exchange of information between VHDL-
AMS simulation tools. 

• Multi-level modeling. Different levels of abstraction of model behavior. 
• Multi-domain modeling. Offers solutions in different application domains. 
• Mixed-signal modeling. Supports analog, digital, and mixed signal 

modeling. 
• Multiple modeling styles. Behavioral, dataflow, structural modeling 

methods. 

The χ language  (Fábián 1999 [37]) is a hybrid specification formalism, suitable for 
the description of discrete-event, continuous-time, and hybrid systems. It is a 
concurrent language, where the discrete-event part is based on Communicating 
Sequential Processes (Hoare 1985 [65]) and the continuous-time part is based on 
Differential Algebraic Equations (DAEs). Models written in the χ language can be 
executed by the χ simulator. 

2.5 Natural Semantics and the Relational Meta-
Language (RML) 

Concerning specification languages for programming language semantics, 
compiler generators based on denotational semantics (Pettersson and Fritzson 1992 
[123]) (Ringström et al. 1994 [137]), have been investigated and developed with 
some success. However this formalism has certain usability problems, and 
Operational Semantics/Natural Semantics has become the dominant formalism in 
common language semantics specification literature.  

Therefore a meta-language and compiler generator called RML (Relational Meta 
Language) (Fritzson 1998 [43], PELAB 1994-2008 [117], Pettersson 1995 [120], 
Pettersson 1999 [122]) for Natural Semantics was developed, which we have used 
extensively for full-scale specifications of languages like Java 1.2 (Holmén 2000 
[66]), C subset with pointer arithmetic, functional, and equation-based object-
oriented languages (Modelica). Generated implementations are comparable in 
performance to hand implementations. However, it turned out that development 
environment support is needed also for specification languages. Recent 
developments include a debugger for Natural Semantics specifications (Pop and 
Fritzson 2005 [127]) and (Chapter 7).  

Natural Semantics (Kahn 1988 [75]) is a specification formalism that is used to 
specify the semantics of programming languages, i.e., type systems, dynamic 
semantics, translational semantics, static semantics (Despeyroux 1984 [25], Glesner 
and Zimmermann 2004 [55]), etc. Natural Semantics is an operational semantics 
derived from the Plotkin (Plotkin 1981 [125]) structural operational semantics 
combined with the sequent calculus for natural deduction. There are few systems 
implemented that compile or interpret Natural Semantics.  
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One of these systems is Centaur (Borras et al. 1988 [15]) with its implementation of 
Natural Semantics called Typol (Despeyroux 1984 [25], Despeyroux 1988 [26]). 
This system is translating the Natural Semantics inference rules to Prolog.  

The Relational Meta-Language (RML) is an efficient implementation of Natural 
Semantics, with a performance of the generated code that is several orders of 
magnitude better than Typol. The RML language is compiled to highly efficient C 
code by the rml2c compiler. In this way large parts of a compiler can be 
automatically generated from their Natural Semantics specifications. RML is 
successfully used for specifying and generating practically usable compilers from 
Natural Semantics for Java, Modelica, MiniML (Clément et al. 1986 [23]), Mini-
Freja (Pettersson 1995 [120]) and other languages. 

2.5.1 An Example of Natural Semantics and RML  

As a simple example of using Natural Semantics and the Relational Meta-Language 
(RML) we present a trivial expression (Exp1) language and its specification in 
Natural Semantics and RML. A specification in Natural Semantics has two parts:  

• Declarations of syntactic and semantic objects involved.  
• Groups of inference rules which can be grouped together into relations.  

In our example language we have expressions built from numbers. The abstract 
syntax of this language is declared in the following way: 

in tegers: 

   

expressions (abstract syn tax): 

    :: | 1 2 | 1 2 | 1 * 2 | 1 / 2 |

v In t

e E xp v e e e e e e e e e

∈

∈ = + − −

v

 

The inference rules for our language are bundled together in a judgment  in 
the following way (here we do not present similar rules for the other operators.): 

e =>

1 1 2 2  v1+v2 v3
1 2 3

(1)   

(2)  e v e v
e e v

v v

⇒ ⇒ ⇒

+ ⇒

⇒

 

RML modules have two parts, an interface comprising datatype declarations 
(abstract syntax) and signatures of relations (judgments) that operate on such 
datatypes, followed by the declarations of the actual relations which group together 
rules and axioms. In RML, the Natural Semantics specification shown above is 
represented as follows: 
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module Exp1: 
 
  (* Abstract syntax of the language Exp1 *) 
  datatype Exp =  RCONST of real 
               |  ADD    of Exp * Exp 
               |  SUB    of Exp * Exp 
               |  MUL    of Exp * Exp 
               |  DIV    of Exp * Exp 
               |  NEG    of Exp       
  relation eval: Exp => real 
end 
(* Evalu s of
relation eval: Exp => real  = 

ation semantic  Exp1 *) 

 
 (* Evaluation of a real node is the real number itself *)  
 axiom eval(RCONST(rval)) => rval  
  

    (* Evaluation of an addition node ADD is v3, if v3 is  
       the result of adding the evaluated results of its  
       children e1 and e2. *) 

 rule  eval(e1) => v1 & eval(e2) => v2 &  v1 + v2 => v3 
       ------------------------------------------------ 
       eval( ADD(e1, e2) ) => v3 
 
 rule  eval(e1) => v1 & eval(e2) => v2 &  v1 - v2 => v3 
       ------------------------------------------------ 
       eval( SUB(e1, e2) ) => v3 
 
 rule  eval(e1) => v1 & eval(e2) => v2 &  v1 * v2 => v3 
       ------------------------------------------------ 
       eval( MUL(e1, e2) ) => v3 
 
 rule  eval(e1) => v1 & eval(e2) => v2 &  v1 / v2 => v3 
       ------------------------------------------------ 
       eval( DIV(e1, e2) ) => v3 
 
 rule  eval(e) => v & -v => vneg 
       ------------------------- 
       eval( NEG(e) ) => vneg 
 
end (* eval *) 

A proof-theoretic interpretation can be assigned to this specification. We interpret 
inference rules as recipes for constructing proofs. We wish to prove that there is a 
value  such that 1 2  holds for this specification. To prove this proposition 
we need an inference rule that has a conclusion, which can be instantiated 
(matched) to the proposition. The only proposition that matches is the second 
proposition (2), which is instantiated as follows:  

v v+ ⇒
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1 1 2 2 1 2

1 2

v v v v

v

⇒ ⇒ + ⇒

+ ⇒

v
 

To continue the proof, we need to apply the first proposition (axiom) several times, 
and we soon reach the conclusion. One can observe that debugging of Natural 
Semantics comprise proof-tree understanding. 

2.5.2 Specification of Syntax 

Regarding the specification of lexical and syntatic rules for a new language, we use 
external tools such as Lex, Yacc, Flex, Bison, etc., to generate those modules. The 
parser builds abstract syntax by calling RML-defined constructors. The abstract 
syntax is then passed from the parser to the RML-generated modules. We currently 
use the same approach for languages defined using MetaModelica. 

2.5.3 Integrated Environment for RML 

The SOSDT (Structural Operational Semantics Development Tooling) is an 
integrated environment for RML (Figure 2-12).  

Compilation

Left Side
Click goes to
Error Location

RML Console
Output of the RML compiler

Bug List
Click to go to Error Location

Project Browser
Show files and their contents 

 
Figure 2-12.  SOSDT Eclipse Plugin for RML Development.
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The SOSDT environment (Pop and Fritzson 2006 [129]) includes support for 
browsing, code completion through menus or popups, code checking, automatic 
indentation, and debugging of specifications. 

2.6 The eXtensible Markup Language (XML) 

The Extensible Markup Language (XML) (W3C [158]) is a standard recommended 
by the World Wide Web Consortium (W3C). XML is a simple and flexible text 
format derived from Standardized Generalized Markup Language (SGML) (W3C 
[163]). The XML language is widely used for information exchange over the 
Internet. The tools one can use for parsing, querying, transforming or validating 
XML documents have reached a mature state. Such tools exist both as open-source 
projects and commercial software products.   

A small example of an XML document is shown below: 
<?xml version="1.0"?> 
<!DOCTYPE persons SYSTEM "persons.dtd"> 
<persons> 

<person job="programmer"> 
  <name>John Doe</name> 
  <email> 
    grigore@none.ro
  </email> 
</person> 
 ... 
<person job="manager">  
  <comment>Classified</comment> 
</person>    

</persons>

An XML document is simply a text in which the information is marked up using 
tags. The tags are the names enclosed in angle brackets. For easy identification we 
show elements in bold face and attribute names in italics throughout the XML 
example. The information delimited by <persons> and </persons> tags is an 
XML element. As we can see, it can contain other elements called <person> that 
nests additional elements within itself.  

The attributes are specified after the tag as an unordered name/value list of 
name="value" items. In our example, the attribute job with the value 
"programmer". 

The first line states that this is an XML document. The second line expresses 
that an XML parser must validate the contents of the elements against the 
Document Type Definition (DTD) (W3C [158]) file, here named "persons.dtd". 
The DTD provides constraints for the contents much like grammars used for 
programming languages.  

mailto:grigore@none.ro


The eXtensible Markup Language (XML)   29 

There are two criteria to be met in order for an XML document to be valid. First, all 
the elements have to be properly nested and must have a start/end tag. Second, all 
the contents of all elements must obey their DTD grammar specifications. 

We will define a DTD for the above example: 
<!-- the person.dtd file  -->  
<!ENTITY % person-job-attribute  
           "job(programmer|manager) #REQUIRED"> 
<!ELEMENT persons (person*)> 
<!ELEMENT person  ((name+, email*) | comment+)> 
<!ATTLIST person 
      project CDATA #IMPLIED  
      &person-job-attribute;> 
<!ELEMENT name (#PCDATA)>  
<!ELEMENT email (#PCDATA)> 
<!ELEMENT comment (#PCDATA)>

The above DTD defines one entity, four elements, and one attribute list containing 
two attributes. The entities are underlined, bold is used for elements, and attributes 
are specified in italics. 

The entity (ENTITY) declaration defines person-job-attribute as a text 
value that can be used anywhere inside the DTD and the XML document. The XML 
parser will replace the entity with its defined text where it is used. The principal 
element (ELEMENT) declared in DTD is persons and has zero or more elements 
person nested inside. The special characters inside the element definitions are "*" 
meaning: zero or more, "|" meaning: selection – either left side or right side, "+" 
meaning: one or more. 

The attribute (ATTLIST) list defines two attributes for the person element: 
project and job. 

The project attribute can contain character data (CDATA) and is optional 
(#IMPLIED). The job attribute can only have one of the two values, either 
"programmer" or "manager".  

There is another XML document structure standard, called XML-Schema (W3C 
[167]), which is similar to DTD but is encoded in XML. This standard reconstructs 
all the capabilities of the DTD and extends them with: namespaces, context 
sensitivity, the possibility to define several root elements in the same schema, 
integrity constraints, regular expressions, sub-typing, etc. Tools for transforming 
XML-Schema representations from/to a DTD representation are available. We use 
the DTD variant in this example only because it is clearer than the too verbose 
XML-Schema. 

One can consult the World Wide Web Consortium website (W3C [158], W3C 
[167]) for more information regarding XML, DTD and XML-Schema. 

 



30   Chapter 2   Background 

2.7 System Modeling Language (SysML) 

The Unified Modeling Language (UML) has been created to assist software 
development processes by providing means to capture software system structure 
and behavior. This eventually evolved into the main standard for Model Driven 
Development.  

The System Modeling Language (SysML) (OMG [114]) is a graphical modeling 
language for systems engineering applications. SysML was developed and 
submitted by systems engineering experts, and adopted by the OMG in 2006. 
SysML is built on top of UML2.0 and tailored to the needs of system engineers by 
supporting specification, analysis, design, verification and validation of a broad 
range of systems and system-of-systems. 

The main goal behind SysML is to unify and replace different document-centric 
approaches in the system engineering field with a single systems modeling 
language. A single model-centric approach improves communication, assists to 
manage complex system design and allows its early validation and verification.  

 
Figure 2-13. SysML diagram taxonomy. 

The taxonomy of SysML diagrams is presented in Figure 2-13. The following major 
extensions compared to UML are made in SysML: 

• Requirements diagrams support requirements presentation in tabular or in 
graphical notation, allows composition of requirements and supports traceability, 
verification and “fulfillment of requirements”. This is a new type of a diagram 
added to capture system requirements. 

• Block diagrams extend the Composite Structure diagram of UML2.0. The 
purpose of this diagram is to capture system components, their parts and 
connections between parts. Connections are handled by means of connecting 
ports which may contain data, material, or energy flows. 
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• Parametric diagrams help perform engineering analysis such as performance 
analysis. Parametric diagrams contain constraint elements, which define 
mathematical equations, linked to properties of model elements. 

• Activity diagrams show system behavior as data and control flows. Activity 
diagrams are similar to Extended Functional Flow Block Diagrams (EFFBDs), 
which are already widely used by system engineers. Activity decomposition is 
supported by SysML. 

• Allocations are used to define mappings between model elements: For example, a 
certain Activity may be allocated to a Block, which implies that activity will be 
performed by the block.  

For a full description of SysML see (SysML, 2006) (OMG [114]). 

 
Figure 2-14. SysML block definitions. 
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2.7.1 SysML Block Definitions 

SysML block definitions are shown in Figure 2-14. A SysML block can include 
properties to specify block parts, values, and references to other blocks. A separate 
compartment is dedicated for each of these features. To describe the behavior of a 
block the “Operations” compartment is reused from UML and it lists operations that 
describe certain behavior. SysML defines a special form of compartment for 
constraint definitions owned by a block. The use of the “Constraint” compartment is 
optional. A “Namespace” compartment may appear if nested block definitions exist 
for a block. A “Structure” compartment may appear to show internal parts and 
connections between parts within a block definition.  

SysML defines two types of ports: standard ports and flow ports. Standard ports, 
which are reused from UML, are service-oriented ports required or provided by a 
block. Flow ports specify interaction points through which items may flow between 
blocks, and between blocks and environment. A flow port definition may include 
single item specification or complex flow specification through the 
FlowSpecification interface; flow ports define what “can” flow between the block 
and its environment. Flow direction can be specified for a flow port in SysML. 
SysML also defines a notion of Item flows that specify “what” does flow in a 
particular usage context.  

2.8 Component Models for Invasive Software 
Composition 

The idea that software should be built from existing components appeared in the 
software community at the end of the 60s, first formulated by Douglas McIlroy 
(McIlroy 1968 [96]) and had considerable influence in the software industry.  

The most important result of dividing software into relatively independent and 
adaptable parts is the increased reusability in software development. "Reuse is the 
use of existing software components in a new context, either elsewhere in the same 
system or in another system" (Marciniak 1994 [90]). Programmers want a 
methodology that defines how to reintegrate previously created software into a new 
context of development, to create software systems from existing software rather 
than building them from scratch. 

Software components are the basic units for software composition. They are 
designed to be composed; that is, their structure and behavior shall follow specific 
rules. "A software component is a software element that conforms to a component 
model and can be independently deployed and composed without modification 
according to a composition standard." (Heineman and Councill 2001 [64]). 

A component model defines the external appearance of components that build a 
system. The component model defines the functionality of the components to be 
used in composition by explicitly describing component interfaces. A well-designed 
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component model provides support for several important properties of its 
components, such as: 

1. Substitution: one component can be replaced by another that fulfills at least 
the same syntactic or semantic conditions.  

2. Adaptation: the ability to customize and configure components for different 
reuse contexts. 

3. Extension: when new system requirements appear, the extension of existing 
components should be possible. 

 

 
Figure 2-15. Black-box vs. Gray-box (invasive) composition. Instead of  

generating glue code, composers invasively change the components.

A component model is the core of a component system. In a typical component 
system, the component model describes components as black boxes, i.e., 
encapsulated binary code components with completely hidden implementations. 
The black-box composition method includes various transformations, like 
adaptation and glue code generation, which essentially compose black boxes 
without changing their actual content. 

However, in Chapter 13 of this thesis we consider components containing 
fragments, i.e., pieces of code. As in black-box systems, the contents of the 
components are hidden under a composition interface. This method is different 
from black-box composition because the composition operators can invasively 
change the component fragments at predefined points of variability. This reuse 
abstraction is called grey-box composition and the composition of grey-box 
components is denoted as invasive software composition (see Figure 2-15). 

Invasive software composition is a composition technology based on 
parameterization and extension of grey-box components (Aßmann 2003 [5]). For a 
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terminological distinction, we call invasive components fragment boxes; the 
variability points hooks, and the invasive composition operators composers. A 
typical fragment box consists of a set of fragments and an invasive composition 
interface, defined by hooks. Hooks can be of two types: declared hooks, defined by 
the programmer using some kind of markup and implicit hooks defined by the 
language structure. 

 
Figure 2-16. Invasive composition applied to hooks result  

in transformation of the underlying abstract syntax tree.

Since the composers of an invasive composition program manipulate fragment 
components, i.e., some other programs, an invasive composition implies meta-
programming. The changes resulting from composition on fragment boxes apply 
directly to the corresponding abstract syntax tree by attaching and removing 
fragments as presented in Figure 2-16.  

The COMPOST system (Aßmann and Ludwig 2005 [7]) provides invasive 
software composition of Java (Aßmann 2003 [5]) and ModelicaXML components 
(Chapter 12), (Pop and Fritzson 2003 [126]). The composition library supports 
generics (Musser and Stepanov 1988 [104]), mixin-ins (Bracha and Cook 1990 
[17]), connectors (Aßmann et al. 2000 [6]), aspects (Kiczales et al. 1997 [78]) and 
views (Aßmann 2003 [5]) by invasively transforming language components. 

Automatic derivation of a component model from language specification in 
Natural Semantics is presented in (Savga et al. 2004 [144]). 

Using the Extensible Markup Language (XML) (W3C [158]), and the XML 
Schema (W3C [167]) to model abstract syntax trees (Attali et al. 2001 [8], Attali et 
al. 2001 [9], Badros 2000 [11], Schonger et al. 2002 [145]) of programming 
languages is becoming an interesting alternative for having easy access to the 
structure of programs (in our case models) without the need for a specific parser. 
We used this approach when designing and defining the meta-model for the 
Modelica language presented in this thesis. In order to compose and transform 
models defined by our meta-model we employ invasive software composition 
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(Aßmann 2003 [5]), which is a grey-box component composition. To drive the 
composition we have designed a component model for our meta-model within the 
COMPOST system. 

2.9 Integrated Product Design and Development 

In the area of model-driven product design using modeling and simulation we focus 
on the integration of the Modelica language with conceptual modeling tools based 
on Function-Means tree decomposition (Andreasen 1980 [3]). 

 
Figure 2-17. Integrated model-driven product design and development framework. 

Designing products is a complex process. Highly integrated tools are essential to 
helping a designer to work efficiently. Designing a product includes early design 
phase product concept modeling and evaluation, physical modeling and simulation 
and finally the physical product realization (Figure 2-17). For physical modeling 
and simulation available tools provide advanced functionality. However, the 
integration of such tools with conceptual modeling tools is a resource consuming 
process that today requires large amounts of manual, and error prone work. Also, 
the number of physical models available to the designer in the product concept 
design phase is typically quite large. This has an impact on the selection of the best 
set of component choices for detailed product concept simulation.  

To address these issues we have developed a framework (Chapter 11) for 
product development based on an XML meta-model (Chapter 12), (Pop and 
Fritzson 2003 [126]) of Modelica and its representation in a Modelica Database 
(Johansson et al. 2005 [74], Pop et al. 2004 [132]). The product concept design of 
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the product development process is based on Function-Means tree decomposition 
and is implemented in the FMDesign component (Figure 2-17). 

To provide flexibility of the product design framework we have addressed the 
composition and transformation of Modelica models in the COMPOST framework 
(Chapter 13), (Pop et al. 2004 [133]).  

Our framework for model-driven product design and development has 
similarities with Schemebuilder (Bracewell and D.A.Bradley 1993 [16]). The 
Modelith framework (Johansson et al. 2002 [72], Larsson et al. 2002 [81]) also 
employs an XML-based model representation for transformation and exchange in 
physical system modeling. 

However, our work is more oriented towards the design of advanced complex 
products that require systems engineering, and targeted to the simulation modeling 
language Modelica. The Modelica language has a more expressive power in 
modeling dynamic systems and system architectures, than many of the tools for 
systems engineering that are currently used. Also, meta-modeling and invasive 
software composition methods are considered for automatic model composition and 
configuration. Tight integration of conceptual modeling tools with modeling and 
simulation tools is proposed. For details on Systems Engineering, the reader is 
referred to the International Council on Systems Engineering Website (INCOSE 
1990-2008 [70]). 

 



Part II 
 
 
Extending EOO Languages for 
Safe Symbolic Processing

 





Chapter 3  
 
 
Extending Equation-Based Object-
Oriented Languages 

For a long time, one of the major research goals in the computer science research 
community has been to raise the level of abstraction and expressive power of 
specification languages/programming languages. Many specification languages and 
formalisms have been invented, but unfortunately very few of those are practically 
useful, due to limited computer support for these languages and/or inefficient 
implementations. Thus, one important goal is executable specification languages of 
high abstraction power and with high performance, good enough for practical usage 
and comparable in execution speed to hand implementations of applications in low-
level languages such as C or C++. In the background chapter we described our 
work in creating efficient executable specification languages for two application 
domains. The first area is formal specification of programming language semantics, 
whereas the second is formal specification of complex systems for which an object-
oriented mathematical modeling language called Modelica was developed, 
including architectural support for components and connectors. Based on these 
efforts, we designed a unified equation-based mathematical modeling language that 
can handle modeling of items as diverse as programming languages, computer 
algebra, event-driven systems, and continuous-time physical systems. The key 
unifying feature is the notion of equation. In this chapter we describe the design and 
implementation of the unified language. A prototype compiler implementation is 
already up and running, and used for substantial applications. 

3.1 Introduction 

About sixteen years ago, our research group has selected two application domains 
for research on high-level specification languages: 

• Specification languages for programming language semantics. Much work 
has been done in this area, but there is still no standard class of compiler-
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compiler tools around, as successful as parser generators based on 
grammars in BNF form like lex (flex), yacc (bison), ANTLR, etc. 

• Equation-based specification languages for mathematical modeling of 
complex (physical) systems. 

The purpose of our work is to unify the languages developed in these two domains 
into a new language.  The main goal of this work is the design and development of 
a general executable mathematical modeling and semantics meta-modeling 
language. This language should have a clean semantics as in the case of Modelica 
and Natural Semantics (RML), and should be compiled to code of high 
performance. This language will allow expressing mathematical models but also 
meta-models and meta-programs that specify composition of models, 
transformation of models, model constraints, etc. This language is based on 
Modelica extended with several new language constructs that allow program 
language specification. The unified language is called MetaModelica. 
MetaModelica – a Unified Equation-Based Modeling Language 

The idea to define a unified equation-based mathematical and semantical 
modeling language started from the development of the OpenModelica compiler 
(Fritzson et al. 2002 [46]). The entire compiler was generated from a Natural 
Semantics specification written in RML. The open source OpenModelica compiler 
has its users in the Modelica community which have detailed knowledge of 
Modelica but very little knowledge of RML and Natural Semantics. In order to 
allow people from the Modelica community to contribute to the OpenModelica 
compiler we retargeted the development language from RML to MetaModelica, 
which is based on the Modelica language with several extensions. We already 
translated the OpenModelica compiler from RML to the MetaModelica using an 
automated translator (Carlsson 2005 [21]) implemented in RML. We also 
developed a compiler which can handle the entire OpenModelica compiler 
specification (~140000 lines of code) defined in MetaModelica. An evaluation of 
the performance of the compiler and the generated code is presented in Chapter 4.  

The basic idea behind the unified language is to use equations as the unifying 
feature. Most declarative formalisms, including functional languages, support some 
kind of limited equations even though people often do not regard these as equations, 
e.g. single-assignment equations.  

Using the meta-programming facilities, common tasks like generation, 
composition, and querying of Modelica models can be automated.  

The MetaModelica language inherits all the strong component capabilities of 
Modelica. Components can be reused in different contexts because the causality is 
not fixed in equations and is up to the compiler to decide it. 

3.1.1 Evaluator for the Exp1 Language in the Unified Language 

Below we give a very simple example of the meta-modeling and meta-
programming capabilities of the MetaModelica language. The semantics of the 



Introduction   41 

operations in the small expression language Exp1 follows below, expressed as an 
interpretative language specification in MetaModelica in a style close to Natural 
and/or Operational Semantics, see Exp1 specified in RML in Section 2.5.1. Such 
specifications typically consist of a number of functions, each of which contains a 
match expression with one or more cases, also called rules. In this simple example 
there is only one function, here called eval, since we specify expression 
evaluation.  

function eval 
  input  Exp  in_exp; 
  output Real out_real; 
algorithm 
 out_real := 
 match in_exp 
  local Real v1,v2,v3;  Exp e1,e2; 
  case RCONST(v1) then    v1;
  case ADD(e1,e2) equation  
    v1 = eval(e1);  v2 = eval(e2); v3 = v1 + v2;  then v3; 
  case SUB(e1,e2) equation 
    v1 = eval(e1);  v2 = eval(e2); v3 = v1 - v2;  then v3; 
  case MUL(e1,e2) equation 
    v1 = eval(e1);  v2 = eval(e2); v3 = v1 * v2;  then v3; 
  case DIV(e1,e2) equation 
    v1 = eval(e1);  v2 = eval(e2); v3 = v1 / v2;  then v3; 
  case NEG(e1) equation 
      v1 = eval(e1); v2 =  -v1;  then v2; 
  end match; 
end eval; 

As usual in Modelica the equations are not directional, e.g. the two equations v1 = 
eval(e1) and eval(e1) = v1 are equivalent. The compiler will select one of the 
forms based on input/output parameters and data dependencies. 

There are some design considerations behind the above match-expression 
construct that may need some motivation. 

• Why do we have local variable declarations within the match-expression? 
The main reason is clear and understandable semantics. In all three usage 
contexts (equations, statements, expressions) it should be easy to understand 
for the user and for the compiler which variables are unknowns (i.e., 
unbound local variables) in pattern expressions or in local equations. 
Another reason for declaring the types of local variables is better 
documentation of the code – the modeler/programmer is relieved of the 
burden of doing manual type-inference to understand the code. 

• Why the then keyword before the returned value? The code becomes easier 
to read if there is a keyword before the returned value-expression. Note that 
most functional languages use the in keyword instead in this context, which 
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is less intuitive, and would conflict with the array element membership 
meaning of the Modelica in keyword. 

3.1.2 Examples of Pattern Matching 

A pattern matching construct is useful not only for language specification (meta-
programming) but also as a tool to write functional-style programs. We start by 
giving an example of the latter usage. 

function fac 
  input Integer inExp; 
  output Integer outExp; 
algorithm 
  outExp := match (inExp) 
    case (0) then 1; 
    case (n) then  
     if n>0  
     then n*fac(n-1)   

        else fail(); 
  end match; 
end fac; 

The above function will calculate the factorial value of an integer. If the number 
given as argument to the function is less than zero then the function will fail. 

A fundamental data structure in MetaModelica is the union type which is a 
collection of records containing data, see example below.  

uniontype UT 
 record R1 
   String s; 
 end R1; 

 record R2 
   R
 end R2; 

eal r; 

end UT; 

The pattern matching construct makes it possible to match on the different records. 
An example is given below.  

function elabExp  
  input Env.Env inEnv; 
  input Absyn.Exp inExp; 
  output Exp.Exp outExp; 
  output Types.Properties outProperties; 
algorithm  
  (outExp,outProperties):= match (inEnv,inExp) 
    local ... 
    case(_,Absyn.INTEGER(value=x))  
 local Integer x; 
 then (Exp.ICONST(x),Types.PROP(Types.T_INTEGER({})));   
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 ...        
    case(env,Absyn.CREF(cRef = cr)) 
      equation  
        (exp,prop) = elabCref(env,cr); 
      then (exp,prop); 
 ... 
    case(env,Absyn.IFEXP(ifExpe1,trueBranch=e2,eBranch=e3)) 
      local p.Exp e;  Ex
      equation  
        (e1_1,prop1)=elabExp(env,e1); 
        (e2_1,prop2)=elabExp(env,e2); 
        (e3_1,prop3)=elabExp(env,e3); 
        (e,prop)=elabIfexp(env ,e1_1,prop1, e2_1, prop2, 
           e3_1,prop3); 
      then (e,prop); 
  
end elabExp; 

end match; 

The function elabExp is used for elaborating expressions (type checking, constant 
evaluation, etc.). The union type Absyn.Exp contains a record representing an 
integer, a record representing a component reference (i.e., variable or constant), and 
so on. There is an environment union type, Env.Env, for component lookups. 

Another situation where pattern matching is useful is in list processing. Lists do 
not exist in Modelica but are an important construct in MetaModelica. The 
following function selects an element that fulfills a certain condition from a list. 
The matchcontinue construct is used in this case instead of match. The 
matchcontinue construct uses local backtracking to select the correct case:  

• The first case that matches the given value is selected and evaluated 
(marked case (a) in the example);  

• If during the execution of case (a) the equation true = cond(x); fails 
because cond(x) returns false all the variables bound previously become 
un-bound and the next case marked case (b) is selected for execution. 

• If case (b) fails too then the entire listSelect function fails. 
function listSelect 
  input list<Type_a>       inTypeALst; 
  input Func_anyTypeToBool inFunc; 
  output list<Type_a>      outTypeALst; 
 public 
  replaceable type Type_a constrainedby Any;  
  partial function Func_anyTypeToBool 
    input Type_a inTypeA; 
    output Boolean outBoolean; 
   Func_
algorithm  

end anyTypeToBool; 

  outTypeALst:= 
  matchcontinue (inTpeALst,inFunc) 
  local  
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    list<Type_a> xs_1,xs; Type_a x; 
    Func_anyTypeToBool cond; 
  case ({},_) then {};  
  case xs),cond) // case (a)  ((x :: 
    equation  
      true = cond(x); 
      xs_1 = listSelect(xs, cond); 
  then (x :: xs_1);   
  case ((x :: xs),cond) // case (b) 
    equation  
      false = cond(x); 
      xs_1 = listSelect(xs, cond); 
    then xs_1; 
  end matchcontinue; 

end listSelect; 

The symbol :: is just syntactic sugar for the cons operator. The function goes 
through the list one element at the time and if the condition is true the element is put 
on a new list and otherwise it is discarded. Another example of pattern matching 
with lists is given below. The function listThread takes two lists (of the same 
type) and interleaves them together. 

function listThread    
  input list<Type_a> inTypeALst1; 
  input list<Type_a> inTypeALst2; 
  output list<Type_a> outTypeALst; 
  replaceable type Type_a constrainedby Any; 
algorithm  
  outTypeALst:= 
  matchcontinue (inTypeALst1,inTypeALst2) 
    local 
      list<Type_a> r_1,c,d,ra,rb; 
      Type_a fa,fb; 
    case ({},{}) then {};  
    case ((fa :: ra),(fb :: rb)) 
      equation  
        r_1 = listThread(ra, rb); 
        c = (fb :: r_1); 
        d = (fa :: c); 
      then d; 
  end matchcontinue; 

end listThread; 

Yet another application for pattern matching is walking over class hierarchies. 
Modelica is an object-oriented language and one can use pattern matching to 
explore a hierarchy of classes  as presented in (Emir et al. 2007 [36]). Thus we 
would like to be able to write something like this: 

record Expression   
  ..
end Expression; 

. 
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// Defining new expressions  
record NUM  
  extends Expression; 
 
  Integer value; 
end NUM; 
 
record R   VA
  extends Expression; 
 
  Integer value; 
end VAR; 
 
record MUL  
  extends Expression; 
 
  Expression left;  
  Expression right;  
end MUL; 
 
matchcontinue(inExp) 
  case (NUM(x)) ... 
 
  case (VAR(x)) ... 
 
  case (MUL(x1,x2)) ... 
 
end matchcontinue; 

Here we could use the fact that MUL extends Expression when we do the pattern 
matching and in the static type checking. However, there are difficulties with this 
approach. A discussion about these difficulties is given in the pattern-matching 
section of this chapter (section 3.5). 

3.1.3 Language Design 

In the next sections we present the MetaModelica language design. The equations 
types of the unified language are presented together with pattern-matching features 
and exception handling. 

3.2 Equations 

The following sections presents the kinds of equations already present in Modelica 
and detail the addition of the equations that support the definition of semantic 
specifications. 
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3.2.1 Mathematical Equations 

Mathematical models almost always contain equations. There are basically four 
main kinds of mathematical equations in Modelica which we exemplify below 
expressed in traditional mathematical syntax.  

Differential equations contain time derivatives such as dt
dx , usually denoted : x&

3+⋅= xax&  (1) 

Algebraic equations do not include any differentiated variables: 
222 Lyx =+  (2) 

Partial differential equations also contain derivatives with respect to other variables 
than time: 

2

2

z
a

t
a

∂
∂

=
∂
∂  (3) 

Difference equations express relations between variables, e.g. at different points in 
time: 

2)(3)1( +=+ txtx  (4) 

3.2.2 Conditional Equations and Events 

Behavior can develop continuously over time or as discrete changes at certain 
points in time, usually called events. It is possible to express events and discrete 
behavior solely based on conditional equations. An event in Modelica is something 
that happens that has the following four properties: 

• A point in time that is instantaneous, i.e., has zero duration. 
• An event condition that switches from false to true for the event to happen. 
• A set of variables that are associated with the event, i.e., are referenced or 

explicitly changed by equations associated with the event. 
• Some behavior associated with the event, expressed as conditional 

equations that become active or are deactivated at the event. Instantaneous 
equations are a special case of conditional equations that are active only at 
events. 

Modelica has several constructs to express conditional equations, e.g. if-then-else 
equations for conditional equations that are active during certain time durations, or 
when-equations for instantaneous equations. 
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time event 1 event 2 event 3

y 

z 

y,z 

 
Figure 3-1. A discrete-time variable z changes value only at event instants, whereas 

continuous-time variables like y may change both between and at events.

3.2.3 Single-Assignment Equations 

A single-assignment equation is quite close to an assignment, e.g.: 
x = eval_expr(env, e); 

but with the difference that the unbound variable (here x) which obtains a value by 
solving the equation, only gets its value once, whereas a variable in an assignment 
may obtain its value several times, e.g.: 

x := eval_expr(env, e); 
x := eval_expr2(env, x); 

3.2.4 Pattern Equations in Match Expressions  

In this section we present our addition to the Modelica language which allows 
definitions of semantic specifications. The new language features are pattern 
equations, match expressions and union datatypes. 

Pattern equations are a more general case than single-assignment equations, e.g.: 
Env.BOOLVAL(x,y) = eval_something(env, e); 

Unbound variables get their values by using pattern-matching (i.e., unification) to 
solve for the unbound variables in the pattern equation. For example, x and e might 
be unbound and solved for in the equations, whereas y and env could be bound and 
just supply values.  
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The following extension to Modelica is essential for specifying semantics of 
language constructs represented as abstract syntax trees: 

• Match expressions with pattern-matching case rules 
• Local declarations 
• Local equations. 

It has the following general structure: 
match expression  optional-local-declarations 
 
  case pattern-expression opt-local-declarations 
    optional-local-equations then value-expression; 
  ... 
  else optional-local-declarations  
    optional-local-equations then value-expression; 
 
end match; 

The then keyword precedes the value to be returned in each branch. The local 
declarations started by the local keyword, as well as the equations started by the 
equation keyword are optional. There should be at least one case...then 
branch, but the else-branch is optional. 

A match expression is closely related to pattern matching in functional 
languages, but is also related to switch statements in C or Java. It has two important 
advantages over traditional switch statements: 

• A match expression can appear in any of the three Modelica contexts: 
expressions, statements, or in equations. 

• The selection in the case branches is based on pattern matching, which 
reduces to equality testing in simple cases, but is unification in the general 
case. 

Local equations in match expressions have the following properties: 

• Only algebraic equations are allowed as local equations, no differential 
equations. 

• Only locally declared variables (local unknowns) declared by local 
declarations within the case expression are solved for, or may appear as 
pattern variables. 

• Equations are solved in the order they are declared (this restriction may be 
removed in the future, allowing more general local algebraic systems of 
equations). 

• If an equation or an expression in a case-branch of a match-expression fails, 
all local variables become unbound, and matching continues with the next 
branch. 
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3.3 High-level Data Structures 

To support simple meta-modeling features the MetaModelica extends the Modelica 
language with new constructs which we present in the following.  

3.3.1 Union-types 

To facilitate meta-modeling of abstract syntax trees we also need to introduce the 
possibility to declare recursive tree data structures in Modelica, e.g.: 

uniontype Exp 
  record RCONST Real x1; end RCONST; 
  record PLUS  Exp x1; Exp x2; end PLUS; 
  record SUB   Exp x1; Exp x2; end SUB; 
  record MUL   Exp x1; Exp x2; end MUL; 
  record DIV   Exp x1; Exp x2; end DIV; 
  record NEG   Exp x1;         end NEG; 
end Exp; 

A small expression tree, of the expression 12+5*13, is depicted in Figure 3-2. 
Using the record constructors PLUS, MUL, RCONST, this tree can be constructed by 
the expression PLUS(RCONST(12), MUL( RCONST(5), RCONST(13)))

PLUS 

  

MUL RCONST

RCONST RCONST 12 

5 13 
 

Figure 3-2. Abstract syntax tree of the expression 12+5*13

The uniontype construct has the following properties: 

• Union types can be recursive, i.e., reference themselves. This is the case in 
the above Exp example, where Exp is referenced inside its member record 
types. 

• Record declarations declared within a union type are automatically inherited 
into the enclosing scope of the union type declaration. 

• Union types can be polymorphic  
• A record type may currently only belong to one union type. This restriction 

may be removed in the future, by introducing polymorphic variants. 

This is a preliminary union type design, which however is very close (just different 
syntax) to similar datatype constructs in declarative languages such as Haskell, 
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Standard ML, OCaml, and RML. The union types can model any abstract syntax 
tree while the match expressions are used to model the semantics, composition or 
transformation of the specified language. 

3.3.2 Lists, Tuples and Option Types 

Besides union-types, the MetaModelica language extends Modelica with new high-
level types that improve the meta-modeling capability of the language. All these 
constructs can be type-parameterized.  

3.3.2.1 Lists 

Lists are very useful data structures that are highly used in imperative or functional 
programming. The syntax of a list is a comma-separated list of values or variables 
of the same type, e.g. {..., ...}. The following is a list of integers, using the list 
data constructor: 

{1, 2, 3, 4} 

The declaration of list variables uses a Java like syntax. For example a variable with 
its value described by the list above has the following declaration: 

list<Integer> varName; 

In MetaModelica the list constructor {..., ...} is overloaded because the 
Modelica language already contains the same syntax for array construction. The 
MetaModelica compiler prototype deduces from the context and the variable 
declarations if the constructor refers to an array or a list. In the pattern matching 
context, the list constructor is used for the list decomposition. 

List can also be constructed/deconstructed using the cons operator :: that 
constructs/deconstructs a list from its head and its tail (the rest of the list): 

1::{2, 3, 4} = {1, 2, 3, 4}; 

The nil keyword can be used to specify an empty list and is equivalent to {}. 

3.3.2.2  Tuples 

Tuples are like records, but without field names. They can be used directly, without 
previous declaration of a corresponding tuple type. The syntax of a tuple is a 
comma-separated list of values or variables, e.g. (..., ..., ...). The following is a tuple 
of a real value and a string value, using the tuple data constructor: 

(3.14, "this is a string") 

The declaration of tuple variables uses a Java like syntax. For example a variable 
with its value described by the tuple above has the following declaration: 

tuple<Real, String> varName; 
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Tuples already existed in a limited way in previous versions of Modelica since 
functions with multiple results are called using a tuple for receiving results, e.g.: 

(a,b,c) := foo(x, 2, 3, 5); 

In the pattern matching context the syntax that constructs the tuple,. reverses its 
semantics and it used to access the values of its elements.  

3.3.2.3 Options 

Option types are used to model optional constructs. The option types are similar to 
C/C++ or Java null values. The values of a variable of this type can be NONE or 
SOME(value): 

SOME(3.14); 
NONE(); 

The declaration of option variables uses a Java like syntax. For example a variable 
with its value described by the option above has the following declaration: 

Option<Real> varName; 

The SOME(...) and NONE() constructors are also used for decomposing option 
values in the pattern matching context. An option type can also be viewed as a 
union type consisting of two records SOME (with one field) and NONE (with no 
fields).  

3.4 Solution of Equations 

The process of solving systems of equations is central for the execution of equation-
based languages. For example: 

• Differential equations are solved by numeric differential equation solvers. 
• Differential-algebraic equations are solved by numeric DAE solvers. 
• Algebraic equations are solved by symbolic manipulation and/or numeric 

solution 
• Single-assignment equations are solved by performing an assignment. 
• Pattern equations are solved by the process of unification which assigns 

values to unbound variables in the patterns. 

The first three solution procedures are used in current Modelica. By the addition of 
local equations in match expressions to be solved at run-time, we generalize the 
allowable kinds of equations in Modelica. 
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3.5 Pattern Matching 

In this section we present the design of the pattern matching expression construct. 
Pattern matching expressions may occur where expressions can be used in Modelica 
code. This section is partially based on (Stavåker et al. 2008 [149]). 

Pattern matching is a well-known, powerful language feature found in functional 
programming languages. In this section we present the design of pattern matching 
for Modelica. A pattern matching construct is useful for classification and 
decomposition of (possibly recursive) hierarchies of components such as the union 
type structures in the MetaModelica language extension. We argue that pattern 
matching not only is useful for language specification (as in the MetaModelica 
case) but also to write concise and neat functional-style programs. One useful 
application is in list processing (lists are currently missing from Modelica but are 
part of MetaModelica). Other possible applications are in the generation of models 
from other models, e.g. the generation of models with uncertainty equations or 
models with different parameters. Another application is the generation of 
documentation from models and checking of guidelines or certain properties of 
models. 

Pattern matching is a general operation that is used in many different application 
areas. Pattern matching is used to test whether constructs have a desired structure, 
to find relevant structure, to retrieve the aligning parts, and to substitute the 
matching part with something else.  

In term pattern matching terms are matched against incomplete terms with 
variables and in, for instance, string pattern matching finite strings are matched 
against regular expressions (a typical application would be searching for 
substrings). Term pattern matching (which we will only consider henceforth) can be 
stated as: given a value v and patterns p1,…,pN is v an instance of any of the p’s? 

Language features for pattern matching (over terms) are available in all 
functional programming languages, for instance Haskell (Hudak 2000 [68]), OCaml 
(Leroy et al. 2007 [84]), and Standard ML (Milner et al. 1997 [97]). However, 
pattern matching is currently missing from state-of-the-art object-oriented equation-
based (EOO) languages. Pattern matching features are also rare in imperative 
object-oriented languages even though some research has been carried out (Liu and 
Myers 2003 [87], Moreau et al. 2003 [102], Odersky and Wadler 1997 [110], 
Zenger and Odersky 2001 [176]). In (Liu and Myers 2003 [87]), for instance, the 
JMatch language which extends Java with pattern matching is described.  

The language described in (Emir et al. 2007 [36]) promotes the use of pattern 
matching constructs in object-oriented languages as a means of exploring class 
hierarchies. One could for instance apply the visitor pattern to solve the same 
problem but as (Odersky 2006 [109]) notes this requires a lot of code scaffolding 
and nested patterns are not supported. 

The pattern matching construct for Modelica was first presented in a paper on 
Modelica meta-programming extensions (Pop and Fritzson 2006 [130]).  
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3.5.1 Syntax 

We begin by giving the grammar rules. 
match_keyword : 
    match 
  | matchcontinue  
 
match_expression : 
    match_keyword expression  
    [ opt_string_comment ] 
    local_element_list 
    case_list case_else 
    end match_keyword ";" 
 
case_list : 
    case_stmt case_list 
  | case_stmt  
 
equation_clause_case : 
    equation equation_annotation_list  
  | (* empty *)  
 
case_stmt : 
    case seq_pat  
    [ opt_string_comment ]      
    local_element_list  
    equation_clause_case  
    then expression ";" 
 
case_else : 
    else [ opt_string_comment ]     
    local_element_list    
    equation_clause_case  
    then expression ";"  
  | (* empty *)      
local_element_list : 
    local element_list  
  | (* empty *) 

The grammar rules that have been left out are rather self-describing (except the rule 
for patterns, seq_pat, which will not be covered here). An 
equation_annotation_list, for instance, is a list of equations. Only local, 
time-independent equations may occur inside a pattern matching expression and 
this must be checked by the semantic phase of the compiler. The difference between 
a pattern matching expression with the keyword match and a pattern matching 
expression with the keyword matchcontinue is in the fail semantics. When the 
matchcontinue keyword is used a failure within the case statement execution will 
continue with the execution of the next case that matches the same pattern. When 
the match keyword is used, a failure in any of the cases will trigger the failure of 
the entire function. The syntax can also be given (approximately) as follows. 
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matchcontinue (<var-list>) 
  local 
    <var-decls> 
    ... 
  case (<pat-expr>)   
  local 
    <var-decls> 
  equation 
    <equations> 
  then <expr>; 
  ... 
end matchcontinue;

The <pat-expr> expression is a sequence of patterns. A pattern may be: 

• A wildcard pattern, denoted _. 
• A variable, such as x. 
• A constant literal of built-in type such as 7 or true. 
• A variable binding pattern of the form x as pat.  
• A constructor pattern of the form C(pat1,…,patN), where C is a record 

identifier and pat1,…,patN are patterns. The arguments of C may be named 
(for instance field1=pat1) or positional but a mixture is not allowed. We 
may also have constructor patterns with zero arguments (constants). 

3.5.2 Semantics 

The semantics of a pattern matching expression is as follows: If the input variables 
match the pattern-expression in a case-clause, then the equations in this case-clause 
will be executed and the matchcontinue expression will return the value of the 
corresponding then-expression. The variables declared in the uppermost variable 
declaration section can be used (as local instantiations) in all case-clauses. The local 
variables declared in a case-clause may be used in the corresponding pattern and in 
the rest of the case-clause. The matching of patterns works as follows given a 
variable v. 

• A wildcard pattern, _, will succeed matching anything. 
• A variable, x, will be bound to the value of v. 
• A constant literal of built-in type will be matched against v.  
• A variable binding pattern of the form x as pat: If the match of pat 

succeeds then x will be bound to the value of v.  
• A constructor pattern of the form C(pat1, …, patN): v will be matched 

against C and the sub-patterns will be matched (recursively) against parts of 
v. 
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3.5.3 Discussion on Type Systems 

Modelica features a structural type system (Modelica.Association 2007 [100]). 
Another class of type systems is nominal type systems. In a structural type system 
two types are equal if they have the same structure and in a nominative type system 
this is determined by explicit declarations or the name of the types. Consider the 
following two records: 

record REC1  
  I
end REC1; 

nteger int1, int2;  

 
record REC2 
  nteger int1, int2; I
end REC2; 

In a structural type system these two types would be considered equal since they 
have the same components. In a nominative type system, however, they would not 
be equal since they do not have the same names. Also in a nominal type system a 
type is a subtype of another type only if it is explicitly declared to be so (nominal 
subtyping). Consider the following three records. 

record A 
  Integer B, C; 
end A; 
 
record E1 
  Integer B, C, D; 
end E1; 
 
record E2 
  extends A; 
  I
end E2; 

nteger D; 

In a structural type system record E1 would be a subtype of record A while in a 
nominative type system this would not be the case. Record E2, however, would be 
considered to be a subtype of record A in a nominative type system since an 
inheritance relation is explicitly declared. Java is an example of a language that uses 
nominative typing while C, C++, and C# use both nominative and structural (sub)-
typing (Pierce 2002 [124]). 

The typing rules in Modelica have to be augmented with nominal type system 
rules when typing pattern matching constructs. This is rather easy to enforce as we 
know that the records appearing in pattern matching should be part of a uniontype. 
When checking if a record is a subtype of another record and any of them appear in 
a uniontype then the subtyping rule will succeed only if they have the same name 
(they are equivalent) or if there is a explicit inheritance relation between them. 
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3.6 Exception Handling 

Any mature modeling and simulation language should provide support for error 
recovery. Errors might always appear in the runtime of such languages and the 
developer should be able to specify alternatives when failures happen. In this 
section we present the design of exception handling for Modelica. The next chapter 
presents the implementation of exception handling. To our knowledge this is the 
first approach of integrating equation-based object-oriented languages (EOO) with 
exception handling. 

According to the terminology defined in IEEE Standard 100 (IEEE 2000 [69]), 
we define an error to be something that is made by humans. Caused by an error, a 
fault (also bug or defect) exists in an artifact, e.g. a model. If a fault is executed this 
results in a failure, making it possible to detect that something has gone wrong.  

Approaches to statically prevent and localize faults in equation-based object-
oriented modeling languages are presented in (Bunus 2004 [19]) and (Broman 2007 
[18]). However, here we focus on language mechanisms for dynamically handling 
certain classes of faults and exceptional conditions within the application itself. 
This is known as exception handling. An exception is a condition that changes the 
normal flow of control in a program. 

Language features for exception handling are available for most modern 
programming languages, e.g. object oriented languages such as Java (Gosling et al. 
2005 [62]), C++ (Stroustrup 2000 [150]), and functional languages such as Haskell 
(Hudak 2000 [68]), OCaml (Leroy et al. 2007 [84]), and Standard ML (Milner et al. 
1997 [97]). However, exception handling is currently missing from object-oriented 
equation-based (EOO) languages. 

A short sketch of the syntax of exception handling for Modelica was presented 
in a paper on Modelica meta-programming extensions (Fritzson et al. 2005 [51]), 
but the design was incomplete, not implemented, and no further work was done at 
that time. 

The design of exception handling capabilities in Modelica is currently work in 
progress (Pop et al. 2008 [134]). The following constructs are being proposed: 

• A try...catch statement or expression. 
• A throw (...) call for raising exceptions. 

We have tried to keep the design of syntax and semantics of exception handling in 
Modelica as close as possible to existing language constructs from C++ and Java, 
while being consistent with Modelica syntax style. 

3.6.1 Applications of Exceptions 

In this section we provide examples of exception handling usefulness. There are 
three contexts in which exceptions can be thrown and caught: expression level, 
algorithm level, and equation level. 
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import Modelica.Exceptions=Exn; 

function log 
 input Real x; 
   R
algorithm 

output eal y; 

 y :=  
  if x <= 0  
 then  
  throw (Exn.InvalidArgumentException( 
         message="Logarithm is undefined for ...")) 
 else  
   
end log; 

 Modelica.Math.log(x); 

The function log above will throw an exception if it is provided with an invalid 
argument. This is not only useful for mathematical functions, but also for functions 
(i.e. like the ones in the Modelica.Utilities package) that deal with errors due 
to the operating system. A standard hierarchy of exceptions in common for all tools 
could be defined in the Modelica Standard Library for all the exception categories 
needed. Depending on the simulation runtime implementation (i.e., language of 
choice) of the Modelica tool implementation, exceptions could be translated from 
Modelica to the runtime and back.  

A model that uses the try-catch construct in the expression and equation 
contexts is presented below: 

 
model Test 
 // try to read a value from file 
  // and if it fails just give it 
  // a default value. 
  parameter Real p= 
       try  
        RealParameter("file.txt","p")  read
       catch(Exn.IOException e) 
        0 
       end try; 
 Real x; 
  Real y; 
equation 
  try 
     log(x); y =
  catch(Exn.InvalidArgumentException e) 
    // terminate the simulation with  
    // a message on what went wrong 
    terminate(e.message); 
  end try;     
end Test; 
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In the Test model examples of exception handling in expressions and equations are 
shown. In the case of exception handling in equations the example just terminates 
the simulation with an exception.  

As one may have noticed the exceptions can be thrown during: 

• Compile time for expressions or functions that are evaluated at compile 
time, e.g. as part of parameter expressions. 

• Simulation time, due to exceptions thrown within the solver, functions, 
expressions, or equations.  

All the exceptions thrown during compile time are reported to the user. The 
exceptions which are caught are reported as warnings and the un-caught ones are 
reported as errors. 

3.6.2 Exception Handling Syntax and Semantics 

In this section we present the design of the exception handling constructs. The 
grammar of the try-catch constructs is given below. The grammar follows the style 
from the Modelica Specification (Modelica.Association 2007 [100]) and uses 
constructs defined there. Different try clauses for each of the expression, statements 
and equations contexts are defined. 

exception_declaration: 
  type_specifier IDENT  
  ["(" exception_arguments ")"] 
 
exception_arguments: 
   expression  
   [ "," exception_arguments ] 
 | named_arguments 
named_arguments:  
  named_argument [ "," named_arguments ] 
 
named_argument:  
  IDENT "=" expression 
 
name: 
  IDENT [ "." name ] 
 
throw_clause: 
  throw ["(" name  
  [ "(" exception_arguments ")"] ")" ] 

try_clause_expression: 
  try  
    expression 
  ( else_catch_clause_expression 
    | catch_clause_expression  
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      { catch_clause_expresion }  
      [ else_catch_clause_expression ] ) 
  end try 
 
catch_clause_expression: 
  catch "(" exception declaration ")" 
    expression   
 
else_catch_clause_expression: 
  elsecatch  
    expression 

try_clause_algorithm: 
  try  
    { statement ";" } 
    ( else_catch_clause_algorithm 
      | catch_clause_algorithm  
        { catch_clause_algorithm }  
        [ else_catch_clause_algorithm ] ) 
  end try 
 
catch_clause_algorithm: 
  catch "(" exception declaration ")" 
    { statement ";" } 
 
else_catch_clause_algorithm 
  elsecatch  
    { statement ";" } 

try_clause_equation 
  try  
    { equation ";" } 
  ( else_catch_clause_equation  
    | catch_clause_equation  
      { catch_clause_equation }  
      [ else_catch_clause_equation ] ) 
  end try 
 
catch_clause_equation: 
  catch "(" exception_declaration ")" 
    { equation ";" } 
 
else_catch_clause_expression: 
  elsecatch  
    { equation ";" } 

Throwing via throw; without any formal parameter can only appear inside the 
catch clause and will throw the currently caught exception. This grammatical 
constraint is not specified in the above grammar to keep it simple, since it can 
instead be checked by the semantics phase.  
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The try-catch clauses shown here belong to the various contexts rules in the 
Modelica grammar: expressions, algorithm sections, and equation sections.  

3.6.2.1 Exception Handling for Statements 

The statement variant has approximately the following syntax: 
try  
  <st
catch(<exception_declaration>)  

atements1> 

  <statements2> 
end try; 

The semantics of a try-catch for statements is as follows: An exception generated 
from a failure during the execution of statements1 will lead to the execution of 
statements2 if the exception matches the catch clause. 

3.6.2.2 Exception Handling for Expressions 

The syntax of the expression variant is as follows: 
try  
  <ex
catch(<exception_declaration>) 

pression1> 

  <expression2> 
end try; 

The semantics of a try-catch for expressions is as follows: An exception generated 
from a failure while executing expression1 will lead to the execution of 
expression2 if the exception matches the catch clause. 

3.6.2.3 Exception Handling for Equation Sections 

What does it mean to have exception handling for equation-based models? For 
example, if an uncaught exception, e.g. division by zero, occurs in any of the 
expressions or statements executed during the solution of the equation-system 
generated from the model, the catch could handle this, e.g. by simulating an 
alternative model (providing alternate equations), or stopping the simulation in a 
graceful way, e.g. by an error-message to the user.  

The number of equations within the try construct must be the same as the 
number of equations in the catch part. This restriction is needed because models 
must be balanced. Of course, the restriction does not apply for the catch parts that 
only terminates the simulation and reports an error. 

The syntax of the equation variant is as follows: 
try  
  <equations1> 
catch(<exception_declaration>)  
  <equations2> | <terminate(...)> 
end try; 
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The semantics of a try-catch for equations is as follows: If a failure generating an 
exception occurs during the solution of the equations in the set of equations denoted 
equations1, then if the catch matches the raised exception, then instead the 
equations2 set is solved. 

The source of the exception can be in the expressions and functions called in 
equations1, which are evaluated during the solving process. Certain exceptions 
might originate from the solver. In that case, a few selected solver exceptions need 
to be standardized and predefined. 

The semantics of try-catch for equations is similar to the one for if-equations, 
with the difference that the event triggering the catch block is when an exception is 
thrown. 

There could be several different semantics for try-catch in equation sections. 
Some of them are discussed in Section 3.6.5. 

3.6.2.4 Exception Handling and External Functions 

The compiler should be able to check the exceptions in order to: 

• Report an error if the catch part tries to catch an exception that will never be 
thrown. 

• Report exceptions that are not caught anywhere 
• Generate efficient code for exceptions 

The compiler can at compile time automatically find out what exceptions are 
thrown from models and functions defined in Modelica. However, the compiler 
must be provided with additional help when it comes to external functions. 
Therefore, when declaring external functions, the exceptions that might be thrown 
by them have to be declared too. 

We could model this additional information in two ways: directly in the 
grammar or as annotations. 

Directly in the grammar as part of the element_list (see the Modelica 
grammar for the element list specification) of the function or model: 

throws_declaration: 
   throws name { "," name } ";" 

The possible exceptions to be thrown are not really needed to specify using a 
special language construct, we could use annotations instead: 

annotation(throws={name1, name2, ... }; 

Names used above are defined according to the exception name grammar rule 
specified at the beginning of this section. 

In the literature this feature of the compiler (or the language) is called Checked 
exceptions (Roy and Haridi 2004 [138]). 
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3.6.3 Exception Values 

In this section we discuss different ways of representing exception values in 
Modelica. In general exceptions are values of a user defined type. Certain 
exceptions, such as DivisionByZero or ArrayIndexOutOfBounds are 
predefined. The user should be able to define exceptions hierarchically (i.e., 
packages of exceptions) and use inheritance to add extra information (components) 
to existing exceptions, thus creating specialized exceptions.  

3.6.3.1 Exceptions as Types  

We can model exceptions as a built-in Modelica type Exception.  A pseudo-class 
declaration of such a type and its usage would look like: 

type Exception  
  // the value of the exception is  
  // a string, accessed directly  
  StringType ’value’    
end Exception; 

// D
type E1  

efining a new exception 

  extends Exception; 
end E1; 

// Instantiate new exception 
E1 e1 = "exception E1";  
// Raise new exception 
throw e1;  

// A
type E2 

dding more information to an exception 

  extends E1; 
  parameter String moreInfo; 
 end E2; 

// Instantiate the exception 
E2 e2(moreInfo="E2 add") = "exception E2"; 

// Throw exception 
throw(e2); 

 
try  
  ... 
catch(E2 e2)  
  // here you can access the e2 value directly 
  // but you cannot access e2.moreInfo 

catch(E1 e1) 
  // here you can access the  
  /
end try; 

/ value of e1 directly 
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Because we extend a basic type, it is possible to add more information to the 
exception, but this information cannot be accessed via dot notation.  

3.6.3.2 Exceptions as Records 

Another way to model exceptions is as Modelica records.   
record Exception  
  
end Exception; 

parameter String message; 

// defining a new exception 
record E1  
  extends Exception(message="E1"); 
  
end E1; 

parameter String moreInfo; 

// instantiate new exception 
E1 e1(moreInfo="More Info");  

// ra
throw(e1);  

ise new exception 

// Try and catch 
try ... 
catch (E1 e1) 
  // here you can access e.message 
  // and e.moreInfo 
catch (Exception e) 
  / here you can access e.message /
end try; 

Modeling exceptions as records has many of the desired properties that a user might 
want. The problems we see here are that: 

• Is not very intuitive to throw and catch arbitrary records.  
• The hierarchical structure is partly lost during flattening, which means that 

for the records used in the throw/try-catch constructs this information 
should be preserved.  

• The inheritance hierarchy is flattened for records and one would like to keep 
it intact to be able to catch exceptions starting from very specific (at the 
bottom of the inheritance hierarchy) to more general (at the top of the 
inheritance hierarchy)  

We think that a better approach is with a new restricted Modelica class called 
exception.  

3.6.3.3 Exceptions as new Restricted Class: exception 

We believe that the best way to model exceptions in Modelica is by extending the 
language with a new restricted class called exception. Moreover, similar design 
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choices have been made in Java or Standard ML, with their predefined exception 
types. In Java one can only throw objects of the java.lang.Throwable and its 
superclass java.lang.Exception. The C++ language allows throwing of values 
of any type. In Standard ML and OCaml exception values and their types need to be 
defined using a special syntax. 

Exceptions can be represented in Modelica as a new restricted class in the 
following way: 

exception E1 
  
end E1; 

parameter String message; 

E1 e1(message="More Info");  
throw(e1); // raise new exception 

// defining a new exception 
exception E2  
  extends E1(message="E2"); 
  parameter String moreInfo; 
end E2; 

// instantiate new exception 
E2 e2
throw(e2); // raise new exception 

(moreInfo="More Info");  

 
try  ... 
catch(E2 e2) 
  // here you can access e.message 
  // and e.moreInfo 
catch(E1 e1) 
  / re you can access e.message /  he
end try; 

Having a specific restricted class for exceptions would have the following 
advantages: 

• Throwing and catching only values of restricted class exception is more 
intuitive than using records.  

• Both the structural hierarchy and the inheritance hierarchy of the exceptions 
can be kept during flattening and translated to C++, Java, Standard ML, or 
OCaml code more easily.  

• The type checking of throw and try-catch constructs would be more specific 
and straightforward.  

3.6.4 Typing Exceptions 

Modelica features a structural type system, which means that two structures can be 
in the subtype relationship even if they have no explicit inheritance specified 
between them.  
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The type checking procedure for exceptions has to be different than for all the other 
constructs, namely: 

• Only restricted classes of type exception can be thrown. 
• When elaborating declarations of the restricted class exception the 

subtype relationship applies only if there is specific inheritance relation 
between exceptions. This is needed because the exceptions have to be 
matched by name and have to be ordered so that the most specific case 
(supertype) is first and the least specific (subtype) is last in a catch clause. 

• When translation declarations of restricted class exception there will be 
no flattening of the inheritance hierarchy. 

• When elaborating catch clauses the compiler has to: i) match the exception 
by name, ii) reorder the catch clauses in the inverse order of the inheritance 
relation between exceptions or give an error if the less specific exceptions 
are matched before the more specific ones. 

• The compiler has to check if an exception specified in the catch clause will 
actually be thrown from the try body or not. If such an exception is not 
thrown the compiler can either discard the catch clause or issue a 
warning/error at that specific point. 

With these new rules the typing of exception declarations, exception values and 
catch clauses can be achieved. After the translation, the runtime system and the 
language in which was implemented (C++, Java, Standard ML) will provide the rest 
of the checking for exceptions. 

3.6.5 Further Discussion 

During the design and implementation of exception handling we have encountered 
various issues which we present in this section. The exception handling in 
expressions and algorithm sections is straightforward. However when extending 
exception handling for equation sections there are several questions which influence 
the design choices that come to mind: 

Questions: Is the exception handling necessary for equation sections? If yes, what is 
the semantics that would bring the most usefulness to the language? 

Answers: We believe that exception handling is necessary in the equation sections 
at least to give more useful errors to the user (i.e., with terminate(message) in 
the catch clause) or to provide an alternative for gracefully continuing the 
simulation. Right now in Modelica there is no way to tell where a simulation failed. 
There are assert statements that provide some kind of lower level checking but they 
do not function very well in the context of external functions. As an example where 
alternative equations for simulation might be needed we can think of the same 
system at a different level of detail. Where the detailed model can fail due to 
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complexity and numerical problem the simulation can be continued with the less 
complex model.  

3.6.5.1 Semantics of try-catch in Equation Sections 

Several semantics can be employed to deal with try- catch clauses in equation 
sections: 

1. Terminate the simulation with a message (as we show in section 3.6.1) 
2. Continue the simulation with the alternative equations from the catch clause 

activated and the ones from the try-body disabled. When the exception occurs 
the calculated values in that solver step are discarded and the solver is called 
again with previous values and the alternative from the catch clause. 

3. Signal the user that an exception occurred and restart the simulation from the 
beginning with the catch-clause equations activated. 

4. When an exception occurs, discard the values calculated in the current step and 
activate the alternative equations from catch-clause. However, at the next step 
try again the equations from the try-body. This will make the catch-clause 
equation active only for the steps where an error might occur. 

We believe that the most useful design for exception handling in equation sections 
is the one that has both features 1 and 2 active. 

3.7 Related Work 

We are not aware of any other existing EOO language that contains general purpose 
meta-modeling and meta-programming facilities. 

With regards to the meta-modeling facilities present in the MetaModelica 
language we can consider as related work the Unified Modeling Language (UML). 
Modeling in the UML sense has more emphasis on graphical notation for modeling 
rather than precise mathematical model definitions as in the modeling languages 
mentioned in the previous sections. Initially, execution support was lacking, but 
during recent years code generators from executable subsets of UML2 have 
appeared. Also, during recent years, there has been an increased interest in model-
driven developments and the OMG has launched the model-driven architecture, 
primarily based on UML models.  

The idea of meta-modeling has attracted increased interest: a meta-model 
describes the structure of models at the next lower abstraction level. Meta-modeling 
and meta-programming allows transformations and composition of models and 
programs, which is becoming increasingly relevant in order to specify and manage 
complex industrial software and system applications.  

However, UML has developed into a rather heterogeneous collection of 
modeling notations. Also, precise mathematically defined semantics is not always 
available for these graphical notations. By contrast, MetaModelica is defined 
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exclusively based on equations, functions, and meta-functions. Similar meta-
programming facilities are present in functional languages like SML, Haskell and 
OCaml but the execution strategy is different in these languages as they do not 
support backtracking to select cases.   

Further related work is presented in the next chapter where we give performance 
evaluation of the MetaModelica compiler prototype implementation. 

3.8 Conclusions and Future Work 

We have presented the integration of two executable specification languages: RML 
for Natural Semantics specifications of programming languages, and Modelica for 
equation-based semantics and mathematical modeling of complex systems. The 
language resulted from the integration is called MetaModelica − a unified 
mathematical and semantical modeling language generalizing the concept of 
equation and introducing local equations, match expressions and exception handling 
in the Modelica language. This gives interesting perspectives for the future 
regarding safe meta-modeling, model transformations, and compositions during 
simulation, etc.  

The OpenModelica compiler has been ported to the new unified Modelica 
modeling language, resulting in ~140000 lines of code expressed in the unified 
language. A compiler for MetaModelica has been completed and its implementation 
and evaluation are the focus of the next chapter. We have also developed an 
integrated development environment (see Chapter 8) based on Eclipse which 
facilitates the development and debugging of MetaModelica models (PELAB 2006-
2008 [119]). The MetaModelica language can be used to write semantic 
specifications for a broad spectrum of languages ranging from functional to 
imperative languages. We have also translated all our RML specification examples 
to MetaModelica in order to provide teaching material for the new language. The 
current specifications include imperative, functional, equation-based, and object-
oriented languages. 

The unified MetaModelica language gives new perspectives for a broad range of 
items, from programming and modeling languages to physical systems, but also 
including model transformations and composition. Apart from language 
specification to generate interpreters and compilers, symbolic differentiation rules 
for differentiating expressions and equations have been specified in MetaModelica 
and is in use. 

We have also presented the design of exception handling for Modelica. We 
strongly believe in the need for a well designed exception handling in Modelica. By 
adding exception handling constructs to the language we get a more complete 
language and provide the developer with means to better control exceptional 
conditions and errors. There are several issues that have to be considered when 
designing and implementing these constructs which we have discussed in this 
chapter.  
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The design of pattern matching for Modelica was also addressed. By adding this 
language feature to Modelica we provide a more powerful and complete language. 
Pattern matching is useful for traversing hierarchies of components, for writing 
functional-style programs, traversing lists, etc.. Pattern matching is the most useful 
for handling MetaModelica constructs such as lists, tuple, options and union types. 
The possibility to pattern match over record-hierarchies is also considered. Even if 
decomposition of records can be done in a straightforward way through the dot-
notation, checking the structure of a hierarchical record would imply a lot of if-
statements that would be error-prone to be written. 

One medium term goal for the MetaModelica language is its implementation in 
the OpenModelica compiler, thus being bootstrapped in itself. A long-term vision is 
the visual development of compilers for any language by using drag and drop on 
semantic components from libraries which are then connected together in a similar 
way the physical systems are modeled today in Modelica. 
 



 

Chapter 4  
 
 
Efficient Implementation of Meta-
Programming EOO Languages 

4.1 Introduction 

In this chapter we present the implementation details of the systems supporting the 
MetaModelica language. To quickly prototype a compiler for the MetaModelica 
language we extended the RML compiler to support the new syntax and some of the 
new semantics.  

For full MetaModelica language support we are currently working on extending 
the OpenModelica compiler (that supports the Modelica language) with the missing 
meta-modeling, meta-programming and exception handling features. Our goal is to 
bootstrap the OpenModelica compiler, thereby making the MetaModelica compiler 
prototype obsolete. 

4.2 MetaModelica Compiler Prototype 

The first prototype compiler for the MetaModelica language is based on the RML 
compiler. The RML compiler was extended with a new parser for MetaModelica 
and an internal translation phase from MetaModelica to RML. Also, debugging 
facilities (see Chapter 5 and Chapter 7) were added and the garbage collection of 
the RML system was extended with mutable references. The prototype is heavily 
used in the development of the OpenModelica compiler for several years. Since we 
switched to the MetaModelica syntax, implemented the debugger and the 
interactive environment (MDT) various people from the Modelica community 
started to provide contributions to the OpenModelica compiler. 
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However, our final goal is to be able to bootstrap the OpenModelica compiler to be 
able to use the full Modelica language features together with the meta-programming 
extensions. 

MetaModelica Code 
Parse 

MetaModelica AST

MetaModelica to RML  
transformation 

RML AST

FOL AST

CPS AST

Code AST

ANSI-C

Executable

Reordering 
Static Elaboration 

(Typecheck) 
RML AST  to FOL 

CPS to Code 

Linking with the 
 RML runtime system 

Code to ANSI-C 

FOL to CPS via Pattern-Matching Compiler

 
Figure 4-1. MetaModelica Compiler Prototype – compilation phases.

4.2.1 Performance Evaluation of the MetaModelica Compiler 
Prototype 

We are not aware of any language that is very similar to the MetaModelica 
language. However, the meta-modeling and meta-programming parts of the 
MetaModelica language are close to logic/functional languages. Backtracking is 
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used within the match construct (matchcontinue) to select the correct case and the 
specifications can contain logical variables. The union types are similar to the SML 
datatype definitions, however MetaModelica functions have multiple inputs and 
outputs not just one argument like in SML. Also, because a reordering phase is 
applied to the MetaModelica code there is no need to explicitly declare mutually 
recursive types and functions. 

All the information, the test code and the files needed to reproduce our results 
are available online at: http://www.ida.liu.se/~adrpo/phd/tests. Also you can contact 
the author for any information regarding the performance evaluation tests. 

We have compared the execution speed of our generated code with SWI-Prolog 
5.6.9 (SWI-Prolog [151]), SICStus Prolog 3.11.2 (SICS [147]), Maude MSOS Tool 
(MMT) on top of Maude 2.1.1 (Maude.Team [92]).  The Maude MSOS Tool 
(MMT) is an execution environment for Modular Structural Operational Semantics 
(MSOS) (Mosses 2004 [103]) specifications that brings the power of analysis 
available in the Maude system to MSOS specifications. The Maude MSOS Mini-
Freja translation was implemented by Fabricio Chalub and Christiano Braga and is 
available as a case study together with sources from http://maude-msos-
tool.sourceforge.net/. SWI-Prolog is a widely known open source implementation 
of Prolog. SICStus Prolog is a commercial Prolog implementation.  

The closest match to the meta-modeling and meta-programming facilities of the 
MetaModelica compiler prototype is the Maude MSOS Tool.  

The test case is based on an executable specification of the Mini-Freja language 
(Pettersson 1999 [122]) running a test program based on the sieve of Eratosthenes. 
Mini-Freja is a call-by-name pure functional language. The test program calculates 
prime numbers. The Prolog translation (mf.pl) was implemented by Mikael 
Pettersson and this author corrected a minor mistake. 

The comparison was performed on a Fedora Core4 Linux machine with two 
AMD Athlon(TM) XP 1800+ processors at 1500 MHz and 1.5GB of memory.  

Table 4-1. Execution time in seconds. The – sign represents out of memory.

# MetaModelica SICStus SWI  Maude MSOS Tool 

8 0.00 0.05 0.00 2.92

10 0.00 0.10 0.03 5.60

30 0.02 1.42 1.79 226.77

40 0.06 3.48 3.879 -

50 0.13 - 11.339 -

100 1.25 - - -

200 16.32 - - -

 

http://www.ida.liu.se/%7Eadrpo/phd/tests
http://maude-msos-tool.sourceforge.net/
http://maude-msos-tool.sourceforge.net/
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The memory consumption was at peak 9Mb for MetaModelica and the others 
consumed the entire 1.5Gb of memory and aborted at around 40 prime numbers. 
With this test we stressed only the meta-programming and meta-modeling part of 
the compiler. 

4.3 OpenModelica Bootstrapping 

The MetaModelica compiler prototype cannot handle the entire Modelica language. 
To construct a compiler for the complete MetaModelica language we decided to 
extend the OpenModelica compiler (OMC) with the missing features: pattern 
matching, exception handling, union types, lists, etc. This way the OpenModelica 
compiler could be bootstrapped and the MetaModelica compiler would not be 
needed anymore.  

This is also according to our long-term vision of the meta-programming and 
meta-modeling facilities in MetaModelica: to enable more modular and extensible 
tooling, as earlier discussed. 

4.3.1 OpenModelica Compiler Overview 

The OpenModelica compiler phases are presented in the following (see also Figure 
4-2). The MetaModelica code is first parsed and then translated into a so-called 
“flat model”. This phase includes type checking, performing all object-oriented 
operations such as inheritance, modifications, compilation of pattern matching, 
translation of meta-functions to C code. The flat model includes a set of equations, 
declarations, functions, and meta-functions, with all object-oriented structure 
removed, apart from the dot notation within the names.  This process is called the 
“partial flattening” of the model.  

The next step is to solve the system of equations. First the equations need to be 
transformed into a suitable form for the numerical solvers. This is done by the 
symbolic and the numerical module of the compiler. The simulation code generator 
takes as input the flattened form of the equations. The equations are mapped into an 
internal data structure that permits simple symbolic manipulations such as: common 
subexpression elimination, algebraic simplifications, constant folding, etc. These 
symbolic operations substantially decrease the complexity of the system of 
equations. After this stage the Block Lower Triagular form of the system of 
equations is computed.  

Finally, in the last phase, the procedural code (in our implementation C code), is 
generated based on the previously computed BLT blocks when each block is linked 
to a numerical solver and the runtime for the meta functions. Within the C code the 
meta functions are called like normal functions. 
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Figure 4-2. The stages of translation and execution of a MetaModelica model. 

The detailed architecture of the OpenModelica compiler can be seen in Figure 4-3. 
One can see that there are three main kinds of packages: 

• Function packages that perform a specified function, e.g. Lookup, code 
instantiation, etc. 

• Data type packages that contain declarations of certain data types, e.g. 
Absyn that declares the abstract syntax. 

• Utility packages that contain certain utility functions that can be called from 
any package, e.g. the Util package with general list processing functions. 

The functionality classification is not clear cut, since certain packages perform 
several functions. For example, the SCode package primarily defines the lower-
level SCode tree structure, but also transforms Absyn into SCode. The DAE 
package defines the DAE equation representation, but also has a few routines to emit 
equations via the Dump package. 
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Figure 4-3. OpenModelica compiler packages and their connection.

A short description of the most important packages is provided below: 

• The Main package calls a number of functions in other packages, including the 
parser package Parse, etc. 

• The parser generates abstract syntax (provided by the Absyn package) which is 
converted to the simplified intermediate form (specified in the SCode package).  

• The code instantiation package Inst is the most complex module, and calls many 
other packages. It calls Lookup to find a name in an environment, Prefix for 
analyzing prefixes in qualified variable designators (components), Mod for 
modifier analysis and Connect for connect equation analysis. It also generates 
the DAE equation representation which is simplified by DAELow and fed to the 
SimCodeGen code generator for generating equation-based simulation code, or 
directly to CodeGen for compiling Modelica/MetaModelica functions into C 
functions 

• The Ceval package performs compile-time or interactive expression evaluation 
and returns values. The Static package performs static semantics and type 
checking.  

• The DAELow package performs BLT sorting and index reduction. The DAE 
package internally uses Exp.Exp, Types.Type and Algorithm.Algorithm; 
data structures.  

 



High-level Data Structures Implementation   75 

• The Vartransform package called from DAELow performs variable substitution 
during the symbolic transformation phase (BLT and index reduction). 

• The Patternm package performs compilation of pattern match expressions, 
calling the DFA and MetaUtil packages. 

4.4 High-level Data Structures Implementation 

The implementation of the MetaModelica language extensions in the OpenModelica 
compiler involves the addition of several high-level data structures: union types, 
lists, tuple types and option types. We describe the general course of action for 
adding these novel high-level data structures. We refer to Figure 4-3 for an 
overview of the most important packages of the OpenModelica compiler and their 
interactions. 

Generally, a new data structure type must be added to the compiler type system. 
Adding a new simple type to the compiler (such as an integer type) is a relatively 
straightforward process: the new type is added to the type system package (Types) 
and rules for matching expressions of this new type are added as well. In the back-
end the new type should be matched against a corresponding type in the target 
language. Minor changes in a few other packages are needed as well.  

However in this case we are dealing with high-level and, in some cases, 
parameterized data types, which need to be handled in a different way. The array 
parameterized data type, for instance, is treated in a separate manner in the 
OpenModelica compiler.  

The new data structures may come with new syntax (other than the type 
keyword). For instance the list data structure uses new syntax for declaring the list 
type as well as list constructor syntax for building lists.  

Shortly, the implementation for the extensions with the four high-level data 
structures mentioned above (union types, lists, tuple types and option types) follows 
these steps: 

• Addition to the parser and the abstract syntax package. Note that lists, tuples and 
option type variables are parsed as variables of new complex types and union 
type variables are parsed as variables of a new restricted class.  

• New type matching rules to the type system, etc. 
• New expressions associated with the new data structures need to be handled. For 

instance the cons-constructor expression (::) in connection with the list type or 
the union type record constructor call - MyRecord(1,2,3,4).  

• A union type restricted class declaration is treated in a special manner. Lists, 
tuples, and option types do not involve class declarations (tuples and option 
types can be said to involve class declarations explicitly). 

• The new types should be handled as input and output to functions and in match 
expressions. 
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• A declaration of a variable of the new types has to be treated separately in the 
instantiation phase (the Inst package). 

• The new types and the corresponding expressions and constructs are mapped to 
suitable target code constructs. 

A description of the main packages that have been modified follows: 

Absyn: New abstract syntax for the constructs has been added to this package. 

Parser: ANTLR is used as an external OpenModelica parser. From a formal 
grammar, ANTLR generates a program that determines whether sentences conform 
to the language. Typically only a lexer and a parser are used but in the ANTLR case 
there is also a walker. The walker maps the abstract syntax from the parser into the 
abstract syntax of the OpenModelica Compiler, given by the constructs in Absyn.h 
(generated from the Absyn package). The new syntax constructs have been added to 
the lexer, parser and walker. 

ClassInf: New states for the new types have been added to this package. 

Codegen: In this package the new variable types are mapped to void-pointers. 
Expressions, such as the Exp.CONS expression representing the list cons 
constructor, are mapped into boxes consisting of two fields: a header and the data 
(in this case a first and a second field).  

The same strategy is applied for union types, option types and tuples – they are 
all represented as boxes and void-pointers to these boxes. An option type variable 
will thus result in a void-pointer that eithers points to a nil-symbol/empty box or a 
normal box, in the generated code. 

Exp: This package contains expressions after the instantiation phase, that is, 
expression with type information and which have been, perhaps, constant evaluated.  

Inst: This is one of the most complex package of the compiler. In the function 
instElement a new case-branch has been added that takes care of variable 
declaration of the new MetaModelica types.  

One must consider the fact that a type may be derived. When handling a 
variable/component the function instElement will lookup the type of the variable 
in the environment.  

The type information is stored in a SCode.Class structure. This is true for both 
builtin types and derived types. In the new case-branch for the explicit 
MetaModelica variable declaration a SCode.Class structure with derived type is 
created (and not looked up in the environment).  

Both the new case-branch as well as the case-branch for normal 
variables/components will call instVar which will call functions for instantiating 
the type class information: instClass, instClassIn and instClassDef. In 
instClassDef new case-branches have been added to handle SCode.Classes of 
derived MetaModelica types. These case-branches may call instClass recursively 
since we may have recursive type declarations. 
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Prefix: New rules for prefixing the new expressions have been added. 

SCode: The union type restricted class declarations are transformed into more 
suitable form in this package. 

Static: In the function elabExp (the function that elaborates expressions) new rules 
have been added that elaborates for instance an Exp.CONS expression. 

Types: New type records have been added to this package. In the function 
subtype, rules for matching these new types have been added. 

For more information regarding the implementation of high-level data structures in 
the OpenModelica compiler the reader is referred to (Björklén 2008 [13]) 

4.5 Pattern Matching Implementation 

To achieve the meta-programming facilities in the OpenModelica compiler we have 
designed and implemented a pattern matching compiler. Since a pattern matching 
expression may contain complex nested patterns and partial overlaps between cases 
it should be compiled into a simpler, less complex, form. Thus, a pattern matching 
expression is compiled into intermediate form (typically if-elseif-else nodes). 

The pattern matching construct has been implemented in OMC using the 
algorithm described in (Pettersson 1999 [122]). Here a pattern is viewed as an 
alternation and repetition-free regular expression over atomic values, constructor 
names and wildcards. The algorithm first transforms a matchcontinue expression 
into a Deterministic Finite Automata (DFA) with subpatterns on the arcs. This DFA 
is then transformed into if-elseif-else nodes. The main goal of the algorithm is to 
unify overlapping patterns into common branches in the DFA in order to reduce 
code replication. This algorithm will also try to construct branches to already 
existing states in order to reduce further code replication. The end result will have 
no nested patterns and no overlap between different if-cases.  

The algorithm is composed of four steps: Preprocessing, Generating the DFA, 
Merging of equivalent states and Generating Intermediate Code. The preprocessing 
step takes all the match rules and produces a matrix of (preprocessed) patterns and a 
vector of final states (one for each row of patterns). In the next step the DFA is 
generated from the matrix and the vector of final states. In the following step 
equivalent states are merged and finally, in the last step, the intermediate code is 
generated.  

We give a small example to illustrate the intuitive idea behind the algorithm (we 
use SML style syntax).  

case xs
  of C(1)   => A1 
   | C(2)   => A2 
   | C2()   => A3 

The corresponding matrix and right-hand side vector: 
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| xs=C(ys=1) |   | A1 | 
| xs=C(ys=2) |,  | A2 | 
| xs=C2()    |   | A3 | 

We select the first column (the only column). The constructor C matches the first 
two cases and the constructor C2 matches the last case. Since C2() does not contain 
any subpattern we are done on this “branch” and we reach the final state. We must 
continue to match on C’s subpatterns, however, and we introduce a new variable ys. 
The variable ys is a pattern-variable, such a variable will be introduced for every 
sub-pattern. 

case xs 
  of C(ys)  => ... 
   | C2()   => A3

The rest of the matrix and vector: 
| ys=1 |   | A1 | 
| ys=2 |,  | A2 | 

We match the rest of the matrix and vector and we get the result: 
case s  x
    of C(ys) => 
       ( case ys  
           of 1 => A1 
           |  2 => A2)   
    |  C2() => A3  

Note that in the real algorithm a DFA would first be created (with a state for each 
case and right-hand side and arcs for C, C2, ‘1’ and ‘2’). This DFA would then be 
transformed into simple-cases. 

4.5.1 Implementation Details 

The specific OpenModelica translation path for Modelica code with matchcontinue 
constructs is presented in Figure 4-4. The matchcontinue expression has been added 
to the abstract syntax, Absyn. The pattern matching algorithm is invoked on the 
matchcontinue expression in the Inst package. The main function of the pattern 
matching algorithm is PatternM.matchMain which is given in a light version 
below.  

The first function to be called in matchMain is ASTToMatrixForm which 
creates a matrix out of the patterns as well as a list of right-hand sides (the code in a 
case clause except the actual pattern). This corresponds to step 1 of the above 
described algorithm. The list of right-hand side will actually only contain 
identifiers, and not all code in a right-hand side, so that the match algorithm does 
not need to pass along a lot of extra code. The code in the right-hand sides is saved 
in another list and is later added. 
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Figure 4-4. Pattern Matching Translation Strategy. 

The matchMain function is presented below. 
function matchMain  
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    dfaRec = DFA.DFArec(..., startState, ...); 
      ... 
    (localCache,expr) =  
      DFA.fromDFAtoIfNodes(dfaRec,..., 
                           localCache,localEnv,...); 
    then (localCache,expr);  
   end matchcontinue; 
end matchMain; 

After this step, the function matchFunc is called with the matrix of patterns, the 
right-hand side list and a start state. This function will single out a column, create a 
branch and a new state for all matching patterns in the column and then call itself 
recursively on each new state and a modified version of the matrix. The function 
(roughly) distinguishes between three cases: 

• All the patterns in the uppermost matrix row are wildcards. 
• All the patterns in the uppermost matrix row are wildcards or constants. 
• At least one of the patterns in the uppermost matrix row is a constructor call. 

However, due to the fail semantics of a matchcontinue expression we cannot simply 
discard all cases below a row with only wildcards as is explained in (Pettersson 
1999 [122]). This is due to the fact that a case-clause with only wildcards may fail 
and then an attempt to match the subsequent case-clause should be carried out. 

Finally, the created DFA is transformed into if-else-elseif nodes (intermediate 
code) in the function fromDFAtoIfNodes. This corresponds to step 3 and 4 of the 
algorithm described above. The pattern matching algorithm returns a value block 
expression containing the if-else-elseif nodes (see section 4.5.1.3). C++ code is then 
generated for the value block expression in the Codegen package. 

4.5.1.1 Example of Code Generation 

We first give an example of the compilation of a matchcontinue expression over 
simple types. In the next section we discuss the compilation of pattern matching 
over more complex types (union types, lists, etc.). 

  function func 
    input Integer i1; 
    input Integer i2;  
    output Integer x1;  
  algorithm 
    x1 := matchcontinue (i1,i2) 
      local Integer x; 
      case (x as 1,2) 
        equation 
          false = (x == 1); 
      then 1;   
      case (_,_) then 5;                
    end matchcontinue; 
  end func;  
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The code above is first compiled into intermediate form as seen in Figure 4-4. The 
following C++-code is then generated from the intermediate code (note that the 
code is somewhat simplified): 

{ 
 modelica_integer x; 
 modelica_integer LASTRIGHTHANDSIDE__; 
 integer_array BOOLVAR__; /* [2] */ 
 alloc_integer_array(&BOOLVAR__, 2, 1, 1); 
 while (1) { 
    try { 
     state1: 
        if ((i1 == 1) && (BOOLVAR__[1]|| BOOLVAR__[2])) { 
     state2: 
          if ((i2 == 2) && BOOLVAR__[1]) { 
            goto finalstate1; 
          } 
          else { 
     state3: 
              if (BOOLVAR__[2]) { goto finalstate2; } 
          } 
        } 
        else { 
            goto state3; 
        } 
        break; 
     finalstate1: 
        LASTRIGHTHANDSIDE__ = 1; 
        x = i1; 
        if (x == 1) { throw 1; } 
        x1 = 1; 
        break; 
     finalstate2: 
        LASTRIGHTHANDSIDE__ = 2; 
        x1 = 5; 
        break; 
    } 
    catch(int i) { 
        BOOLVAR__[LASTRIGHTHANDSIDE__]=0; 
    } 
 }  
} 

Each state label corresponds to a state in the DFA (which was the intermediate 
result of the pattern matching algorithm) and each if-case corresponds to a branch. 
See Figure 4-5 for the generated DFA. 
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Figure 4-5. Code Example Generated DFA. 

Note that if a case-clause fails then the next case-clause will be matched, since we 
have a matchcontinue expression. There is an array (BOOLVAR__) with an entry for 
each final state in the DFA. If a fail occurs an exception will be thrown and the 
catch-clause at the bottom will be executed. The catch-clause will set the array 
entry of the case-clause that failed to zero so that when the pattern matching 
algorithm restarts (notice the while(1) loop) this case-clause will not be entered 
again. 

4.5.1.2 Pattern Matching over Union, Lists, Tuples and Option Types 

The remaining MetaModelica constructs (that are not present in Modelica) are 
currently being added to OMC: lists, union types, option types and tuples.  

We briefly discuss pattern matching over variables holding these types. 
Consider first an example with union types given below. 

uniontype UT 
 
 record REC1 
  Integer field1; 
  Integer field2; 
 end REC1; 
 
 record REC2  
  ...  
 end REC2; 
 
end UT; 
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matchcontinue (x)  
  case (REC1(1,2)) ... 
  case (REC1(1,_)) ... 
  ... 
end matchcontinue; 

The example above will result in the following intermediate code. 
if (getHeaderNum(x) == 0) then 
   Integer $x1 = getVal(x, 1); 
   Integer $x2 = getVal(x, 2);  
   if ($x1 == 1) then 
    if ($x2 == 2) then 
    ... 
    elseif (true) then  
 ... 
    end if; 
   end if;    
elseif (...) 
 ...  
end if; 

Note that static type checking is performed by the compiler to make sure that REC1 
is a member of the type of variable x and that it contains two integer fields etc.  

Union types are represented as boxed-values, with a header and subsequent 
fields, in C++. Each record in a union type is represented by a number (an 
enumeration). Since REC1 is the first record in the union type it is represented by 
number zero (0). The function getHeaderNum is a builtin function that retrieves 
the header of variable x. The function getVal is also a builtin function that 
retrieves a data field (given by an offset) from the variable x. 

Lists are compiled in a similar fashion. 
matchcontinue (x) 
  case (1 :: var) ... 
  ... 
end matchcontinue; 

Will result in: 
if (true)  
then  
 Integer       $x1 = getVal(x, 1);  
 list<Integer> $x2 = getVal(x, 2);  
 if ($x1 == 1) then 
  ... 
 elseif (...) 
  ...  
 end if; 
end if; 
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The symbol :: is the cons constructor. Lists are also implemented as boxed values 
in the generated C++ code so this can be done in a straightforward way. An 
example of pattern matching over tuples is given below. 

matchcontinue (x) 
  case ((5, false)) ... 
  case ((5, true)) ... 
  ... 
end matchcontinue; 

Will result in: 
if (true)  
then  

Integer $x1 = getVal(x, 1);  
Boolean $x2 = getVal(x, 2);  

 if ($x1 == 5) then 
 ... 
 elseif (...) 
 ... 
 end if; 
end if; 

Tuples are, just as union types and lists, implemented as boxed values in C++. The 
builtin function getVal takes an index and offsets into a boxed value in order to 
obtain the correct field. Finally, option types are dealt with in a similar manner as 
union types.  

Note that the reason why we need a run-time type check of union types is that a 
union type variable may hold any of several record types, which one can only be 
determined at run-time. When it comes to lists and tuples only one type can exist in 
a matchcontinue column, if this is violated it will be detected by the static type 
checker leading to a compile-time error. 

4.5.1.3 Value Block Expression 

The value block expression allows equations and algorithm statements to be nested 
within another equation or algorithm statement. A value block expression contains a 
declaration part, a statements or equations part and a return expression. The return 
value of the value block is the value of the evaluated return expression. A value 
block has been added to OMC mainly because of its use as an intermediate data 
structure for the pattern matching expression. 

4.6 Exception Handling Implementation 

In this section we briefly present the OpenModelica implementation of exception 
handling. When referring to the exception hierarchy we mean both the structural 
hierarchy and the inheritance hierarchy. 
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Figure 4-6. Exception handling translation strategy.

The general translation of Modelica with exception handling follows the path 
described in Figure 4-6. The exception handler and the exception hierarchy are 
passed through the compiler via the intermediate representations of each phase until 
the C++ code is generated (or any other language code used in the backends of 
different Modelica compilers).  

The specific OpenModelica translation path for Modelica code with exception 
handling is presented in Figure 4-7. 

Implementing exception handling support in the OpenModelica compiler 
required the following extensions: 

• The parser was extended with the proposed exception handling grammar. 
• Each intermediate representation of the OpenModelica compiler was 

augmented with support for exceptions. 

Both the structural and the inheritance hierarchy of the exceptions are passed 
through the OpenModelica compiler until C++ code is generated.  
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Figure 4-7. OpenModelica implementation. 

4.6.1 Translation of Exception Values 

The translation from the internal representation to C++ code is straightforward: a 
Modelica exception maps to a C++ class. For example, the following Modelica 
code with exceptions: 

exception E 
  parameter String message; 
end E; 
 
exception E1 
  extends E(message="E1"); 
  parameter Integer id = 1; 
end E1; 
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is translated into the following C++ code: 
class E  
{ 
  public: 
  modelica_string message; 
  E(modelica_string message_modification) 
  { 
    message = message_modification; 
  } 
  E()  
  {  
    message = "";  
  } 
} 
 
class E1 : public E  
{ 
  public: 
  modelica_integer id; 
  E1(modelica_string message_modification, 
     modelica_integer id_modification)  
  { 
    message = message_modification; 
    id = id_modification; 
  } 
  E1()  
  { 
    message = "E1"; 
    id = 1; 
  } 
} 

The following Modelica code for exception instantiation and exception throwing: 
 

E  e;  throw(e);  
E1 e1; throw(e1); 
 
E1 e2(message="E2", id=2);  
throw(e2); 
 
E1 e3
throw(e3); 

(message="E3");  

is translated to the following C++ code: 
E  *e  = new E();  throw e;  
E1 *e1 = new E1(); throw e1; 
 
E1 *e2 = new E1("E2", 2);  
throw e2; 
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E1 *e3 = new E1();  
e3->message = "E3”; 
throw e3; 

Is also possible to represent exception values in C++ as objects allocated on the 
stack, i.e.: E1 e2("E2", 2);. 

4.6.2 Translation of Exception Handling 

The C++ exception handling code follows the Modelica code. The table below 
defines the translation procedure for Modelica including the MetaModelica 
extensions. 
Modelica 
Expressions C++ 

 

x :=  
try  
  exp
catch(E e) 

1  

  exp2 
end try; 

modelica_type temp; 
try  
{  
  temp = exp1;  
} 
catch(E *e) 
{ 
  temp = exp2; 
} 
x = temp; 

Modelica 
Statements 

C++ 

 

try  
 <s

catch(E e) 
tmts> 

 <stmts> 
end try; 

try  
{  

// Modelica corresponding  
// C++ statements 

} 
catch(E *e) 
{ 

// Modelica corresponding 
// C++ statements 

} 

Modelica 
Equations 

C++ 

try  
 <e

catch(Ex1 e1) 
qnsA> 

 <eqnsB> 
end try; 

event1=false; 
event2=false; 
 
while time < stopTime 
{ 
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try  
 <e

catch(Ex2 e2) 
qnsC> 

 <eqnsD> 
end try; 
 

 try{  
  call SOLVER for problem:   
  if event1 then 
    eqnsB; 
  else 
    eqnsA 
  end if;   
 
  if event2 then 
    eqnsD; 
  else 
    eqnsC; 
  end if; 
 } 
 catch(Ex1 *e1) 
 { 
  discard possible calculated current  
  step values; 
  reinit the solver with previous step 
  values; 
  event1 = true; 
 } 
 catch(Ex2 *e2) 
 { 
  discard possible calculated current  
  step values; 
  reinit the solver with previous step  
  values; 
  event2 = true; 
 } 
} 

4.7 Garbage Collection 

Garbage collection features relieves the programmer from the task of allocating and 
freeing memory. A very good survey of garbage collection is given in (Wilson 1994 
[174]). 

The OpenModelica compiler runtime features a generational garbage collector 
with two regions: young and current. The collector was ported and adapted from the 
MetaModelica compiler prototype. During execution, the data is allocated into the 
young region. When the young region fills a minor collection takes place and the 
live data is copied into the current region. When the current region is 80% filled a 
major collection takes place and the live data from the current region is copied to 
the reserve region and the regions switch places. If after a major collection the 
current region is still 80% filled then the current region is expanded so that is only 
20% filled.  
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4.7.1  Layout of Data in Memory 

All variable values (except 31 bit integers) are boxed to be distinguished by the 
garbage collector. Every boxed value has a small integer as its header. Composite 
values are boxed structures. The structure header contains a small integer tag which 
is used for pattern matching. Logical variables are represented as boxed references. 
A different header is used to represent unbounded or bounded logical variables. 
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Figure 4-8. Garbage Collection time (s) vs. Execution time (s) 
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4.7.2 Performance Measurements 

We have measured the performance of the OpenModelica runtime system garbage 
collector. The OpenModelica compiler was instructed to run a script that: 

• Loads a large model RRLargeModel2.mo of 1659 equations/variables. 
More info about the test files is given in section 5.4.2 and information about 
the test machine in section 5.4.1. 

• Executes a check of the loaded model. 

The OpenModelica compiler was executed multiple times with different young 
generation sizes and the execution time of the garbage collection time was 
generated together with the total execution time. The results are presented in Figure 
4-8. At a young region of ~16MB (4MWords) the GC time is below 10 seconds out 
of 230 seconds total execution time which is ~4%. The GC time varies between 
40% for a really small young region to 0.25% for a large young region. Increasing 
the young region over 80MB (20 MWords) does not improve the execution time. 
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Figure 4-9. Garbage Collection time (s). 

The table below presents the entire dataset for the garbage collector performance 
results. 
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Table 4-2. Garbage Collection Performance.

Young 
generation 
(words) 

Current 
generation 
(words) 

Collection 
time (s) 

Execution 
time (s) 

Minor 
collections 

Major 
collections 

524288 3787930 172.33 437.88 23681 4986 

1048576 4194304 40.65 263.31 11840 824 

2097152 8388608 18.08 231.81 5920 180 

3145728 12582912 11.54 231.14 3946 77 

4194304 16777216 9.09 226.75 2960 42 

5242880 20971520 6.96 222.91 2368 26 

6291456 25165824 5.56 215.01 1973 18 

7340032 29360128 5.27 222.58 1691 13 

8388608 33554432 4.36 224.02 1480 10 

9437184 37748736 4.39 224.36 1315 8 

10485760 41943040 3.51 223.81 1184 6 

11534336 46137344 3.83 224.22 1076 6 

12582912 50331648 3.03 223.02 986 4 

13631488 54525952 2.78 222.14 910 3 

14680064 58720256 2.39 222.06 845 3 

15728640 62914560 2.42 222.69 789 2 

16777216 67108864 2.51 222.36 740 2 

17825792 71303168 2.07 221.51 696 2 

18874368 75497472 2.21 223.39 657 2 

19922944 79691776 1.83 218.75 623 1 

20971520 83886080 1.75 210.81 592 1 

22020096 88080384 1.51 223.09 563 1 

23068672 92274688 2.01 221.92 538 1 

24117248 96468992 1.58 220.77 514 1 

25165824 100663296 1.46 219.67 493 1 

26214400 104857600 1.33 221.06 473 1 

27262976 109051904 1.38 222.74 455 0 

28311552 113246208 1.29 223.16 438 0 



Conclusions   93 

29360128 117440512 1.39 223.56 422 0 

30408704 121634816 1.06 223.84 408 0 

31457280 125829120 1.16 223.01 394 0 

32505856 130023424 1.11 222.75 381 0 

33554432 134217728 1.05 220.17 370 0 

34603008 138412032 1.21 220.78 358 0 

35651584 142606336 1.16 219.81 348 0 

36700160 146800640 1.23 219.13 338 0 

37748736 150994944 0.87 218.66 328 0 

38797312 155189248 0.94 217.14 320 0 

39845888 159383552 0.99 219.24 311 0 

40894464 163577856 0.91 218.97 303 0 

41943040 167772160 1.01 220.02 296 0 

42991616 171966464 0.81 216.11 288 0 

44040192 176160768 0.91 222.53 281 0 

45088768 180355072 0.85 221.86 275 0 

46137344 184549376 1.05 221.63 269 0 

47185920 188743680 0.91 221.25 263 0 

48234496 192937984 0.71 222.41 257 0 

49283072 197132288 0.85 222.58 251 0 

50331648 201326592 0.81 216.81 246 0 

51380224 205520896 0.93 218.42 241 0 

52428800 209715200 0.58 220.19 236 0 

62914560 251658240 0.66 218.45 197 0 

68157440 272629760 0.56 217.25 182 0 

4.8 Conclusions 

This chapter presented the existing MetaModelica compiler prototype and our 
current work targeting the OpenModelica compiler bootstrapping.  

Also, the MetaModelica compiler prototype implementation is presented and its 
performance compared to related systems is evaluated. The performance results 
show that the prototype is robust and generates very efficient code. 
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The chapter further presents implementation of high-level data structures, pattern 
matching and exception handling in the OpenModelica compiler. 

The garbage collector of the OpenModelica compiler is presented and evaluated. 
The performance results show that the collector is efficient enough and the 
collection time takes a rather small part of the total execution time. In the future, 
further development (increasing the number of generations, allocation of similar 
structures in different regions without any header, etc) of the garbage collector 
could be investigated. 
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Portable Debugging of EOO Meta-
Programs 

 

 

5.1 Introduction 

The OpenModelica compiler is built from a large specification of the Modelica 
language written in MetaModelica. Further development of such a large 
specification is difficult without debugging tools. This chapter presents the design, 
implementation and evaluation of several debugging frameworks for 
MetaModelica. During his PhD work the author has designed and implemented four 
debugging frameworks (two for Natural Semantics specifications and two for 
MetaModelica specifications) supported by different integrated environments: 
Emacs, Eclipse-based Modelica Development Tooling (MDT), and Eclipse-based 
Structural Operational Semantics Development Tooling (SOSDT). 

5.2 Debugging Method – Code Instrumentation 

Our debugging implementation approach is based on instrumentation of the 
intermediate code representation (IR). During compilation the IR is instrumented 
with debugging nodes which are just calls to a debugging API.  

The first debugging framework adds the debugging instrumentation very early 
in the compilation process, at the abstract syntax tree representation. We call this 
method early instrumentation.  

The second debugging framework adds the debugging instrumentation very late 
in the compilation process, at the code representation. We call this method late 
instrumentation. 
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Figure 5-1. Early vs. Late Debugging Instrumentation in MetaModelica compiler. 

5.2.1 Early Instrumentation  

The design, implementation and evaluation of the debugging framework based on 
early instrumentation is presented in Chapter 7 and in (Pop and Fritzson 2005 [127], 
Pop and Fritzson 2005 [128]). 
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5.2.2 Late Instrumentation 

The debugging framework based on early instrumentation was a positive start 
which encouraged us to experiment more with this idea and try to improve the 
compilation and run-times. 

The debugging framework based on late instrumentation is an improvement of 
the early instrumentation debugging framework. We disabled the early 
instrumentation phase in the compiler and added a new phase closer to code 
generation. As a consequence we had to pass the debugging information (position 
of identifiers, function calls, type information, etc) through all the compiler phases.  

5.3 Type Reconstruction 

During debugging, both values and the types of the variables need to be available to 
the user. To provide type information for the user, the runtime system of the 
MetaModelica compiler prototype and the compiler itself had to be extended. In the 
following we present the type reconstruction procedure implemented in all the 
debugging frameworks we developed. 

During the compilation phase the types of all the variables and the variable 
scope in the program is recorded in a program database for each package. During 
code generation the program database for a package is stored as static information 
(using C structures and variables) in the generated C code for that particular 
package. Our first debugging framework generated separate files with the program 
database for each package; this proved out to be very problematic as these 
additional files had to be stored in the same directory with the executable and the 
executable had to read and parse these additional files at startup (see more .in 
Chapter 7).  

Before and after each function call the available (live) variables and the pointer 
to their boxed value are registered with the debugging runtime. During execution, 
when the debugger stops at a breakpoint, the available (live) variables are queried 
for their position in the source code (package, function and line number) and for 
their value pointer (the value pointer points to the boxed representation of the 
variable value). The position information for a variable is used to query the program 
database to fetch its type declaration. The debugger now has two structures: 

• The type of the variable 
• The pointer to the boxed variable value 

These two structures are processed top-down simultaneously to output a variable 
value and its specified type. If the variable value represents a complex data 
structure (for example an AST representation) then the components of the variable 
value are matched with the components of the type declaration and the procedure 
continues recursively until the entire value is presented. Our first debugging 
framework printed the values on the standard output. The latest debugging 
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framework sends the value information (including type information) to the Eclipse 
(Eclipse.Foundation 2001-2008 [29]) environment for display.  

 
Figure 5-2. Variable value display during debugging using type reconstruction.

5.4 Performance Evaluation 

This section presents an evaluation of the debugging frameworks based on early 
and late instrumentation. We tested the compile times and run-times of the 
compiled programs. 

5.4.1 The Test  Machine 

The tests were run on a HP NC6400 laptop with 2GB of memory and a Core 2 Duo 
processor at 2GHz with Windows XP. 

5.4.2 The Test Files 

The MetaModelica compiler is a compiler-compiler, it takes as an input a compiler 
specification and generates as output an executable compiler for that specification. 
To test our debugging frameworks we compiled the OpenModelica compiler 
specification and measured the compilation times and execution times of the 
resulting compiler. 

The OpenModelica compiler specification is very large: 
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• 4,65 MB of MetaModelica sources, ~140 000 lines of code 
• 52 Packages 
• 5422 Functions 

To test the speed of the generated code with debugging we ran the OpenModelica 
compiler on: 

• A large model; RRLargeModel2.mo provided by MathCore engineering. 
The model has 1659 equations/variables and ~27108 lines of code. The 
model can be provided on request. 

• A small model: BouncingBall.mo presented below. This model has 5 
equations/variables and is part of the OpenModelica release. 

The BouncingBall.mo model: 
model BouncingBall  
  parameter Real e=0.7 "coefficient of restitution"; 
  parameter Real g=9.81 "gravity acceleration"; 
  Real h(start=1) "height of ball"; 
  Real v "velocity of ball"; 
  Boolean flying(start=true) "true, if ball is flying"; 
  Boolean impact; 
  Real v_new; 
equation    
  impact = h <= 0.0; 
  der(v) = if flying then -g else 0; 
  der(h) = v; 
  when {h <= 0.0 and v <= 0.0, impact} then 
    v_new = if edge(impact) then -e*pre(v) else 0; 
    flying = v_new > 0; 
    reinit(v, v_new); 
  
end BouncingBall; 

end when; 

The OpenModelica compiler was instructed using scripts to load the models and run 
a check on them. For example the script RRLargeModel2.mos has the following 
contents: 

loadFile("RRLargeModel2.mo");"); 
checkModel(RRLargeModel2); 

The script for loading and checking the BouncingBall model is similar to the one 
above: 

loadFile("BouncingBall.mo"); 
checkModel(BouncingBall); 

The checkModel function instantiates (flattens) the model, generates the hybrid 
DAE equation system and verifies if the system is balanced (number of equations is 
equals with the number of variables) hence solvable. 
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5.4.3 Compilation Performance 

The performance of the MetaModelica system while compiling the OpenModelica 
specification is presented below.  

The translation time was calculated by running the MetaModelica system on the 
.mo files until C code is generated. The total compilation time includes also the 
compilation of each generated C file using gcc with the highest optimization level 
(–O3) and the linking time.  

The number of generated C functions is higher for the late instrumentation 
debugging as some of the low level optimizations are disabled to achieve one to one 
mapping of debugging information to the C code.  

The size of the generated C code source is larger for early instrumentation 
because the high-level optimizations cannot be applied in the presence of early 
debugging instrumentation. 

The compilation time with late instrumentation debugging is roughly 3 times 
slower (and with early instrumentation about 4 times slower) due to increased code 
size. These results are comparable to the debugger (Tolmach 1992 [155]) for 
Standard ML designed and implemented by Andrew P. Tolmach in the Standard 
ML of New Jersey (SML/NJ) system. He reports a compilation slowdown by a 
factor of 5. 

Table 5-1. Compilation performance (no debugging vs. early vs. late 
instrumentation)

 

Gen. C 
sources 
(MB) 

No. gen. 
C 
functions 

Translation 
time (s) 
 

Total  
Compilation  
time (s) 

No debugging 37 25 027 131.78 269.86 
Early instrumentation 130 52 241 155.16 850.35 
Late instrumentation 103 95 560 179.38 610.61 

5.4.4 Run-time Performance 

The run time performance of the generated OpenModelica compiler on the scripts 
RRLargeModel2.mos and BouncingBall.mos is presented below.  

The execution time with late instrumentation debugging is about 4 times slower 
than with no debugging and about 6 times faster than the execution time with early 
instrumentation debugging. These results are comparable to the Standard ML of 
New Jersey (SML/NJ) debugger (Tolmach 1992 [155]) where they report a 
execution slowdown by a factor of 3 due to code instrumentation.  

The stack usage is about the same for the large model. For the smaller model the 
late instrumentation uses more stack as the optimization that moves code and inline 
functions is disabled because the type reconstruction procedure would not work 
otherwise. 
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Table 5-2. Running performance of script RRLargeModel2.mos.

 
Running 
time (s) 

Minor 
Collections

No. Function 
Calls 

Stack 
(words) 

No debugging 223.01 394 2 059 658 665 119 760 
Early instrumentation 5395.47 565 3 654 044 108 119 912 
Late instrumentation 864.36 421 2 077 495 068 119 780 

Table 5-3. Running performance of script BouncingBall.mos.

 
Running 
time (s) 

Minor 
Collections

No. Function 
Calls 

Stack 
(words) 

No debugging 0.01 0 284 706 365 
Early instrumentation 1.84 0 3 012 932 415 
Late instrumentation 0.04 0 474 064 2221 

5.5 Tracing and Profiling 

Tracing and profiling are also supported for the MetaModelica compiler prototype. 
The tracing functionality is very useful at pinpointing the location (function name) 
if the compiler crashes due to programming errors and the profiling functionality 
can pinpoint function that need re-design to improve their execution speed. 

5.5.1 Tracing 

The tracing functionality is enabled in the MetaModelica compiler prototype by a 
compilation flag: -ftrace. The flag instructs the compiler to instrument all 
generated C functions with additional code that outputs the function name on the 
standard error. The generated executable only outputs the trace on the standard error 
if is given the –trace flag. The tracing functionality is very efficient at pin-
pointing where the executable crashes as the last function in the trace is where the 
error happened. The tracing functionality adds very little slowdown (~1.5%) to the 
generated executable as presented in Table 5-4.  

Table 5-4. The impact of tracing on execution time.

 First run Second run Average 
Without tracing (s) 213.09  212.78 212.935 
With tracing (s) 216.33 215.88 216.105 
Slowdown (%) 1.52 1,45 1,48 

Because the executable compiled with tracing is very efficient, we decided to 
compile the OpenModelica compiler releases with tracing by default. This way if a 
compiler crash happens the user can re-run it with –trace and discover where the 
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error happened (function name).  The user can then report the error and its location 
to the OpenModelica development team for investigation.  

The table presents the performance evaluation of the OpenModelica compiler 
running times while executing RRLargeModel2.mos (presented in section 5.4.2) 
compiled with and without tracing enabled. 

5.5.2 Profiling 

Profiling of executables generated by MetaModelica compiler prototype is 
supported through GNU GCC profiling facilities and the GNU profiler gprof. 
Because the MetaModelica compiler prototype generates C code, the C code can be 
compiled with profiling instrumentation using GCC. The profiling functionality can 
be enabled in the MetaModelica compiler prototype by using the –p flag. The 
executables compiled with profiling will dump a gmon.out file when executed. To 
display the profile information of the executable one can run the GNU gprof tool: 

adrpo@KAFKA ~> gprof omc  

Each sample counts as 0.01 seconds. 
 %    cumulative    self      
 time    seconds seconds     calls name     
 34.53     37.25   37.25 384695481 System__hash 
 13.29     51.59   14.34 257363327 Env__treeAdd2 
 ... 

By analyzing the output produced by GNU gprof one can pinpoint what functions 
take the most of the execution time. Using this information the compiler developer 
can re-evaluate and re-design the functions that have the most impact on execution 
time.  

5.6 The Eclipse-based Debugging Environment 

We have developed an Eclipse-based debugging environment for the late 
instrumentation debugging framework. The Eclipse environment is implemented as 
a set of plugins which are available in the Modelica Development Tooling (MDT) 
environment (presented in Chapter 8). In this section we present the GUI facilities 
of the existing debugging functionality. 

The debugger functionality is presented Figure 5-3. The figure presents a 
debugging session of the OpenModelica compiler specification stopped at a 
breakpoint set after the parser invocation. In the top-right part a complex variable 
value (the AST of the parsed model) is explored (browsed). In the top-left part the 
stack trace is presented. In the bottom-left part the execution point is shown. In the 
bottom-right part the contents of the Modelica file is presented (and the current 
function is outlined). The middle-left part presents the model that was given as 
input to the debugged compiler. 
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Figure 5-3. Advanced debugging functionality in MDT.

5.6.1 Starting the Modelica Debugging Perspective 

The Eclipse platform provides several perspectives targeted to specific tasks (source 
code editing for a particular language, graphical modeling, debugging, etc). When a 
perspective is activated the environment configures itself to show and make 
available only the needed features for a particular task. 

To be able to run in debug mode, the user has to go through the following steps: 
i) Creating and setting the debug configuration,  
ii) Setting breakpoints to stop the execution at interesting places,  
iii) Running the created debug configuration to start debugging.  

All these steps are presented below using images. 
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5.6.2 Setting the Debug Configuration 

While the Modelica perspective is activated, the user can select the bug icon on the 
toolbar and choose the Debug alternative in order to access the dialog for building 
debug configurations. 

 
Figure 5-4. Accessing the debug configuration dialog. 

To create the a debug configuration, the user can right click on the classification 
Modelica Development Tooling (MDT) and select New as in Figure 5-5. A 
name for the debugging configuration needs to be specified.  

 
Figure 5-5. Creating the Debug Configuration. 
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The user also selects the executable to be debugged and provides command line 
parameters. The additional tabs available can be used for further debug 
configuration settings such as the environment in which the executable should be 
run. 

 
Figure 5-6. Specifying the executable to be run in debug mode.

5.6.3 Setting/Deleting Breakpoints 

To enable breakpoints the user opens a file and double clicks on the editor ruler.  

 
Figure 5-7. Setting/deleting breakpoints. 
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5.6.4 The Debugging Session and the Debug Perspective 

The debugging session can be started from the menu by selecting the newly created 
debugging configuration. 

 
Figure 5-8. Starting the debugging session. 

The Eclipse platform will automatically detect that a debugging session has started 
and will prompt the user to switch to the debugging perspective. 

 
Figure 5-9. Eclipse will ask if the user wants to switch to the debugging perspective.
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5.6.4.1 The Debugging Perspective 

When the debugging perspective is selected by the user the environment activates 
and displays several views that are targeted to debugging: Variables, Breakpoints, 
Stack trace, Console and the Editor focused on the current execution point.  

 
Figure 5-10. The debugging perspective. 

At any time the user can switch between the available perspectives, activate 
additional views or change the placing of the views in the environment. 

 
Figure 5-11. Switching between perspectives. 
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5.7 Conclusions 

The increased ease of use, the high abstraction, and the expressivity of the 
MetaModelica language are very attractive properties. However, these properties 
come with the drawback that programming and modeling errors are often hard to 
find. To overcome these issues, several debugging methods and integrated 
frameworks for run-time debugging of the MetaModelica language have been 
designed, analyzed, implemented, and evaluated on non-trivial industrial 
applications.  

We have presented in this chapter these portable debugging methods and their 
integration within the MDT development environment. The evaluation of the 
implemented debugging frameworks shows that the debugging methods are reliable 
and efficient. The chapter also considers tracing and profiling of MetaModelica 
code. 

To conclude, this chapter presents a comprehensive Modelica debugger for an 
extended algorithmic subset of the Modelica language, including the meta-
programming extensions. This replaces debugging of algorithmic code using 
primitive means such as print statements or asserts which is complex, time-
consuming and error- prone. The debugger is portable since it is based on 
transparent source code instrumentation techniques that are independent of the 
implementation platform. The usual debugging functionality found in debuggers for 
procedural or traditional object-oriented languages is supported, such as setting and 
removing breakpoints, single-stepping, inspecting variables, back-trace of stack 
contents, tracing, etc. The debugger is integrated with the Modelica Development 
Tooling (MDT) environment within Eclipse. More information about MDT is given 
in Chapter 8. 

 



 

Chapter 6  
 
 
Run-time Debugging of EOO 
Languages 

Random changes to a program fix bugs. 

6.1 Introduction 

The development of today’s complex products requires advanced integrated 
environments and modeling languages for modeling and simulation. Equation-based 
object-oriented declarative (EOO) languages are emerging as the key approach to 
physical system modeling and simulation. The increased ease of use, the high 
abstraction and the expressivity of EOO languages are very attractive properties. 
However, these attractive properties come with the drawback that programming and 
modeling errors are often hard to find. In this chapter we propose an integrated 
framework for run-time debugging of equation-based modeling languages. The 
framework integrates classical debugging techniques with special techniques for 
debugging EOO languages and is based on graph visualization and interaction. The 
debugging framework targets the Modelica language. 

6.2 Debugging Techniques for EOO Languages 

In the context of debugging declarative equation-based object-oriented languages 
both the static and the dynamic (run-time) aspects have to be addressed. 

The static aspect of debugging EOO languages deals with inconsistencies in the 
underlying system of equations: 
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• Overconstrained system: the number of variables is smaller than the number 
of equations, which means that some equations have to be removed when 
solving the system of equations.  

• Underconstrained system: the number of variables is larger than the number 
of equations, which means that more equations have to be added in order to 
solve the system of equations.  

The dynamic (run-time) aspect of debugging EOO languages addresses run-time 
errors that may appear due to faults in the simulated model: 

• Model configuration: when parameters values for the model simulation are 
incorrect. 

• Model specification: when the equations that specify the model behavior are 
incorrect. 

• Algorithmic code: when the functions called from equations return incorrect 
results. 

Methods for both static and dynamic (run-time) debugging of EOO languages have 
been proposed earlier (Bunus 2004 [19], Bunus and Fritzson 2003 [20]). With the 
new Modelica 3.0 language specification, static debugging of Modelica presents 
rather small benefits, since all model components are already required to be 
balanced. All models from checked libraries will already be balanced; only newly 
written models might be unbalanced.  

In the context of the dynamic (run-time) aspect of debugging of EOO languages, 
(Bunus 2004 [19]) proposes an automated algorithmic debugging solution in which 
the user has to provide a correct diagnostic specification of the model which is used 
to generate assertions at runtime. Moreover, starting from an erroneous variable 
value the user explores the dependent equations (a slice of the program) and acts 
like an “oracle” to guide the debugger in finding the error. 

In this chapter we present a different approach that does not require the user to 
write diagnostic specifications of the model. Our method is based the integration 
between graph visualization/interaction and execution-based debugging of 
algorithmic code. 

6.3 Proposed Debugging Method 

In this section we present our run-time debugging method. The proposed integration 
within a general debugging framework for EOO languages is presented in the next 
section. 
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Figure 6-1. Debugging approach overview.  

6.3.1 Run-time Debugging Method 

Our method partly follows the approach proposed in (Bunus and Fritzson 2003 
[20]). However, our approach does not require the user to write diagnostic 
specifications of models. Also, the approach we present here can also handle the 
debugging of algorithmic code using classic debugging techniques (Pop et al. 2006 
[131]).  

An overview of our debugging strategy is presented in Figure 6-1. In short, our 
run-time debugging method is based on the integration of the following: 

• Graph visualization and interaction. 
• Presentation of simulation results and modeling code. 
• Mapping of errors to model code positions. 
• Execution-based debugging of algorithmic code. 

In the following we present a possible debugging session.  
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During the simulation phase, the user discovers an error in the plotted results. The 
user marks either the entire plot of the variable that presents the error or parts of it 
and starts the debugging framework. The debugger presents an (IDG) interactive 
dependency graph   (the dynamic program slice with respect to the variable with the 
wrong value) where nodes consist of all the equations, functions, parameter value 
definitions, and inputs that were used to calculate the wrong variable value. The 
variable with the erroneous value is displayed in a special node which is the root of 
the graph. The interactive dependency graph contains two types of edges: 

1. Calculation dependency edges: the directed edges labeled by variables or 
parameters which are inputs (used for calculations in this equation) or outputs 
(calculated from this equation) from/to the equation displayed in the node.  

2. Origin edges: the undirected edges that tie the equation node to the actual 
model which this equation belongs to. 

The user interacts with the dependency graph in several ways:  

• Displaying simulation results through selection of the variables (or 
parameters) names (edge labels). The plot of a variable is shown in a popup 
window. In this way the user can quickly see if the plotted variable has 
erroneous values.  

• Classifying a variable as having wrong values: addition of the variable to 
the set of variables with wrong values. 

• Classifying an equation as correct eliminates the equation node from the 
graph and builds a new graph based on the inputs of the correct equation 
node.  

• Building a new dependency graph based on the new set of variables with 
wrong values (classified variables) or by modifying the equations or 
parameter values nodes. 

• Displaying model code by following origin edges. 

• Invoking the algorithmic code debugging subsystem when the user suspects 
that the result of a variable calculated in an equation which contains a 
function call is wrong, but the equation seems to be correct. 

Using these interactive dependency graph facilities the user can follow the error 
from manifestation to origin. 

Our debugging method can also start from multiple variables with wrong values 
with the premise that the error might be at the confluence of several dependency 
graphs. 
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6.4 The Run-time Debugging Framework 

In this section we present the first prototype of the debugging framework based on 
the proposed method from the previous section. The debugging framework is 
limited to error tracking of a single variable with wrong results. 
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Figure 6-2. Translation stages from Modelica code to executing simulation. 

6.4.1 Translation in the Debugging Framework 

The debugging framework is closely related to the translation process. The 
translation process from the modeling language down to simulation code is 
presented in the following. The Modelica translation process has several stages 
(Figure 6-2): 

• Parser – breaks the model down into tokens and builds the abstract syntax 
tree. (not in Figure 6-2) 
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• Translator (Flattening and elaboration) – reports the errors and flatten the 
model hierarchy and applying modification. 

• Analyzer – analyses the system of equations and sorts the equations in the 
order they need to be solved 

• Optimizer – optimizes the sorted system of equations 
• Code Generator – generates C code linked with the simulation runtime and 

solvers. 
• C Compiler – compiles the generated C code to an executable 
• Simulation – the executable is executed to generate the simulation results. 

As one cans see, the translation process is complex and most of the transformations 
performed on the models are destructive. For debugging purposes all the 
transformations performed in each stage needs to be recorded to be able to point the 
errors to the user using the high level Modelica code. 
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Figure 6-3. Translation stages from Modelica code to executing simulation with 
additional debugging steps.

The debugging framework alters the Modelica translation stages by introducing 
means to map (and save such mapping) each transformed model element back to its 
origin as presented in Figure 6-3. 

The additional origin information needed by the debugging framework is saved 
by the debugging translation process within a file: debug-info.xml. The debug 
file is read by the simulation run-time only when needed.  

If an error appears in the simulation results, the user can mark the variable with 
the wrong value and the error time interval(s) on the simulation plot. The simulation 
with run-time debugging functionality is then invoked with the error information. 
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Figure 6-4. Run-time debugging framework overview.

6.4.2 Debugging Framework Overview 

The run-time debugging framework overview is presented in Figure 6-4. The figure 
presents the interaction between the components of the graphical user interface 
(GUI) and the components of the simulation run-time with debugging. Typically, 
the user debugging starts at the end of a simulation when the user observes the 
erroneous behavior of a plotted variable value. The user marks the variable name 
and the time interval and invokes the debugging functionality. The simulation 
runtime with debugging is then invoked with the user selection as input.  

In the next section we detail the debugging framework components.  

6.4.3 Debugging Framework Components 

The debugging framework has several components which deal with the user 
interaction (GUI part) and the handling of the debugging information (simulation 
runtime part). The information saved during the translation process also plays an 
important role in the debugging framework. 
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6.4.3.1 Plotting and Error Marking 

This GUI component shows the values of a variable during simulation time. The 
component has special functionality which helps the user to mark an error on the 
plot using the mouse. The user markings are encoded as a variable name and time 
intervals. After marking the error, the user invokes the debugging functionality with 
this marking. 

6.4.3.2 Dependency Graph Viewer 

The dependency graph viewer is a GUI component that displays an interactive 
graph. The graph is given by the dependency graph builder component. The graph 
shows the calculated variable name and value, the equation in which this value was 
calculated and all the additional data (parameters, equation blocks, etc) which was 
used to calculate this value.   

In this implementation the user has limited graph interaction possibilities. When 
the user double clicks on a graph node or edge, the origin of the selected element 
(variable, equation or parameter) is computed from the debugging information and 
the Source Code and Variable Value Display component is shown presenting the 
original source code element. 

6.4.3.3 Source Code and Variable Value Display 

The source code display is handled by this component. Also, the user can set 
breakpoints on the algorithmic code within this view. If the runtime reaches a 
breakpoint, the execution breaks and the variable values from this model can be 
examined.  

6.4.3.4 Dependency Graph Builder 

The most complex component of the debugging framework is the dependency graph 
builder. This component starts from a variable name and builds the dependency 
graph for that variable based on the debugging information saved in the translation 
phase. 

The constructed graph is based on the Block Lower Triangular Dependency 
Graph (BLTDG) which is computed from the Block Lower Triangular form by 
considering the data dependencies. The calculation of the BLTDG is presented in 
detail in (Bunus 2004 [19]). The constructed graph contains also additional 
information regarding the origin of each involved element. 

6.4.4 Implementation Status 

Currently we are working on the integration of the debugging framework 
components. The debugging framework is developed in Eclipse as a set of plugins 
that integrate our into our MDT development environment (for code browsing and 
algorithmic code debugging presented in Chapter 5, Chapter 8 and also in (Pop et 
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al. 2006 [131])) with graph visualization and interaction libraries. The 
OpenModelica compiler has been adapted to produce the additional debugging 
information, the dependency graph and the simulation results. 

6.5 Conclusions and Future Work 

In this chapter we presented an integrated run-time debugging framework for EOO 
languages based on graph visualization and interaction. Our method partly follows 
the approach proposed in (Bunus and Fritzson 2003 [20]). However, our approach 
does not require the user to write diagnostic specifications of models. The approach 
we present here can also handle the debugging of algorithmic code using classic 
debugging techniques (Pop et al. 2006 [131]).  

We argue that such debugging framework will ease both the run-time debugging 
and the understanding of EOO language models. 

We are aware that the scalability of our method might be an issue and we plan to 
research different filtering techniques for pruning the dependency graph. 

Our short term goal is to finalize the prototype implementation of the proposed 
debugging framework, evaluate it and report experience on debugging a set of 
selected models, and release it as part of the OpenModelica Development 
Environment. 

 



 

Chapter 7  
 
 
Debugging Natural Semantics 
Specifications 

This chapter presents the design, implementation, and usage of a debugging 
framework for the Relational Meta-Language (RML) which is a language for 
writing executable Natural Semantics specifications. The language is successfully 
used at our department for writing large specifications for a range of languages like 
Java, Modelica, Pascal, MiniML etc. The RML system previously had no 
debugging facilities, which made it hard for specification writers to debug their 
specifications. With this work we address these issues by providing a debugging 
framework for debugging high level Natural Semantics specifications in RML.  

The MetaModelica compiler prototype presented in Chapter 5 shares the same 
compiler and runtime system with the RML system. Thus all the contributions and 
results presented in this chapter also apply to the MetaModelica compiler prototype. 
Also, the contributions presented in Chapter 5 also apply to the RML system. 

7.1 Introduction 

No programming language environment can be considered mature if is not 
supported by a strong set of tools which include debugging and profiling. At our 
department we have developed a language called Relational Meta-Language (RML) 
(PELAB 1994-2008 [117], Pettersson 1995 [120], Pettersson 1999 [122]) for 
writing Natural Semantics specifications.  

The RML language is extensively used for teaching and writing large 
specifications for different languages like Java, Modelica, MiniML (Clément et al. 
1986 [23]), Pascal, Modelica, etc. Even if the RML language has a short/medium 
learning curve, the absence of debugging facilities previously created problems of 
understanding, debugging and verification of large specifications.  

 



122   Chapter 7   Debugging Natural Semantics Specifications 

 

To overcome these issues a debugging framework for RML was designed and 
implemented. The debugger is based on abstract syntax tree instrumentation 
(program transformation) in the RML compiler and some runtime support. Type 
reconstruction is performed at runtime in order to present values of the user defined 
types. For inspecting complex variable values, an external data browser was 
implemented. Post mortem analysis is possible by recording parts of or the entire 
specification trace in an XML file, which can be queried using available XML tools 
(XML (W3C [158]), XQuery (W3C [166]), XPath and XSLT (W3C [159]), etc). 

7.2 Related Work 

As pointed out in (Liebermann 1997 [85]), the computer science community is 
constantly ignoring the debugging problem even though the debugging phase of 
software development takes more than the overall development time. With our 
work we contribute to improving this state of affairs. 

In lazy functional languages like Haskell the execution order is hard to 
understand. Partly for these reasons the Evaluation Dependence Tree (EDT) tree 
(Nilsson 1998 [106]) concept was proposed to help the understanding and 
debugging of the language. On the other hand, RML is a strict functional language 
where arguments are evaluated before the call and it is, in this respect, closer to 
Standard ML (Milner et al. 1997 [97]). Our work is related to the work done on the 
Standard ML debugger (Tolmach and Appel 1995 [154], Tolmach 1992 [155]). We 
have not yet implemented time traveling, but this is one of our future work 
directions. General design ideas were inspired from (Pettersson 1998 [121]).  

Using assertions and print statements for debugging was and unfortunately still 
is many programmers choice for debugging programs. Source code instrumentation 
(or program transformation) that changes the program code in order to facilitate 
debugging is an approach present in the literature (Fritzson et al. 1994 [48], Pope 
and Naish 2003 [135]).  

Explanation of program execution in deductive systems like Deductive 
Databases (Mallet and Ducassé 1999 [89]) or Description Logic reasoners 
(McGuinness 1996 [93], McGuinness and Borgida 1995 [94], McGuinness and 
Silva 2003 [95]) has similarities with our RML debugger because they generate and 
analyze proof-trees (or derivation trees). RML is based on the style and visual 
layout of Natural Semantics and has a top-down left-right determinate search with 
local backtracking as proof procedure. 

7.3 The rml2c Compiler and the Runtime System 

The rml2c compiler is written in Standard ML ‘97 (Milner et al. 1997 [97]) using 
the Standard ML of New Jersey (SML/NJ) (SML/NJ-Fellowship 2004-2008 [148]) 
compiler. The rml2c compiler (Figure 7-1) uses several intermediate 
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representations on which it makes extensive optimizations.  The front-end generates 
ANSI-C code which is linked with the runtime system.  

module Dump  
  with “absyn.rml”  
  relation dump: Absyn.Program => 
() 
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Figure 7-1. The rml2c compiler phases. 

Immediately after parsing, the specification structure is saved in the RML Abstract 
Syntax Tree (AST). A reordering phase is performed in order to arrange the 
declarations in the correct order of dependencies. The static elaboration phase is 
performing type inference and it checks the program correctness. After the static 
elaboration phase the current RML AST representation is translated to FOL (a 
language similar to First Order Logic) representation. On this representation 
optimizations that improve determinism are applied and the result is translated to 
CPS (Continuation Passing Style) via a Pattern-Matching Compiler. Optimizations 
like constant and copy propagation and also inlining are applied to the CPS 
representation. The CPS representation is translated to a low level imperative 
representation (Code) that has explicit memory management, data construction and 
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control flow. In the last phase the Code is translated to ANSI-C. All these phases 
are depicted in Figure 7-1. 

The RML system has two runtime systems: one for fast execution and one for 
profiling and some logging of the runtime internals. 

7.4 Debugger Design and Implementation 

The design of the debugger had the following requirements as starting points: 

• Conventional debugger functionality (breakpoints, variable value 
inspections, call chain, stack trace, etc.) 

• Inspection/printing of large values. 
• Type querying facilities for variables, relations, datatypes. 
• Special features for failure discovery. In RML, when a relation fails, the 

entire specification can also fail. Because of this, is very important to have 
special functionality for discovering where and under what conditions such 
failure took place.  

• Modular design for easy integration with other tools and graphical user 
interfaces. 

• Reuse of the existing rml2c compiler and runtime system. 

These requirement specifications were driven by existing tool implementation (the 
rml2c compiler and the runtime system) and easy future extensions and 
integration. Also, extensive user knowledge and experience about writing RML 
specifications was used to derive the debugger requirements.  

According to the requirements, the only changes of the rml2c compiler and 
runtime system to support debugging were: 

• Addition of a new phase that instruments the RML AST with debugging 
nodes. This phase is triggered from a command line parameter. 

• Small changes to the static elaboration phase to output a program database 
with names and types for all the language identifiers. This program database 
is used from external tools such as the RML Project Browser and the RML 
debugging runtime system to query for types of identifiers. 

• Addition of a new runtime which has debugging functionality. 

The new tools that were developed to aid the debugging task were the RML Data 
Browser, the Emacs Mode for RML debugging and the Post Mortem Analysis tool. 
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7.5 Overview of the RML Integrated Environment 

The RML integrated environment with debugging and the various interactions 
between the components are presented in Figure 7-2.  

In the following we only describe the use of the toolbox with regards to 
debugging. The RML Project Browser is a navigator for RML specifications that 
ease the browsing of relations and datatypes.  
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module Dump  
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  relation dump: Absyn.Program => ()
  ... 

Figure 7-2. Tool coupling within the RML integrated environment with debugging.

The rml2c compiler takes as input an RML specification. The specification is 
instrumented with debug nodes. Then, the normal compilation phases are applied 
until C code is generated. The generated C code is compiled and linked with the 
debugging runtime system. Also, the compiler dumps the program database at the 
end of static elaboration phase, after performing type inference. 

When started, the executable reads in the program database and waits for user 
commands. This is a good time to set breakpoints using commands or helpers from 
Emacs Mode for RML Debugging. Then the execution can be resumed. At 
breakpoints one can print variable values directly in the standard output or they can 
be sent to the RML Data Value Browser for thorough inspection.  

User commands are available in the debugger for recording of the execution as 
an XML trace. The XML trace can be analyzed post-mortem using XML tools. In 
this way, when a certain relation fails and generates the failure of the entire 
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specification, one can understand when and why that happens by a post-mortem 
analysis of the execution trace. 

7.6 Design Decisions 

This section discusses the design decisions that were taken in the design process of 
our debugging tools.  

7.6.1 Debugging Instrumentation 

The RML compiler has several intermediate representations on which aggressive 
optimizations are applied. Because of this, debugging approaches that keep a 
mapping between intermediate representations and store reverse transformations of 
optimizations were out of the question. The best available approach was to apply 
debugging instrumentation at the RML AST level.  

7.6.2 External Program Database 

In order to present variable values using user-defined data structure one has to do 
type reconstruction at runtime. There were two possibilities of keeping a program 
database with the defined relations, variables, types and datatypes: 

• Storing the needed information obtained after type inference in SML data 
structures and generating C code with this information in the Code to C 
phase of the compilation. 

• Exporting the needed information to external files which can be read later 
by the runtime system. 

We choose the second alternative because this kind of information is also useful in 
powerful RML IDE (which includes the RML Project Browser) that provides code 
assistance (IntelliSense), displaying of types when hovering over variables and 
relations, pattern writing wizards, project browser, etc. We have already developed 
such an IDE for RML (Pop and Fritzson 2006 [129]). 

7.6.3 External Data Value Browser 

After implementing the printing of variable values to standard output it soon 
became apparent that for large values such displaying is unreadable. As an 
alternative we have implemented a very simple but practical value browser 
prototype. One nice feature: the browser provides immediate information about 
where tin the specification code each part of the data structure was defined. Future 
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work on this prototype could provide new functionality i.e., for searching, and 
analyses of the variables.  

7.6.4 Why not an Interpreter? 

Interpreters are good when one wants hands-on development with fast feedback. 
However, they are quite slow, because optimizations cannot be applied if one wants 
to give a clear feedback to the user. Also, we already had the compiler. Fast 
feedback to the developer can also be achieved by incremental compilation 
techniques, which is an approach we are currently working on.  

7.7 Instrumentation Function 

In this section we define the transformations that are performed by the 
instrumentation function over the RML AST. The instrumentation function is 
simple but very effective. In order to define this function we need to explain in 
more detail the parts of the RML language. The specification of RML is presented 
in (PELAB 1994-2008 [117], Pettersson 1995 [120], Pettersson 1999 [122]).  

RML modules have two parts: the interface specification (which defines the 
signatures that are to be exported from the current module) and the actual 
declaration of relations, private module types, datatypes, relations, and global 
values. Clauses (rules and axioms) can be grouped together in relations. Rules have 
three parts: the matching pattern, premises, and results. Axioms are just rules 
without premises.  

Premises (also called goals) can be of the following types: 
 

Bindings let pat = exp

Unification var = exp

Relation calls longIdentifier(expseq) => patseq

Negation not premise

Sequence premise & premise

Table 7-1. RML premise types. These constructs are swept for  
variables to be registered with the debugging runtime system.

Clauses (rules and axioms) have the following form: 
rule <premise> 
     ------------------ 
     var(pat) => result 
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axiom var(pat) => result 

Premises can be optional in rules or a sequence of premises. Axioms are just rules 
without premises. 

The debugging instrumentation Instr function transforms only premises in the 
following way: 

Instr(premise) =  
 RML.register_in(parameters) & 
 RML.debug(...) & premise & 
 RML.register_out(results) 

For a sequence of premises the result variables from the last executed premise, 
together with the parameter of the next premise, are registered with the debugging 
framework. Then the debug function RML.debug(...) checks for breakpoints, 
user commands or single-stepping. The debug function has as parameters the source 
filename, the line/column number of the premise, and the premise textual 
representation.  

As one can see, for each premise a sequence of three premises are generated. We 
could have got the live variables for a premise from the runtime system, but we use 
instead call premises that register these in/out variables. We used this approach 
because in the runtime system some variables are not present due to optimizations 
and also a mapping should have been kept that map existing source code variable 
names to positional parameters of relations. The parameters of variable registration 
functions are built by sweeping the premises for variables that appear in expressions 
or patterns.

7.8 Type Reconstruction in the Runtime System 

The debugging runtime system loads the program database files at startup and 
stores them in some internal structures. When the program is executed in the 
RML.debug(...) function the filename and the line/column position of the current 
execution point are known. With this knowledge and the name of the variable to be 
printed the program database information is searched for a rule that frames this 
point and contains the variable. The variable type is then retrieved.  

The variable values are stored in the RML runtime heap as tagged pointers or 
immediate values. Immediate values are only integers. All other values are boxed 
and tagged. The tags contain information about the structure and elements of the 
values.  

Starting from the variable type and the variable pointer which was registered 
using the register_in/register_out functions the variable value is traversed. 
At the same time the variable type is unfolded and the new type components are 
mapped to the current variable components.  
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7.9 Debugger Implementation 

The implementation of the debugger follows the proposed design closely.  

7.9.1 The rml2c Compiler Addition 

In the rml2c compiler we implemented the instrumentation phase as a separate 
Standard ML module that has as input the RML AST and as output the transformed 
RML AST with the debug nodes added. This additional phase is triggered by a 
command line parameter to the rml2c compiler. Also, the instrumentation can be 
applied selectively module or relation-wise in order to instrument only the 
problematic parts of the specification and achieve a faster debugging execution.  

In the static elaboration phase, after type inference is performed we saved the 
type information (that was normally discarded) in an identifier dictionary based on 
balanced search trees. At the end of the phase we write this information to the 
program database file in a flat format composed of: the identifier type, the file 
where it appears, the identifier, the line/column number and its type. A small 
portion of the program database file for our exp1.rml example specification is 
presented in the appendix. 

7.9.2 The Debugging Runtime System 

All the low-level runtime debugger functionality is implemented in C. The user 
commands are read by a command parser and the program database is read using 
another parser. The parsers are implemented using Flex (Lex) (GNU 2005 [58]) and 
Bison (Yacc) (GNU 2005 [56]) and the readline library (GNU 2005 [60]) (for 
history, command input handling, etc).  

The program database is read and stored internally in the runtime as a list. An 
ordering phase is then performed to have the information indexed over module 
name (filename) and line number.  

The RML.debug(...) relation is implemented also in C and uses the RML 
foreign function interface. The relation checks if a breakpoint was reached and in 
that case stops the execution, prints the next premise to be executed and waits for 
user commands. The relations RML.register_in("var_name", var, ...) 
and RML.register_out("var_name", var, ...) save the live variable 
information in internal arrays as (variable name, pointer to variable value) pairs. 
Only registered variables can be printed or sent to the external variable value 
browser.   

The printing or sending of the variable values is realized by recursive functions 
that traverse both the value structure and the value type at the same time. The type 
of a certain variable is retrieved from the program database information by 
matching the file, the name of the variable, and the positional frame of the rule. 
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These traversing and displaying functions take into consideration the printing depth, 
which is a debugger setting and can be changed using commands. Sockets are used 
when variable values are sent to the external browser. 

7.9.3 The Data Value Browser 

The browser is implemented in Java to have the same high portability as the RML 
system. The browser waits to read variable value information from sockets and 
displays them in a tree structure constructed by using the traversal depth. 

Syntax highlighting of RML files is performed by the browser, using a similar 
Emacs RML Mode style to keep the users on familiar grounds. 

7.9.4  The Post-Mortem Analysis Tool 

In this tool, at the moment we have only implemented a Failure analyzer that helps 
users understand where and why their specification failed. The analyzer is 
implemented in Java and replays the specification execution by navigation in the 
saved XML trace. One can stop, go back and forward in time, display variable 
values, etc. In general users start from the end of the execution and go back to 
where their specification failed.  

The trace files can be quite large, on the order of several hundred megabytes.  
To overcome this problem we gave the users the possibility to configure the tracer 
using a small specification file that contains:  

• Module, relation and/or rule to be traced. 
• Selection of variable names to include only their value in the trace.  

This file is read by the tracer function and all the information is filtered accordingly.   
We plan to implement more analyses and automated debugging in the future. 

Also, tuning of the specification data structures and its operational properties could 
be suggested by trace analysis.  

7.10 Debugger Functionality 

The Emacs RML debug mode is implemented as a specialization of the Grand 
Unified Debugger (GUD) interface (gud-mode) from Emacs (GNU 2005 [57]). 
Because the RML debug mode is based on the GUD interface, some of the 
commands have the same familiar key bindings. The actual commands sent to the 
debugger are also presented together with GUD commands preceded by the RML 
debugger prompt: rmldb@>.  
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If the debugger commands have several alternatives these are presented using the 
notation:alt1|alt2. The optional command components are presented using 
notation: [optional]. 

In the Emacs interface: M-x stands for holding down the Meta key (mapped to 
Alt in general) and pressing the key after the dash, here x,  C-x stands for holding 
down the Control (Ctrl) key and pressing x, <RET> is equivalent with 
pressing the Enter key and <SPC> with pressing Space key. 

The next subsections present a debugging session on the RML example 
specification for the Exp1 language presented in section 2.5.1. 

7.10.1 Starting the RML Debugging Subprocess 

The command for starting the RML debugger under Emacs: 
M-x rmldb <RET> executable <RET> 

 
Figure 7-3. Using breakpoints.

 



132   Chapter 7   Debugging Natural Semantics Specifications 

7.10.2 Setting/Deleting Breakpoints 

A part of a session using this type of commands is shown in Figure 7-3. The 
presentation of the commands follows. 

To set a breakpoint on the line the cursor (point) is at: 
C-x <SPC> 
rmldb@> break on file:lineno|string <RET> 

To delete a breakpoint placed on the current source code line (gud-remove): 
C-c C-d 
C-x C-a C-d 
rmldb@> break off file:lineno|string <RET> 

Instead of writing break one can use alternatives br|break|breakpoint. 
Alternatively one can delete/display all breakpoints using: 

rmldb@> clear <RET> 
rmldb@> show <RET> 

 
Figure 7-4. Stepping and running. 
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7.10.3 Stepping and Running 

To perform one step (gud-step) in the RML code: 
C-c C-s 
C-x C-a C-s 
rmldb@> step <RET> 
rmldb@> <RET> 

To continue after a step or a breakpoint (gud-cont): 
C-c C-r 
C-x C-a C-r 
rmldb@> run <RET>  

Examples of using these commands are presented in Figure 7-4. 

7.10.4 Examining Data 

There are no GUD key bindings for these commands but they are inspired from the 
GNU Project debugger (GDB) (GNU 2005 [59]). 

To print the contents/size of a variable one can write: 
rmldb@> print variable_name <RET> 
rmldb@> sizeof variable_name <RET> 

at the debugger prompt. The size is displayed in bytes. 
Variable values to be printed can be of a complex type and very large. One can 

restrict the depth of printing using: 
rmldb@> [set] depth integer <RET> 

Moreover, we have implemented an external data value browser written in Java 
called RMLDataViewer to browse the contents of such a large variable. To send the 
contents of a variable to the external viewer for inspection one can use the 
command: 

rmldb@> browse|graph var_name <RET> 

at the debugger prompt. The debugger will try to connect to the RMLDataViewer 
and send the contents of the variable. The external data browser has to be started a 
priori. If the debugger cannot connect to the external viewer within a specified 
timeout a warning message will be displayed. More about the external 
RMLDataViewer tool can be found in section 7.11. 
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Figure 7-5. Examining data.

If the variable which one tries to print does not exist in the current scope, a 
notifying warning message will be displayed. 

Automatic printing of variables at every step or breakpoint can be specified by 
adding a variable to a display list: 

rmldb@> display variable_name <RET> 

Removing a display variable from the display list: 
rmldb@> undisplay variable_name <RET> 

To print the entire display list or to remove all variables from it: 
rmldb@> display <RET> 
rmldb@> undisplay <RET> 
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Printing the current live variables (variables available in the scope): 
rmldb@> livevars <RET> 

Instructing the debugger to print or to disable the print of the live variable names at 
each step/breakpoint: 

rmldb@> [set] livevars on|off]<RET> 

Figure 7-5 shows examples of some of these commands within a debugging session. 

 
Figure 7-6. Additional debugging commands.
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7.10.5 Additional Commands 

Additional commands provide functionality for displaying the call chain, the stack 
contents, the runtime status, etc. A session using some of these commands is 
presented in Figure 7-6. 

The stack trace can be displayed using: 
rmldb@> backtrace <RET> 

Because the contents of the stack can be quite large, one can print a filtered view of 
it: 

rmldb@> fbacktrace filter_string <RET> 

Also, one can restrict the numbers of entries the debugger is storing using: 
rmldb@> maxbacktrace integer <RET> 

Also, the call chain is available in the debugger. Similar commands as for the 
backtrace are available for call chain trace.  

For displaying the status of the RML runtime: 
rmldb@> status <RET> 

The status of the RML runtime comprises information regarding the garbage 
collector, allocated memory, stack usage, etc. 

The current debugging settings can be displayed using: 
rmldb@> settings <RET> 

The settings printed are, i.e., the maximum remembered stack entries, the depth of 
variable printing, the current breakpoints, the live variables, the list of the display 
variables and the status of the runtime system. 

One can invoke the debugging help or exit the debugger by issuing: 
rmldb@> help <RET> 
rmldb@> quit <RET> 

7.11 The Data Value Browser 

The RMLDataViewer is a browser for variable values and a new addition to our 
debugging tools for RML. The need for such a tool became apparent when 
debugging specifications that use very large data structures (for example abstract 
syntax tree definitions for a certain language). 

From the executable, at the debugging prompt one can invoke a browse 
command which sends the queried variable value for displaying in the external 
browser. The variable values can be limited in depth using set depth command. In 
this way only needed parts of the variable value are sent.  
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Figure 7-7. Browser for variable values showing the current  

execution point (bottom) and the variable value (top).

The variable values are displayed in the browser as trees. The trees are collapsed, 
but one can expand them further until the needed information is found. The children 
of the root are the browsed variable names. When users click on the variable names 
the bottom part of the browser shows (using tabs) the file where the execution point 
is/was when the variable was sent to the browser. This functionality is presented in 
Figure 7-7. To make it easy for users to understand their variables, the browser 
shows datatype definitions connections to pieces of variable values like in Figure 
7-8. 
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Figure 7-8. When datatype constructors are selected, the bottom part presents  
their source code definitions for easy understanding of the displayed values.

The screens were captured while debugging the OpenModelica compiler 
specification and the variable value consists of the abstract syntax tree of the 
Modelica language. 

7.12 The Post-Mortem Analysis Tool 

As pointed out in the debugger design and implementation, one can record parts of 
or the entire execution trace of the specification in an XML file. The trace can then 
be analyzed by tools that point out specific issues.  
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In our post-mortem analysis environment we have developed a tool called Failure 
analyzer. The Failure analyzer is a replay debugger which is able to walk back and 
forth in time, display variable values, execution points, etc. When their specification 
fails the users can run this analyzer over the recorded trace, start from the end of the 
execution and go back and investigate where the execution has failed and why. This 
tool was very important for our users, because, for large specifications, is not trivial 
to understand where and why your specification failed.  

The Failure analyzer tool is similar to the data value browser, but has buttons for 
navigation in time, setting/deleting breakpoints and displaying values. 

7.13 Performance Evaluation 

In this section we make performance evaluation of our debugging strategy on three 
real-world semantic specifications that define compilers for extended Pascal 
(petrol), a small functional language (MiniML (Clément et al. 1986 [23])) and a 
large Modelica compiler (OpenModelica). The first two specifications are part of 
the examples bundled with the RML system (PELAB 1994-2008 [117], Pettersson 
1995 [120], Pettersson 1999 [122]) and the Modelica compiler was implemented in 
the OpenModelica project and is also available for download at the project address. 
The semantic specifications were compiled to two versions of executables, one in 
release mode and one in debugging mode. The compilers were then used to compile 
programs and the compilation performance was measured.  

We have tested the performance of our debugger on an Intel Pentium Mobile at 
1.5Ghz with 480 MB of RAM memory. We compared code growth, execution time, 
stack consumption, and number of relation calls.  

If we consider that a premise (one call) is executed in O(1) then the complexity 
of the call combined with the instrumentation will be O(number of variables from 
the premise)+O(premise)+O(call to the step function) which is a complexity in the 
order of the numbers of variables present in the specification. 

7.13.1 Code Growth 

Table 7-2 below shows the additional number of lines of code added during code 
instrumentation. The code growth is between 1.3 and 1.7 which is quite limited. We 
can see that for very large specifications like the OpenModelica compiler the code 
grows less than for smaller specifications. The code growth was measured on the 
files obtained from the abstract syntax tree unparsing before and after the 
instrumentation. The comments were ignored. 

test/mode  
(debug/normal) 

normal debug 

petrol (1.63) 2513 4083 
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miniml (1.57) 1112 1747 

OpenModelica (1.36) 57186 77961 

Table 7-2. Size (#lines) without and with instrumentation.

7.13.2 The Execution Time 

The execution time was also measured and the results are presented below.  

 

test/mode 
(debug/normal) 

normal 
(seconds) 

debug 
(seconds) 

petrol (24.63) 0.12 2.96 

Miniml (11.19) 6.14 68.71 

OpenModelica (20.55) 0.20 4.11 

Table 7-3. Running time without and with debugging.

Table 7-3 presents a performance evaluation of our debugger. As one can notice, 
the programs compiled in debug mode are between 10 and 25 times slower than the 
programs compiled without debugging. We find this acceptable, as this is the first 
prototype. For the user, the delay times due to the added debugging code are 
practical. We can note also that very large specifications can be debugged without 
too much penalty. 

7.13.3 Stack Consumption 

We have investigated the stack consumption needed during debugging versus the 
normal memory consumption. The results are summarized in Table 7-4. 

 

test/mode 
 (debug/normal) 

normal 
 (words) 

debug  
(words) 

petrol (1.19) 249 297 

miniml (1.01) 8966 9126 

OpenModelica  (1.06) 1447 1543 

Table 7-4. Used stack without and with debugging.
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It is normal that the debugging version of the runtime needs more stack because it 
has more calls. This can be seen in the next subsection in Table 7-5. However, one 
can see that the stack growth due to debugging is small, which means that the high 
level optimization (that improve determinism) in the rml2c compiler are very 
effective. 

7.13.4 Number of Relation Calls 

Presented in Table 7-5 is the total number of relations called during execution. Here 
one can see that the debugger is using a large number of calls to register variables 
and to check breakpoints or steps.  

 

test/mode  
(debug/normal) 

normal debug  

petrol (6.30) 350305 2209984 

miniml (16.30) 2809705 45805284 

OpenModelica (5.30) 510321 2706378 

Table 7-5. Number of performed relation calls.

7.14 Conclusions and Future Work 

In this chapter we have presented our practical debugging framework for Natural 
Semantics. The debugging design, implementation and usage (functionality) was 
detailed.  

We can report that some of our RML users who have debugged their 
specifications using this debugging framework have given us positive feedback and 
also various suggestions for improvement.  

While this is a good start, many improvements can be made to this framework. 
As future direction we plan to improve the debugger execution speed, implement 
time traveling without the need of execution tracing, define more post-mortem 
analyses. One of our goals is to integrate of all our tools in an integrated 
development environment (IDE) for RML based on the Eclipse platform 
(Eclipse.Foundation 2001-2008 [29]). We already designed and implemented such 
an RML IDE (Pop and Fritzson 2006 [129]). 
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Chapter 8  
 
 
Modelica Development Tooling (MDT) 

The OpenModelica (MDT) Eclipse Plugin integrates the OpenModelica compiler 
and debugger with the Eclipse Integrated Development Environment Framework.. 
MDT, together with the OpenModelica compiler and debugger, provides an 
environment for Modelica development projects. This includes browsing, code 
completion through menus or popups, automatic indentation even of syntactically 
incorrect models, and model debugging. Simulation and plotting is also possible 
from a special command window. To our knowledge, this is the first Eclipse plugin 
for an equation-based language. Eclipse (Eclipse.Foundation 2001-2008 [29]) is an 
open source framework for creating extensible integrated development 
environments (IDEs) using plugins. 

8.1 Introduction 

The goal of our work with the Eclipse framework integration in the OpenModelica 
modeling and development environment is to achieve a more comprehensive and 
powerful environment. It can be useful to first take a general look at this area 
including some background. 

8.1.1 Integrated Interactive Programming Environments 

An integrated interactive modeling and simulation environment is a special case of 
programming environment aimed at applications in modeling and simulation. Thus, 
it should fulfill the requirements both from general integrated environments and 
from the application area of modeling and simulation mentioned in the thesis. 

The main idea of an integrated programming environment in general is that a 
number of programming support functions should be available within the same tool 
in a well-integrated way. This means that the functions should operate on the same 
data and program representations, exchange information when necessary, resulting 
in an environment that is both powerful and easy to use. An environment is 
interactive and incremental if it gives quick feedback, e.g. without recomputing 
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everything from scratch, and maintains a dialogue with the user, including 
preserving the state of previous interactions with the user. Interactive environments 
are typically both more productive and more fun to use.  

There are many things that one wants a programming environment to do for the 
programmer, particularly if it is interactive. What functionality should be included? 
Comprehensive software development environments are expected to provide 
support for the major development phases, such as: 

• Requirements analysis. 
• Design. 
• Implementation. 
• Maintenance. 

A programming environment can be somewhat more restrictive and need not 
necessarily support early phases such as requirements analysis, but it is an 
advantage if such facilities are also included. The main point is to provide as much 
computer support as possible for different aspects of software development, to free 
the developer from mundane tasks so that more time and effort can be spent on the 
essential issues. The following is a partial list of integrated programming 
environment facilities, some of which are were already mentioned in (Sandewall 
1978), that should be provided for the programmer: 

• Administration and configuration management of program modules and 
classes, and different versions of these. 

• Administration and maintenance of test examples and their correct results. 
• Administration and maintenance of formal or informal documentation of 

program parts, and automatic generation of documentation from programs. 
• Support for a given programming methodology, e.g. top-down or bottom-

up. For example, if a top-down approach should be encouraged, it is natural 
for the interactive environment to maintain successive composition steps 
and mutual references between those. 

• Support for the interactive session. For example, previous interactions 
should be saved in an appropriate way so that the user can refer to previous 
commands or results, go back and edit those, and possibly re-execute. 

• Enhanced editing support, performed by an editor that knows about the 
syntactic structure of the language. It is an advantage if the system allows 
editing of the program in different views. For example, editing of the 
overall system structure can be done in the graphical view, whereas editing 
of detailed properties can be done in the textual view. 

• Cross-referencing and query facilities, to help the user understand 
interdependences between parts of large systems. 

• Flexibility and extensibility, e.g. mechanisms to extend the syntax and 
semantics of the programming language representation and the functionality 
built into the environment.  
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• Accessible internal representation of programs. This is often a prerequisite 
to the extensibility requirement. An accessible internal representation means 
that there is a well-defined representation of programs that are represented 
in data structures of the programming language itself, so that user-written 
programs may inspect the structure and generate new programs. This 
property is also known as the principle of program-data equivalence. 

Early work in interactive integrated programming environments supporting a 
specific language was done in the InterLisp system for the Lisp language: 
(Teitelman 1974), common principles and experience of early interactive Lisp 
environments are described in (Sandewall 1978), interactive and incremental Pascal 
with the DICE system: (Fritzson 1983), the integrated Mjölner environment, 
(Lindskov, Knudsen, Lehrmann-Madsen, and Magnusson 1993). 

8.1.2 The Eclipse Framework 

Eclipse (Eclipse.Foundation 2001-2008 [29]) is an open source framework for 
creating extensible integrated development environments (IDEs). One of the goals 
of the Eclipse platform is to avoid duplicating common code that is needed to 
implement a powerful integrated environment for development of software. By 
allowing third parties to easily extend the platform via the plugin concept, the 
amount of new code that needs to be written is decreased.  

8.1.3 Eclipse Platform Architecture 

By itself, Eclipse does not provide extensive end-user functionality. The important 
contribution of Eclipse is based on its plugins. The smallest architectural unit of the 
Eclipse platform is the plugin. 

At the core of Eclipse is the Eclipse Platform Runtime. The Runtime in itself 
mostly provides the loading of external plugins. The Java Development Tooling 
(JDT) is for example a collection of plugins that are loaded into Eclipse when they 
are requested. The fact that Eclipse is in itself written in Java and comes with the 
Java Development Tooling as default often leads newcomers to believe that Eclipse 
is a Java IDE with plugin capabilities. It is in fact the other way around, with 
Eclipse being just a base for plugins, and the Java Development Tooling plugging 
into this base. 

To extend Eclipse, a set of new plugins must be created. A plugin is created by 
extending a certain extension point in Eclipse. There are several predefined 
extension points in Eclipse, and plugins can provide their own extension points. 
This means that you can plug in plugins into other plugins. 

An extension point can have several plugins attached, and what plugin will be 
used is determined by a property file. For example, the Modelica Editor is loaded at 
the same time as the Java Editor is loaded. When a user opens a Java file, the Java 
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Editor will be used, based on a property in the Java Editor extension. In this case, it 
is the file name extension that determines what editor that should be used. 

As the number of plugins in Eclipse can be very large, a plugin is not actually 
loaded into memory before its contribution is directly requested by the user. This 
design makes the memory impact reasonably low while running Eclipse. 

A user-friendly aspect of Eclipse is the Eclipse Update Manager which allows 
you to install new plugins just by pointing Eclipse to a certain website. This website 
is provided by the developers of the plugin that you may wish to install. An update 
site at the OpenModelica web site is for example provided for easy installation of 
the latest version of MDT. 

8.1.4 OpenModelica MDT Eclipse Plugin  

The MDT Eclipse plugin provides file and class hierarchy browsing and text editing 
capabilities. Some syntax highlighting facilities and a compilation manager are also 
included in MDT, as well as integration to the debugger.  

 
Figure 8-1. The architecture of Eclipse, with possible plugin positions marked. 

The Eclipse framework (Figure 8-1) has the advantage of making it easy to add 
future extensions.  
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8.2 OpenModelica Environment Architecture 

The MDT Eclipse plugin is integrated in the OpenModelica environment which 
consists of several interconnected subsystems, as depicted in Figure 8-2 below. 

Arrows denote data and control flow. Several subsystems provide different 
forms of browsing and textual editing of Modelica code.  

Modelica 
Compiler 

Interactive 
session handler

Execution 

Graphical Model 
Editor/Browser 

Textual  
Model Editor 

  

Modelica 
Debugger 

Emacs  
Editor/Browser 

DrModelica 
NoteBook  

Model Editor 

Eclipse Plugin  
Editor/Browser 

 
Figure 8-2.  The architecture of the OpenModelica environment. 

OpenModelica is structured as several communicating processes in a client-server 
architecture, primarily exchanging information through a Corba interface, see 
Figure 8-3. The OpenModelica compiler/interpreter (OMC) is the server, 
communicating with clients. The Eclipse MDT plugin is one of the clients. 

Messages from the Corba interface are of two kinds. The first group consists of 
expressions or user commands which are evaluated by the Ceval package. The 
second group consists of declarations of classes, variables, etc., assignments, and 
client-server API calls that are handled via the Interactive package, which also 
stores information about interactively declared/assigned items at the top-level in an 
environment structure.  

A more detailed description of the OpenModelica compiler (OMC) is given in 
section 4.3 of Chapter 4 where the important packages of the compiler are 
described. 

 



150   Chapter 8   Modelica Development Tooling (MDT) 

 
Parse

Client: Eclipse 
Plugin 

Corba 

Client: OMShell 
Interactive 

Session Handler 

Server: Main Program 
Including Compiler, 

Interpreter, etc. 

Interactive 

 

SCode 

Inst 

Ceval 
plot 

system

etc. 

Untyped API 

Typed Checked Command API 

Client: Graphic 
Model Editor 

 

Figure 8-3.  The client-server architecture of the OpenModelica environment. 

8.3 Modelica Development Tooling (MDT) Eclipse 
Plugin 

As mentioned, the Modelica Development Tooling (MDT) Eclipse Plugin provides 
an environment for working with Modelica development projects. 

The following features are available: 

• Browsing support for Modelica projects, packages, and classes. 
• Wizards for creating Modelica projects, packages, and classes. 
• Syntax color highlighting. 
• Syntax checking. 
• Code completion when writing code to reference a class. 
• Code completion/signature information when writing function calls. 
• Browsing of the Modelica Standard Library and other Modelica package 

hierarchies. 
• Support for MetaModelica extensions to standard Modelica. 
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8.3.1 Using the Modelica Perspective 

The most convenient way to work with Modelica projects is to use to the Modelica 
perspective. To switch to the Modelica perspective, choose the Window menu item, 
and select Open Perspective followed by Other... Select the Modelica 
option from the dialog presented and click OK. 

8.3.2 Creating a Project 

To start a new project, use the New Modelica Project Wizard. It is accessible 
through File->New->Modelica Project or by right-clicking in the Modelica 
Projects view and selecting New->Modelica Project. 

 
Figure 8-4. Creating a new package. 

8.3.3 Creating a Package 

To create a new package inside a Modelica project, select File->New->Modelica 
Package. Enter the desired name of the package and a description of what it 
contains. 

8.3.4 Creating a Class 

To create a new Modelica class, select where in the hierarchy that you want to add 
your new class and select File->New->Modelica Class. When creating a 
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Modelica class you can add different restrictions on what the class can contain. 
These can for example be model, connector, block, record, or function.  

 
Figure 8-5. Creating a new class. 

When you have selected your desired class type, you can select modifiers that add 
code blocks to the generated code. ‘Include initial code block’ will for 
example add the line ‘initial equation’ to the class. 

 
Figure 8-6. Syntax checking. 
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8.3.5 Syntax Checking 

Whenever a Modelica (.mo) file is saved by the Modelica Editor, it is checked for 
syntactical errors. Any errors that are found are added to the Problems view and 
also marked in the source code editor.  

Errors are marked in the editor as a red circle with a white cross, a squiggly red 
line under the problematic construct, and as a red marker in the right-hand side of 
the editor. To reach the problem, one can either click the item in the Problems view 
or select the red box in the right-hand side of the editor. 

8.3.6 Code Completion 

MDT supports Code Completion in two variants. The first variant, code completion 
when typing a dot after a class (package) name, shows alternatives in a menu: 

 
Figure 8-7. Code completion using a popup menu after a dot

The second variant is useful when typing a call to a function. It shows the function 
signature (formal parameter names and types) in a popup when typing the 
parenthesis after the function name, here the signature Real sin(SI.Angle u) 
of the sin function: 
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Figure 8-8. Code completion showing a popup function signature after typing a left 
parenthesis. 

8.3.7 Automatic Indentation 

MDT also has support for automatic indentation. When typing the Return (Enter) 
key, the next line is indented correctly. You can also correct indentation of the 
current line or a range selection using CTRL+I or “Correct Indentation” action on 
the toolbar or in the Edit menu.  

 
Figure 8-9.  Example of code before indentation.
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Figure 8-10. Example of code after automatic indentation. 

Indentation can be applied to incomplete code as a heuristic Modelica scanner is 
used and the indentation is based only on the tokens generated by this scanner. The 
indenter indents one line at a time. For example, consider that line four (4) in Figure 
8-10 should be indented. The indenter asks the heuristic scanner to give tokens from 
in backwards direction to the start of the file until a scope introducer is recognized, 
which for this particular file is model MoonAndEarth.  The reference position of 
the start of the scope introducer is computed and line four (4) is indented from this 
reference position on indent unit. The indentation result is presented in Figure 8-10.  

Indenting Modelica code is far from trivial when incomplete (possibly incorrect) 
code should be indented correctly. Most of the difficulty comes from Modelica 
scopes which are hard to recognize using just a scanner and some logic behind it. In 
languages like C/C++ and Java finding enclosing scopes is very easy as one 
character tokens are used for the scope opening and closing: "{" and "}". In 
Modelica you need at least two tokens and a lot of case analysis to find where a 
scope starts and ends. Complications also arise when mixing if statements with if 
expressions (which was further complicated by the introduction of the conditional 
declarations). In this particular case we implemented a parser emulator that 
recognizes these constructs based on scanner tokens delivered backwards. 
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The indenter works in almost all cases, but there are cases in which it is 
impossible to find the correct indentation. For example when the indentation of a 
line consisting of end Name; is requested and the scope introducer for Name is not 
found (that is identifier Name followed backwards by class, model, package, 
block, record, connector etc.) then the indenter fails and returns the indentation 
of the previous line. 

8.4 The OpenModelica Debugger Integrated in 
Eclipse 

We have integrated our algorithmic debugger (Chapter 5), also (Pop and Fritzson 
2005 [128]) within the Eclipse debugging framework.  

The communication protocol between MDT and the debugger (which is 
included in the compiled executable build for simulation) is based on a client-server 
architecture and is implemented via sockets. The debugger is the client and MDT is 
the server. When the debugged model is simulated, the debugger receives from 
MDT all the breakpoints set within the algorithmic code. Then the debugger 
resumes the program. When a break condition becomes true the debugger stops the 
program and listens on commands it may receive from MDT. The commands 
accepted by the MDT client are classic: variable value printing, stack trace printing, 
stepping, running, etc. MDT sends appropriate commands to the debugger, parses 
the information received and displays it within the MDT debugging views to be 
inspected by the programmer.  

Because algorithmic code can be executed millions of times within a simulation, 
is very important to be able to specify breakpoints based on variable values and/or 
the number of times a function executes. These types of breakpoints were newly 
added to the debugging framework and are now available.  

8.5 Simulation and Plotting from MDT 

Simulation and plotting is possible from a special command window, where 
commands are sent to OMC. For example, to simulate: 

>> simulate(Influenza,startTime=0.0, stopTime=3.0) 
 
record 
    resultFile = "Influenza_res.plt" 
end record 

The simulated population is plotted, which is shown in Figure 8-11. 
>> plot({Infected_Popul.p}) 
true 
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Figure 8-11. Plot of the Influenza model.

8.6 Conclusions 

The OpenModelica integrated development environment for Modelica has been 
augmented with a plugin to the Eclipse framework. The plugin, called MDT 
(Modelica Development Tooling) (Pop et al. 2006 [131]), is primarily aimed at 
development of large models or specifications. It has support for browsing, editing, 
code completion, automatic indentation, building executables, and debugging. It 
also allows simulation and plotting from a special command window. Further 
extension and integration of MDT with UML-based modeling is presented in 
Chapter 10. 

To summarize, MDT provides a rather complete integrated development 
environment, and it is also the first available Eclipse plugin for an equation-based 
language. 

 

 





 

Chapter 9  
 
 
Parsing-Unparsing and Refactoring 

In this chapter based on (Fritzson et al. 2008 [52]) we present a strategy for 
comment- and indentation preserving refactoring and unparsing for Modelica. The 
approach is general, and is currently being implemented for Modelica in the 
OpenModelica environment. We believe this to be one of the first unparsing 
approaches for equation-based object-oriented languages that can preserve all user-
defined indentation and comment information, as well as fulfilling the principle of 
minimal replacement at refactorings.  

9.1 Introduction 

Integrated programming environments, e.g. InterLisp (Warren 1974 [171]) and 
Eclipse (Eclipse.Foundation 2001-2008 [29]) provide various degrees of support for 
program transformations intended to improve the structure of programs – so-called 
refactorings (Fowler et al. 1999 [39]) (see also Section 9.7).  

Such operations typically operate on abstract syntax tree (AST) representations 
of the program. Therefore the program needs to be converted to tree form by 
parsing before refactoring, and be converted back into text by the process of 
unparsing, also called pretty printing This is supported by a number of  
environments (section 9.7). 

However, a well-known problem is that of preserving comments and user-
defined indentation while performing refactorings. Essentially all current 
environments either loose the comments (except for special comments that are part 
of the language syntax and AST representation), or move them to some other place. 
User-defined indentation is typically lost and replaced by machine-generated 
standard indentations. This is accepted by some developers, but judged as 
unacceptable by others. However, if the objective only is to improve indentation, 
then a semi-automatic indenter can be used instead (section 9.5.3.3). 
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Currently Modelica-based tools are handling only declaration comments that are 
part of the model and are discarding or moving all the other comments, i.e. the ones 
between /* */ and after //…. Such behavior is highly undesirable from a user 
perspective and heavily affects the ease-of-use of code-versioning tools. 

A goal for the work presented here is to support Modelica code refactoring with 
minimal disruption of user-defined comments and indentation. In this chapter we 
present such an approach for unparsing in conjunction with refactorings. 

9.2 Comments and Indentation 

Regard the following contrived Modelica example. It has one declaration comment 
which is part of the language syntax, and two “textual” comments Itemcomm and 
MyComm which would be eliminated by a conventional parser. It is also nicely hand 
formatted so that the start positions of each component name in the text are 
vertically aligned. 

record MODIFICATION  "Declaration comment" 
  Boolean           finalItem; //Itemcomm 
  Each /* MyComm */ eachRef; 
  ComponentRef      componentReg; 
end MODIFICATION; 

Assume that this is parsed and unparsed by a conventional (comment-preserving) 
unparser, putting two blanks between the type and the component name of each 
component. The manual indentation would be lost, and the “textual” comments 
would be moved to some standard positions (or be lost): 

record MODIFICATION "Declaration comment" 
  Boolean  finalItem; //Itemcomm 
  Each  eachRef; /* MyComm */ 
  ComponentRef  componentReg; 
end MODIFICATION; 

9.3 Refactorings 

Below we make some general observations and give examples of refactorings. 

9.3.1 The Principle of Minimal Replacement 

For a refactoring to have minimal disruption on the existing code, it is desired that it 
supports the principle of minimal replacement: 

• When replacing a subtree, the minimal subtree that contains the change should 
be replaced. 
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This also has the consequence of minimal loss or change of comments. For 
example, if a name (an identifier) is changed, only the identifier node in the tree 
should be replaced, not the surrounding subtree. 

9.3.2 Some Examples of Refactorings 

Here we mention a few common refactorings. There are also numerous, more 
advanced and specialized refactorings. 

• Component name change. Change name of a component name in a record. For 
example: 
record MODIFICATION  "Declaration comment" 
  Boolean           finalItem; //Itemcomm 
  Each /* MyComm */ eachRef; 
  ComponentRef      componentReg; 
end MODIFICATION; 

The name of the component reference name is currently componentReg, which is 
an error. It should be componentRef. We would like to change the name both in 
the declaration and all its uses, thus avoiding updating all named references by 
hand, which would be quite tedious. 

• Function name change. Change the name of a function, both the declaration and 
all call sites. 

• Add record component. Add a new component declaration to a record. In 
MetaModelica, that would also mean putting an underscore '_' at the correct 
position in all patterns for that record type with positional matching. 

• Add function formal parameter. Add an input or output formal parameter to a 
function. The question is, how much is possible to do automatically? Adding 
arguments to recursive calls to the function itself is no great problem, but calls 
from other functions can be more problematic since meaningful input data needs 
to be provided. This can be handled easily in those cases a default value can be 
passed to the function's new formal parameter. 

9.3.3 Representing Comments and User-Defined Indentation 

How should information about comments and user defined indentation be 
represented in the internal (AST) program representation? There are basically two 
possibilities for a chunk of code, e.g. a model: 

• Tree. The AST representation is the main storage (the TRUTH). Comments and 
indentation as extra nodes/attributes in the AST. 
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• Text. The text representation, including indentation and comments, is the main 
storage (the TRUTH). 

The tree approach may seem natural, since the refactorings and the compiler operate 
on the tree representation. However, it has some disadvantages: 

• Since white space and comments can appear essentially anywhere, between 
nodes, associated with nodes, the AST will become cluttered and increase the 
required memory usage and complexity of the tree, perhaps by a factor 2-3. 

• The large number of extra nodes in the AST may complicate code accessing and 
traversing the tree. 

Regarding the text representation we make the following observations: 

• The text representation exists from the start, since this is the storage form used 
in the file system. Environments like Eclipse use text buffers for direct 
interaction with the programmer. 

• The text representation includes all indentation and comment information, and is 
compact. 

• The structure of the program in the text representation is not apparent, and 
cannot be easily manipulated. 

Why not combine the advantages of each representation, and try to avoid the 
disadvantages? 

• Use the text representation as the basic storage format including indentation and 
comment information. The text might be conceptually divided into chunks, 
where for example each class definition gives rise to a text chunk. 

• Use the tree representation for compilation and refactoring. Create it when 
needed and keep it during the current session. Create it piece-wise, e.g. for one 
class at a time. 

• Create a mapping from the tree representation to the text representation; each 
node in the tree has a corresponding position and size in the text representation. 
Create this mapping when needed, for appropriate pieces (e.g. class definitions) 
of the total model. 

9.4 Implementation 

The strategy used for the implementation is described in the following sections. 
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9.4.1 Base Program representation 

The text representation is the TRUTH, the source, and the AST representation is a 
secondary representation derived from the source, used during compilation and 
refactoring. 

The class information attribute of a class definition in the AST should be 
extended, e.g. with the byte start position (directly addressing within a file), or by a 
text chunk corresponding to the text of a class declaration. A package which 
contains classes would instead refer to the definitions of those classes. 

Text positions and text sizes of each AST node should be indirectly associated 
with each AST node. 

9.4.2 The Parser 

The following special considerations need to be addressed by the parser: 

• In order not to clutter the produced AST tree, the parser produces two trees: a 
standard AST tree, and a positioning tree (produced in parallel) with the same 
number of nodes, containing text positions and sizes of each subtree. 

• The parser should return the start text position and text size of each built AST 
tree. Moreover, if there are any comments within the AST tree text range, a list 
of the start positions and sizes of these comments should be associated with the 
parallel tree node. 

• The pure AST tree should be clean and not cluttered with position and comment 
information. 

• As mentioned, a text position tree with the same number of nodes and children 
as the AST is created in parallel to the AST. The positioning tree is only 
produced when needed for refactorings or text positioning, and thrown away 
when not needed. 

For example, a child nr 3 of a node at level 2, will find its text positions in the 
parallel tree in the node at level 2 and child nr 3. 

9.4.3 The Scanner 

The text position and size of each token is returned together with the token itself. 

9.4.4 The New Unparser 

The new unparser will use a combined strategy as follows, combining existing text 
with new text generated by the tree unparser: 
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• If there exist already indented text associated with a node, use this text to 
produce the unparsing text. 

• If there is no existing text, this must be a new tree node produced by the 
refactoring tool. Call the tree unparser to convert this subtree into text that is 
inserted into the final unparsing result. 

9.5 Refactoring Process 

The following steps are to performed in this order during the actual refactoring: 

• Traverse the AST and perform insertion/deletion/ replacement of subtrees. 
• For each insertion/deletion/replacement operation, put each such an operation 

descriptor in a list, together with the text position and size of the text of the 
subtree to be replaced/deleted etc. 

• After traversal, sort these operations according to text position, and perform the 
operations in the text in backwards order (take those at the highest text position 
first). 

9.5.1 Example of Function Name Refactoring 

The example below is used to illustrate the refactorings and the used combined tree 
and text chunk representation. 

All loaded models (including the Modelica package) reside in an un-named 
top-level scope that we can call Top. A model may be a top-level model, but more 
typically a package which in turn may consist of subpackages: 

01 within ParentPackage; 
02 package ack  p
03  function addOne "function that adds 1" 
04   input Real x = 1.0; // line comment 
05   output Real y;      /*  multiple 
06                           line 
07                           comment */ 
08  algorithm 
09   y := x + 1.0; 
10  end addOne; 
11  
12  class myClass 
13    Real y; 
14  equation 
15    y = addOne(5); // Call to addOne 
16  end myClass;  
17 end pack; 
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Line numbers are given to help the reader follow the example. The position tree 
constructed by the parser is given in the appendix as it is quite large. A portion of 
the abstract syntax tree is also shown in order to understand the example. 

A function name refactoring will be applied to the example which will change 
the name of the function "addOne" to "add1", The refactoring can be performed 
in the OpenModelica environment by loading the example and calling the 
interactive API function: 

loadFileForRefactoring("Example.mo"); 
refactorFunctionName(pack.addOne, "add1"); 

The compiler will execute the first command by calling the new parser that also 
builds the position tree together with the AST:  

(ast,posTree) = Parse.refactorParse(file); 

The result of the load command is two trees. The second (posTree) is the position 
tree presented (partly) in the appendix. The first (ast) is the abstract syntax tree of 
the loaded file which is presented also in the appendix entirely. Here is just a 
overview picture of the AST: 

 
Figure 9-1. AST of the Example.mo file.

The figure shows that the program has one package with two public elements which 
are class definitions.  

Actually only two refactoring operations are needed to implement any 
refactoring: add and delete or add and replace. 

When refactorFunctionName is called the compiler will perform these 
operations: 
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9.5.1.1 Lookup pack.addOne 

Lookup of a class definition is performed by walking the AST while keeping track 
of a numbered path in the tree. To reach the addOne identifier, the path: 1, 6, 1, 1, 
1, 5, 2, 1, 1 is applied. The path goes via the following AST nodes in order to reach 
the desired class name: PROGRAM [1] / CLASS [6] / PARTS [1] / PUBLIC 
[1] / ELEMENTITEM [1] / ELEMENT [5] / CLASSDEF [2] / CLASS [1] 
/ IDENT("addOne") [1]. 

9.5.1.2 Lookup Any Uses of pack.addOne 

Lookup of the uses are performed by walking the AST, keeping track of the scope, 
while keeping track of a numbered path. To reach the function call of addOne, the 
path: 1, 6, 1, 1, 1, 5, 2, 1, 1 is applied. The path goes via the following AST nodes:  
PROGRAM [1] / CLASS [6] / PARTS [1] / PUBLIC [2] / ELEMENTITEM 
[1] / ELEMENT [5] / CLASSDEF [2] / CLASS [6] / PARTS[1] / 
EQUATIONS [1] / EQUATIONITEM [1] /  EQ_EQUALS [2] / CALL[1] / 
CREF_IDENT [1] / IDENT("addOne") [1]. 

9.5.1.3 Apply the Refactoring to the Actual Text 

Now that the paths needed for the minimal refactoring were discovered in the AST, 
apply these paths to the position tree and fetch the positions of the elements at the 
end of the paths:  

• Function name: IDENT, Start:047, End:053 
• Function use:    IDENT, Start:313, End:319 

The text operations are applied bottom-up because otherwise the character positions 
of the elements below an applied operation would change. Ordering of text 
operations is needed to have them applied in a bottom-up fashion: 

• ReplaceText(file, 319, 313, "add1"); 
• ReplaceText(file, 53, 47, "add1"); 
• Close(file); 
• (ast, posTree) =   // re-parse the file  Parse.refactorParse(file);  

After the file is closed either a reparsing is performed to load the new AST (as 
exemplified here) or the refactoring operations are perfomed on the tree already in 
the memory. Of course the best alternative would be to perform the refactoring 
during lookup as we have implemented it in the OpenModelica compiler.  

As one can notice the comments stay in place so there is minimal disruption to 
the text representation. This is very valuable from a user point of view but also for 
code-versioning tools. 
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9.5.2 Calculation of the Additional Overhead 

There is not too much overhead for the refactoring both with respect to memory 
usage and time spent walking the tree. In the following table we discuss such 
overhead and give specific numbers for needed memory size and time complexity 
of the refactoring procedure. 

Memory overhead Time overhead 

Space is required for storing the 
position tree. The size of this space is 
two integers (of 4 bytes) for each AST 
node. Also the list of operations to be 
applied to the text needs memory for 
storing the paths and the operations 
themselves, but this memory is 
negligible compared to the AST and 
position tree and can also be freed. 

Example: there are about 50 nodes in 
the example, which means an 
additional memory of ~ 50NrNodes x 
2Positions x 4Bytes = 400Bytes are 
needed for the position tree. Of 
course, the position tree can be built 
on demand and then freed when 
memory is needed. 

Walking two trees while performing 
the refactoring has a time impact of  
NumberOfNodesWalked x O(1) to 
walk a node: O(NrOfNodesWalked). 
Walking the position tree while and 
applying the text operations to the file 
is negligible compared to the 
refactoring operation. 

Example: it took about 0.2 seconds to 
perform the function name refactoring 
for the example file using the 
OpenModelica system. Refactoring 
old graphical annotations of the 
Modelica Standard Library version 1.6 
to the new style graphical annotations 
took about 9.6 seconds, which is very 
good for such a demanding 
refactoring. 

9.5.3 Unparsers/Prettyprinters versus Indenters 

As mentioned previously, an unparser converts an AST program representation into 
(nicely indented) text. A reformatting indentation tool uses another approach: it 
operates directly on the text representation to produce a more nicely indented text. 

9.5.3.1 Pretty printers/Unparser Generators 

An unparser generator produces an unparser from a specification, a grammar-like 
description of unparsing-related aspects of the language. A number of systems 
mentioned in Section 9.5.3 support unparsing or generation of unparsers from such 
specifications. 
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9.5.3.2 OpenModelica Tree Unparser 

The current OpenModelica version 1.4 unparser is hand implemented in 
MetaModelica, recursively traversing the AST while generating the Modelica text 
representation. It can be invoked by the OpenModelica list command. Comments 
are currently lost (except for declaration comments). 

9.5.3.3 Reformatting Indentation in the OpenModelica Eclipse Plugin 

A text reformatting indentation tool operates directly on the text representation, and 
analyzes the text by a combination of scanning and piecemeal heuristic partial 
parsing to recognize certain combinations of tokens. It inserts or removes white 
space in order to produce a nice indentation, or improve an existing one. Such 
mechanisms are typically invoked by the user on a few lines at a time, and are not 
completely automatic; the user is often required to perform the final adjustments. 
An advantage with this approach is that comments are not lost.  

This kind of indentation tool is for example available for a number of languages 
in their respective Emacs modes, or as part of Eclipse plugins, e.g. for C++, Java, 
and more recently for Modelica in the OpenModelica MDT Eclipse plugin. 

MDT includes support for automatic indentation, as described in Chapter 8 and 
in (Pop et al. 2006 [131]). When typing the Return (Enter) key, the next line is 
indented correctly. The user can also correct indentation of the current line or a 
range selection using CTRL+I or “Correct Indentation” action on the toolbar or in 
the Edit menu.  

Indentation can be applied to incomplete code as a heuristic Modelica scanner is 
used and the indentation is based only on the tokens generated by this scanner. The 
indenter indents one line at a time. For example, consider that line four (4) in Figure 
8-10 should be indented. The indenter asks the heuristic scanner to give tokens from 
the starting token in backwards direction to the start of the file until a scope 
introducer is recognized, which for this particular file is model MoonAndEarth. 
The reference position of the start of the scope introducer is computed and line four 
(4) is indented from this reference position one indent unit. The indentation result is 
presented in Figure 8-10. 

Indenting Modelica code is far from trivial when incomplete (possibly incorrect) 
code should be indented correctly. Most of the difficulty comes from Modelica 
scopes which are hard to recognize using just a scanner and some logic behind it. In 
languages like C/C++ and Java finding enclosing scopes is very easy as one 
character tokens are used for the scope opening and closing: "{" and "}". In 
Modelica you need at least two tokens and much more case analysis to find where a 
scope starts and ends. Complications also arise when mixing if-statements with if-
expressions (which was further complicated by the introduction of conditional 
declarations in the Modelica language). In this particular case we implemented a 
parser emulator that recognizes these constructs based on scanner tokens delivered 
backwards.  

The indenter works well in almost all cases, but there are cases in which is 
impossible to find the correct indentation. For example when the indentation of a 
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line consisting of "end Name;" is requested and the scope introducer for Name is 
not found (that is identifier Name followed backwards by class, model, 
package, block, record, connector etc.) then the indenter fails and returns the 
indentation of the previous line.  

9.6 Further Discussion 

This section addresses additional questions raised during a presentation of the 
article that this chapter is based on at the Modelica 2008 conference: 

Question: “A question I have always had is whether there are any "mistakes" in the 
grammar that should be corrected with respect to these issues.  Similarly, how is 
this handled with the Java tools in Eclipse?” 
Answer: The answer to this question highly depends on the syntactic mistake the 
user made. For example if an "end if;" is missing at the end of an equation 
section, but is followed by "end Model;", then such a mistake can be 
automatically corrected using a heuristic parser. However, if an opening scope is 
missing, i.e., model Model (or alternatively an ending scope) there is no way to 
know where it should be introduced. There are a lot of places that can be proposed:  

• Just after the enclosing scope starts (after i.e., package MyPack introduction) 
if there exists such scope or the start of the file if no such scope exists. 

• Just after the every existing ending scope of a model found by going backwards 
from the end Model;  

 
Figure 9-2. Syntax checking.
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Right now the Eclipse environment will call the OpenModelica compiler to parse 
the file each time the file is saved. The parsing errors are reported in the Eclipse 
environment as a list of errors, but also underlined where the error occurs as shown 
in Figure 9-2. Of course if the user selects an entire file and calls the automatic 
indentation routine, the indentation will work correctly if there are no large 
grammatical errors in the file. 

Question: “Dymola’s pretty printing algorithm does not appear to be deterministic 
(it sometimes changes files for no reason just because they have been re-saved).  
Please discuss this deterministic issue and also what implications the algorithms 
will have for version control tools (i.e. avoiding complex or unnecessary changes 
since this will complicate "merge" operations).” 
Answer: As exemplified in Sections 9.3.1 and 9.5.1 the disruption to the actual text 
is minimal so the code-versioning tools would have no problem with merging 
operations. This was one of our goals when designing and implementing the 
refactoring tools presented in the chapter. The algorithms in this chapter also apply 
to Modelica models constructed programmatically because these can also be viewed 
as refactorings. In general the construction of models programmatically is 
performed by a visual component diagram editor. The editor will give commands: 
addModel(…), addComponent(…), addConnection(…), etc., to the internal 
handler of the textual model (that works on the AST and the positionTree) which in 
the case of a file with code formatting will minimally disrupt the existing code and 
add all the new code correctly indented at the end or in other appropriate places. 

9.7 Related Work 

The term refactoring and its use in a general and systematic sense was introduced 
by Martin Fowler et al (Fowler et al. 1999 [39]), also based on earlier work, even 
though similar code transformation operations were previously available, e.g. in the 
InterLisp environment (Warren 1974 [171]). 

Early work in interactive integrated programming environments including 
unparsing/pretty printing supporting a specific language was done in the InterLisp 
system for the Lisp language (Warren 1974 [171]), common principles and 
experience of early interactive Lisp environments are described in (Sandewall 1978 
[143]), a generic editor/unparser/parser generator used for Pascal (and later Ada) in 
the DICE system (Fritzson 1984 [42]), (Fritzson 1983 [41]), the integrated Mjölner 
environment with mullti-language editing and unparsing support (Lindskov et al. 
1993 [86]). None of these approaches preserve comments when unparsing, except 
the InterLisp environment where the comments were already part of the AST which 
was just pretty printed with a more readable indentation. However, also in the 
InterLisp case, all hand indentation and white space added by the user is lost, and 
text style comments (not part of the AST) are also lost. 

Many parser generation systems, e.g. ANTLR (Parr 2005 [116]), Eli (Kastens et 
al. 2007 [77]), CoCo (Mössenböck et al. 2000 [105]), also support unparsing from 
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the generated AST, but do not support preservation of comments and hand-made 
indentation. 

9.8 Conclusions 

We have given a preliminary description of refactorings together with an approach 
for comment- and indentation preserving unparsing. This is currently ongoing work. 
Part of the unparser and the refactorings are implemented. A prototype was 
implemented and it will be part of a new OpenModelica release. 

9.9 Appendix 

Here we give (parts of) the generated position tree (posAST) for the code in the 
example section. The start and end are given in character offsets. The nodes that 
have -1 as start/end position do not actually exist in the text, but they appear in here 
to have 1-to-1 mapping to the AST definitions. 
(Program, (Start: 1, End: 366, { 
 (list<Class>, (Start: 23, End: 366, { 

(Class,(Start: 23, End: 366, { (Ident, (Start: 31, End: 35) 
 (Boolean Partial, (Start: -1, End: -1)  
 (Boolean Final,  (Start: -1, End: -1) 
 (Boolen Ecapsulated, (Start: -1, End: -1)  
 (Restriction, (Start: 23, End: 30) 
  (ClassDef, (Start: 35, End: 356, { 
   (list<ClassPart>, (Start: 38, End: 356, { 
    (ClassPart, (Start: 38, End: 356, { 
     (list<ElementItem>, (Start: 38, End: 356, { 
      (ElementItem, (Start: 38, End: 264, { 
        (Element, (Start: 38, End: 264, { 
         (Boolean final, (Start: -1, End: -1) 
         (Option<RedeclareKeywords>, (Start: -1, End: -1) 
         (InnerOuter, (Start: -1, End: -1) 
         (Ident, (Start: -1, End: -1) 
         (ElementSpecEL5, (Start: 38, End: 264, { 
         (Boolean replaceable, (Start: -1, End: -1) 
         (Class, (Start: 53, End: 264, { 
           (Ident, (Start: 47, End: 53) 
           (Boolean Partial, (Start: -1, End: -1) 
           (Boolean Final, (Start: -1, End: -1) 
           (Boolen Ecapsulated, (Start: -1, End: -1) 
           (Restriction, (Start: 38, End: 46) 
            (ClassDef, (Start: 53, End: 264, { 
             (list<ClassPart>, (Start: 53, End: 264, { 
              (ClassPart, (Start: 80, End: 250, { 
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               (list<ElementItem>, (Start: 80, End: 221, { 
                (ElementItem, (Start: 80, End: 100, { 
                 (Element, (Start: 80, End: 100, { 
                  (Boolean final, (Start: -1, End: -1) 
                  (Option<RedeclareKeywords>, 
                         (Start: -1, End: -1) 
                  (InnerOuter, (Start: -1, End: -1) 
                  (Ident, (Start: 91, End: 92) 
                  (ElementSpecEL3, (Start: 91, End: 100, { 
                   (ElementAttributes,(Start: 80, End: 85,{ 
                    (Boolean flow, (Start: -1, End: -1) 
                    (Variability, (Start: -1, End: -1) 
                    (Direction, (Start: 80, End: 85) 
                    (ArrayDim, (Start: -1, End: -1)}) 
                   (TypeSpec, (Start: 86, End: 90, { 
                        (Path, (Start: 86, End: 90, { 
                        (Ident, (Start: 86, End: 90)}) 
                        (Option<ArrayDim>,  
                          (Start: -1, End: -1) 
                      }) 
       ... // truncated text due to its large size 
       }) (Option<String>, (Start: -1, End: -1) 
     }) (Info, (Start: -1, End: -1) 
   }) 

}) 
(Within, (Start: 1, End: 7,  
 (Path, (Start: 8, End: 22, {(Ident, (Start: 8, End: 22)})) 

Here is another version of the example with character positions for end and start of 
a Modelica construct: 

[001]within[007] [008]ParentPackage;[022] 
[023]package[030] [031]pack[035] 
[036]  [038]function[046] [047]addOne[053] [054]"function 
that adds 1"[076] 
[077]   [080]input[085] [086]Real[090] [091]x[092] 
[093]=[094] [095]1.0;[099] 
                             [100]// line comment[115] 
[116]   [119]output[125] [126]Real[130] [131]y;[133]       
                             [139]/*  multiple 
                                      line 
                                      comment */[221] 
[222]  [224]algorithm[233] 
[234]   [237]y[238] [239]:=[241] [242]x[243] [244]+[245] 
[246]1.0;[250] 
[251]  [253]end[256] [257]addOne;[264] 
[265] 
[266]  [268]class[273] [274]myClass[281] 
[282]    [286]Real[290] [291]y;[293] 
[294]  [296]equation[304] 
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[305]    [309]y[310] [311]=[312] [313]addOne[319](5);[323] 
[324]// Call to addOne[341] 
[342]  [344]end[347] [348]myClass;[356] 
[357]end[360] [361]pack;[366] 

Parts of the abstract syntax tree (AST) of the Example.mo in the example section is 
presented below. The AST has exactly the same structure as the position tree. 

adrpo@KAFKA /c/home/adrpo/doc/projects/modelica2008/ 
$ omc +d=dump Example.mo 
Absyn.PROGRAM([ 
 Absyn.CLASS(Absyn.IDENT("pack"),  
  false, false, false, Absyn.R_PACKAGE, 
  Absyn.PARTS( 
   [Absyn.PUBLIC( 
     [Absyn.ELEMENTITEM( 
       Absyn.ELEMENT(false, _, Absyn.UNSPECIFIED , 
         "function", 
         Absyn.CLASSDEF(false,  
          Absyn.CLASS(Absyn.IDENT("addOne"),  
           false, false, false, Absyn.R_FUNCTION,  
           Absyn.PARTS( 
            [Absyn.PUBLIC( 
             [Absyn.ELEMENTITEM( 
               Absyn.ELEMENT(false, _, Absyn.UNSPECIFIED, 
                "comp",  
                Absyn.COMPONENTS(Absyn.ATTR(false,  
                 Absyn.VAR, Absyn.INPUT,[]), 
                 Absyn.PATH(Absyn.IDENT("Real")), 
                 [Absyn.COMPONENTITEM( 
                   Absyn.COMPONENT(Absyn.IDENT("x"),[],  
                    SOME(Absyn.CLASSMOD([], 
                    SOME(Absyn.REAL(1.0))))), NONE)]), 
                Absyn.INFO("Example.mo",  
                 false, 4, 4, 4, 22)), NONE)),  
              Absyn.ELEMENTITEM( 
               Absyn.ELEMENT(false, _,  
                Absyn.UNSPECIFIED , "component",  
                Absyn.COMPONENTS(Absyn.ATTR(false, 
                 Absyn.VAR, Absyn.OUTPUT, []), 
                 Absyn.PATH(Absyn.IDENT("Real")), 
                 [Absyn.COMPONENTITEM 
                  (Absyn.COMPONENT("y",[],NONE), NONE)]),  
               Absyn.INFO("Example.mo",  
                false, 5, 4, 5, 17)), NONE))]), 
            Absyn.ALGORITHMS( 
             ALGORITHMITEM( 
              ALG_ASSIGN( 
               Absyn.CREF(Absyn.CREF_IDENT("y", [])),   
                Absyn.BINARY( 
                 Absyn.CREF(Absyn.CREF_IDENT("x", [])), 
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                 Absyn.ADD, 
                 Absyn.REAL(1.0)))))],  
            SOME("function that adds 1")),  
            Absyn.INFO("Example.mo", false, 3, 3, 10, 13)) 
  ... // truncated text due to its large size 
 ], // end of Absyn.CLASS list 
 Absyn.WITHIN(Absyn.IDENT("ParentPackage") 
) // end Absyn.PROGRAM 
 



 

Chapter 10  
 
 
UML and Modelica System Modeling 
with ModelicaML 

10.1 Introduction 

Complex products are increasingly consisting of both software and hardware 
components which are closely interacting. Thus, modeling tools and processes need 
to support co-design of software and hardware in an integrated way. Currently, 
UML is the dominant graphical modeling notation for software, whereas Modelica 
is the major object-oriented mathematical modeling language for component-
oriented modeling of complex physical systems, e.g., systems containing 
mechanical, electrical, electronic, hydraulic, thermal, control, electric power or 
process-oriented subcomponents. Here we present the first comprehensive UML-
Modelica-SysML integrated modeling environment as a ModelicaML profile 
integrated in Eclipse as a plugin. The profile reuses some artifacts from the System 
Modeling Language (SysML) profile, and combines the major UML diagrams with 
Modelica graphic connection diagrams. Requirement, equation, and simulation 
diagrams are also supported in an integrated way. Moreover, the availability of the 
UML-style internal class diagram view for Modelica classes may also ease the 
understanding of modeling with Modelica for software developers with a UML 
background. 

One of the most important paradigm shifts occurring in engineering system 
design and product development may well be the adoption of common system 
models, as a foundation for product/system design. This allows for a much more 
effective product development process since a system can be analyzed and tested in 
all stages of design.  

The development in system modeling has come to the point where complete 
modeling of systems is possible, e.g. the complete propulsion system, fuel system, 
hydraulic actuation system, etc., including embedded software can be modeled and 
simulated concurrently. This does not mean that all components are dealt with down 
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to the very smallest details of their behavior. It does, however, mean that all 
functionality is modeled, at least qualitatively.  

Furthermore, in contrast to the usual problem oriented approach, the test 
applications to be simulated with the model typically are not explicitly known when 
the model is established. Perhaps more importantly, an aspect-oriented system 
model can carry all information about the system under development, and be the 
blueprint that all engineers work towards. 

Model-based product development needs multi-disciplinary competence. Until 
recently rather few efforts have been started to bring these together despite the 
industrial importance of such an integration.  

10.2 SysML vs. Modelica 

The System Modeling Language (SysML) has recently been proposed and defined 
as an extension of UML targeting at systems engineers. The goal of SysML is to 
unify different approaches and languages used by system engineers into a single 
standard which supports specification, analysis, design and verification of complex 
systems. SysML models may span different domains, for example, electrical, 
mechanical and software. Even if SysML provides means to describe system 
behavior like Activity and State Chart Diagrams, the precise behavior can not be 
described and simulated without complex transformations and additional 
information provided for SysML models. In that respect, SysML is rather 
incomplete compared to Modelica. 

Analogous to SysML, Modelica was created to unify and extend various object-
oriented mathematical modeling languages. It has powerful means for describing 
precise component behavior and functionality in a declarative way. Modelica 
models can be graphically composed using Modelica connection diagrams which 
depict the structure of designed system. However, complex system design is more 
that just a component assembly. In order to build a complex system, system 
engineers have to gather requirements, specify system components, define system 
structure, define design alternatives, describe overall system behavior and perform 
its validation and verification.  

The current work combines UML with Modelica. Particularly, a UML profile 
for Modelica, named ModelicaML, is proposed. The ModelicaML UML profile is 
based on the SysML UML profile and reuses its artifacts required for system 
specification. SysML diagrams are also extended to support all Modelica 
constructs. We argue that with ModelicaML system engineers are able to specify 
entire systems, starting from requirements, continuing with behavior and finally 
perform system simulations. 
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10.3 ModelicaML: a UML profile for Modelica 

ModelicaML reuses several diagrams types from SysML without any extension, 
extends some of them, and also provides several new ones. The ModelicaML 
diagram overview is shown in Figure 10-1. Diagrams are grouped into four 
categories: Structure, Behavior, Simulation and Requirement. In the following we 
present the most important ModelicaML profile diagrams. For a full description of 
the profile, please refer to (Akhvlediani 2007 [1]). 

The most important properties of the ModelicaML profile are outlined below:  

• The ModelicaML profile supports modeling with all Modelica constructs 
and properties i.e. restricted classes, equations, generics, discrete variables, 
etc. 

• Using ModelicaML diagrams it is possible to describe all aspects of a 
system being designed and thus support system development process phases 
such as requirements analysis, design, implementation, verification, 
validation and integration. 

• ModelicaML is partly based on SysML, but reuses and extends its elements. 
• The profile supports mathematical modeling with equations since equations 

specify behavior of a (Modelica) system. Algorithm sections are also 
supported. 

• Simulation diagrams are introduced to model and document simulation 
parameters and results in a consistent and usable way. 

• The ModelicaML meta-model is consistent with SysML in order to provide 
SysML-to-ModelicaML conversion. 

 
Figure 10-1. ModelicaML diagrams overview.

Three SysML diagram types have been partly reused and changed for the 
ModelicaML profile: 
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• The SysML Block Definition Diagram has been updated and renamed to 
Modelica Class Diagram. 

• The SysML Internal Block Diagram has been updated and renamed to 
Modelica Internal Class Diagram (some of the SysML constructs are 
disabled). 

• The Package Diagram has been changed in order to fully support the 
Modelica language (i.e. Modelica package constants). 

Thus, the following diagram types are available in the ModelicaML profile: 

• The Modelica Class Diagram usually describes class definitions and their 
relationships such as inheritance and containment. 

• The Modelica Internal Class Diagram describes the internal class structure 
and interconnections between parts. 

• The Package Diagram groups logically connected user defined elements 
into packages. In ModelicaML the primarily purpose of this diagram is to 
support the specifics of the Modelica packages. 

• Activity, Sequence, State Machine, Use Case, Parametric and Requirements 
diagrams have been reused without modification from SysML. 

• Two new diagrams, Simulation Diagram and Equation Diagram, not 
present in SysML, have been included in the ModelicaML profile. 

10.3.1 Modelica Class Diagrams 

Modelica uses restricted classes such as class, model, block, connector, 
function and record to describe a system. Modelica classes have essentially the 
same semantics as SysML blocks and provide a general-purpose capability to model 
systems as hierarchies of modular components. ModelicaML extends SysML 
blocks by defining features which are relevant or unique to Modelica.  

The purpose of the Modelica Class Diagram is to show features of Modelica 
classes and relationships between classes. Additional kind of dependencies and 
associations between model elements may also be shown in a Modelica Class 
Diagram. For example, behavior description constructs – equations, may be 
associated with particular Modelica Classes. The detailed description of structural 
features of ModelicaML is provided below. ModelicaML structural extensions are 
defined based on the SysML block definitions 

10.3.1.1 ModelicaML Class Definition 

The graphical notation of ModelicaML class definitions is shown in Figure 10-2. 
Each class definition is adorned with a stereotype name that indicates the class type 
it represents. 
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Figure 10-2. ModelicaML class definitions. 

The ModelicaML Class Definition has several compartments to group its features: 
parameters, parts, variables. Some compartments are visible by default; some are 
optional and may be shown on ModelicaML Class Diagram with the help of a tool. 
Property signatures follow the Modelica textual syntax and not the SysML original 
syntax, reused from UML. A ModelicaML/SysML tool may allow users to choose 
between UML or Modelica style textual signature presentation. Using Modelica 
syntax on a diagram has the advantage of being more compatible with Modelica and 
being more straightforward for Modelica users. The Modelica syntax is quite simple 
to learn even for users not acquainted with Modelica.  

ModelicaML provides extensions to SysML in order to support the full set of 
Modelica constructs and features. For example, ModelicaML defines unique class 
definition types ModelicaClass, ModelicaModel, ModelicaBlock, 
ModelicaConnector, ModelicaFunction and ModelicaRecord that correspond to 
class, model, block, connector, function and record restricted Modelica 
classes. 

10.3.1.2 Modelica Internal Class Diagram 

The Modelica Internal Class Diagram is based on the SysML Internal Block 
Diagram. The Modelica Class Diagram defines Modelica classes and relationships 
between classes, like generalizations, association and dependencies, whereas a 
Modelica Internal Class Diagram shows the internal structure of a class in terms of 
parts and connections. The Modelica Internal Class Diagram is similar to Modelica 
connection diagram, which presents parts in a graphical (icon) form. 

An example Modelica model presented as a Modelica Internal Class diagram is 
shown in Figure 10-3. 
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Figure 10-3. ModelicaML Internal Class vs. Modelica Connection Diagram. 

Usually Modelica models are presented graphically via Modelica connection 
diagrams (Figure 10-3, bottom). Such diagrams are created by the modeler using a 
graphic connection editor by connecting together components from available 
libraries. Since both diagram types are used to compose models and serve the same 
purpose, we briefly compare the Modelica connection diagram to the Modelica 
Internal Class Diagram. The main advantage of the Modelica connection diagram 
over the Internal Class Diagram is that it has better visual comprehension as 
components are shown via domain-specific icons known to application modelers. 
Another advantage is that Modelica library developers are able to predefine 
connector locations on an icon, which are related to the semantics of the 
component. In the case of a ModelicaML Internal Class Diagram a 
SysML/ModelicaML tool should somehow point out at which side of a rectangular 
presentation of a part to place a port (connector). 

One of the advantages of the Internal Class Diagram is that it directly supports 
nested structures. However, nested structures are also available behind the icons in 
a Modelica connection diagram, thus using the drawing area more effectively.  
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The main advantage of the Internal Class Diagram is that it highlights top-level 
Modelica model parameters and variables specification in separate compartments.  

Other SysML elements, such as Activities and Requirements which do not exist 
in Modelica but are very important for additional model specification can be 
combined with both Internal Class Diagram and Modelica connection diagrams. 

10.3.1.3 Package Diagram 

A UML Package is a general purpose model element for grouping other elements 
within a separate namespace. With a help of packages, designers are able group 
elements to correspond to different structures/views of a system. ModelicaML 
extends SysML packages in order to support Modelica packaging features, in 
particular: package inheritance, generic packages, constant declaration within a 
package, package “instantiation” and renaming import (see (Fritzson 2004 [44]) for 
Modelica packages details).  

A diagram which contains package elements and their relationships is called a 
Package Diagram. Modelica packages have a hierarchical structure containing 
package elements as nodes. In Modelica, packages are used to structure model 
elements into libraries.  A snapshot of the Modelica Standard Library hierarchy is 
shown in Figure 10-4 using UML notation. Package nodes in the hierarchy are 
connected via the package containment link. 

 
Figure 10-4. Package hierarchy modeling.

10.3.1.4 Parametric Diagrams 

SysML defines Constraint blocks which specify mathematical expressions, like 
equations, to constrain physical properties of a system. Constraint blocks are 
defined in the Block Definition diagram and can be packaged into domain-specific 
libraries for later reuse. There is a special diagram type called Parametric Diagram 
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which relates block parameters with certain constraints blocks. The Parametric 
Diagram is included in ModelicaML without any modifications. 

The Modelica class behavior is usually described by equations, which also 
constrain Modelica class parameters, and have a domain-specific usage. SysML 
constraint blocks are less powerful means of domain model description than 
Modelica equations. Since models in Modelica are expressed by equations, 
definition complexity of Constraint blocks with parameters for each of equations 
may results in limited use for Modelica designers. However, grouping constraint 
blocks into libraries can be useful for system engineers who use Modelica and 
SysML. SysML Parametric diagram may be used during the initial design phase, 
when equations related to a class are being identified using Parametric Diagrams 
and finally associated (via an Equation Diagram) with a Modelica class or set of 
classes.  

10.3.1.5 Equation Diagrams 

As was stated previously, model behavior in Modelica is primarily expressed by 
equations, see Figure 10-5. Compared to traditional programming constructs such 
as assignment statements and control structures, equations do not prescribe a certain 
data flow direction. The order in which equations appear in a model, do not 
influence their meaning and semantics. The only requirement for a system of 
equations is that it should be solvable. For further details about Modelica equations, 
see Chapter 3, section 3.2. 

    

partial class TwoPin 
  Pin p, n; 
  Voltage v; 
  Current i; 
equation 
  v = p.v – n.v; 
  0 = p.i + n.i; 
  i = p.i; 
end TwoPin; 
 
class Resistor  
  extends TwoPin; 
  parameter Real R(unit = "Ohm"); 
equation 
  R * I = v; 
end Resistor 

Figure 10-5. Equation modeling example with a Modelica Class Diagram.

Besides simple equality equations, Modelica allows other kind of equations be 
presented within a model. For each of such kind of equations (i.e. when/if/initial 
equations) ModelicaML defines a graphical construct. It’s up to designer to decide 
whether to use simple equations block representation or specific construct for 
equation modeling. Algorithm sections are modeled similar to equations, as text.  
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10.3.1.6 Simulation Diagram 

ModelicaML introduces a new diagram type, called Simulation Diagram, used for 
simulation modeling. Simulation is usually performed by a simulation tool which 
allows parameter setting, variable selection for output and plotting. The Simulation 
Diagram may be used to store any simulation experiment, thus helping to keep the 
history of simulations and its results.  

When integrated with a modeling and simulation environment, a simulation 
diagram may be automatically generated by a simulation tool. Figure 10-6 shows an 
example of a Simulation Diagram. The Simulation Diagram provides the following 
facilities: 

• Support for simulation planning. 
• Structured presentation of parameter passing and simulation results. 
• Running simulations directly from the Simulation Diagram. 
• The Simulation Diagram may be generated by a simulation tool. 
• Association of simulation results with requirements from a domain expert. 
• Additional documentation e.g. by: Note, Problem Rationale text boxes of 

SysML 
• Support for storing model simulation history. 

The Simulation Diagram introduces new diagram elements: “Parameter” element 
and two stereotyped dependency associations, “simParameter” and “simResults”. 

 
Figure 10-6. Simulation diagram example.
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10.3.1.7 Requirement Diagrams 

Requirement diagrams have been included in ModelicaML from SysML without 
any modification. Requirement Diagrams have several attributes: ID, Level, Status, 
Name and Description. Requirements support hierarchical modeling, i.e., more 
specific requirements can derived from more general ones. 

Requirements can be linked to any other ModelicaML element via satisfies 
or satisfiedBy relations. Any tool implementing the ModelicaML profile can be 
used to build, query, trace, and manage requirements.  
The Modelica language does not support a standard requirements representation. 
Since the ModelicaML profile supports requirements, we need a way to save these 
requirements in a Modelica file. Requirements can be represented in Modelica in 
several ways which we will describe in detail in the next section. 

10.3.1.8 Other Diagram Types 

Other SysML diagram types such as Use Case Diagram, Activity Diagrams and 
Allocations, and State Machine Diagrams are included in ModelicaML without 
modifications. ModelicaML reuses Sequence Diagrams from SysML and changes 
the semantics of message passing. Modelica doesn’t support method declaration 
within a single class but supports declaration of functions as a restricted class type. 
In the case of ModelicaML, each lifeline (message passing) represents a Modelica 
class including block, model, and function restricted classes. Thus, functions are 
presented as lifelines, and call to a function is modeled as an arrow pointing to it 
from the caller class (from an algorithm section only). Message name is optional in 
this case. 

10.4 The ModelicaML Integrated Design Environment 

Eclipse (Eclipse.Foundation 2001-2008 [29]) is an open source framework for 
creating extensible integrated development environments (IDEs). One of the goals 
of the Eclipse platform is to avoid duplicating common code that is needed to 
implement a powerful integrated environment for development of software. By 
allowing third parties to easily extend the platform via the plugin concept, the 
amount of new code that needs to be written is decreased.  

For the development of our prototype we used several Eclipse frameworks: 

• EMF – Eclipse Modeling Framework (Eclipse.Foundation 2008 [30])is an 
Eclipse framework for building domain-specific model implementations. 
The EMF implementation is based on Meta Object Facility (MOF) standard 
and implements the “Essential MOF” (EMOF) part of a standard. EMF is 
used by the GMF and UML2 frameworks. 

• GMF – Graphical Modeling Framework (Eclipse.Foundation 2008 [32]) 
provides a generative component and runtime infrastructure for developing 
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graphical editors based on EMF and GEF (Eclipse.Foundation 2008 [31]). 
GMF consists of tooling, generative and runtime parts, depends on the EMF 
and GEF frameworks and also on other EMF related tools. 

• The UML2 Eclipse Meta-Model Implementation. The UML2 Eclipse project 
is an EMF based implementation of a UML2 meta-model for the Eclipse 
Platform to support development of UML modeling tools. The UML2 
project doesn’t aim to provide any graphical modeling or diagram 
interchange capabilities as it only implements UML abstract syntax. UML2 
Tools focus on editing capabilities. 

10.4.1 Integrated Design and Development Environment  

The Modelica Development Tooling (MDT) (Pop et al. 2006 [131]) and Chapter 8, 
is part of the OpenModelica system and provides an environment for working with 
Modelica projects. The following features are available: 

• Browsing support and wizards for creating Modelica projects, packages, MSL. 
• Syntax color highlighting, syntax and semantic checking.  
• Code assistance for packages and function calls 
• Support for MetaModelica meta-programming extensions to standard Modelica 
• Debugging support for Modelica and MetaModelica algorithmic sections. 

We have extended the MDT plugin with a design view to facilitate ModelicaML 
integration. The ModelicaML integrated design environment where SysML/ 
ModelicaML diagrams are created is shown in Figure 10-7. It consists of a diagram 
file browser (left), diagram editor (middle), tool palette (right), properties editor 
(bottom) and a diagram outline (bottom left).  

The Project Browser lists all Modelica Class and Internal Class diagram files of 
a project together with existing Modelica files.  

The Diagram Editor is a tool where diagrams can be created and graphical 
elements laid out. It has the following graphical features: Graphical elements like 
Modelica Class or Model can be picked up from a Tool palette and created on a 
Diagram editor pane in a drag-and-drop way. Elements in a palette are grouped by 
Standard tools (zooming, note, etc), Nodes and Links elements. The tool palette for 
Modelica Class and Internal Class diagram contains different sets of elements.  

The Property Editor can be used for changing the properties of the object 
selected on the diagram editor pane. Property elements vary depending on a type of 
a chosen object.  
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Figure 10-7. ModelicaML Eclipse based design environment with a Class diagram.  

The ModelicaML diagrams can be automatically generated from Modelica source 
files. The integrated tool can also generate Modelica source code from ModelicaML 
diagrams. However, the implementation of the Modelica code generation and 
ModelicaML diagram generation is, at the moment, in an experimental stage. In the 
current implementation ModelicaML diagrams are saved both in Modelica form 
and also the XMI dialect written to XML files. Further work is needed to save 
diagram position information within Modelica source code as annotations. 

10.4.2 The ModelicaML GMF Model 

The Eclipse editor is created from a GMF model of the ModelicaML profile. The 
model describes the existing elements and their properties. As an example, in 
Figure 10-8 we present the Requirement Diagram element and its properties. 

From the GMF model an editor that supports common operations on that model 
is automatically generated. The generated code can be extended to deal with issues 
specific to ModelicaML. 
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Figure 10-8. ModelicaML GMF Model (Requirements) 
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10.4.3 Modeling with Requirements 

The ModelicaML/MDT Eclipse environment supports modeling with requirements. 
The following functionality is available in the development environment: 

• Hierarchies of requirements can be created. 
• Requirements can be traced during the development process. 
• Requirements can be queried with respect to any of their attributes. 

 
Figure 10-9. Modeling with Requirement Diagrams.

Examples of modeling with Requirement Diagrams are presented in Figure 10-9 
and in the Appendix section of this chapter. 
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10.5 Representing Requirements in Modelica 
While the default storage of ModelicaML diagrams is within XML files, our goal is 
to be able to save this information within normal Modelica files. Having this 
information within Modelica code would make it accessible to other Modelica and 
UML tools. Using this information tools could provide additional functionality. For 
example Modelica tools could display the inheritance hierarchy of a library, display 
the requirements for a specific class, etc. 

To find the best way to encode the ModelicaML diagram information within 
Modelica we have experienced with several ways of encoding the Requirement 
Diagrams.  

10.5.1 Using Modelica Annotations 

A requirement could be saved as an annotation in the following way (the top 
requirement from Figure 10-9):
type RequirementStatus =  
  enumeration(Incomplete, Draft, Started); 
 
annotation( 
  Requirement( 
    id="S5.4.1",  
    level=0, 
    status=RequirementStatus.Incomplete,    
    name="Master Cylinder Efficacy",  
    description="A master cylinder…")); 

The problem with Modelica annotations is that they can only be present at specific 
places within code and they are usually tied to a class definition. Because 
requirements are usually cross cutting is impossible to represent all requirements as 
such annotations. Another problem using annotations is the representation of 
hierarchies of requirements. Linking of a class with a requirement via a satisfy 
relation could be possible using Modelica extends, but would be cumbersome. 

10.5.2 Creating a new Restricted Class: requirement 

A requirement could be saved as a standard class marked with an 
isRequirement annotation or alternatively using a new restricted class in the 
following way (also in the Figure 10-10 diagrams in the Appendix): 

requirement R1  
  String name="Master Cylinder Efficiency"; 
  String id="S5.4.1"; 
  Integer level=0; 
  RequirementStatus status=  
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     RequirementStatus.Incomplete; 
  String description=”A master cylinder 
                      shall have…”; 
end R1; 

Now, we can use extends over requirements to build hierarchies: 
requirement R2 
  extends R1; 
  String name"Loss Of Fluid"; 
  String id="S5.4.1a"; 
  Integer level=1; 
  RequirementStatus status=  
     RequirementStatus.Started; 
  String description="Prevent complete  
                      loss of fluid"; 
... 
end R2; 

To link requirements to Modelica elements one can use annotations: 
model BreakSystem 
  annotation(satisfy=R1); 
...
end BreakSystem; 

 

We believe that the best way to encode requirements within Modelica would be to 
create a new restricted class. Using this new class, requirements can be fully 
modeled in Modelica.  

We will propose in the Modelica Association to introduce the requirement 
restricted class into the Modelica specification. In Modelica, the requirement class 
could also have equation or algorithm sections that impose constraints to be verified 
against the class linked with the requirement. 

10.6 Conclusion and Future Work 

In this chapter we have presented the ModelicaML profile and its prototype 
integration in the OpenModelica MDT Eclipse plugin. To our knowledge this is the 
first comprehensive Modelica-UML-SysML integrated environment for product 
design. 

UML Statecharts and Modelica have previously been combined, see 
e.g.(Ferreira and Oliveira 1999 [38], Nordwig 2002 [107]). SysML is rather new 
but it has already been adopted for system on chip design (Vanderperren and 
Dehane 2005 [168]) evaluated for code generation (Vanderperren and Dehane 2006 
[169]), and extended with bond graphs support (Turki and Soriano 2005 [156]). 

The support for Modelica in ModelicaML allows precisely defining, specifying 
and simulating physical systems. Modelica provides the means for defining 
behavior for SysML block diagrams while the additional modeling capabilities of 
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SysML provides additional modeling and specification power to Modelica (e.g. 
requirements and inheritance diagrams, etc).  

We are currently working on finalizing the implementation details of the Eclipse 
ModelicaML prototype and releasing the first version for evaluation as part of the 
OpenModelica environment. Additional functionality such as synchronization of 
ModelicaML diagrams and Modelica code, storage of ModelicaML information 
within new Modelica annotations, etc. is also planned. 

10.7 Appendix 

 
Figure 10-10. Modeling with requirements (Requirements palette).
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Figure 10-11. Modeling with requirements (Connections). 

 



 

Chapter 11  
 
 
An Integrated Framework for Model-
driven Product Design and 
Development Using Modelica 

This chapter presents our work in the area of model-driven product development 
processes. The focus is on the integration of product design tools with modeling and 
simulation tools. The goal is to provide automatic generation of models from 
product specifications using a highly integrated set of tools. Also, we provide the 
designer with the possibility of selecting the best design choice, verified through 
(automatic) simulation of different implementation alternatives of the same product 
model. To have a flexible interaction among various tools of the framework an 
XML representation of the Modelica modeling language called ModelicaXML is 
used. For efficient search in a large base of simulation models the Modelica 
Database was designed. 

11.1 Introduction 

Designing products is a complex process. Highly integrated tools are essential to 
help a designer to work efficiently. Designing a product includes early design phase 
product concept modeling and evaluation, physical modeling and simulation and 
finally the physical product realization. For conceptual modeling and physical 
modeling and simulation available tools provide advanced functionality. However, 
the integration of such tools is a resource consuming process that today requires 
large amounts of manual, and error prone work. Also, the number of physical 
models available to the designer in the product concept design phase is typically 
quite large. This has an impact on the selection of the best set of component choices 
for detailed product concept simulation.  
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To address these issues we have integrated new product concept design tools with 
physical modeling and simulation tools in a framework for product design. In our 
proposed framework, the product concept design phase of the product development 
process is based on Function-Means tree decomposition (Andreasen 1980 [3]). This 
phase is implemented in a first version of a prototype tool called FMDesign, 
(Johansson and Krus 2005 [73]) developed in cooperation with the Machine Design 
Group, IKP, Linköping University.  

As an example of Function-Means tree decomposition we give a landing 
function in an airplane. This function can be represented by two different means: 
hydraulic landing gear or electric landing gear. Each of the two alternatives can be 
selected and configured to simulate its properties. 

Starting from FMDesign tool, our integration work extends the framework in 
two ways:  

1. Providing a Selection and Configuration Tool that helps the designer to choose 
a specific implementation for the means in the function-means tree from a 
Modelica model/ component database. This tool also provides component 
configuration and has links to a Modelica standard based simulation 
environment for component editing. 

2. Providing an Automatic Model Generation Tool that helps the designer to 
choose the best implementation from different design choices by evaluation 
through simulation of automatically generated models of candidate product 
concepts. If the designer is not pleased with the results, he/she can either 
implement new models for the components that did not perform in the desired 
way or reiterate in the design process and choose other alternatives for 
implementing different functions in the product, or change the configuration 
parameters for models at deeper levels of detail. 

The chapter is structured as follows: The next section (section 11.2) presents an 
overview of our proposed framework. Section 11.3 enters in the details of the 
framework components and their interaction. Section 11.4 presents our conclusion 
and future work.  

The presented system has similarities with the Schemebuilder tool (Bracewell 
and D.A.Bradley 1993 [16]) and Modelith framework (Johansson et al. 2002 [72], 
Larsson et al. 2002 [81]). However our work is more oriented towards the design of 
advanced complex products that require systems engineering, and targeted to the 
simulation modeling language Modelica, which to our knowledge has more 
expressive power in the areas of our research, than many tools for systems 
engineering that are currently widely used. For details on Systems Engineering, see 
(INCOSE 1990-2008 [70]). 
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11.2 Architecture overview 

The architecture of our extended framework is presented in Figure 11-1. The entire 
product concept design process is iterative. 
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Figure 11-1. Design framework for product development.

Starting from requirements for a product the designer will use the FMDesign 
prototype for modeling alternative product concepts. The knowledge base for 
designing a product is organized into function-means trees. A function in the 
product can be realized by alternative means. A product concept is a set of means 
that document selected solution alternatives for implementing the functions in a 
product concept. Example of a function is "Actuator Power Supply", with 
means "Hydraulic Power Supply" or "Electrical Power Supply". 
Means must be implemented by (physical) components arranged in a bill-of-
material like tree of implementation objects.  

One can roughly say that a means and its implementation are the same, but at 
different levels of detail. Implementation objects (not shown in the figure) may 
represent existing component products on the market or manufactured components. 
Implementation objects carry data that is important for the product concept design, 
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and references to more detailed design information like CAD-drawings, simulation 
models etc. Some (physical components) may implement several means, like an 
aircraft wing that creates lift and stores fuel.   

To map suitable simulation model implementations to a means, the designer 
would use the Modelica Database query facility provided by the Selection and 
Configuration Tool. This tool also provides configuration of the simulation 
components and uses the desired Modelica environment for component editing. 

When the product concept design phase of the product is sufficiently complete, 
the designer can generate code for simulation from the implementation tree using 
the Automatic Model Generator Tool. The generator will output models (different 
versions for different product concepts) in ModelicaXML. From ModelicaXML the 
models are translated to Modelica to be simulated. The designer can review the 
simulation results in any available Modelica tools and then selects (in FMDesign) 
the desired model alternative for the implementation.  If the designer sees that some 
means do not perform in the desired way, a customized simulation model can be 
built, or a search conducted for more alternatives for that specific means. 

11.3 Detailed framework description 

In this section we present the tools from our proposed framework. Also, we briefly 
explain in each section how they interact. 

11.3.1 ModelicaXML 

Modelica is translated to ModelicaXML (Pop and Fritzson 2003 [126]) using a 
Modelica parser (Figure 11-2). 

ModelicaXML represents an XML serialization of the Abstract Syntax Tree of 
the Modelica language obtained after the parsing. In our framework, ModelicaXML 
is used as an interchange format between the different design tools. 

The advantages of having an alternative representation for Modelica in XML are: 

• Flexible interaction and translation between different types of physical 
modeling languages and modeling tools. Also, easy generation of model 
documentation. 

• Basic search and query functionalities over models. 
• Easy transformation and composition of models Chapter 13 and (Pop et al. 

2004 [133]). 

For more information on ModelicaXML the reader is referred to Chapter 12, (Pop 
and Fritzson 2003 [126]) and (Fritzson 2004 [44]).  
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Modelica
code

Modelica
XML

Modelica Parser

read

output

class Test "comment"
Real x;
Real xdot;

equation
xdot = der(x);

end Test;

<modelicaxml>
<definition ident= "Test" 

comment="comment">
<component ident="x" type="Real"

visibility="public" />
<component ident="xdot" type="Real"

visibility="public" />
<equation>...</equation>

</definition>
</modelicaxml>

modelicaxml

definition 

component

component 

equation 

 
Figure 11-2. Modelica and the corresponding ModelicaXML representation.

11.3.2 Modelica Database (ModelicaDB) 

The features of the Modelica language and Modelica tools has made easy for 
designers to create models. Also, the Modelica community has a growing code-
base. In order to cope with interoperability between Modelica and other modeling 
languages we first developed ModelicaXML. However, scalability and efficient 
search features for XML require extensive skills in vendor specific products. To 
quickly get such features without taking on that huge learning effort, we have 
designed the Modelica Database (ModelicaDB). 

The Modelica Database is populated with Modelica models and libraries by 
importing their ModelicaXML representation. The UML model of this database is 
presented in the appendix (section 11.5). For space reasons we use a somewhat 
customized compressed graphical representation of UML class diagrams, where 
inheritance is represented with a box between the class name and attributes box, 
where inherited super classes are preceded with a "->". For details on UML see 
(OMG [115]).  

Here we briefly explain the most important structures. They are tightly coupled 
with the Modelica structure (Fritzson 2004 [44], Pop and Fritzson 2003 [126]): 

• Modelica Repository: contains several Modelica Models. 
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• Class: A class represents the fundamental model element from the Modelica 
language. It can include several Component clauses, Equation and 
Algorithm statements. The component sections can be declared as public or 
protected in order to provide only the desired interface to the outer world. 
Specifying that the equation or algorithm sections are only active at the 
initialization phase they can be declared as initial. 

• Component: used to define parameters, variables, constants, etc to be used 
inside a class. 

• Equations and Algorithms are used to specify the behavior for a class. 

In the product design framework the role of ModelicaDB is to provide searching 
and organization features of a large base of simulation models. This base grows 
with every product model developed or with the import of additional simulation 
models from other sources (i.e. the Modelica community). For example, if we want 
to obtain all the models that have certain parameter names we have to search in the 
database for all classes that have a component with the attribute 
variabilityPrefix set to "parameter" and have the specified name. These 
searches will be integrated in FMDesign using dialogs and completely transparent 
for the user.  

11.3.3 FMDesign 

The FMDesign (Figure 11-3) prototype tool (Johansson and Krus 2005 [73]) helps 
the designer in creating product specifications using function-means trees. 

 
Figure 11-3. FMDesign – a tool for conceptual design of products.
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The created product model is stored in a product design library for later reuse. 
Throughout the product concept design process the designer can use the existing 
concepts stored in the product design library in order to model the desired product. 
A somewhat simplified meta-model of the information structure edited in 
FMDesign is presented as an UML class diagram in the appendix (section 11.5). 

In the framework, FMDesign is the central front-end to specific components. 
FMDesign delegates searches in the ModelicaDB using the Selection and 
Configuration Tool and it uses the Automatic Model Generation Tool to generate 
the models for simulation. 

As we can see in Figure 11-3, the work area is divided into several parts: 

• Products: Here products are created, deleted and selected. When a product 
is selected, the trees owned by it and described below, are displayed. 

• Requirements Tree: in this view the requirements for a product can be 
specified. 

• Function-Means Tree: in this view the designer can define the operation 
states, functions, their alternative means etc, of the selected product. 

• Product Concepts: Allows creating, deleting and selecting product concepts. 
• Product Concept Tree: displays the currently selected Product Concept 

Tree, and allows the user to select which means that will implement 
different functions in the product, using drag-drop. Selected means can be 
customized for the current product concept by overriding the default values 
for its design variables owned by a selected means. 

• Implementation Tree: displays and provides functionality for editing one of 
many configurable Implementation Trees for the currently selected product 
concept. These implementation trees organize the implementation objects 
that represent and refer to more detailed models of physical objects, 
functional models, simulation models, geometrical layout models etc, and 
organize them into trees that are useful for interfacing with tools later in the 
product development process. 

We only use the Implementation Tree of type simulation to generate the Modelica 
simulation model for a product. The Implementation Tree of type geometrical can 
be used in the visualization of the product. 

11.3.4 The Selection and Configuration Tool 

The Selection and Configuration Tool extends the framework by adding integrated 
search capabilities in FMDesign. The tool is coupled with the Implementation Tree 
for a Product Concept. The designer uses the selection tool to search (query) the 
Modelica Database for desirable simulation components to implement a certain 
means. An implementation object in the simulation implementation tree represents 
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the selected simulation component. Simulation component to means mapping 
reflects the various design choices made by the designer. In this way, the designer 
can experiment with different simulation component implementations at various 
level of detail for a specific means. When choosing alternatives for a specific means 
the designer has two possibilities: to browse the repository of simulation models 
classified according to physical concepts or to use the search dialog. The search 
dialog provides the following functionality: 

• Textual/pattern search of components, search for a component in a specific 
physical domain, search for a component with specific parameters. 

• Adding/deleting a product concept specific means to simulation component 
mapping where the simulation component is referred from an 
implementation object. 

After building the means-component mappings the designer can choose to edit or 
configure components by using the configuration dialog that provides the following 
functionality: 

• Set implementation component parameters or parameters ranges. 
• Edit the simulation component in the desired Modelica environment and use 

the edited component, which is also automatically added to the Modelica 
Database. 

11.3.5 The Automatic Model Generator Tool 

The Automatic Model Generator Tool provides the second extension of the 
framework. 

The model generator tool has as input the Implementation Tree (Figure 11-3, 
lower right) of a product and as output the complete simulation model with the 
alternative design choices. 

The automatic model generator traverses the Implementation Tree of a Product 
Concept and outputs ModelicaXML models by choosing the combination of 
selected components for means. The generated models are then translated to 
Modelica for means evaluation through simulation. To simulate the models any tool 
supporting Modelica compiler can be used.   

After the simulation of the generated models, the results are used as feedback 
for the designer. Using this feedback the designer can then choose the best-suited 
model, based on the simulation results.   

11.4 Conclusions and Future Work 

As future work we want to explore the use of ontologies for product concept design 
and for the classification of the available component libraries. The languages 
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developed by the Semantic Web (Berners-Lee et al. 2001 [12], 
SemanticWebCommunity [146], W3C [162], W3C [164], W3C [165]) community 
will be used. Research efforts based on this standard are integrating experience of 
many promising research areas, for instance declarative rules, which still lack a 
vendor neutral exchange formats for industrial applications. The semantic web 
standard lacks important functionality for quality assurance and other necessary 
functionality, which today is implemented in commercial products, but will open up 
for sharing of important research results with industry in collaborative 
environments. Also we would like to improve the Automatic Model Generator Tool 
by using parts of the composition and transformation framework described in 
Chapter 13 and (Pop et al. 2004 [133]). 

In the future we want to provide automatic evaluation through simulation of the 
generated models based on the constraints collected from the Product's Requirement 
Tree.  
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11.5 Appendix 

 
Figure 11-4. FMDesign information model.
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Figure 11-5. ModelicaDB meta-model. 
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Chapter 12  
 
 
ModelicaXML: A ModelicaXML 
Representation with Applications 

This chapter presents the Modelica XML representation with some applications. 
ModelicaXML provides an Extensible Markup Language (XML) alternative 
representation of Modelica source code. The language was designed as a standard 
format for storage, analysis and exchange of models. ModelicaXML represents the 
structure of the Modelica language as XML trees, similar to Abstract Syntax Trees 
(AST) generated by a compiler when parsing Modelica source code. The 
ModelicaXML (DTD/XML-Schema) grammar that validates ModelicaXML 
documents is introduced. We reflect on the software-engineering analyses one can 
perform over ModelicaXML documents using standard and general XML tools and 
techniques. Furthermore we investigate how we can use more powerful markup 
languages, like the Resource Description Framework (RDF) and the Web Ontology 
Language (OWL), to express some of the Modelica language semantics. 

12.1 Introduction 

The structure of a Modelica model can be derived from the source code 
representation, by using a Modelica compiler front-end (the lexical analyzer and the 
parser).  

The compiler front-end takes the source code representation and transforms it to 
abstract syntax trees (AST), which are easier to handle by the rest of the compiler. 
As pointed out in (Badros 2000 [11]), a clear disadvantage of this procedure is the 
need of embedding a compiler front-end in every tool that needs access to the 
structure of the program. Writing such a front-end for an evolving and advanced 
language like Modelica is not trivial, even with the support of automated tools like 
Flex (GNU 2005 [58])/Bison (GNU 2005 [56]) or ANTLR (Parr 2005 [116]).  

To overcome these problems, a standard, easily used, structured representation 
is needed. ModelicaXML is such a representation that defines a structure similar to 
abstract syntax trees using the XML markup language.  

 



208   Chapter 12   ModelicaXML: A ModelicaXML Representation with Applications 

 

This representation provides more functionality than a typical C++ class library 
implementing an AST representation of Modelica: 

• Declarative query languages for XML can be used to query the XML 
representation. 

• The XML representation can be accessed via standard interfaces like 
Document Object Model (DOM) (W3C [157]) from practically any 
programming language.  

The usages of the ModelicaXML representation for Modelica models, combined 
with the power of general XML tools, will ease the implementation of tasks like: 

• Analysis of Modelica programs (model checkers and validators). 
• Pretty printing (un-parsing). 
• Translation between Modelica and other modeling languages (interchange). 
• Query and transformation of Modelica models. 

Although ModelicaXML captures the structured representation of Modelica source 
code, the semantics of the Modelica language cannot be expressed without 
implementing specific XML-based tools. To address this issue we have investigated 
the benefits of using other markup languages like the Resource Description 
Framework (RDF) and the Web Ontology Language (OWL). These languages, 
developed in the Semantic Web Community (Berners-Lee et al. 2001 [12], 
SemanticWebCommunity [146], W3C [162]), are used to express semantics of data 
in order to be automatically processed by machines. We believe that using such 
technology for Modelica models would enable several applications in the future: 

• Models could be automatically translated between modeling tools. 
• Models could become autonomous (active documents) if they are packaged 

together with the operational semantics from the compiler, and therefore, 
they could be simulated in a normal browser. 

• Software information systems (SIS) could more easily be constructed for 
Modelica, facilitating model understanding and information finding. 

• Model consistency could be checked using Description Logic (DL) (Baader 
et al. 2003 [10], DescriptionLogicsWebsite [24]). 

• Certain models could be translated to and from the Unified Modeling 
Language (UML) (OMG [115]). 

The chapter is structured as follows: Related work is presented in Section 12.2. 
Modelica, XML and the ModelicaXML Document Type Definition (DTD) are 
discussed in Section 12.3. In Section 12.4 we present the software-engineering tasks 
one can perform on the ModelicaXML representation using XML tools and 
technologies. Section 12.5 investigates the use of RDF and OWL for representing 
semantics of Modelica models. Conclusions, future research directions and 
summary of the work are presented in Section 12.6. 



Related Work   209 

12.2 Related Work 

In the field of general programming languages, JavaML (Badros 2000 [11]) has 
been developed as structured representation of Java source code. JavaML 
emphasizes the power of such structured representation when leveraging XML 
tools. When it comes to domain specific modeling languages, there are several 
(Björn et al. 2002 [14], Freiseisen et al. 2002 [40], Larsson et al. 2002 [81]) 
approaches to specifying models in XML. These approaches deal with model 
transformation, exchange and management (regarding adaptation to already existing 
simulation tools) or with code generation from the intermediate XML 
representation to C++.  Our interest focuses more on providing flexible and general 
software-engineering tooling support for the Modelica programmer. For this 
purpose the ModelicaXML is covering the full Modelica language, including 
algorithm sections and expression operators. Furthermore, we consider more 
powerful markup languages for defining some of the Modelica static semantics and 
we discuss future use of such Semantic Web technologies. 

12.3 Modelica XML Representation 

In section 2.6 we briefly introduced the concepts of XML and DTD. Here we give 
an example of a Modelica model with its ModelicaXML representation. 

12.3.1 ModelicaXML Example 

To introduce the Modelica XML representation, we give a Modelica example and 
show its corresponding representation as ModelicaXML. 

Elements are in bold, attributes are in italic and entities are using underline 
throughout this section, except from Modelica keywords.  

class dOrderSystem  Secon
  parameter Real a=1; 
  Real x(start=0); Real xdot(start=0); 
 equation 
  xdot=der(x);  
  der(xdot)+a*der(x)+x=1; 
end SecondOrderSystem; 

For ease of presentation, a ModelicaXML document is split into several parts, each 
representing a more nested level. The ellipses from one level are detailed in the next 
level: 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE program SYSTEM  
          "ModelicaXML.dtd"> 
<program within="..."> 
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 <definition ident="SecondOrderSystem"  
             restriction="class"> 
   ... 
 < definition> /
</program> 

The root element is a Modelica program. The child elements of program are a 
sequence of definition elements and an optional within attribute (see Figure 
12-1, section 12.3.2 for schemata). 

<definition ident="SecondOrderSystem"  
            restriction="class"> 
  <component>...</component> 
  ... 
  <equation>...</equation> 
  ... 
</definition> 

The definition element can have import, extends, elements, equation, or 
algorithm as sub-elements. In our case we only have component (i.e., variable) 
and equation sub-elements inside definition (see Figure 12-2, section 12.3.2 
for schemata).  

<component ident="a" type="Real" 
           variability="parameter" 
           visibility "public"> =
  <modification_equals> 
    <real_literal value="1"/> 
  modification_equals> </
</component> 
... 
<component ident="x"  
           type="Real"  
   visibility blic">         ="pu
  <modification_arguments> 
   <element_modification> 
    <component_reference ident="start"/> 
       <modification_equals> 
         <real_literal value="0"/> 
       </modification_equals> 
   </element_modification> 
  < modification_arguments> /
 </component> 

The first component (i.e., variable, see Figure 12-3, section 12.3.2 for schemata) 
has the variability attribute set to "parameter" as in "parameter Real 
a=1;". The second component declaration (i.e., variable) in the example 
represents the "Real x(start=0);" line from our Modelica class.  All 
components have the visibility attribute set to "public". The last component 
is similar to the second component and is not presented.  
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<equation> 
 <equ_equal> 
  <component_reference ident="xdot"/> 
  <call> 
     <component_reference ident="der"/> 
      <function_arguments> 
        <component_reference ident="x"/> 
    function_arguments>   </
  </call> 
 </equ_equal> 
</equation> 

Equations are enclosed in the equation element (see Figure 12-4, section 12.3.2 
for schemata) 

The equation section of the SecondOrderSystem model describes two 
equations. The first equation is quite straightforward. Equality is represented by an 
equ_equal element with two elements inside. The right-hand side is a function call 
(using the call element) to a derivative and the left hand side is a component 
reference represented with the element with the same name.  The second equation 
below is more complex. It has function calls represented using the call element, 
binary operations (see Figure 12-6, section 12.3.2 for schemata) such as add, mul 
for addition (+) and multiplication (*). The component_reference elements 
denote variable references. For the function calls, the arguments are specified using 
the element function_arguments that can contain expressions, named arguments 
or for indices.  

<equation> 
 <eq_equal> 
  <add><call><component_reference ident="der"/> 
         <function_arguments> 
           <component_reference ident="xdot" /> 
         </function_arguments> 
       </call> 
       <add <component_reference ident="x"/> >
        <mul> 
         <component_reference ident="a"/> 
         <call> 
          <component_reference ident="der"/> 
          <function_arguments> 
           <component_reference ident="x" /> 
          </function_arguments> 
         < call> /
        </mul> 
       </add> 
  </add> 
  <integer_literal value="1"/> 
 </equ_equal> 
</equation> 

ModelicaXML Schemata are explained in the next section.  
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12.3.2 ModelicaXML Schema (DTD/XML-Schema) 

When designing the ModelicaXML representation we started from the Modelica 
grammar. We simplified the common cases to compact the XML representation 
without loss of information or structure. The Modelica DTD/XML-Schema has a 
rather close correspondence to the Modelica grammar with the following 
exceptions: attributes are used to make the XML representation more concise and 
the DTD/XML-Schema jumps over some non-terminals from the Modelica 
grammar to make the XML representation more compact. 

The OpenModelica Project parser for Modelica source code, written in ANTLR 
(Parr 2005 [116]), was changed to output the ModelicaXML representation. There 
are many components in the OpenModelica Project that use the ANTLR Modelica 
parser.  Using ModelicaXML such tools can be decoupled from this parser. One 
clear advantage of this approach is that only one parser is maintained and future 
Modelica language extensions or modifications could be easily integrated. 

For presentation purposes we translated our first DTD implementation to XML-
Schema using XML Spy (Altova 2008 [2]). The purpose of this translation was to 
generate pictures from the XML-Schema. Also, another reason was to have 
schemata files in both formats for future use. Perhaps, the DTD variant will be 
discontinued in the future because the XML-Schema is more widely used now. 

All elements from our schema have the optional attributes from the location 
entity (which are sline, scolumn, eline and ecolumn) and the info 
attribute, which can be used to store additional information. These location 
attributes are used to generate a mapping between key elements in our schema and 
the Modelica source code representation. In the following we present some of the 
important elements from the DTD/XML-Schema. 

The content of our ModelicaXML root element, namely program is depicted in 
Figure 12-1. Inside the root element we can have none or several definition 
elements. The optional attribute within can be used inside a program element. 
The rounded corner boxes on the line connecting two elements can be sequence 
(like in Figure 12-1) or choice (like in the bottom part of Figure 12-2). 

 
Figure 12-1. The program (root) element of the ModelicaXML Schema.

The required attributes for definition are ident and restriction (which can 
have one of the "class", "model", "record", "block", "connector", 
"type", "package", or "function" values). Optional attributes are final, 
partial, encapsulated, replaceable, innerouter, visibility (one of 
"public", "protected" values) and string_comment. 

The definition element is detailed in Figure 12-2. Presented in the picture at 
the bottom are the derived element (that handles constructs of the type "class X 
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= Y;") and the enumeration element used to declare enumeration types. The 
upper part of Figure 12-2 shows the other allowed elements that can appear inside 
the definition element. All the elements in the upper part have the visibility 
attribute, taking one of the "public" or "protected" values. The visibility 
attribute values are stating the "public" or "protected" part from the Modelica 
source code. We can see that the definition element is recursive, which allows 
the declaration of classes inside classes. 

The definition element can contain import, extends, external, 
equation, algorithm, annotation and component elements. The latter can 
use constrain element for handling statements like "type X=Y extends Z;". 

 

 
Figure 12-2. The definition element from the ModelicaXML Schema.
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Component elements, with schemata presented in Figure 12-3, have attributes 
representing the Modelica type prefix (flow, variability and direction), and 
type name (type).  

The name of the component is stored in the ident attribute. These attributes are 
important because one can query the ModelicaXML representation for a specific 
component having desired type and ident. How XML query languages can be used 
is explained in section 12.4. 

The type_array_subscripts element and the array_subscripts element 
are expressing the fact that Modelica array subscripts can be declared either at the 
type level or at the component level.  

 
Figure 12-3. The component element from the ModelicaXML Schema.

One can use the element modification_arguments to further modify the 
component. Comments for a component can be specified with the comment 
element. The elements modification_equals and modification_assign are 
used to modify the component; as sub-elements they can have Modelica 
expressions. 

An equation element, presented in Figure 12-4, can have initial as an 
attribute to state if it represents a Modelica initial equation. 

The content and the structure of the equation element are closely following 
the definition from the Modelica Language Specification. The equ_connect 
element takes component references as arguments here, instead of connect 
references, as in the version 2.0 of the Modelica Language Specification. 
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Figure 12-4. The equation element from the ModelicaXML Schema.

The collapsed parts from the equ_if and equ_when elements are the Modelica 
expressions, detailed in Figure 12-6. The Modelica expressions are present in the 
collapsed parts of the algorithm elements alg_if and alg_when and alg_while. 

The algorithm element is presented in Figure 12-5. We point out that the 
elements alg_break and alg_return are recently added statements of the 
algorithm section in the latest version (2.1) Modelica Language Specification. 

The elements that can appear in ModelicaXML expressions can be found in 
Figure 12-6. These are binary operations, literals, component references, array 
constructions, array operators and logical operations. 

The constructs from the ModelicaXML schemata not covered here, along with 
the full "modelicaXML.xsd" (the XML-Schema version) and "modelica-
XML.dtd" (the DTD version), can be found at the OpenModelica Project website. 
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Figure 12-5. The algorithm element from the ModelicaXML Schema.

 

 
Figure 12-6. The expressions from ModelicaXML schema.
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12.4 ModelicaXML and XML Tools 

This section introduces various XML tools and explains their usage in conjunction 
with ModelicaXML. In the following, in different sub-sections we cover: the 
stylesheet language for transformation (XSLT) (W3C [159]), the query language for 
XML documents (XQuery) (W3C [166]) and the Document Object Model (DOM) 
(W3C [157]). 

12.4.1 The Stylesheet Language for Transformation (XSLT) 

XSL is a stylesheet language for XML. XSLT is the part of XSL that deals with 
transformation of XML documents.  

Using XSLT one can implement pretty printers (un-parsers) that can transform 
ModelicaXML back into Modelica source code. Alternative transformations could 
transform ModelicaXML into other general, modeling or markup languages 
(HTML, XHTML, etc). Transformers that translate other modeling languages 
(provided that they have an XML representation) into ModelicaXML can also be 
implemented with XSLT. Using XSLT and ModelicaXML, implementation of 
HTML documentation generators, similar with what the commercial software 
Dymola provides, becomes trivial. We cannot provide the HTML documentation 
generator here because of space reasons, but it will be included in the 
OpenModelica Project.  

We illustrate the usage of XSLT with an example that transforms Modelica 
code. For this example we assume that Modelica code was already translated to 
ModelicaXML. After the transformation, one can output the Modelica code from 
the changed ModelicaXML representation using our "modelicaxml-
2modelica.xslt" stylesheet from the OpenModelica Project.  

Example of changing a component name, both in the declaration of the 
component and in the component references: 

<xsl:stylesheet version="1.0 ..."> 
<!-- example of component rename --> 
<xsl:param name="comp_old_name"/>  
<xsl:param name="comp_new_name"/> 
<!-- we echo everything that is not a component or a 
component reference --> 
<xsl:template match="*|@*|text()"> 
   <xsl:copy> 
       <xsl:apply-templates select="*|@*|text()"/> 
   </xsl:copy> 
</xsl:template> 
<!-- we match the old component and we output the new name 
--> 
<xsl:template match="component  
        [@ident=$comp_old_name]"> 
   <component ident="{$comp_new_name}"> 
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      <xsl:apply-templates/> 
   </component> 
<!-- we match the old component reference and we output the 
new component name --> 
</xsl:template> 
<xsl:template match="component_reference 
        [@ident=$comp_old_name]"> 
   <component_reference 
         ident _name}">   ="{$comp_new
        <xsl:apply-templates/> 
   </component_reference> 
</xsl:template> 
</xsl:stylesheet> 

The XSLT engine is using templates that match on the XML tree structure. The 
matching is performed by the XPath expression appearing as the value of the match 
attributes. By using xsl:apply-templates element we instruct the XSLT engine 
to apply the rest of the templates on the sub-tree that we already matched. When 
this stylesheet is applied on our SecondOrderSystem example from section 12.3.1 
with the parameters "xdot" and "xdot_new" it will change the component name 
and all the component references of xdot to xdot_new.  

XSLT can distinguish between components with the same name defined in 
different classes by the use of XPath expressions. To rename such occurrences we 
first match the class in which is defined and then the actual component. This applies 
for both declarations and component references.  

A search-and-replace tool could perform this transformation, but such a tool has 
no knowledge about the context and it will replace even the occurrences appearing 
inside comments. 

12.4.2 The Query Language for XML (XQuery) 

XQuery is a query language similar with what SQL is for relational databases. 
Using XQuery, one can easily retrieve information from XML documents. The 
XQuery and XSLT are overlapping in some features, and our example could be 
implemented in XSLT also.  

We give a short example of a query over our “SecondOrderSystem.xml” 
example from section 12.3.1. In words, “find all parameter components with type 
Real and show the initialization value”: 

<table border="1"> 
{ 
 for $b in  
 (document("SecondOrderSystem.xml")/*/ 
  definition/component) 
 where $b/@type = "Real" and  
       $b/@variability="parameter" 
 return <tr><td>  
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     { $b/@* } 
     { $b/modification_equals } 
        </td></tr> 
} 
</table> 

We executed this query in the Qexo (GNU 2005 [61]) implementation of XQuery 
and the result in HTML is as follows: 

<table border="1"> 
 <tr><td> 
   ident="a" type="Real" 
   variability="parameter" 
   visibility="public" 
   <modification_equals> 
     <real_literal value="1" /> 
   </modification_equals> 
  </td></tr> 
</table> 

As expected, the attributes and the set value of the element corresponding to 
"parameter Real a=1;" from our Modelica example was returned as the 
answer.  

Using XQuery, any types of queries can be asked about the Modelica model. 
This opens-up the possibility of easily debugging very large models. User interfaces 
can be implemented to hide the query building from the user. Static type checking 
can also be implemented as a series of queries on the model, but is not trivial, 
because the class hierarchy is not explicitly defined in XML. 

XQuery uses XPath as sub-language to select the part of tree that matches the 
XPath expression. In our XML representation one can match an entire component 
having a specified ident attribute. The XPath language can be used to handle 
scooping. 

12.4.3 Document Object Model (DOM) 

The Document Object Model (DOM) (W3C [157]) is a standard interface that 
allows programs to access/update the content, structure and style of XML 
documents. DOM is similar with a general tree-management library.  

There are open-source implementations for DOM APIs in Java, C, C++, Perl, 
Python and other programming languages.   

Any Modelica tool written in various programming languages can use the DOM 
API to directly access/modify the ModelicaXML representation.  
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12.5 Towards an Ontology for the Modelica Language 

This section investigates the possibility of using the markup languages Resource 
Description Framework (RDF) (W3C [161]), RDF Vocabulary Description 
Language (RDFS) (W3C [160]) and OWL (W3C [164], W3C [165]) developed in 
the Semantic Web (Berners-Lee et al. 2001 [12], SemanticWebCommunity [146], 
W3C [162]) for development of a Modelica ontology.  

An ontology is a description (like a formal specification of a program) of both 
the objects in a certain domain and the relationships between them. In the context of 
the Semantic Web there is a layered approach for specifying increasingly richer 
semantics for the upper layers as in Figure 12-7. 

At the bottom, in top of Unicode and Uniform Resource Identifiers (URI) is 
XML, namespaces (NS) and XML-Schema. XML specifies a term list with no 
relations. On top of XML comes RDF to define a vocabulary and some relations. 
RDFS (RDF schema) defines a vocabulary for constructing RDF vocabularies. 

 
Figure 12-7. The Semantic Web Layers.

The Ontology layer uses languages like OWL to define description logic 
relationships. 

With ModelicaXML we are now only at the XML level! Using RDF we can 
express graphs and we can model inheritance relationships and place queries over 
this relation. This can be achieved easily with a smart parser. Using OWL we can 
place restrictions over relations and concepts and we can reason with inference 
using Description Logics.  

12.5.1 The Semantic Web Languages  

This sub-section briefly introduces the Semantic Web Languages: Resource 
Description Framework (RDF/RDFS) and Web Ontology Language (OWL). 
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We illustrate the use of Semantic Web Languages by taking a Modelica model and 
its representation in OWL.  

class Body  "Generic body" 
  Real mass; 
  String name; 
end ody;  B
class CelestialBody "Celestial body" 
  extends Body; 
  constant Real g = 6.672e-11; 
  
end CelestialBody; 

parameter Real radius; 

CelestialBody moon(name = "moon",  
     mass = 7.382e22, radius = 1.738e6); 
 
Body body_instance(name = "some body",  
     mass = 7.382e22); 

Our Modelica model has two classes (concepts) Body and CelestialBody the 
latter being a subclass of the former (by using "extends" statement). 

The encoding in OWL is as follows: 
<?xml version="1.0" ?> 
<rdf:RDF 
  <!-- namespaces declaration --> 
  xmlns=".../inheritance.owl#" 
  xmlns:modelica=".../inheritance.owl#" 
  xml:base=".../inheritance.owl"> 
 <owl:Ontology rdf:about=".../inheritance.owl" /> 
  
 <!-- define Body --> 
 <owl:Class rdf:ID="Body"> 
   <rdfs:label>Generic Body</rdfs:label> 
 </owl:Class> 
 < mass!-- define  --> 
 <owl:DatatypeProperty rdf:ID="mass"> 
 <rdfs:domain rdf:resource="#Body"/> 
 <rdfs:range rdf:resource="XMLSchema#float"/> 
 </owl:DatatypeProperty> 
 <!-- define name --> 
 <owl:DatatypeProperty rdf:ID="name"> 
 <rdfs:domain rdf:resource="#Body"/> 
 <rdfs:range  
      Schema#string"/> rdf:resource="XML
 </owl:DatatypeProperty> 
   
 <!-- define CelestialBody --> 
 <owl:Class rdf:ID="CelestialBody"> 
 <rdfs:label>Celestial Body</rdfs:label>  
 <rdfs:subClassOf  
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       rdf:resource="#Body" /> 
    <!-- cardinality restriction on the g constant:  
         one and only one in CelestialBody --> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
       <owl:onProperty rdf:resource="#g"/> 
       <owl:cardinality rdf:datatype 
        ="XMLSchema#nonNegativeInteger"> 
         1 
       </owl:cardinality> 
      </owl:Restriction> 
   rdfs:subClassOf>    </
 </owl:Class> 
 <!-- define g --> 
 <owl:DatatypeProperty rdf:ID="g"> 
    <rdfs:domain  
     rdf:resource="#CelestialBody"/>  
    <rdfs:range ´ 
      rdf:resource=" XMLSchema#float"/> 
 </owl:DatatypeProperty> 
 <!-- define radius --> 
 <owl:DatatypeProperty 
    rdf:ID="radius"> 
 <rdfs:domain rdf:resource="#CelestialBody"/> 
 <rdfs:range  rdf:resource=" XMLSchema#float"/> 
 </owl:DatatypeProperty> 
<!-- instance declaration of CelestialBody --> 
<CelestialBody rdf:ID="moon"> 
 <name rdf:datatype="XMLSchema#string">moon</name> 
 <mass rdf:datatype="XMLSchema#float">7.382e22</mass> 
 <radius rdf:datatype="XMLSchema#float">1.738e6</radius> 
 <g rdf:datatype="XMLSchema#float">6.672e-11</g> 
 <g rdf:datatype="XMLSchema#float"> 
    intentional error  
    (string is not float) 
 </g> 
</CelestialBody> 
 
<!-- instance declaration of Body --> 
<Body rdf:ID="body_instance"> 
 <name rdf:datatype="XMLSchema#string"> 
   some body 
 </name> 
 <mass rdf:datatype="XMLSchema#float"> 
   7.382e22 
 </mass>  
 <-- intentional error (Body does not have a radius)  --> 
 <radius rdf:datatype="XMLSchema#float">1.738e6</radius> 
</Body> 

  </rdf:RDF> 
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In the OWL representation of the Modelica model we first define Body as being an 
owl:Class with "Generic body" as label. The attributes of Body, namely: mass 
and name are represented as owl:DatatypeProperty. The datatype is a binary 
relation having a range (type) and a domain (in our case the Body concept). As 
range we use the datatypes from XML-Schema, in our case, for mass we use 
"float" and for name we use "string". 

The class CelestialBody is defined as owl:subclassOf the Body class 
according to the "extends" statement from our Modelica model. As an OWL 
feature in the definition of CelestialBody we show a local cardinality restriction 
placed on the g relation. This means that in the instances of CelestialBody, the g 
component has to appear exactly once. The representation of g or radius 
components is similar to the representation of mass or name. 

The moon instance of the CelestialBody class sets the values of the 
components. We intentionally added the g component twice and with a wrong type. 
We also declare an instance of the Body class that has a radius component (which 
is an error). 

To verify the model, our file: "inheritance.owl" was fed into an OWL 
Validator (Rager 2003 [136]).  

The validator, as expected, reports the following errors: 

• For the g component that has a string as value: “Range Type Mismatch. Use 
of this property implies that object is of type XMLSchema#float”. 

• For the radius component in the body_instance declaration: ”Domain Type 
Mismatch. Use of this property implies that subject is of type 
#CelestialBody. Subject is declared type [Body]” 

• For the moon instance: “Cardinality Violation.  Resource #moon violates 
the cardinality restriction on class #CelestialBody for property #g. Resource 
has 2 statements with this property. Maximum cardinality is 1”.  

The OWL language has more constructs than our example has covered. One can 
consult the OWL website (W3C [164], W3C [165]) for more details. 

12.5.2 The roadmap to a Modelica representation using Semantic 
Web Languages 

In the example above we have presented a small ontology that models our Modelica 
model, consisting of both classes and instances. With a clever parser, such 
ontologies could be generated from Modelica libraries and then used for composing 
Modelica models. 

The roadmap to a Modelica representation in OWL has the following steps: 

• Define an RDFS vocabulary for Modelica source code constructs. Such a 
vocabulary should include concepts like class, model, record, block, etc. 
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• Transform the Modelica libraries in their OWL representation using the 
above vocabulary.  

• An OWL validator can then check the correctness of both the concepts and 
the instances of these concepts. 

At the end of this roadmap we would have Modelica represented in OWL. The 
future benefits of such a representation were underlined in the Introduction section. 
Here, we briefly explain how they could be achieved.  

12.5.2.1 The Autonomous Models 

In the OpenModelica Project, the Modelica compiler is built from the formal 
specification (expressed in Natural Semantics (Kahn 1988 [75])) of the Modelica 
Language. This specification can be compiled to executable form using the 
Relational Meta-Language (RML) system (PELAB 1994-2008 [117], Pettersson 
1995 [120], Pettersson 1999 [122]). The rules from Natural Semantics could be 
translated to OWL or RuleML (RuleML [139]) and shipped together with the 
model. Using the rules from the model a normal browser could compile and 
simulate the Modelica model. We assume that the platform should have a C 
compiler.  

12.5.2.2 The Software Information System (SIS) 

Having the Modelica ontologies that model the source code one could use the 
approach detailed in (Welty 1995 [172]) and build the domain model of the 
problem. Merging them together would result in a Software Information System.  

Using such a Software Information System, users can ask queries about the 
Modelica source code concepts (components, classes, etc) that are classified 
according to the domain model concepts of the problem.  

12.5.2.3 Model consistency could be checked using Description Logic 

Modelica models represented in OWL (Description Logics) can be fed into a 
reasoning tool like FaCT (Horrocks [67]) or Racer (Haarslev et al. 2004 [63]) for 
consistency checking. 

Moreover, such support would be of great help to the Modelica library designers 
that could formally check relevant properties of the class hierarchies. 

The checks one can do using Description Logics on the Modelica OWL 
representation are the following: 

• Ensure that the classes and the class hierarchy are consistent (ensure that a 
class can have instances and is not over-constrained). 

• Find the explicit relations between classes, regarding for example sub-
typing or equivalence. 
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12.5.2.4 Translation of Models to/from Unified Modeling Language 

The UML language has its XML representation called XMI (OMG [111]). 
Translation from Modelica models conforming to a Modelica ontology to XMI 
could be possible using XSLT.  

12.6 Conclusions and Future work 

We have presented the ModelicaXML language and some applications of XML 
technologies. We have shown that there are some missing capabilities with such 
XML representation and we addressed some of them. We have presented a roadmap 
to an alternative representation of Modelica in OWL and the use of representation 
together with the Semantic Web technology.  

As future work, we consider completing the ModelicaXML with the definition 
of all the intermediate steps representations from Modelica to flat Modelica and 
further to the code generation. This complete representation would allow various 
open-source tools to act at these formally defined levels, independent of each other. 
More information could be added in the future to such XML representation, like: 
model configuration, simulation parameters, etc. 

Further insights in the direction of Semantic Web Languages and their use to 
express Modelica semantics are necessary. Compilation in both directions between 
OWL and the Relational Meta-Language (RML) is worth considering.  

 





 

Chapter 13  
 
 
Composition of XML dialects: A 
ModelicaXML case study 

This chapter investigates how software composition and transformation can be 
applied to domain specific languages used today in modeling and simulation of 
physical systems. More specifically, we address the composition and transformation 
of the Modelica language. The composition targets the ModelicaXML (described in 
the previous chapter) dialect which is the XML representation of the Modelica 
language. By extending the COMPOST concrete composition layer with a 
component model for Modelica, we provide composition and transformation of 
Modelica. The design of our COMPOST extension is presented together with 
examples of composition programs for Modelica.  

13.1 Introduction  

Commercial Modelica tools such as MathModelica and Dymola as well as open-
source tools such as the OpenModelica system can be used for modeling with the 
Modelica language. While all these tools have high capabilities for compilation and 
simulation of Modelica models, they:  

• Provide little support for configuration and generation of components and 
models from external data sources (databases, XML, etc). 

• Provide little support for security, i.e. protection of “intellectual property” 
through obfuscation of components and models. 

• Do not provide automatic composition of models using a composition 
language. This would be very useful for automatic generation of models 
from various CAD products.  
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• Provide little support for library designers (no automatic renaming of 
components in models, no support for comparison of two version of the 
same component at the structure level, etc.). 

We address these issues by extending the COMPOST framework with a Modelica 
component model that acts on the ModelicaXML representation. 

The use of XML technology for software engineering purposes is highly present 
in the literature today. The SmartTools system (Attali et al. 2001 [8], Attali et al. 
2001 [9]) uses XML technologies to automatically generate programming 
environments specially tailored to a specific XML dialect that represents the 
abstract syntax of some desired language. The use of Abstract Syntax Trees 
represented as XML for aspect-oriented programming and component weaving is 
presented in (Schonger et al. 2002 [145]). The OpenModelica System project 
investigates some transformations on Modelica code like meta-programming 
(Aronsson et al. 2003 [4]). The bases of uniform composition for XML, XHTML 
dialect and the Java language were developed in the European project Easycomp 
(EasyComp 2004 [28]). However, the possibilities of this framework can be further 
extended and tested by supporting composition for an advanced domain specific 
language like Modelica. 

The chapter is structured as follows. The next section introduces Modelica, 
ModelicaXML, and COMPOST. Section 13.3 presents our COMPOST extension 
and its usage through various examples of composition and transformation 
programs for Modelica. Conclusion and future work can be found in Section 13.4. 
The appendix, gives the ModelicaXML representation for some of the examples. 

13.2 Background  

In this section give a short description of the COMPOST framework and present a 
short Modelica model and its ModelicaXML representation.  

13.2.1 Modelica and ModelicaXML  

Modelica has a structure similar to the Java language, but with equation and 
algorithm sections for specifying behavior instead of methods. Also, in contrast to 
Java, where one would use assignment statements, Modelica is primary an 
equation-based language. We give a short Modelica model and its ModelicaXML 
representation:  

class HelloWorld "HelloWorld comment" 
  Real x(start = 1); 
  parameter Real a = 1; 
 equation  
   der(x) = -a*x;  
end HelloWorld; 



Background   229 

In the example we have defined a class called HelloWorld, which has two 
components and one equation. The first component declaration (second line) creates 
a component x, with type Real. All Modelica variables have a start attribute, 
which can be initialized using a modification equation like (start = 1).  

The second declaration declares a so called parameter named a, of type Real 
and set equal to an integer with value 1. The parameters are constant during 
simulation; they can be changed only during the set-up phase, before the actual 
simulation.  

The software composition is not performed directly on the Modelica code, but 
instead, on an alternative representation of it: ModelicaXML (Chapter 13 and (Pop 
and Fritzson 2003 [126])). As an example, the HelloWorld class translated to 
ModelicaXML would have the following representation:  

<?xml version="1.0" encoding="UTF-8" standalone="no" ?> 
<!DOCTYPE modelica SYSTEM "modelica.dtd"> 
<program> 
 <definition ident="HelloWorld" restriction="class" 
             string_comment="HelloWorld comment"> 
   <component visibility="public" type="Real"ident="x"> 
    <modification_arguments> 
     <element_modification>  
      <component_reference ident="start"/> 
       <modification_equals <integer_literal value="1"/> >
       </modification_equals> 
     </element_modification> 
    </modification_arguments> 
   < component> /
   <component visibility="public" variability="parameter" 
              type="Real" ident="a"> 
    <modification_equals><integer_literal value="1"/> 
    < modification_equals> /
   </component> 
   <equation> 
    <equ_equal> 
     <call><component_reference ident="der"/> 
           <function_arguments>  
             <component_reference ident="x"/>  
           </function_arguments> 
     </call> 
     <sub operation="unary"> 
      <mul><component_reference ident="a"/>  
           <component_reference ident="x"/>  
      </mul> 
     < sub/ > 
    </equ_equal> 
   </equation> 
 </definition> 
</program> 
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The translation of the Modelica into ModelicaXML is straightforward. The abstract 
syntax tree (AST) of the Modelica code is serialized as XML using the 
ModelicaXML format. ModelicaXML is validated against the modelica.dtd 
Document Type Definition (DTD) (W3C [158]). Using the XML representation for 
Modelica, generation of documentation, translation to/from other modeling 
languages can be simplified.  

13.2.2 The Compost Framework 

COMPOST is a composition framework for components such as code or document 
fragments, with special regard to construction time. Its interface layer called 
UNICOMP for universal composition provides a generic model for fragment 
components in different languages and different concrete component models. 1

Components are composed by COMPOST as follows. First, the components, 
i.e., templates containing declared and implicit hooks, are read from file. Then, a 
composition program in Java applies composition operations to the templates, and 
transforms them towards their final form. (The transformations rely on standard 
program transformation techniques.) After all hooks have been filled, the 
components can be pretty-printed to textual form in a file again. They should no 
longer contain declared hooks so that they can be compiled to binary form.  

13.2.2.1 The notions of components and composition  

Fragment-based composition with COMPOST (Aßmann and Ludwig 2005 [7]) is 
based on the observation that the features of a component can be classified in 
several dimensions. These dimensions are the language of the component, the 
model of the component, and abstract component features. The dimensions depend 
on each other and can be ordered into a layer structure of 5 layers (Figure 13-1):  

1. Transformation Engine Layer. The most basic layer encapsulates knowledge 
about the contents of the components, i.e., about the concrete language of the 
component. Fragment-based component composition needs a transformation 
engine that transforms the representation of components (Aßmann 2003 [5]). 
For such transformation engines, COMPOST reuses external tools, such as the 
Java refactoring engine RECODER (Ludwig [88]). This transformation engine 
layer contains adapters between COMPOST and the external tools.  

2. Concrete Composition Layer. On top of the pure fragment layer, this layer 
adds information for a concrete component model, e.g., Java fragment 
components, or ModelicaXML fragment components. Concrete composition 
constraints are incorporated that describe valid compositions, which can refer 
to the contents of the components. For instance, a constraint could be defined 

 
1 COMPOST and its interface layer UNICOMP can also model runtime and other types 
of component models. 
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that disallows to encapsulating a Java method component into another Java 
method component.  

3. Time Specific Composition Layer. On this layer the time of the composition 
is taken into account: static or runtime composition.  

4. Abstract Composition Layer. In this layer, knowledge is modeled that does 
not depend on the concrete component language, or on the concrete component 
model. General constraints are modeled, for instance, that each component has 
a list of subcomponents, the component hierarchy is a tree, or composition 
expressions employ the same type of component, independently of the concrete 
type.  

5. UNICOMP Interface Layer. The interfaces of the abstract composition layer 
have been collected into a separate interface layer, UNICOMP. This set of 
interfaces provides a generic fragment component model, from which different 
concrete component models can be instantiated.  

 
Figure 13-1. The layers of COMPOST.

For COMPOST applications, UNICOMP hides underlying concrete information 
about the component model to a large extent. An application uses COMPOST in a 
similar way as a component framework with an Abstract Factory (Gamma et al. 
1994 [54]). When a component is created, its concrete type is given to the 
COMPOST factory. However, after creation, the application only uses the 
UNICOMP generic interfaces. Hence, generic applications can be developed that 
work for different component models, but use generic composition operations. 
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Already on the Abstract Composition Level, the following uniform operations for 
fragment components are available:  

• Other uniform basic operations. COMPOST composition operators can 
address hooks and adapt them during composition for a context. As a basic 
set of abstract composition operators, copy, extend, and rename are 
available.  

• Uniform parameterizations. Template processing works for completely 
different types of component models. After a semantics for composition 
points and bind operations has been defined, generic parameterization 
programs can be executed for template processing.  

• Uniform extensions. The extension operator works on all types of 
components.  

• Uniform inheritance. On the abstract composition layer COMPOST defined 
several inheritance operators that can be employed to share components, be 
it Java, or XML-based components. Inheritance is explained as a copy-and-
extend operation, and both copy and extend operations are available in the 
most abstract layer.  

• Uniform connection. COMPOST allows for uniform connection operations, 
as well for topologic as well as concrete connections (Aßmann 2003 [5]).  

• Uniform aspect weaving. Based on these basic uniform operations, uniform 
aspect weaving operations (Karlsson 2003 [76]), can be defined.  

The great advantage of the layer structure is that new component models, e.g., for 
XML languages, can be added easily as we show in this chapter. In fact, 
COMPOST is built for extension: adding a new component model is easy, it 
consists of adding appropriate classes in the concrete composition levels, 
subclassing from the abstract composition level as we show in Section 13.3. 

13.2.2.2 Composition Constraints  

Each COMPOST layer contains constraints for composition. These constraints 
consist of code that validates components and compositions.  

• Composite component constraints. A component must be composite, i.e., 
the composed system is a hierarchy of subsystems. A component is the 
result of a composite composition expression or a composition program.  

• Composition typing constraints. Composition operations must fit to 
components and their composition points. For instance, a composer may 
only bind appropriate values to composition points (fragments to fragments, 
runtime values to runtime values), or use a specific extension semantics.  

• Constraints on the content of components. For instance, for a Java 
composition system, this requires that the static semantics of Java is 
modeled, and that this semantics controls the composition. For an XML 
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dialect, semantic constraints can be modeled, for instance, that all links in a 
document must be valid, i.e., point to a reasonable target. Our extended 
framework presented in this chapter provides parts of the Modelica 
semantics in top of the ModelicaXML format.  

With these constraints, it should be possible to type-check composition expressions 
and programs in the UNICOMP framework. Many of these constraints can be 
specified in a logic language, such as first order logic (Datalog) or OWL (W3C 
[165]), and can be generated to check objects on every layer. 

13.2.2.3 Support for staged composition  

COMPOST supports staged composition as follows. Firstly, the UNICOMP layer 
has been connected to the Component Workbench, the visual component editor of 
the VCF (Oberleitner and Gschwind 2002 [108]). Composition programs for 
fragment component models can be edited from the Component Workbench, and 
executed via COMPOST.  

So far, a case study has been build for a web-based conference reviewing system 
that requires Java and XHTML composition. This chapter shows how to compose 
Modelica components by using its alternative XML representation: ModelicaXML.  

Secondly, COMPOST can be used to prepare components such that they fit into 
component models of stage 2 and 3. For instance, COMPOST connectors can 
prepare a Java class for use in CORBA context (Aßmann et al. 2000 [6]). They can 
also be used to insert event-emitting code, to prepare a class for Aspect-Oriented 
Programming. 

13.3 COMPOST extension for Modelica  

This section describes the Modelica component model. The architecture of our 
system is presented. Modelica Box and Hook hierarchies are explained. Finally, 
various composition programs are given as examples.  

13.3.1 Overview  

The architecture of the composition system is given in Figure 13-2. A Modelica 
parser is employed to generate the ModelicaXML representation. ModelicaXML is 
fed into the COMPOST framework where it can be composed and transformed. The 
result is transformed back into Modelica code by the use of a ModelicaXML 
unparser. 
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Figure 13-2. The XML composition. System Architecture Overview.

13.3.2 Modelica Box Hierarchy  

Besides general classes, Modelica uses so called restricted class constructs to 
structure information and behavior: models, packages, records, types, functions, 
connectors and blocks. Restricted classes have most properties in common with 
general classes, but have some restrictions, e.g. there are no equations in records.  

Modelica classes are composed of elements of different kinds, e.g.:  

• Import or extends declarations.  
• Public or protected variable declarations.  
• Equation and algorithm sections. 

Each of the Modelica restricted classes and each of the element types have their 
corresponding box class in the Modelica Box hierarchy (Figure 13-3).  

In our case, the boxes (templates) are mapped to their specific element types in 
the ModelicaXML representation. For example, the ModelicaClass box is 
mapped to a <define ident="ClassName">..</define> element. The 
ModelicaClass box can contain several ModelicaElement boxes and can con-
tain itself in the case that one Modelica class is declared inside another class.  
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The boxes that inherit from ModelicaContainer represent the usual constructs of 
the Modelica language. The boxes that inherit from ModelicaElement are 
defining the contents of the boxes that inherit from ModelicaContainer.  

The boxes incorporate constraints derived from Modelica static semantics. For 
example, constraints specify that inside a ModelicaRecord is not allowed to have 
ModelicaEquationSections.  

 
Figure 13-3. The Modelica Box Hierarchy defines  

a set of templates for each language structure.

While these constraints in our case were specified in the Java code, a future 
extension will automatically generate these constraints from external specifications 
expressed in formalisms such as Document Type Definition (DTD) (W3C [158]), 
Web Ontology Language (OWL) (W3C [164], W3C [165]) or Relational Meta-
Language (RML) (PELAB 1994-2008 [117], Pettersson 1995 [120], Pettersson 
1999 [122]).  

13.3.3 Modelica Hook Hierarchy 

Implicit Hooks are fragments of Modelica classes that have specific meaning 
according to Modelica code structure and semantics. By using Hooks one can easily 
change/extract parts of the code. In the Modelica Hook Hierarchy presented in 
(Figure 13-4) only Implicit Hooks are defined for the Modelica code.  
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There is no need to define Declared Hooks especially for Modelica, because the 
XMLDeclaredHook already performs this operation. One can have an XML 
declared hook that extracts from the XML document the contents of an element 
with a specified tag, i.e., <extract ...>.  

Hooks are used to configure parts of boxes. The XMLImplicitHook is 
specialized as ModelicaParameterHook or ModelicaModificationHook.  

ModelicaParameterHook binds variable components in ModelicaXML that 
have variability attribute set to "parameter". To provide typing constraints, 
specific hooks for real_literal, integer_literal, string_literal types 
have been declared. These constraints the binding of the parameters to values of 
proper type.  

 
Figure 13-4. The Modelica Hook Hierarchy.

ModelicaModificationHook targets component declarations that have their 
elements changed by modifiers. In the HelloWorld example in Section 13.2.1, the 
modifier is imposing on component x to change its start value. At the 
ModelicaXML level the ModelicaModificationHook is searching for XML 
elements of the form:  

<component ident="ComponentName"> 
 <modification_arguments> 
  <element_modification> 
   <component_reference ident="element"/> 
   <modification_equals>value initialization e.g. 
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    <integer_literal>1</integer_literal> 
   </modification_equals> 
  </element_modification> 
 < modification_arguments> /
</component> 

This hook will bind proper values to the modified elements.  
Also, other types of implicit hooks can be specified like hooks for the left hand 

side or the right hand side of an equation hooks that change types of components, 
hooks that change the documentation part of a class declaration, etc.  

13.3.4 Examples of Composition and Transformation Programs  

This subsection gives concrete examples on the usages of our framework. The 
examples are written in Java, but they could easily be performed using a tool that 
has visual abstractions for the composition operators. For presentation issues only 
the Modelica code is given in the examples below and their corresponding 
ModelicaXML representation is presented in Section 13.5.  

13.3.4.1 Generic Parameterization with Type Checking  

To be able to reuse components into different contexts they should be highly 
configurable. Configuration of parameters in Modelica is specified in class 
definitions and can be modified in parameter declaration. The values can be read 
from external sources using external functions implemented in C or Fortran. In the 
example below we show how the parameters of a Modelica component can be 
configured using implicit hooks. Because we use Java, the parameter/value list can 
be read from any data source (XML, SQL, files, etc). The example is based on the 
following Modelica class:  

class Engine  
 parameter Integer cylinders = 4;  
 Cylinder c[cylinders];  
 /* additional parameters, variables and equations */  
end Engine;  

Different versions of the Engine class can be automatically generated using a 
composition script. Also, the parameter values are type checked before they are 
bound to ensure their compatibility. The composition script is given below partially 
in Java, partially in pseudo-code:  

ModelicaCompositionSystem cs = new 
                          ModelicaCompositionSystem(); 
 
ModelicaClass templateBox = 
              cs.createModelicaClass("Engine.mo.xml");  
 
/* read parameters from configuration file, XML or SQL */  
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foreach engine entry X  
{  
 ModelicaClass engineX = 
               templateBox.cloneBox().rename("Engine_"+X); 
  
 foreach engine parameter  
 {  
   engineX.findHook("parameterName").bind(parameterValue); 
   /* typed parameterization */  
 }  
 engineX.print(); 
} 

Using a similar program, the modification of parameters can be performed in 
parameter declarations.  

13.3.4.2 Class Hierarchy Refinement using Declared Hooks  

When designing libraries one would like to split specific classes into a more general 
part and a more specific part. As an example, one could split the class defined 
below into two classes that inherit from each other, one more generic and one more 
specific, in order to exploit reuse. Also if one wants to add a third class, e.g. 
RectangularBody, to the created hierarchy the transformation above would be 
beneficial. The specific class that should be modified is given below:  

class CelestialBody "Celestial Body" 
 Real mass;  
 String name;  
 constant Real g = 6.672e-11;  
 parameter Real radius; 
end CelestialBody;  

The desired result, the two split classes where one inherits from the other, is shown 
below:  

class Body "Generic Body" 
 Real mass;  

ring name;  St
end Body;  

class CelestialBody "Celestial Body"  
 extends Body; 
 constant Real g = 6.672e-11;  
 parameter Real radius; 
end CelestialBody;  

One can see that this transformation extracts parts of classes and inserts them into a 
new created class. Also, the old class is modified to inherit from the newly created 
class.  

This transformation is performed with the help of one declared hook (for the 
extraction part) and an implicit hook for the superclass, with its value bound to the 
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newly created class. The user will guide this operation by specifying, with a 
declared hook or visually, which parts should be moved in the new class. The 
composition program that performs these transformations is as follows:  

ModelicaCompositionSystem cs = new  
                          ModelicaCompositionSystem(); 
ModelicaClass bodyBox = cs.createClass("Body.mo.xml");  
ModelicaClass celestialBodyBox = 
              cs.createModelicaClass("Celestial.mo.xml"); 
ModelicaElement extractedPart = 
              celestialBody.findHook("extract").getValue(); 
 
/* empty the hook contents */  
celestialBody.findHook("extract").bind(null); 
 
bodyBox.append(extractedPart) 
bodyBox.print(); 
celestialBody.findHook("superclass").bind("Body"); 
/* or findSuperclass().bind("Body"); */  
 
celestialBody.print(); 

Similar transformations can be used to compose Modelica models based on the 
interpretation of other modeling languages. During such composition some classes 
need to be wrapped to provide a different interface. For example, when there is only 
a force specified for moving a robot arm, but the available library of components 
only provides electrical motors that generate a force proportional to a voltage input. 

13.3.4.3 Composition of classes or model flattening  

Mixin composition of the entire contents of two or more classes into one another is 
performed when the models are flattened i.e. as the first operation in model 
obfuscation or at compilation time. The content of the classes composed below is 
not relevant for this particular operation. The composition program that 
encapsulates this behavior is as follows:  

ModelicaCompositionSystem cs = new 
                               ModelicaCompositionSystem(); 
ModelicaClass resultBox =  
              cs.createModelicaClass("Class1.mo.xml");  
ModelicaClass firstMixin =  
              cs.createModelicaClass("Class2.mo.xml"); 
ModelicaClass secondBox =  
              cs.createModelicaClass("Result.mo.xml");  
 
resultBox.mixin(firstMixin); 
resultBox.mixin(secondMixin); 
resultBox.print(); 
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It first reads the two classes from files, creates a new result class and pastes the 
contents of the first classes inside the new class.  

13.4 Conclusions and Future work  

We have shown how composition on Modelica, using its alternative the 
ModelicaXML representation, can be achieved with a small extension of the 
COMPOST framework. While this is a good start, we would like to extend our 
work in the future with some additional features like:  

• More composition operators and more transformations, i.e., obfuscation, 
symbolic transformation of equations, aspect oriented debugging of 
component behavior by weaving assert statements in equations, etc.  

• Implementation of full Modelica semantics to guide the composition, based 
on the already existing Modelica compiler implemented in the 
OpenModelica system.  

• Validation of the composed or transformed components with the 
OpenModelica compiler.  

• Automatic composition of Modelica models based on interpretation of other 
modeling languages.  

Modelica should provide additional constraints on composition, based on the 
domain knowledge. These constraints are specifying, for example, that specific 
components should not be connected even if their connectors allow it. We would 
like to further investigate how these constraints could be specified by library 
developers.  

13.5 Appendix  

CelestialBody in ModelicaXML format before transformation:  
<definition ident="CelestialBody" restriction="class"  
            string_comment="Celestial Body"/>  
  <component visibility="public"  
             ident="mass" type="Real"/> 
  <component visibility="public"  
             ident="name" type="String"/> 
  <component visibility="public"  
             variability="constant" ident="g" 
             type="Real"> 
    <modification_equals>  
      <real_literal value="6.672e-11"/> 
    </modification_equals>  
  </component>  
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  <component visibility="public"  
             variability="parameter" ident="radius"  
             type="Real"/> 
</definition> 

CelestialBody and Body in ModelicaXML format after transformation:  
<definition ident="Body" restriction="class"   
            string_comment="Generic Body"/>  
 <component visibility="public" ident="mass" type="Real"/>  
 <component visibility="public"  
            ident="name" type="String"/>  
</definition>  

<definition ident="CelestialBody" restriction="class"  
            string_comment="Celestial Body"/>  
  <extends type="Body"/>  
  <component visibility="public"  
             variability="constant" ident="g" 
             type="Real"> 
    <modification_equals> 
      <real_literal value="6.672e-11"/> 
    modification_equals>  </
  </component>  
  <component visibility="public" variability="parameter" 
             ident="radius" type="Real"/> 
</definition> 

The Engine class representation in ModelicaXML: 
<definition ident="Engine" restriction="class">  
 <component visibility="public" variability="parameter"  
            type="Integer" ident="cylinders">  
   <modification_equals> 
       <integer_literal value="4"/> 
   </modification_equals>  
 < component>  /
 <component visibility="public" type="Cylinder" ident="c">  
  <array_subscripts>  
   <component_reference ident="cylinders"/> 
  </array_subscripts> 
 </component> 
</definition> 
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Chapter 14  
 
 
Conclusions and Future Work 

As most of the chapters in this thesis have their own specific conclusions and future 
work, this final chapter presents our general conclusions to the work presented. A 
summary of the main results and the main contributions of the thesis are reiterated 
here. We also provide directions for future research.  

14.1 Conclusions 

The thesis presents the new MetaModelica language that successfully employs 
meta-modeling and meta-programming features to address the entire product 
modeling process. Portable debugging methods and tools that support the new 
language were also designed, implemented, and analyzed in the thesis. 

The design, implementation and evaluation of efficient compilers targeting the 
MetaModelica language are presented in the thesis. The implemented compilers are 
publicly available and extensively used in industry and academia for large 
applications. 

Moreover, the tools (compilers, debuggers, model editors, and additional tools) 
supporting the MetaModelica language were integrated into an advanced 
development environment based on the Eclipse platform. The integrated 
development environment was evaluated on non-trivial industrial applications. 

The integration of Modelica-based modeling and simulation tools with model-
driven product design tools within a flexible framework that supports scalable 
model selection and configuration is also proposed. 

Most of our thesis contributions have been implemented and integrated into 
open-source development environments for EOO languages. The evaluations 
performed using several case studies show the efficiency of our meta-modeling and 
meta-programming methods and tools. 

We conclude that the work presented in this thesis supports our research hypothesis: 

• EOO languages can be successfully generalized to support software 
modeling, thus addressing the whole product modeling process.  
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• Integrated environments that support such a generalized EOO language can 
be created and effectively used on real-sized applications. 

The integrated model-driven environments and the new MetaModelica language 
presented in the thesis provide efficient and effective methods for designing and 
developing complex product models. Methods and tools for debugging, 
management, serialization, and composition of models are also contributed. 

To reiterate, the main research contributions of the thesis are: 

• The design, implementation and evaluation of a new general executable 
mathematical modeling and semantics meta-modeling language called 
MetaModelica. The MetaModelica language extends the existing Modelica 
language with support for meta-modeling, meta-programming and 
exception handling facilities.  

• The design, implementation and evaluation of advanced portable debugging 
methods and frameworks for runtime debugging of MetaModelica and 
semantic specifications.  

• The design, implementation, and evaluation of several integrated model-
driven environments supporting creation, development, refactoring, 
debugging, management, composition, serialization and graphical 
representation of models in EOO languages. Additionally, an integrated 
model-driven product design and development environment based on EOO 
languages is also contributed. 

• Alternative representation of EOO models based on XML and UML/SysML 
are investigated and evaluated. Transformation and invasive composition of 
EOO models has also been investigated. 

The thesis also discusses our work in comparison to related work and outlines the 
differences, the advantages and the weaknesses of our contributions. 

14.2 Future Work Directions 

While most of the research goals of the thesis have been achieved the presented 
work can be further improved and extended. In this section we present possible 
future work directions: 

• Most of the language support (pattern matching, exception handling, the 
high-level data structure extensions, etc) needed for the OpenModelica 
compiler bootstrapping has been implemented. Our current work targets the 
integration of the MetaModelica compiler prototype runtime with the 
OpenModelica compiler runtime to finalize the compiler bootstrapping 
procedure. The OpenModelica compiler bootstrapping will provide further 
optimization, simplification, and modularization of the current compiler 
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specification due to providing full MetaModelica language support, 
compared to the subset supported by the prototype. When the bootstrapping 
procedure has been completed, the current MetaModelica compiler 
prototype will retire and the compilation chain of OpenModelica will be 
highly simplified. Due to easier programming based on the full 
MetaModelica language, a simplified compilation procedure, and a 
simplified compiler specification we expect more contributions from the 
OpenModelica community developers. 

• Further work on the MetaModelica unified language design targeting the 
equation evaluation strategies is needed. In the current design and 
implementation the order of equations in the meta-programming functions is 
important. We intend to remove this restriction in the future. 

• The modularity and scalability of the MetaModelica language should be 
further researched. Investigation of the suitability and possible adaptation of 
the current Modelica component model with regards to software modeling 
should be carried out. Alternative formalisms such as attribute grammars 
(Ekman and Hedin 2007 [33]) can provide ideas for improvements in the 
language design, modularity, and equation evaluation strategies used in the 
MetaModelica language and its supporting environments to further extend 
the expressivity and usefulness of the language. 

• Model-driven design and development of whole products is briefly 
investigated in the thesis. However we consider that more research is 
needed in this area, especially on the integration of all our existing tools in 
the product design and development process. The Modelica-UML-SysML 
(ModelicaML) and the FMDesign environments could be integrated to 
support several views of the same product model. Another research 
direction worth investigating is the integration of our Modelica tools with 
existing SysML tools via the ModelicaML profile. Such integration will 
provide full system simulation capabilities to existing SysML tools. 

• Our general run-time debugging framework for EOO languages should be 
fully implemented, evaluated and integrated with existing static equation-
based debugging frameworks.  

• The tools for generation of alternative EOO model representations (XML, 
ModelicaML) and invasive composition engine should be integrated into 
our MDT environment. 
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