

Linköping Studies in Science and Technology

Dissertation No. 1183

Integrated Model-Driven Development Environments
for

Equation-Based Object-Oriented Languages

by

Adrian Pop

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2008

Integrated Model-driven Development Environments
for

Equation-based Object-oriented Languages

by

Adrian Pop

June 2008
ISBN 978-91-7393-895-2

Thesis No. 1183
ISSN 0345-7524

ABSTRACT

Integrated development environments are essential for efficient realization of complex industrial
products, typically consisting of both software and hardware components. Powerful equation-
based object-oriented (EOO) languages such as Modelica are successfully used for modeling and
virtual prototyping increasingly complex physical systems and components, whereas software
modeling approaches like UML, especially in the form of domain specific language subsets, are
increasingly used for software systems modeling.

A research hypothesis investigated to some extent in this thesis is if EOO languages can be
successfully generalized also to support software modeling, thus addressing whole product
modeling, and if integrated environments for such a generalized EOO language tool support can
be created and effectively used on real-sized applications.

However, creating advanced development environments is still a resource-consuming error-
prone process that is largely manual. One rather successful approach is to have a general
framework kernel, and use meta-modeling and meta-programming techniques to provide tool
support for specific languages. Thus, the main goal of this research is the development of a meta-
modeling approach and its associated meta-programming methods for the synthesis of model-
driven product development environments that includes support for modeling and simulation.
Such environments include components like model editors, compilers, debuggers and simulators.
This thesis presents several contributions towards this vision in the context of EOO languages,
primarily the Modelica language.

Existing state-of-the art tools supporting EOO languages typically do not satisfy all user
requirements with regards to analysis, management, querying, transformation, and configuration
of models. Moreover, tools such as model-compilers tend to become large and monolithic. If
instead it would be possible to model desired tool extensions with meta-modeling and meta-
programming, within the application models themselves, the kernel tool could be made smaller,
and better extensibility, modularity and flexibility could be achieved.

We argue that such user requirements could be satisfied if the equation-based object-oriented
languages are extended with meta-modeling and meta-programming. This thesis presents a new
language that unifies EOO languages with term pattern matching and transformation typically
found in functional and logic programming languages. The development, implementation, and
performance of the unified language are also presented.

The increased ease of use, the high abstraction, and the expressivity of the unified language are
very attractive properties. However, these properties come with the drawback that programming
and modeling errors are often hard to find. To overcome these issues, several methods and
integrated frameworks for run-time debugging of the unified language have been designed,
analyzed, implemented, and evaluated on non-trivial industrial applications.

To fully support development using the unified language, an integrated model-driven
development environment based on the Eclipse platform is proposed, designed, implemented, and
used extensively. The development environment integrates advanced textual modeling, code
browsing, debugging, etc. Graphical modeling is also supported by the development environment

based on a proposed ModelicaML Modelica/UML/SysML profile. Finally, serialization,
composition, and transformation operations on models are investigated.

This work has been supported by the National Computer Science Graduate School (CUGS), the
ProViking Graduate School, the Swedish Foundation for Strategic Research (SSF) financed research
on Integrational Software Engineering (RISE), VISIMOD and Engineering and Computational Design
(SECD) projects; the Vinnova financed Semantic Web for Products (SWEBPROD) and Safe and Secure
Modeling and Simulation projects. Also, we acknowledge the cooperation with Reasoning on the Web
with Rules and Semantics (REWERSE) "Network of Excellence" (NoE) funded by the EU Commission
and Switzerland within the "6th Framework Programme" (FP6), Information Society Technologies
(IST). We also acknowledge support from the Swedish Science Council (VR) in the project on High-
Level Debugging of Equation-Based System Modeling & Simulation Languages and from MathCore
Engineering AB.

Acknowledgements

A thesis cannot be finished; it has to be abandoned.
Finally, the deadline for this thesis has come!

I would like to thank the following people and organizations (in no particular order
or classification) which were important to me:

• Supervisors (Peter Fritzson, Uwe Aßmann).

• Opponent (Hans Vangheluwe) and Committee (Görel Hedin, Petter Krus,
Tommi Karhela)

• PELAB (Bodil Mattsson Kihlström, Kristian Sandahl, Christoph Kessler,
Mariam Kamkar, Mikhail Chalabine, Olof Johansson, David Broman, Kristian
Stavåker, Håkan Lundval, Andreas Borg, Emma Larsdotter Nilsson, Mattias
Eriksson, Levon Saldalmli, Kaj Nyström, Martin Fransson, Anders Sandholm,
Andrzej Bednarski, John Wilander, Jon Edvardsson, Jesper Andersson, Mikael
Pettersson, etc.).

• Master thesis students: Simon Björklén, Emil Carlsson, Dynamic Loading
Team (Kim Jansson, Joel Klinghed), Refactoring Team (Kristoffer Norling,
Mikael Blom), MDT Team (Elmir Jagudin, Andreas Remar, David
Akhvlediani, Vasile Băluţă), OMNotebook Team (Ingemar Axelsson, Anders
Fernström, Henrik Eriksson, Henrik Magnusson).

• MathCore (Katalin Bunuş, Peter Aronsson, Lucian Popescu, Daniel Hedberg,
Björn Zachrisson, Vadim Engelson, Jan Brugård, etc.).

• IDA (Lillemor Wallgren, Inger Emanuelsson, Petru Eleş, Gunilla Mellheden,
Britt-Inger Karlsson, Inger Norén, etc.), DIG (Lisbeth Linge, Tommy Olsson,
Henrik Edlund, Andreas Lange), TUS, ESLAB.

• Family (Flore, ŢiŢi, Paul & Liana, Teodor & Letiţia, …) and Friends (Peter &
Katalin Bunuş, Sorin Manolache, Călin Curescu & Njideka Andreea
Udechukwu, Traian & Ruxandra Pop, Alexandru Andrei & Diana Szentiványi,
Claudiu & Aurelia Duma, Ioan & Simona Chisaliţa, Şerban Stelian, Cristian &
Cristina Tomoiagă, Adrian & Simona Ponoran, Dicu Ştefan, Ioan & Adela
Pleşa, Andreea & Sorin Marian, Horia Bochiş, Ilie Savga, and many more).

• Thesis reviewers (Peter Fritzson, Hans Vangheluwe, Görel Hedin, Petter Krus,
Tommi Karhela, Jörn Guy Süß, Kristian Stavåker, Paul Pop)

• All others that I might forgot to mention.

Adrian Pop

Linköping, June 5, 2008

i

Table of Contents

Part I Motivation, Introduction, Background and Related Work 1
Chapter 1 Introduction .. 3

1.1 Research Objective (Motivation).. 4
1.2 Contributions .. 5
1.3 Thesis Structure .. 6
1.4 Publications .. 8

Chapter 2 Background and Related Work... 11
2.1 Introduction .. 11

2.1.1 Systems, Models, Meta-Models, and Meta-Programs 11
2.1.2 Meta-Modeling and Meta-Programming Approaches 12

2.2 The Modelica Language ... 14
2.2.1 An Example Modelica Model ... 17
2.2.2 Modelica as a Component Language 18

2.3 Modelica Environments.. 19
2.3.1 OpenModelica... 19
2.3.2 MathModelica, Dymola, SimulationX.................................... 20

2.4 Related Equation-based languages: gProms, VHDL-AMS and the χ
language ... 23
2.5 Natural Semantics and the Relational Meta-Language (RML) 24

2.5.1 An Example of Natural Semantics and RML 25
2.5.2 Specification of Syntax ... 27
2.5.3 Integrated Environment for RML ... 27

2.6 The eXtensible Markup Language (XML) ... 28
2.7 System Modeling Language (SysML).. 30

2.7.1 SysML Block Definitions ... 32
2.8 Component Models for Invasive Software Composition...................... 32
2.9 Integrated Product Design and Development 35

Part II Extending EOO Languages for Safe Symbolic Processing........... 37
Chapter 3 Extending Equation-Based Object-Oriented Languages 39

3.1 Introduction .. 39
3.1.1 Evaluator for the Exp1 Language in the Unified Language.... 40
3.1.2 Examples of Pattern Matching.. 42
3.1.3 Language Design .. 45

3.2 Equations .. 45
3.2.1 Mathematical Equations.. 46
3.2.2 Conditional Equations and Events .. 46
3.2.3 Single-Assignment Equations ... 47
3.2.4 Pattern Equations in Match Expressions................................. 47

3.3 High-level Data Structures ... 49
3.3.1 Union-types... 49

ii

3.3.2 Lists, Tuples and Option Types... 50
3.4 Solution of Equations.. 51
3.5 Pattern Matching... 52

3.5.1 Syntax.. 53
3.5.2 Semantics .. 54
3.5.3 Discussion on type systems... 55

3.6 Exception Handling .. 56
3.6.1 Applications of Exceptions ... 56
3.6.2 Exception Handling Syntax and Semantics............................. 58
3.6.3 Exception Values... 62
3.6.4 Typing Exceptions... 64
3.6.5 Further Discussion... 65

3.7 Related Work .. 66
3.8 Conclusions and Future Work... 67

Chapter 4 Efficient Implementation of Meta-Programming EOO Languages69
4.1 Introduction... 69
4.2 MetaModelica Compiler Prototype... 69

4.2.1 Performance Evaluation of the MetaModelica Compiler
Prototype ... 70

4.3 OpenModelica Bootstrapping ... 72
4.3.1 OpenModelica Compiler Overview .. 72

4.4 High-level Data Structures Implementation.. 75
4.5 Pattern Matching Implementation... 77

4.5.1 Implementation Details ... 78
4.6 Exception Handling Implementation .. 84

4.6.1 Translation of Exception Values ... 86
4.6.2 Translation of Exception Handling ... 88

4.7 Garbage Collection ... 89
4.7.1 Layout of Data in Memory.. 90
4.7.2 Performance Measurements .. 91

4.8 Conclusions... 93
Part III Debugging of Equation-based Object Oriented Languages.........95
Chapter 5 Portable Debugging of EOO Meta-Programs 97

5.1 Introduction... 97
5.2 Debugging Method – Code Instrumentation... 97

5.2.1 Early Instrumentation .. 98
5.2.2 Late Instrumentation ... 99

5.3 Type Reconstruction ... 99
5.4 Performance Evaluation.. 100

5.4.1 The Test Machine... 100
5.4.2 The Test Files .. 100
5.4.3 Compilation Performance.. 102
5.4.4 Run-time Performance .. 102

iii

5.5 Tracing and Profiling...103
5.5.1 Tracing ...103
5.5.2 Profiling ...104

5.6 The Eclipse-based Debugging Environment104
5.6.1 Starting the Modelica Debugging Perspective.......................105
5.6.2 Setting the Debug Configuration ...106
5.6.3 Setting/Deleting Breakpoints ...107
5.6.4 The Debugging Session and the Debug Perspective..............108

5.7 Conclusions ...110
Chapter 6 Run-time Debugging of EOO Languages ..111

6.1 Introduction ...111
6.2 Debugging Techniques for EOO Languages111
6.3 Proposed Debugging Method ..112

6.3.1 Run-time Debugging Method ..113
6.4 The Run-time Debugging Framework...115

6.4.1 Translation in the Debugging Framework115
6.4.2 Debugging Framework Overview..118
6.4.3 Debugging Framework Components118
6.4.4 Implementation Status ...119

6.5 Conclusions and Future Work ...120
Chapter 7 Debugging Natural Semantics Specifications..................................121

7.1 Introduction ...121
7.2 Related Work...122
7.3 The rml2c Compiler and the Runtime System.....................................122
7.4 Debugger Design and Implementation ..124
7.5 Overview of the RML Integrated Environment...................................125
7.6 Design Decisions ...126

7.6.1 Debugging Instrumentation..126
7.6.2 External Program Database..126
7.6.3 External Data Value Browser ..126
7.6.4 Why not an Interpreter? ...127

7.7 Instrumentation Function...127
7.8 Type Reconstruction in the Runtime System128
7.9 Debugger Implementation ...129

7.9.1 The rml2c Compiler Addition..129
7.9.2 The Debugging Runtime System ...129
7.9.3 The Data Value Browser..130
7.9.4 The Post-Mortem Analysis Tool..130

7.10 Debugger Functionality ...130
7.10.1 Starting the RML Debugging Subprocess..............................131
7.10.2 Setting/Deleting Breakpoints ...132
7.10.3 Stepping and Running..133
7.10.4 Examining Data ...133
7.10.5 Additional Commands ...136

7.11 The Data Value Browser ...136

iv

7.12 The Post-Mortem Analysis Tool... 138
7.13 Performance Evaluation.. 139

7.13.1 Code Growth ... 139
7.13.2 The Execution Time .. 140
7.13.3 Stack Consumption ... 140
7.13.4 Number of Relation Calls.. 141

7.14 Conclusions and Future Work... 141
Part IV Advanced Integrated Environments 143
Chapter 8 Modelica Development Tooling (MDT) .. 145

8.1 Introduction... 145
8.1.1 Integrated Interactive Programming Environments 145
8.1.2 The Eclipse Framework... 147
8.1.3 Eclipse Platform Architecture ... 147
8.1.4 OpenModelica MDT Eclipse Plugin 148

8.2 OpenModelica Environment Architecture .. 149
8.3 Modelica Development Tooling (MDT) Eclipse Plugin..................... 150

8.3.1 Using the Modelica Perspective .. 151
8.3.2 Creating a Project .. 151
8.3.3 Creating a Package .. 151
8.3.4 Creating a Class... 151
8.3.5 Syntax Checking ... 153
8.3.6 Code Completion... 153
8.3.7 Automatic Indentation... 154

8.4 The OpenModelica Debugger Integrated in Eclipse 156
8.5 Simulation and Plotting from MDT .. 156
8.6 Conclusions... 157

Chapter 9 Parsing-Unparsing and Refactoring.. 159
9.1 Introduction... 159
9.2 Comments and Indentation ... 160
9.3 Refactorings .. 160

9.3.1 The Principle of Minimal Replacement 160
9.3.2 Some Examples of Refactorings ... 161
9.3.3 Representing Comments and User-Defined Indentation 161

9.4 Implementation ... 162
9.4.1 Base Program representation... 163
9.4.2 The Parser.. 163
9.4.3 The Scanner... 163
9.4.4 The New Unparser .. 163

9.5 Refactoring Process .. 164
9.5.1 Example of Function Name Refactoring............................... 164
9.5.2 Calculation of the Additional Overhead................................ 167
9.5.3 Unparsers/Prettyprinters versus Indenters 167

9.6 Further Discussion .. 169
9.7 Related Work .. 170

v

9.8 Conclusions ...171
9.9 Appendix ...171

Chapter 10 UML and Modelica System Modeling with ModelicaML175
10.1 Introduction ...175
10.2 SysML vs. Modelica..176
10.3 ModelicaML: a UML profile for Modelica ...177

10.3.1 Modelica Class Diagrams ..178
10.4 The ModelicaML Integrated Design Environment..............................184

10.4.1 Integrated Design and Development Environment185
10.4.2 The ModelicaML GMF Model ..186
10.4.3 Modeling with Requirements...188

10.5 Representing Requirements in Modelica...189
10.5.1 Using Modelica Annotations ...189
10.5.2 Creating a new Restricted Class: requirement189

10.6 Conclusion and Future Work...190
10.7 Appendix ...191

Chapter 11 An Integrated Framework for Model-driven Product Design and
Development Using Modelica ...193

11.1 Introduction ...193
11.2 Architecture overview ...195
11.3 Detailed framework description ..196

11.3.1 ModelicaXML ...196
11.3.2 Modelica Database (ModelicaDB)...197
11.3.3 FMDesign ..198
11.3.4 The Selection and Configuration Tool...................................199
11.3.5 The Automatic Model Generator Tool...................................200

11.4 Conclusions and Future Work ...200
11.5 Appendix ...202

Part V Meta-programming and Composition of EOO Languages205
Chapter 12 ModelicaXML: A ModelicaXML Representation with
Applications ..207

12.1 Introduction ...207
12.2 Related Work...209
12.3 Modelica XML Representation ...209

12.3.1 ModelicaXML Example ..209
12.3.2 ModelicaXML Schema (DTD/XML-Schema)212

12.4 ModelicaXML and XML Tools ..217
12.4.1 The Stylesheet Language for Transformation (XSLT)217
12.4.2 The Query Language for XML (XQuery)..............................218
12.4.3 Document Object Model (DOM)...219

12.5 Towards an Ontology for the Modelica Language220
12.5.1 The Semantic Web Languages...220
12.5.2 The roadmap to a Modelica representation using Semantic Web
Languages ...223

vi

12.6 Conclusions and Future work ... 225
Chapter 13 Composition of XML dialects: A ModelicaXML case study 227

13.1 Introduction... 227
13.2 Background... 228

13.2.1 Modelica and ModelicaXML .. 228
13.2.2 The Compost Framework.. 230

13.3 COMPOST extension for Modelica.. 233
13.3.1 Overview ... 233
13.3.2 Modelica Box Hierarchy ... 234
13.3.3 Modelica Hook Hierarchy ... 235
13.3.4 Examples of Composition and Transformation Programs..... 237

13.4 Conclusions and Future work ... 240
13.5 Appendix... 240

Part VI Conclusions and Future Work 243
Chapter 14 Conclusions and Future Work .. 245

14.1 Conclusions... 245
14.2 Future Work Directions .. 246

Bibliography .. 249

vii

Table of Figures

Figure 1-1. Thesis structure. ..7
Figure 2-1. The Object Management Group (OMG) 4-Layered Model Driven

Architecture (MDA). ...13
Figure 2-2. Meta-Modeling and Meta-Programming dimensions.14
Figure 2-3. Hierarchical model of an industrial robot, including components such as

motors, bearings, control software, etc. At the lowest (class) level, equations
are typically found...16

Figure 2-4. Number of rabbits – prey animals, and foxes – predators, as a function
of time simulated from the predator-prey LotkaVolterra model.17

Figure 2-5. Connecting two components that have electrical pins.18
Figure 2-6. OMShell ..20
Figure 2-7. OMNotebook ..20
Figure 2-8. Modelica Development Tooling (MDT). ..20
Figure 2-9. MathModelica modeling and simulation environment. (courtesy of

MathCore AB)...21
Figure 2-10. Dymola Modeling and Simulation Environment (courtesy of Dynasim

AB). ...22
Figure 2-11. SimulationX modeling and simulation environment (courtesy of

ITI GmbH)22
Figure 2-12. SOSDT Eclipse Plugin for RML Development.27
Figure 2-13. SysML diagram taxonomy..30
Figure 2-14. SysML block definitions. ..31
Figure 2-15. Black-box vs. Gray-box (invasive) composition. Instead of generating

glue code, composers invasively change the components.33
Figure 2-16. Invasive composition applied to hooks result in transformation of the

underlying abstract syntax tree. ...34
Figure 2-17. Integrated model-driven product design and development framework.

...35
Figure 3-1. A discrete-time variable z changes value only at event instants, whereas

continuous-time variables like y may change both between and at events......47
Figure 3-2. Abstract syntax tree of the expression 12+5*1349
Figure 4-1. MetaModelica Compiler Prototype – compilation phases.70
Figure 4-2. The stages of translation and execution of a MetaModelica model.73
Figure 4-3. OpenModelica compiler packages and their connection.......................74
Figure 4-4. Pattern Matching Translation Strategy..79
Figure 4-5. Code Example Generated DFA...82
Figure 4-6. Exception handling translation strategy. ...85
Figure 4-7. OpenModelica implementation. ..86
Figure 4-8. Garbage Collection time (s) vs. Execution time (s)90
Figure 4-9. Garbage Collection time (s). ...91
Figure 5-1. Early vs. Late Debugging Instrumentation in MetaModelica compiler.98
Figure 5-2. Variable value display during debugging using type reconstruction. .100

viii

Figure 5-3. Advanced debugging functionality in MDT..105
Figure 5-4. Accessing the debug configuration dialog...106
Figure 5-5. Creating the Debug Configuration. ...106
Figure 5-6. Specifying the executable to be run in debug mode.107
Figure 5-7. Setting/deleting breakpoints. ...107
Figure 5-8. Starting the debugging session. ...108
Figure 5-9. Eclipse will ask if the user wants to switch to the debugging

perspective. ..108
Figure 5-10. The debugging perspective..109
Figure 5-11. Switching between perspectives. ...109
Figure 6-1. Debugging approach overview..113
Figure 6-2. Translation stages from Modelica code to executing simulation.115
Figure 6-3. Translation stages from Modelica code to executing simulation with

additional debugging steps...117
Figure 6-4. Run-time debugging framework overview..118
Figure 7-1. The rml2c compiler phases. ..123
Figure 7-2. Tool coupling within the RML integrated environment with debugging.

...125
Figure 7-3. Using breakpoints..131
Figure 7-4. Stepping and running...132
Figure 7-5. Examining data..134
Figure 7-6. Additional debugging commands..135
Figure 7-7. Browser for variable values showing the current execution point

(bottom) and the variable value (top)...137
Figure 7-8. When datatype constructors are selected, the bottom part presents their

source code definitions for easy understanding of the displayed values........138
Figure 8-1. The architecture of Eclipse, with possible plugin positions marked. ..148
Figure 8-2. The architecture of the OpenModelica environment.149
Figure 8-3. The client-server architecture of the OpenModelica environment.150
Figure 8-4. Creating a new package...151
Figure 8-5. Creating a new class. ...152
Figure 8-6. Syntax checking...152
Figure 8-7. Code completion using a popup menu after a dot153
Figure 8-8. Code completion showing a popup function signature after typing a left

parenthesis. ..154
Figure 8-9. Example of code before indentation. ..154
Figure 8-10. Example of code after automatic indentation.155
Figure 8-11. Plot of the Influenza model. ..157
Figure 9-1. AST of the Example.mo file..165
Figure 9-2. Syntax checking...169
Figure 10-1. ModelicaML diagrams overview...177
Figure 10-2. ModelicaML class definitions. ..179
Figure 10-3. ModelicaML Internal Class vs. Modelica Connection Diagram.180
Figure 10-4. Package hierarchy modeling..181
Figure 10-5. Equation modeling example with a Modelica Class Diagram...........182

ix

Figure 10-6. Simulation diagram example...183
Figure 10-7. ModelicaML Eclipse based design environment with a Class diagram.

...186
Figure 10-8. ModelicaML GMF Model (Requirements).......................................187
Figure 10-9. Modeling with Requirement Diagrams. ..188
Figure 10-10. Modeling with requirements (Requirements palette).191
Figure 10-11. Modeling with requirements (Connections)....................................192
Figure 11-1. Design framework for product development.195
Figure 11-2. Modelica and the corresponding ModelicaXML representation.......197
Figure 11-3. FMDesign – a tool for conceptual design of products.198
Figure 11-4. FMDesign information model...202
Figure 11-5. ModelicaDB meta-model. ...203
Figure 12-1. The program (root) element of the ModelicaXML Schema.212
Figure 12-2. The definition element from the ModelicaXML Schema.........213
Figure 12-3. The component element from the ModelicaXML Schema.214
Figure 12-4. The equation element from the ModelicaXML Schema..............215
Figure 12-5. The algorithm element from the ModelicaXML Schema.216
Figure 12-6. The expressions from ModelicaXML schema.216
Figure 12-7. The Semantic Web Layers. ...220
Figure 13-1. The layers of COMPOST..231
Figure 13-2. The XML composition. System Architecture Overview...................234
Figure 13-3. The Modelica Box Hierarchy defines a set of templates for each

language structure..235
Figure 13-4. The Modelica Hook Hierarchy..236

xi

Index of tables

Table 4-1. Execution time in seconds. The – sign represents out of memory.71
Table 4-2. Garbage Collection Performance..92
Table 5-1. Compilation performance (no debugging vs. early vs. late

instrumentation)...102
Table 5-2. Running performance of script RRLargeModel2.mos.103
Table 5-3. Running performance of script BouncingBall.mos.103
Table 5-4. The impact of tracing on execution time. ...103
Table 7-1. RML premise types. These constructs are swept for variables to be

registered with the debugging runtime system. ...127
Table 7-2. Size (#lines) without and with instrumentation.140
Table 7-3. Running time without and with debugging. ...140
Table 7-4. Used stack without and with debugging...140
Table 7-5. Number of performed relation calls..141

Part I

Motivation, Introduction,
Background and Related Work

Chapter 1

Introduction

Motto:
Models..., models everywhere.

Meta-models model models
Meta-MetaModels models Meta-Models.

Attempt at a Definition of the Term "meta-model" (www.metamodel.com):
A meta-model is a precise definition of the constructs

and rules needed for creating semantic models.

Integrated development environments are essential for efficient realization of
complex industrial products, typically consisting of both software and hardware
components. Powerful equation-based object-oriented (EOO) languages such as
Modelica are successfully used for modeling and virtual prototyping increasingly
complex physical systems and components, whereas software modeling approaches
like UML, especially in the form of domain specific language subsets, are
increasingly used for software systems modeling.

A research hypothesis investigated to some extent in this thesis is if EOO
languages can be successfully generalized also to support software modeling, thus
addressing whole product modeling, and if integrated environments for such a
generalized EOO language tool support can be created and effectively used on real-
sized applications.

However, creating advanced development environments is still a resource-
consuming error-prone process that is largely manual. One rather successful
approach is to have a general framework kernel, and use meta-modeling and meta-
programming techniques to provide tool support for specific languages. Thus, the
main goal of this research is the development of a meta-modeling approach and its
associated meta-programming methods for the synthesis of model-driven product
development environments that includes support for modeling and simulation. Such
environments include components like model editors, compilers, debuggers and
simulators. This thesis presents several contributions towards this vision in the
context of EOO languages, primarily the Modelica language.

http://www.metamodel.com/

4 Chapter 1 Introduction

1.1 Research Objective (Motivation)

Current state-of-the art equation-based object-oriented languages are supported by
tools that have fixed features and are hard to extend. The modeling community
needs better tools to support creation, querying, manipulation, composition and
simulation of models in equation-based object-oriented languages.

The current state-of-the art tools supporting EOO languages do not satisfy all
the different requirements users expect, for example the following:

• Creation, query, manipulation, composition and management of models.
• Query of model equations for: optimization purposes, parallelization, model

checking, simulation with different solvers, etc.
• Model configuration for simulation purposes: initial state, initialization via

xml files or databases.
• Simulation features: running a simulation and displaying a result, running

more simulations in parallel, possibility to handle simulation failures and
continue the simulation on a different path, possibility to generate only
specific data within a simulation, possibility to manipulate simulation data
for export to another tool.

• Model transformation and refactoring: export to a different tool, improve
the current model or library but retain the semantics, model composition
and invasive model composition.

• Continuous partial differential equations (PDEs) transformed into:
Discretized, finite difference, Discretized, Finite Elements (FEM),
Discretized, finite volume.

Traditionally, a model compiler performs the task of translating a model into
executable code, which then is executed during simulation of the model. Thus, the
symbolic translation step is followed by an execution step, a simulation, which
often involves large-scale numeric computations.

However, as requirements on the usage of models grow, and the scope of
modeling domains increases, the demands on the modeling language and
corresponding tools increase. This causes the model compiler to become large and
complex.

Moreover, the modeling community needs not only tools for simulation but also
languages and tools to create, query, manipulate, and compose equation-based
models. Additional examples are optimization of models, parallelization of models,
checking and configuration of models.

If all this functionality is added to the model compiler, it tends to become large
and complex.

An alternative idea is to add features to the modeling language such that for
example a model package can contain model analysis and translation features that
therefore are not required in the model compiler. An example is a PDEs

Contributions 5

discretization scheme that could be expressed in the modeling language itself as
part of a PDE package instead of being added internally to the model compiler.

The direct questions arising from the research objective are:

• Can we deliver a new language that allows people to build their own
solution to their problems without having to go via tool vendors?

• What is expected from such a language?
• What properties should the language have based on the requirements for it?

This includes language primitives, type system, semantics, etc.
• Can such a language combined with a general tool be better than a special-

purpose tool?
• What are the steps to design and develop such a language?
• What methods and tools should support the debugging of the new language?
• How can we construct advanced interactive development environments that

support such a language?

1.2 Contributions

The integrated model-driven environments and the new MetaModelica language
presented in this thesis provide efficient and effective methods for designing and
developing complex product models. Methods and tools for debugging,
management, serialization, and composition of models are additional contributions.

The research contributions of the thesis are:

• The design, implementation, and evaluation of a new general executable
mathematical modeling and semantics meta-modeling language called
MetaModelica. The MetaModelica language extends the existing Modelica
language with support for meta-modeling, meta-programming, and
exception handling facilities.

• The design, implementation and evaluation of advanced portable debugging
methods and frameworks for runtime debugging of MetaModelica and
semantic specifications.

• The design, implementation and evaluation of several integrated model-
driven environments supporting creation, development, refactoring,
debugging, management, composition, serialization, and graphical
representation of models in EOO languages. Additionally, an integrated
model-driven product design and development environment based on EOO
languages is also contributed.

• Alternative representation of Modelica EOO models based on XML and
UML/SysML are investigated and evaluated. Transformation and invasive
composition of EOO models has also been investigated.

6 Chapter 1 Introduction

1.3 Thesis Structure

In this section we give a short overview of each of the parts in the thesis. At the end
of this section we also present visually, in Figure 1-1, an overview of the structure
of this thesis.

The thesis consists of six main parts:

• Part I presents the thesis motivation, its introduction, the background and
related work.

• Part II focuses on the design and implementation of an general-purpose
unified EOO language called MetaModelica

• Part III introduces our work with regards to run-time debugging of meta-
programs, equation based languages and semantic specifications.

• Part IV presents the design and implementation of several integrated
development environments for EOO languages.

• Part V presents contributions to serialization, invasive composition and
transformation of EOO models.

• Part VI concludes the thesis and gives future work directions.

Thesis Structure 7

Figure 1-1. Thesis structure.

M
odelica

M
odelicaXM

L

M
etaM

odelica/R
M

L

System

M
etaM

odelica/RM
L

Specification of M
odelica

M
odelica

Parser

C

C
om

piler

C
 C

ode

O
pen

M
odelica

C
om

piler

M
eta-M

odeling

M
eta-Program

m
ing

C

C
om

piler

C
 C

ode

M
odelica

Sim
ulation

X
M

L
T

ools

M
odelica D

atabase

D
ebugging
runtim

e

Product
D

esign
T

ools

Sim
ulation

T
ools

Product C
oncept

Virtual Product

C
O

M
PO

ST

C
om

position
Program

Part IIIC
hapter 12 C

hapter 13
Part IV

Part I M
otivation, Introduction, B

ackground and R
elated W

ork
C

hapter 1. Introduction
C

hapter 2. B
ackground and R

elated W
ork

Part II E
xtending E

O
O

 L
anguages for Safe Sym

bolic Processing
C

hapter 3. Extending Equation-based O
bject-oriented Languages

C
hapter 4. Efficient Im

plem
entation of M

eta-Program
m

ing EO
O

 Languages
Part III D

ebugging of E
quation-based O

bject O
riented L

anguages
C

hapter 5. Portable D
ebugging EO

O
 M

eta-program
s

C
hapter 6. R

un-tim
e D

ebugging of EO
O

 Languages
C

hapter 7. D
ebugging N

atural Sem
antics Specifications

Part IV
 A

dvanced Integrated E
nvironm

ents
C

hapter 8. M
odelica D

evelopm
ent Tooling (M

D
T)

C
hapter 9. Parsing-U

nparsing and R
efactoring

C
hapter 10. U

M
L and M

odelica System
 M

odeling w
ith M

odelicaM
L

C
hapter 11. Integrated Fram

ew
ork for M

odel-driven Product D
esign and D

evelopm
ent

Part V
 M

eta-program
m

ing and C
om

position of E
O

O
 L

anguages
C

hapter 12. M
odelicaX

M
L: A

 M
odelicaX

M
L

R
epresentation w

ith A
pplications

C
hapter 13. C

om
position of X

M
L dialects: A

 M
odelicaX

M
L

case study
Part V

I C
onclusions and Future W

ork
C

hapter 14. C
onclusions and Future W

ork

Thesis Structure

Part V

Part II

M
odelica

D
evelopm

ent
T

ooling

C
hapter 11

M
odelicaM

L
SysM

L

C
hapter 9

C
hapter 8

Sim
ulation

runtim
e

Part IV C
hapter 10

8 Chapter 1 Introduction

1.4 Publications

This thesis is partially based on the following publications:

1. Adrian Pop, Kristian Stavåker, Peter Fritzson: Exception Handling for
Modelica, 6th International Modelica Conference, March 03-04, 2008,
Bielefeld, Germany

2. Peter Fritzson, Adrian Pop, Kristoffer Norling, Mikael Blom: Comment- and
Indentation Preserving Refactoring and Unparsing for Modelica, 6th
International Modelica Conference, March 03-04, 2008, Bielefeld, Germany

3. Kristian Stavåker, Adrian Pop, Peter Fritzson: Compiling and Using Pattern
Matching in Modelica, 6th International Modelica Conference, March 03-04,
2008, Bielefeld, Germany

4. Jörn Guy Süß, Peter Fritzson, Adrian Pop, Luke Wildman: Towards Integrated
Model-Driven Testing of SCADA Systems Using the Eclipse Modeling
Framework and Modelica, 19th Australian Software Engineering Conference
(ASWEC 2008), March 26-28, 2008, Perth, Western Australia

5. Adrian Pop, David Akhvlediani, Peter Fritzson: Integrated UML and Modelica
System Modeling with ModelicaML in Eclipse, The 11th IASTED International
Conference on Software Engineering and Applications (SEA 2007), November
19-21, 2007, Cambridge, MA, USA

6. Adrian Pop, Peter Fritzson: Towards Run-time Debugging of Equation-based
Object-oriented Languages, The 48th Conference on Simulation and Modeling
(SIMS 2007), October 30-31, 2007, Goteborg, Sweden

7. Adrian Pop, Vasile Băluţă, Peter Fritzson: Eclipse Support for Design and
Requirements Engineering Based on ModelicaML, The 48th Conference on
Simulation and Modeling (SIMS 2007), October 30-31, 2007, Goteborg,
Sweden

8. Adrian Pop, David Akhvlediani, Peter Fritzson: Towards Unified System
Modeling with the ModelicaML UML Profile, EOOLT'2007 - 1st International
Workshop on Equation-Based Object-Oriented Languages and Tools, part of
ECOOP'2007 - 21st European Conference on Object-Oriented Programming,
July 29-August 3, 2007, Berlin, Germany

9. Peter Fritzson, Peter Aronsson, Adrian Pop, Håkan Lundvall, Kaj Nyström,
Levon Saldamli, David Broman, Anders Sandholm: OpenModelica - A Free
Open-Source Environment for System Modeling, Simulation, and Teaching,
IEEE International Symposium on Computer-Aided Control Systems Design,
October 4-6, 2006, Munich, Germany

Publications 9

10. Elmir Jagudin, Andreas Remar, Adrian Pop, Peter Fritzson: OpenModelica
MDT Eclipse plugin for Modelica Development, Code Browsing, and
Simulation, the 47th Conference on Simulation and Modeling (SIMS2006),
September, 28-29, 2006, Helsinki, Finland

11. Adrian Pop, Peter Fritzson: MetaModelica: A Unified Equation-Based
Semantical and Mathematical Modeling Language, Joint Modular Languages
Conference 2006 (JMLC2006), September, 13-15th, 2006, Jesus College,
Oxford, England. Also in Lecture Notes in Computer Science, volume 4228, p:
211-229.

12. Adrian Pop, Peter Fritzson, Andreas Remar, Elmir Jagudin, David Akhvlediani:
OpenModelica Development Environment with Eclipse Integration for
Browsing, Modeling, and Debugging, 5th International Modelica Conference
(Modelica2006), September, 4-5th, 2006, Vienna, Austria.

13. Olof Johansson, Adrian Pop, Peter Fritzson: Engineering Design Tool
Standards and Interfacing Possibilities to Modelica Simulation Tools, 5th
International Modelica Conference (Modelica2006), September, 4-5th, 2006,
Vienna, Austria.

14. Adrian Pop, Peter Frizson: An Eclipse-based Integrated Environment for
Developing Executable Structural Operational Semantics Specifications,
Structural Operational Semantics 2006 (SoS'2006), a Satellite Workshop of
The 17th International Conference on Concurrency Theory (CONCUR'2006),
August 26, 2006, Bonn, Germany.

15. Adrian Pop: Contributions to Meta-Modeling Tools and Methods, Licentiate
Thesis No. 1162, Linköping University, June 3, 2005

16. Adrian Pop, Peter Fritzson: Debuging Natural Semantics Specifications, Sixt
International Symposium on Automated and Analysis-Driven Debugging
(AADEBUG2005), September 19-21, 2005, Monterey, California. Published in
the ACM SIGSOFT/SIGPLAN.

17. Adrian Pop, Peter Fritzson: A Portable Debugger for Algorithmic Modelica
Code, the 4th International Modelica Conference (Modelica2005), March 7-9,
2005, Hamburg, Germany. Published in the local proceedings and online.

18. Olof Johansson, Adrian Pop, Peter Fritzson: ModelicaDB - A Tool for
Searching, Analysing, Crossreferencing and Checking of Modelica Libraries,
the 4th International Modelica Conference (Modelica2005), March 7-9, 2005,
Hamburg, Germany. Published in the local proceedings and online.

19. Peter Fritzson, Adrian Pop, Peter Aronsson: Towards Comprehensive Meta-
Modeling and Meta-Programming Capabilities in Modelica, the 4th

10 Chapter 1 Introduction

International Modelica Conference (Modelica2005), March 7-9, 2005,
Hamburg, Germany. Published in the local proceedings and online.

20. Ilie Savga, Adrian Pop, Peter Fritzson: Deriving a Component Model from a
Language Specification: An Example Using Natural Semantics, Internal
Report, December, 2005.

21. Adrian Pop, Peter Fritzson: The Modelica Standard Library as an Ontology for
Modeling and Simulation of Physical Systems, Internal Report, August, 2004.

22. Adrian Pop, Ilie Savga, Uwe Aßmann, Peter Fritzson: Composition of XML
dialects: A ModelicaXML case study, Software Composition Workshop
(SC2004) , affiliated with European Joint Conferences on Theory and Practice
of Software (ETAPS'04) , March 27 - April 4, 2004, Barcelona, Spain. The
paper can be found in Electronic Notes in Theoretical Computer Science
Volume 114, 17 January 2005, Pages 137-152, Proceedings of the Software
Composition Workshop (SC 2004)

23. Olof Johansson, Adrian Pop, Peter Fritzson: A functionality coverage analysis
of industrially used ontology languages, Model Driven Architecture:
Foundations and Applications (MDAFA2004), June 10-11, 2004, Linköping,
Sweden

24. Adrian Pop, Olof Johansson, Peter Fritzson: An integrated framework for
model-driven design and development using Modelica, SIMS 2004, the 45th
Conference on Simulation and Modeling, September 23-24, 2004, Copenhagen,
Denmark. Complete proceedings can be found at: ScanSims.org

25. Adrian Pop, Peter Fritzson: ModelicaXML: A Modelica XML Representation
with Applications, Modelica 2003, The 3rd International Modelica Conference,
November 3-4, Linköping, Sweden

Chapter 2

Background and Related Work

2.1 Introduction

The research work in this thesis is cross-cutting several research fields, which we
introduce in this section. Here we give a more detailed presentation of the specific
background and related work of the several areas in which we address problems.

2.1.1 Systems, Models, Meta-Models, and Meta-Programs

Understanding existing systems or building new ones is a complex process. When
dealing with this complexity people try to break large systems into manageable
pieces. In order to experiment with systems people create models that can answer
questions about specific system properties. As a simple example of a system we can
take a fish; our mental model of a fish is our internal mind representation,
experiences, and beliefs about this system. In other words, a model is an abstraction
of a system which mirrors parts or all its characteristics we are interested in. Models
are created for various reasons from proving that a particular system can be built to
understanding complex existing systems. Modeling – the process of model creation
– is often followed by simulation performed on the created models. A simulation
can be regarded as an experiment applied on a model.

Meta-modeling is still a modeling activity but its aim is to create meta-models.
A meta-model is one level of abstraction higher than its described models.

• If a model MM is used to describe a model M, then MM is called the meta-
model of M.

• Alternatively one can consider a meta-model as the description of the syntax
and/or meaning (semantics) of concepts that are used in the underlying level
to construct models (model families).

12 Chapter 2 Background

The usefulness of meta-models highly depends on the purpose for which they are
created and what they attempt to describe. In general, a meta-model can be regarded
as:

• A schema for data (here data can mean anything from information to
programs, models, meta-models, etc) that needs to be exchanged, stored, or
transformed.

• A language that is used to describe a specific process or methodology.
• A language for expressing (additional) meaning (semantics) or syntax of

existing information, e.g. information present on the World Wide Web
(WWW).

Thus, meta-models are ways to express and share some kind of knowledge that
helps in the design and management of models.

When the models are programs, the programs that manipulate them are called
meta-programs and the process of their creation is denoted as meta-programming.
As examples of meta-programs we can include program generators, interpreters,
compilers, static analyzers, and type checkers. In general meta-programs do not act
on the source code directly but on a representation (model) of the source code, such
as abstract syntax trees. The abstract syntax trees together with the meta-program
that manipulates them can be regarded as a meta-model.

One can make a distinction between general purpose modeling and domain
specific modeling, for example physical systems modeling. General purpose
modeling is concerned with expressing and representing any kind of knowledge,
while domain specific modeling is targeted to specific domains. Lately, approaches
that use general purpose modeling languages (meta-metamodels) to define domain
specific modeling languages (meta-models) together with their environments have
started to emerge. The meta-metamodeling methodology is used to specify such
approaches.

Combining different models that use different formalisms and different levels of
abstraction to represent aspects of the same system is highly desirable. Computer
aided multi-paradigm modeling is a new emerging field that is trying to define a
domain independent framework along several dimensions such as multiple levels of
abstraction, multi-formalism modeling, meta-modeling, etc.

2.1.2 Meta-Modeling and Meta-Programming Approaches

Hardly anyone can speak of general purpose modeling without mentioning the
Unified Modeling Language (UML) (OMG [115]). UML is by far the most used
specification language used for modeling. UML together with the Meta-Object
Facility (MOF) (OMG [112]) forms the bases for the Model-Driven Architecture
(MDA) (OMG [113]) which aims at unifying the design, development, and
integration of system modeling. The architecture has four layers, called M0 to M3
presented in Figure 2-1 and below:

Introduction 13

• M3 is the meta-metamodel which is an instance of itself.
• M2 is the level where the UML meta-model is defined. The concepts used

by the designer, such as Class, Attribute, etc., are defined at this level.
• M1 is the level where the UML models and domain-specific extensions of

the UML language reside.
• M0 is the level where the actual user objects reside (the world).

An instance at a certain level is always an instance of something defined at one
level higher. An actual object at M0 is an instance of a class defined at M1. The
classes defined in UML models at M1 are instances of the Class concept defined at
M2. The UML meta-model itself is an instance of M3. Other meta-models that
define other modeling languages are also instances of M3.

 User Objects

 Model

 Meta-Model

 Meta-MetaModel

Level M0

Level M1

Level M2

Level M3 Meta Object Facility (MOF)

UML meta-model, e.g.
Class, Interface, Attribute,
etc concepts

The actual UML model

User Objects,
actual data

W
or

ld

Th
e

M
od

el
in

g
S

pa
ce

Figure 2-1. The Object Management Group (OMG) 4-Layered
Model Driven Architecture (MDA).

Within the MDA framework, UML Profiles are used to tailor the general UML
language to specific areas (domain specific modeling).

Modeling environment configuration approaches similar to the UML Profiles,
are present within the Generic Modeling Environment (GME) (Ledeczi et al. 2001
[82], Ledeczi et al. 2001 [83]) which is a configurable toolkit for creating domain-
specific modeling and program synthesis environments. Here, the configuration is
accomplished through meta-models specifying the modeling paradigm (modeling
language) of the application domain.

Computer-aided Multi-paradigm Modeling and Simulation (CaMpaM) (Lacoste-
Julien et al. 2004 [79], Lara et al. 2003 [80]) supported by tools such as the ATOM3
environment (A Tool for Multi-formalism and Meta-Modeling) (Vangheluwe and
Lara 2004 [170]) is aiming at combining several dimensions of modeling (levels of
abstractions, multi-formalisms and meta-modeling) in order to configure
environments tailored for specific domains.

14 Chapter 2 Background

We have already described what meta-modeling and meta-programming are. From
another point of view meta-modeling and meta-programming are orthogonal
solutions to system modeling (Figure 2-2) that can be combined to achieve model
definition and transformation at several abstraction levels.

By using meta-programming it is possible to achieve transformation between
models or meta-models. The meta-models one level up can be used to enforce the
correctness of the transformation. Translation and transformation between models
are highly desirable as new models appear and solutions to system modeling require
different modeling languages and formalisms together with their environments.

Meta-Modeling

Model1 Model2 ModelN ...

Meta-Model1 Meta-Model2

MetaMeta-Model1

Transformation

...

Meta-Programming
Figure 2-2. Meta-Modeling and Meta-Programming dimensions.

2.2 The Modelica Language

Starting 1989, our group developed an equation-based specification language for
mathematical modeling called ObjectMath (Fritzson et al. 1995 [53], Viklund et al.
1992 [173]), using Mathematica as a basis and a frontend, but adding object
orientation and efficient code generation. Following this path, in 1996 our group
joined efforts with several other groups in object-oriented mathematical modeling
to start a design-group for developing an internationally viable declarative
mathematical modeling language. This language, called Modelica, has been
designed by the Modelica Design Group, initially consisting mostly of the
developers of a number of different equation-based object-oriented modeling

The Modelica Language 15

languages like Allan, Dymola, NMF, ObjectMath, Omola, SIDOPS+, Smile, as
well as other modeling and simulation experts. In February 2000, a non-profit
organization named “Modelica Association” was founded in Linköping, Sweden,
for further development and promotion of Modelica. Modelica (Elmqvist et al. 1999
[35], Fritzson 2004 [44], Fritzson and Engelson 1998 [50], Modelica.Association
1996-2008 [99], Tiller 2001 [152]) is an object-oriented modeling language for
declarative equation-based mathematical modeling of large and heterogeneous
physical systems. For modeling with Modelica, commercial software products such
as MathModelica (MathCore [91]) or Dymola (Dynasim 2005 [27]) have been
developed. Also open-source implementations like the OpenModelica system
(Fritzson et al. 2002 [46], PELAB 2002-2008 [118]) are available.

The Modelica language has been designed to allow tools to automatically
generate efficient simulation code with the main objective of facilitating exchange
of models, model libraries, and simulation specifications. The definition of
simulation models is expressed in a declarative manner, modularly and
hierarchically. Various formalisms can be expressed in the more general Modelica
formalism. In this respect Modelica has a multi-domain modeling capability which
gives the user the possibility to combine electrical, mechanical, hydraulic,
thermodynamic, etc., model components within the same application model.
Compared to most other modeling languages available today, Modelica offers
several important advantages from the simulation practitioner’s point of view:

• Object-oriented mathematical modeling. This technique makes it possible to
create model components, which are employed to support hierarchical
structuring, reuse, and evolution of large and complex models covering
multiple technology domains. A general type system that unifies object-
orientation, multiple inheritance, and generics templates within a single
class construct. This facilitates reuse of components and evolution of
models.

• Acausal modeling based on ordinary differential equations (ODE) and
differential algebraic equations (DAE) together with discrete equations
forming a hybrid DAE.. There is also ongoing research to include partial
differential equations (PDE) in the language syntax and semantics (Saldamli
et al. 2002 [142]), (Saldamli 2002 [140], Saldamli et al. 2005 [141]).

• Multi-domain modeling capability, which gives the user the possibility to
combine electrical, mechanical, thermodynamic, hydraulic etc., model
components within the same application model.

• A strong software component model, with constructs for creating and
connecting components. Thus the language is ideally suited as an
architectural description language for complex physical systems, and to
some extent for software systems.

• Visual drag & drop and connect composition of models from components
present in different libraries targeted to different domains (electrical,
mechanical, etc).

16 Chapter 2 Background

The language is strongly typed and declarative. See (Modelica.Association 1996-
2008 [99]), (Modelica-Association 2005 [101]), (Tiller 2001 [153]), and (Fritzson
2004 [44]) for a complete description of the language and its functionality from the
perspective of the motivations and design goals of the researchers who developed it.
Shorter overviews of the language are available in (Elmqvist et al. 1999 [35]),
(Fritzson and Engelson 1998 [50]), and (Fritzson and Bunus 2002 [49]).

The Modelica component model includes the following three items: a)
components, b) a connection mechanism, and c) a component framework.
Components are connected via the connection mechanism realized by the Modelica
system, which can be visualized in connection diagrams. The component framework
realizes components and connections, and ensures that communication works over
via the connections.

For systems composed of acausal components with behavior specified by
equations, the direction of data flow, i.e., the causality is initially unspecified for
connections between those components. Instead the causality is automatically
deduced by the compiler when needed. Components have well-defined interfaces
consisting of ports, also known as connectors, to the external world. A component
may internally consist of other connected components, i.e., hierarchical modeling is
possible. Figure 2-3 shows a hierarchical component-based modeling of an industry
robot.

Figure 2-3. Hierarchical model of an industrial robot, including components such as
motors, bearings, control software, etc. At the lowest (class) level, equations are
typically found.

inertial
x

y

axis1

axis2

axis3

axis4

axis5

axis6

r3Drive1

1
r3Motor

r3ControlqdRef
1

S

qRef
1

S

k2

i

k1

i

qddRef cut joint tn

qd

l

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

Jmotor=J

gear=i

spring=c

fr
ic

=R
v0

S
rel

joint=0

S

Srel = n*transpose(n)+(identity(3)-
n*transpose(n))*cos(q)- skew(n)*sin(q);
wrela = n*qd;
zrela = n*qdd;
Sb = Sa*transpose(Srel);
r0b = r0a;
vb = Srel*va;

The Modelica Language 17

2.2.1 An Example Modelica Model

The following is an example Lotka Volterra Modelica model containing two
differential equations relating the sizes of rabbit and fox populations which are
represented by the variables rabbits and foxes: The model was independently
developed by Alfred J Lotka (1925) and Vito Volterra (1926): The rabbits multiply
(by breeding); the foxes eat rabbits. Eventually there are enough foxes eating
rabbits causing a decrease in the rabbit population, etc., causing cyclic population
sizes. The model is simulated and the sizes of the rabbit and fox populations are
plotted in Figure 2-4 as a function of time.

Figure 2-4. Number of rabbits – prey animals, and foxes – predators, as a function

of time simulated from the predator-prey LotkaVolterra model.

The notation der(rabbits) means time derivative of the rabbits (population)
variable.
model LotkaVolterra
 parameter Real g_r =0.04 "Natural growth rate for rabbits";
 parameter Real d_rf=5e-5 "Death rate of rabbits due to
 foxes";
 parameter Real d_f =0.09 "Natural death rate for foxes";
 parameter Real g_fr=0.1 "Efficiency in growing foxes from
 rabbits";
 Real rabbits(start=700) "Rabbits with start population 700";
 Real foxes(start=10) "Foxes, with start population 10";
equation
 der(rabbits) = g_r*rabbits - d_rf*rabbits*foxes;
 der(foxes) = g_fr*d_rf*rabbits*foxes - d_f*foxes;
end LotkaVolterra;

18 Chapter 2 Background

2.2.2 Modelica as a Component Language

Modelica offers quite a powerful software component model that is on par with
hardware component systems in flexibility and potential for reuse. The key to this
increased flexibility is the fact that Modelica classes are based on equations, i.e.,
acausal connections for which the direction of data flow across the connection is not
fixed. Components are connected via the connection mechanism, which can be
visualized in connection diagrams. The component framework realizes components
and connections, and ensures that communication works and constraints are
maintained over the connections. For systems composed of acausal components the
direction of data flow, i.e., the causality is automatically deduced by the compiler at
composition time.

Two types of coupling can be established by connections depending on whether
the variables in the connected connectors are non-flow (default), or declared using
the flow prefix:

1. Equality coupling, for non-flow variables, according to Kirchhoff’s first law.
2. Sum-to-zero coupling, for flow variables, according to Kirchhoff’s current law.

For example, the keyword flow for the variable i of type Current in the Pin
connector class indicates that all currents in connected pins are summed to zero,
according to Kirchhoff’s current law.

pin1 pin2

+ +

pin2.i

pin2.vpin1.v

pin1.i

Figure 2-5. Connecting two components that have electrical pins.

Connection equations are used to connect instances of connection classes. A
connection equation connect(pin1,pin2), with pin1 and pin2 of connector
class Pin, connects the two pins (Figure 2-5) so that they form one node. This
produces two equations, namely:

pin1.v = pin2.v
pin1.i + pin2.i = 0

The first equation says that the voltages of the connected wire ends are the same.
The second equation corresponds to Kirchhoff's second law, saying that the currents
sum to zero at a node (assuming positive value while flowing into the component).
The sum-to-zero equations are generated when the prefix flow is used. Similar
laws apply to flows in piping networks and to forces and torques in mechanical
systems.

Modelica Environments 19

2.3 Modelica Environments

For modeling with Modelica, commercial software products such as MathModelica
(MathCore [91]) (Figure 2-9), Dymola (Dynasim 2005 [27]) or SimulationX
(ITI.GmbH 2008 [71]) have been developed. Also open-source implementations
like the OpenModelica system (Fritzson et al. 2002 [46], Fritzson et al. 2005 [47],
PELAB 2002-2008 [118]) are available.

2.3.1 OpenModelica

The OpenModelica environment is a complete Modelica modeling, compilation and
simulation environment based on free software distributed in binary and source
code form. The components of the OpenModelica environment are:

• OpenModelica Interactive Compiler (OMC) is the core component of the
environment. OMC provides advanced interactive functionality for model
management: loading, instantiation, query, checking and simulation. The
OMC functionality is available via command line scripting or - when run as
a server - via the CORBA (OMG [111]) (or socket) interface. The other
environment components presented below are using OMC as a server to
access its functionality.

• OMShell is an interactive command handler that provides very basic
functionality for loading and simulation of models.

• OMNotebook adds interactive notebook functionality (similar to the
Mathematica environment) to the environment. OMNotebook documents
blend together evaluation cells with explanation text. The evaluation cells
can be executed directly in the notebook and their results incorporated. The
OMNotebook component is very useful for teaching, model explanation and
documentation because all the information regarding a model (including
simulation results) can be included in the same document.

• Modelica Development Tooling (MDT) is an Eclipse plug-in that integrates
the OpenModelica compiler with Eclipse. MDT, together with the
OpenModelica compiler, provides an environment for working with
Modelica and MetaModelica projects. Advanced textual (code browsing,
syntax highlighting, syntax checking, code completion and assistance,
automatic code indentation, etc) and UML/SysML editing features for
developing models are available. The environment also provides debugging
features.

20 Chapter 2 Background

Figure 2-6. OMShell Figure 2-7. OMNotebook

Figure 2-8. Modelica Development Tooling (MDT).

2.3.2 MathModelica, Dymola, SimulationX

MathModelica is an integrated problem-solving environment (PSE) for full system
modeling and simulation (Fritzson 2006 [45]). The environment integrates

Modelica Environments 21

Modelica-based modeling and simulation with graphic design, advanced scripting
facilities, integration of code and documentation, and symbolic formula
manipulation provided via Mathematica (Wolfram 2008 [175]). The MathModelica
environment is based on the OpenModelica compiler (OMC) but also provides
additional commercial capabilities like graphical editor and simulation center.

Figure 2-9. MathModelica modeling and simulation environment. (courtesy of

MathCore AB)

Dymola (Dynamic Modeling Laboratory) described by (Elmqvist et al. 2003 [34])
is probably one of the most well known multi-domain modeling and simulation
environments that supports the Modelica language.

The environment allows the analysis of complex systems that incorporate
mechanical, hydraulic, electrical, and thermal components as well as control
systems. Dymola does not feature any debugging techniques for possible structural
and numerical errors.

For dynamic debugging the simulation environment offers the possibility of
logging discrete events. This functionality is useful in tracking down errors in the
discrete part of hybrid system models.

The analysis facilities of Dymola concentrate more on profiling. Details of
execution times for each block are available. Numeric model instabilities have to be
detected in Dymola by directly examining the simulation results.

22 Chapter 2 Background

Figure 2-10. Dymola Modeling and Simulation Environment

(courtesy of Dynasim AB).

Figure 2-11. SimulationX modeling and simulation environment

(courtesy of ITI GmbH)

SimulationX is a software environment for valuation of the interaction of all
components of technical systems. SimulationX provides a CAE tool for modeling,

Related Equation-based languages: gProms, VHDL-AMS and the χ language 23

simulation and analyzing of physical effects – with ready-to-use model libraries for
1D mechanics, 3D multibody systems, power transmission, hydraulics, pneumatics,
thermodynamics, electrics, electrical drives, magnetics as well as controls – post
processing included.

2.4 Related Equation-based languages: gProms,
VHDL-AMS and the χ language

In the area of mathematical modeling the most important general de-facto standards
for different dynamic simulation modes are:

• Continuous: Matlab/Simulink, MatrixX/SystemBuild, Scilab/Scicos for
general systems, SPICE and its derivates for electrical circuits, ADAMS,
DADS/Motion, SimPack for multi-body mechanical systems.

• Discrete: general-purpose simulators based on the discrete-event GPSS line,
VHDL- and Verilog simulators in digital electronics, etc.

• Hybrid (discrete + continuous): Modelica/Dymola, AnyLogic, VHDL-AMS
and Verilog-AMS simulators (not only for electronics but also for multi-
physics problems).

The insufficient power and generality of the former modeling languages stimulated
the development of Modelica (as a true object-oriented, multi-physics language)
and VHDL-AMS/Verilog-AMS (multi-physics but strongly influenced by
electronics).

The rapid increase in new requirements to handle the dynamics of highly
complex, heterogeneous systems requires enhanced efforts in developing new
language features (based on existing languages!). Especially the efficient simulation
of hardware-software systems and model structural dynamics are yet unsolved
problems. In electronics and telecommunications, therefore, the development of
SystemC-AMS has been launched but these attempts are far from the multi-physics
and multi-domain applications which are addressed by Modelica.

gProms (general Process Modeling Systems) (Min and Pantelides 1996 [98])
provides a set of advanced tools for supporting model development and
maintenance. Several techniques are provided for model validation, dynamic
optimization, optimal experiment design, and life cycle modeling, but unfortunately
gProms lacks support for debugging simulation models when structural or
numerical failures occur.

VHDL-AMS (Christen and Bakalar 1999 [22]) is the IEEE-endorsed standard
modeling language (standard 1076.1) created to provide a general-purpose, easily
exchangeable and open language for modern analog-mixed-signal designs. Models
can be exchanged between all simulation tools that adhere to the VHDL-AMS
standard. Advantages of VHDL-AMS are:

24 Chapter 2 Background

• Model Exchangeability. Free exchange of information between VHDL-
AMS simulation tools.

• Multi-level modeling. Different levels of abstraction of model behavior.
• Multi-domain modeling. Offers solutions in different application domains.
• Mixed-signal modeling. Supports analog, digital, and mixed signal

modeling.
• Multiple modeling styles. Behavioral, dataflow, structural modeling

methods.

The χ language (Fábián 1999 [37]) is a hybrid specification formalism, suitable for
the description of discrete-event, continuous-time, and hybrid systems. It is a
concurrent language, where the discrete-event part is based on Communicating
Sequential Processes (Hoare 1985 [65]) and the continuous-time part is based on
Differential Algebraic Equations (DAEs). Models written in the χ language can be
executed by the χ simulator.

2.5 Natural Semantics and the Relational Meta-
Language (RML)

Concerning specification languages for programming language semantics,
compiler generators based on denotational semantics (Pettersson and Fritzson 1992
[123]) (Ringström et al. 1994 [137]), have been investigated and developed with
some success. However this formalism has certain usability problems, and
Operational Semantics/Natural Semantics has become the dominant formalism in
common language semantics specification literature.

Therefore a meta-language and compiler generator called RML (Relational Meta
Language) (Fritzson 1998 [43], PELAB 1994-2008 [117], Pettersson 1995 [120],
Pettersson 1999 [122]) for Natural Semantics was developed, which we have used
extensively for full-scale specifications of languages like Java 1.2 (Holmén 2000
[66]), C subset with pointer arithmetic, functional, and equation-based object-
oriented languages (Modelica). Generated implementations are comparable in
performance to hand implementations. However, it turned out that development
environment support is needed also for specification languages. Recent
developments include a debugger for Natural Semantics specifications (Pop and
Fritzson 2005 [127]) and (Chapter 7).

Natural Semantics (Kahn 1988 [75]) is a specification formalism that is used to
specify the semantics of programming languages, i.e., type systems, dynamic
semantics, translational semantics, static semantics (Despeyroux 1984 [25], Glesner
and Zimmermann 2004 [55]), etc. Natural Semantics is an operational semantics
derived from the Plotkin (Plotkin 1981 [125]) structural operational semantics
combined with the sequent calculus for natural deduction. There are few systems
implemented that compile or interpret Natural Semantics.

Natural Semantics and the Relational Meta-Language (RML) 25

One of these systems is Centaur (Borras et al. 1988 [15]) with its implementation of
Natural Semantics called Typol (Despeyroux 1984 [25], Despeyroux 1988 [26]).
This system is translating the Natural Semantics inference rules to Prolog.

The Relational Meta-Language (RML) is an efficient implementation of Natural
Semantics, with a performance of the generated code that is several orders of
magnitude better than Typol. The RML language is compiled to highly efficient C
code by the rml2c compiler. In this way large parts of a compiler can be
automatically generated from their Natural Semantics specifications. RML is
successfully used for specifying and generating practically usable compilers from
Natural Semantics for Java, Modelica, MiniML (Clément et al. 1986 [23]), Mini-
Freja (Pettersson 1995 [120]) and other languages.

2.5.1 An Example of Natural Semantics and RML

As a simple example of using Natural Semantics and the Relational Meta-Language
(RML) we present a trivial expression (Exp1) language and its specification in
Natural Semantics and RML. A specification in Natural Semantics has two parts:

• Declarations of syntactic and semantic objects involved.
• Groups of inference rules which can be grouped together into relations.

In our example language we have expressions built from numbers. The abstract
syntax of this language is declared in the following way:

in tegers:

expressions (abstract syn tax):

 :: | 1 2 | 1 2 | 1 * 2 | 1 / 2 |

v In t

e E xp v e e e e e e e e e

∈

∈ = + − −

v

The inference rules for our language are bundled together in a judgment in
the following way (here we do not present similar rules for the other operators.):

e =>

1 1 2 2 v1+v2 v3
1 2 3

(1)

(2) e v e v
e e v

v v

⇒ ⇒ ⇒

+ ⇒

⇒

RML modules have two parts, an interface comprising datatype declarations
(abstract syntax) and signatures of relations (judgments) that operate on such
datatypes, followed by the declarations of the actual relations which group together
rules and axioms. In RML, the Natural Semantics specification shown above is
represented as follows:

26 Chapter 2 Background

module Exp1:

 (* Abstract syntax of the language Exp1 *)
 datatype Exp = RCONST of real
 | ADD of Exp * Exp
 | SUB of Exp * Exp
 | MUL of Exp * Exp
 | DIV of Exp * Exp
 | NEG of Exp
 relation eval: Exp => real
end
(* Evalu s of
relation eval: Exp => real =

ation semantic Exp1 *)

 (* Evaluation of a real node is the real number itself *)
 axiom eval(RCONST(rval)) => rval

 (* Evaluation of an addition node ADD is v3, if v3 is
 the result of adding the evaluated results of its
 children e1 and e2. *)

 rule eval(e1) => v1 & eval(e2) => v2 & v1 + v2 => v3
 --
 eval(ADD(e1, e2)) => v3

 rule eval(e1) => v1 & eval(e2) => v2 & v1 - v2 => v3
 --
 eval(SUB(e1, e2)) => v3

 rule eval(e1) => v1 & eval(e2) => v2 & v1 * v2 => v3
 --
 eval(MUL(e1, e2)) => v3

 rule eval(e1) => v1 & eval(e2) => v2 & v1 / v2 => v3
 --
 eval(DIV(e1, e2)) => v3

 rule eval(e) => v & -v => vneg

 eval(NEG(e)) => vneg

end (* eval *)

A proof-theoretic interpretation can be assigned to this specification. We interpret
inference rules as recipes for constructing proofs. We wish to prove that there is a
value such that 1 2 holds for this specification. To prove this proposition
we need an inference rule that has a conclusion, which can be instantiated
(matched) to the proposition. The only proposition that matches is the second
proposition (2), which is instantiated as follows:

v v+ ⇒

Natural Semantics and the Relational Meta-Language (RML) 27

1 1 2 2 1 2

1 2

v v v v

v

⇒ ⇒ + ⇒

+ ⇒

v

To continue the proof, we need to apply the first proposition (axiom) several times,
and we soon reach the conclusion. One can observe that debugging of Natural
Semantics comprise proof-tree understanding.

2.5.2 Specification of Syntax

Regarding the specification of lexical and syntatic rules for a new language, we use
external tools such as Lex, Yacc, Flex, Bison, etc., to generate those modules. The
parser builds abstract syntax by calling RML-defined constructors. The abstract
syntax is then passed from the parser to the RML-generated modules. We currently
use the same approach for languages defined using MetaModelica.

2.5.3 Integrated Environment for RML

The SOSDT (Structural Operational Semantics Development Tooling) is an
integrated environment for RML (Figure 2-12).

Compilation

Left Side
Click goes to
Error Location

RML Console
Output of the RML compiler

Bug List
Click to go to Error Location

Project Browser
Show files and their contents

Figure 2-12. SOSDT Eclipse Plugin for RML Development.

28 Chapter 2 Background

The SOSDT environment (Pop and Fritzson 2006 [129]) includes support for
browsing, code completion through menus or popups, code checking, automatic
indentation, and debugging of specifications.

2.6 The eXtensible Markup Language (XML)

The Extensible Markup Language (XML) (W3C [158]) is a standard recommended
by the World Wide Web Consortium (W3C). XML is a simple and flexible text
format derived from Standardized Generalized Markup Language (SGML) (W3C
[163]). The XML language is widely used for information exchange over the
Internet. The tools one can use for parsing, querying, transforming or validating
XML documents have reached a mature state. Such tools exist both as open-source
projects and commercial software products.

A small example of an XML document is shown below:
<?xml version="1.0"?>
<!DOCTYPE persons SYSTEM "persons.dtd">
<persons>

<person job="programmer">
 <name>John Doe</name>
 <email>
 grigore@none.ro
 </email>
</person>
 ...
<person job="manager">
 <comment>Classified</comment>
</person>

</persons>

An XML document is simply a text in which the information is marked up using
tags. The tags are the names enclosed in angle brackets. For easy identification we
show elements in bold face and attribute names in italics throughout the XML
example. The information delimited by <persons> and </persons> tags is an
XML element. As we can see, it can contain other elements called <person> that
nests additional elements within itself.

The attributes are specified after the tag as an unordered name/value list of
name="value" items. In our example, the attribute job with the value
"programmer".

The first line states that this is an XML document. The second line expresses
that an XML parser must validate the contents of the elements against the
Document Type Definition (DTD) (W3C [158]) file, here named "persons.dtd".
The DTD provides constraints for the contents much like grammars used for
programming languages.

mailto:grigore@none.ro

The eXtensible Markup Language (XML) 29

There are two criteria to be met in order for an XML document to be valid. First, all
the elements have to be properly nested and must have a start/end tag. Second, all
the contents of all elements must obey their DTD grammar specifications.

We will define a DTD for the above example:
<!-- the person.dtd file -->
<!ENTITY % person-job-attribute
 "job(programmer|manager) #REQUIRED">
<!ELEMENT persons (person*)>
<!ELEMENT person ((name+, email*) | comment+)>
<!ATTLIST person
 project CDATA #IMPLIED
 &person-job-attribute;>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT comment (#PCDATA)>

The above DTD defines one entity, four elements, and one attribute list containing
two attributes. The entities are underlined, bold is used for elements, and attributes
are specified in italics.

The entity (ENTITY) declaration defines person-job-attribute as a text
value that can be used anywhere inside the DTD and the XML document. The XML
parser will replace the entity with its defined text where it is used. The principal
element (ELEMENT) declared in DTD is persons and has zero or more elements
person nested inside. The special characters inside the element definitions are "*"
meaning: zero or more, "|" meaning: selection – either left side or right side, "+"
meaning: one or more.

The attribute (ATTLIST) list defines two attributes for the person element:
project and job.

The project attribute can contain character data (CDATA) and is optional
(#IMPLIED). The job attribute can only have one of the two values, either
"programmer" or "manager".

There is another XML document structure standard, called XML-Schema (W3C
[167]), which is similar to DTD but is encoded in XML. This standard reconstructs
all the capabilities of the DTD and extends them with: namespaces, context
sensitivity, the possibility to define several root elements in the same schema,
integrity constraints, regular expressions, sub-typing, etc. Tools for transforming
XML-Schema representations from/to a DTD representation are available. We use
the DTD variant in this example only because it is clearer than the too verbose
XML-Schema.

One can consult the World Wide Web Consortium website (W3C [158], W3C
[167]) for more information regarding XML, DTD and XML-Schema.

30 Chapter 2 Background

2.7 System Modeling Language (SysML)

The Unified Modeling Language (UML) has been created to assist software
development processes by providing means to capture software system structure
and behavior. This eventually evolved into the main standard for Model Driven
Development.

The System Modeling Language (SysML) (OMG [114]) is a graphical modeling
language for systems engineering applications. SysML was developed and
submitted by systems engineering experts, and adopted by the OMG in 2006.
SysML is built on top of UML2.0 and tailored to the needs of system engineers by
supporting specification, analysis, design, verification and validation of a broad
range of systems and system-of-systems.

The main goal behind SysML is to unify and replace different document-centric
approaches in the system engineering field with a single systems modeling
language. A single model-centric approach improves communication, assists to
manage complex system design and allows its early validation and verification.

Figure 2-13. SysML diagram taxonomy.

The taxonomy of SysML diagrams is presented in Figure 2-13. The following major
extensions compared to UML are made in SysML:

• Requirements diagrams support requirements presentation in tabular or in
graphical notation, allows composition of requirements and supports traceability,
verification and “fulfillment of requirements”. This is a new type of a diagram
added to capture system requirements.

• Block diagrams extend the Composite Structure diagram of UML2.0. The
purpose of this diagram is to capture system components, their parts and
connections between parts. Connections are handled by means of connecting
ports which may contain data, material, or energy flows.

System Modeling Language (SysML) 31

• Parametric diagrams help perform engineering analysis such as performance
analysis. Parametric diagrams contain constraint elements, which define
mathematical equations, linked to properties of model elements.

• Activity diagrams show system behavior as data and control flows. Activity
diagrams are similar to Extended Functional Flow Block Diagrams (EFFBDs),
which are already widely used by system engineers. Activity decomposition is
supported by SysML.

• Allocations are used to define mappings between model elements: For example, a
certain Activity may be allocated to a Block, which implies that activity will be
performed by the block.

For a full description of SysML see (SysML, 2006) (OMG [114]).

Figure 2-14. SysML block definitions.

32 Chapter 2 Background

2.7.1 SysML Block Definitions

SysML block definitions are shown in Figure 2-14. A SysML block can include
properties to specify block parts, values, and references to other blocks. A separate
compartment is dedicated for each of these features. To describe the behavior of a
block the “Operations” compartment is reused from UML and it lists operations that
describe certain behavior. SysML defines a special form of compartment for
constraint definitions owned by a block. The use of the “Constraint” compartment is
optional. A “Namespace” compartment may appear if nested block definitions exist
for a block. A “Structure” compartment may appear to show internal parts and
connections between parts within a block definition.

SysML defines two types of ports: standard ports and flow ports. Standard ports,
which are reused from UML, are service-oriented ports required or provided by a
block. Flow ports specify interaction points through which items may flow between
blocks, and between blocks and environment. A flow port definition may include
single item specification or complex flow specification through the
FlowSpecification interface; flow ports define what “can” flow between the block
and its environment. Flow direction can be specified for a flow port in SysML.
SysML also defines a notion of Item flows that specify “what” does flow in a
particular usage context.

2.8 Component Models for Invasive Software
Composition

The idea that software should be built from existing components appeared in the
software community at the end of the 60s, first formulated by Douglas McIlroy
(McIlroy 1968 [96]) and had considerable influence in the software industry.

The most important result of dividing software into relatively independent and
adaptable parts is the increased reusability in software development. "Reuse is the
use of existing software components in a new context, either elsewhere in the same
system or in another system" (Marciniak 1994 [90]). Programmers want a
methodology that defines how to reintegrate previously created software into a new
context of development, to create software systems from existing software rather
than building them from scratch.

Software components are the basic units for software composition. They are
designed to be composed; that is, their structure and behavior shall follow specific
rules. "A software component is a software element that conforms to a component
model and can be independently deployed and composed without modification
according to a composition standard." (Heineman and Councill 2001 [64]).

A component model defines the external appearance of components that build a
system. The component model defines the functionality of the components to be
used in composition by explicitly describing component interfaces. A well-designed

Component Models for Invasive Software Composition 33

component model provides support for several important properties of its
components, such as:

1. Substitution: one component can be replaced by another that fulfills at least
the same syntactic or semantic conditions.

2. Adaptation: the ability to customize and configure components for different
reuse contexts.

3. Extension: when new system requirements appear, the extension of existing
components should be possible.

Figure 2-15. Black-box vs. Gray-box (invasive) composition. Instead of

generating glue code, composers invasively change the components.

A component model is the core of a component system. In a typical component
system, the component model describes components as black boxes, i.e.,
encapsulated binary code components with completely hidden implementations.
The black-box composition method includes various transformations, like
adaptation and glue code generation, which essentially compose black boxes
without changing their actual content.

However, in Chapter 13 of this thesis we consider components containing
fragments, i.e., pieces of code. As in black-box systems, the contents of the
components are hidden under a composition interface. This method is different
from black-box composition because the composition operators can invasively
change the component fragments at predefined points of variability. This reuse
abstraction is called grey-box composition and the composition of grey-box
components is denoted as invasive software composition (see Figure 2-15).

Invasive software composition is a composition technology based on
parameterization and extension of grey-box components (Aßmann 2003 [5]). For a

34 Chapter 2 Background

terminological distinction, we call invasive components fragment boxes; the
variability points hooks, and the invasive composition operators composers. A
typical fragment box consists of a set of fragments and an invasive composition
interface, defined by hooks. Hooks can be of two types: declared hooks, defined by
the programmer using some kind of markup and implicit hooks defined by the
language structure.

Figure 2-16. Invasive composition applied to hooks result

in transformation of the underlying abstract syntax tree.

Since the composers of an invasive composition program manipulate fragment
components, i.e., some other programs, an invasive composition implies meta-
programming. The changes resulting from composition on fragment boxes apply
directly to the corresponding abstract syntax tree by attaching and removing
fragments as presented in Figure 2-16.

The COMPOST system (Aßmann and Ludwig 2005 [7]) provides invasive
software composition of Java (Aßmann 2003 [5]) and ModelicaXML components
(Chapter 12), (Pop and Fritzson 2003 [126]). The composition library supports
generics (Musser and Stepanov 1988 [104]), mixin-ins (Bracha and Cook 1990
[17]), connectors (Aßmann et al. 2000 [6]), aspects (Kiczales et al. 1997 [78]) and
views (Aßmann 2003 [5]) by invasively transforming language components.

Automatic derivation of a component model from language specification in
Natural Semantics is presented in (Savga et al. 2004 [144]).

Using the Extensible Markup Language (XML) (W3C [158]), and the XML
Schema (W3C [167]) to model abstract syntax trees (Attali et al. 2001 [8], Attali et
al. 2001 [9], Badros 2000 [11], Schonger et al. 2002 [145]) of programming
languages is becoming an interesting alternative for having easy access to the
structure of programs (in our case models) without the need for a specific parser.
We used this approach when designing and defining the meta-model for the
Modelica language presented in this thesis. In order to compose and transform
models defined by our meta-model we employ invasive software composition

Integrated Product Design and Development 35

(Aßmann 2003 [5]), which is a grey-box component composition. To drive the
composition we have designed a component model for our meta-model within the
COMPOST system.

2.9 Integrated Product Design and Development

In the area of model-driven product design using modeling and simulation we focus
on the integration of the Modelica language with conceptual modeling tools based
on Function-Means tree decomposition (Andreasen 1980 [3]).

Figure 2-17. Integrated model-driven product design and development framework.

Designing products is a complex process. Highly integrated tools are essential to
helping a designer to work efficiently. Designing a product includes early design
phase product concept modeling and evaluation, physical modeling and simulation
and finally the physical product realization (Figure 2-17). For physical modeling
and simulation available tools provide advanced functionality. However, the
integration of such tools with conceptual modeling tools is a resource consuming
process that today requires large amounts of manual, and error prone work. Also,
the number of physical models available to the designer in the product concept
design phase is typically quite large. This has an impact on the selection of the best
set of component choices for detailed product concept simulation.

To address these issues we have developed a framework (Chapter 11) for
product development based on an XML meta-model (Chapter 12), (Pop and
Fritzson 2003 [126]) of Modelica and its representation in a Modelica Database
(Johansson et al. 2005 [74], Pop et al. 2004 [132]). The product concept design of

36 Chapter 2 Background

the product development process is based on Function-Means tree decomposition
and is implemented in the FMDesign component (Figure 2-17).

To provide flexibility of the product design framework we have addressed the
composition and transformation of Modelica models in the COMPOST framework
(Chapter 13), (Pop et al. 2004 [133]).

Our framework for model-driven product design and development has
similarities with Schemebuilder (Bracewell and D.A.Bradley 1993 [16]). The
Modelith framework (Johansson et al. 2002 [72], Larsson et al. 2002 [81]) also
employs an XML-based model representation for transformation and exchange in
physical system modeling.

However, our work is more oriented towards the design of advanced complex
products that require systems engineering, and targeted to the simulation modeling
language Modelica. The Modelica language has a more expressive power in
modeling dynamic systems and system architectures, than many of the tools for
systems engineering that are currently used. Also, meta-modeling and invasive
software composition methods are considered for automatic model composition and
configuration. Tight integration of conceptual modeling tools with modeling and
simulation tools is proposed. For details on Systems Engineering, the reader is
referred to the International Council on Systems Engineering Website (INCOSE
1990-2008 [70]).

Part II

Extending EOO Languages for
Safe Symbolic Processing

Chapter 3

Extending Equation-Based Object-
Oriented Languages

For a long time, one of the major research goals in the computer science research
community has been to raise the level of abstraction and expressive power of
specification languages/programming languages. Many specification languages and
formalisms have been invented, but unfortunately very few of those are practically
useful, due to limited computer support for these languages and/or inefficient
implementations. Thus, one important goal is executable specification languages of
high abstraction power and with high performance, good enough for practical usage
and comparable in execution speed to hand implementations of applications in low-
level languages such as C or C++. In the background chapter we described our
work in creating efficient executable specification languages for two application
domains. The first area is formal specification of programming language semantics,
whereas the second is formal specification of complex systems for which an object-
oriented mathematical modeling language called Modelica was developed,
including architectural support for components and connectors. Based on these
efforts, we designed a unified equation-based mathematical modeling language that
can handle modeling of items as diverse as programming languages, computer
algebra, event-driven systems, and continuous-time physical systems. The key
unifying feature is the notion of equation. In this chapter we describe the design and
implementation of the unified language. A prototype compiler implementation is
already up and running, and used for substantial applications.

3.1 Introduction

About sixteen years ago, our research group has selected two application domains
for research on high-level specification languages:

• Specification languages for programming language semantics. Much work
has been done in this area, but there is still no standard class of compiler-

40 Chapter 3 Extending Equation-Based Object-Oriented Languages

compiler tools around, as successful as parser generators based on
grammars in BNF form like lex (flex), yacc (bison), ANTLR, etc.

• Equation-based specification languages for mathematical modeling of
complex (physical) systems.

The purpose of our work is to unify the languages developed in these two domains
into a new language. The main goal of this work is the design and development of
a general executable mathematical modeling and semantics meta-modeling
language. This language should have a clean semantics as in the case of Modelica
and Natural Semantics (RML), and should be compiled to code of high
performance. This language will allow expressing mathematical models but also
meta-models and meta-programs that specify composition of models,
transformation of models, model constraints, etc. This language is based on
Modelica extended with several new language constructs that allow program
language specification. The unified language is called MetaModelica.
MetaModelica – a Unified Equation-Based Modeling Language

The idea to define a unified equation-based mathematical and semantical
modeling language started from the development of the OpenModelica compiler
(Fritzson et al. 2002 [46]). The entire compiler was generated from a Natural
Semantics specification written in RML. The open source OpenModelica compiler
has its users in the Modelica community which have detailed knowledge of
Modelica but very little knowledge of RML and Natural Semantics. In order to
allow people from the Modelica community to contribute to the OpenModelica
compiler we retargeted the development language from RML to MetaModelica,
which is based on the Modelica language with several extensions. We already
translated the OpenModelica compiler from RML to the MetaModelica using an
automated translator (Carlsson 2005 [21]) implemented in RML. We also
developed a compiler which can handle the entire OpenModelica compiler
specification (~140000 lines of code) defined in MetaModelica. An evaluation of
the performance of the compiler and the generated code is presented in Chapter 4.

The basic idea behind the unified language is to use equations as the unifying
feature. Most declarative formalisms, including functional languages, support some
kind of limited equations even though people often do not regard these as equations,
e.g. single-assignment equations.

Using the meta-programming facilities, common tasks like generation,
composition, and querying of Modelica models can be automated.

The MetaModelica language inherits all the strong component capabilities of
Modelica. Components can be reused in different contexts because the causality is
not fixed in equations and is up to the compiler to decide it.

3.1.1 Evaluator for the Exp1 Language in the Unified Language

Below we give a very simple example of the meta-modeling and meta-
programming capabilities of the MetaModelica language. The semantics of the

Introduction 41

operations in the small expression language Exp1 follows below, expressed as an
interpretative language specification in MetaModelica in a style close to Natural
and/or Operational Semantics, see Exp1 specified in RML in Section 2.5.1. Such
specifications typically consist of a number of functions, each of which contains a
match expression with one or more cases, also called rules. In this simple example
there is only one function, here called eval, since we specify expression
evaluation.

function eval
 input Exp in_exp;
 output Real out_real;
algorithm
 out_real :=
 match in_exp
 local Real v1,v2,v3; Exp e1,e2;
 case RCONST(v1) then v1;
 case ADD(e1,e2) equation
 v1 = eval(e1); v2 = eval(e2); v3 = v1 + v2; then v3;
 case SUB(e1,e2) equation
 v1 = eval(e1); v2 = eval(e2); v3 = v1 - v2; then v3;
 case MUL(e1,e2) equation
 v1 = eval(e1); v2 = eval(e2); v3 = v1 * v2; then v3;
 case DIV(e1,e2) equation
 v1 = eval(e1); v2 = eval(e2); v3 = v1 / v2; then v3;
 case NEG(e1) equation
 v1 = eval(e1); v2 = -v1; then v2;
 end match;
end eval;

As usual in Modelica the equations are not directional, e.g. the two equations v1 =
eval(e1) and eval(e1) = v1 are equivalent. The compiler will select one of the
forms based on input/output parameters and data dependencies.

There are some design considerations behind the above match-expression
construct that may need some motivation.

• Why do we have local variable declarations within the match-expression?
The main reason is clear and understandable semantics. In all three usage
contexts (equations, statements, expressions) it should be easy to understand
for the user and for the compiler which variables are unknowns (i.e.,
unbound local variables) in pattern expressions or in local equations.
Another reason for declaring the types of local variables is better
documentation of the code – the modeler/programmer is relieved of the
burden of doing manual type-inference to understand the code.

• Why the then keyword before the returned value? The code becomes easier
to read if there is a keyword before the returned value-expression. Note that
most functional languages use the in keyword instead in this context, which

42 Chapter 3 Extending Equation-Based Object-Oriented Languages

is less intuitive, and would conflict with the array element membership
meaning of the Modelica in keyword.

3.1.2 Examples of Pattern Matching

A pattern matching construct is useful not only for language specification (meta-
programming) but also as a tool to write functional-style programs. We start by
giving an example of the latter usage.

function fac
 input Integer inExp;
 output Integer outExp;
algorithm
 outExp := match (inExp)
 case (0) then 1;
 case (n) then
 if n>0
 then n*fac(n-1)

 else fail();
 end match;
end fac;

The above function will calculate the factorial value of an integer. If the number
given as argument to the function is less than zero then the function will fail.

A fundamental data structure in MetaModelica is the union type which is a
collection of records containing data, see example below.

uniontype UT
 record R1
 String s;
 end R1;

 record R2
 R
 end R2;

eal r;

end UT;

The pattern matching construct makes it possible to match on the different records.
An example is given below.

function elabExp
 input Env.Env inEnv;
 input Absyn.Exp inExp;
 output Exp.Exp outExp;
 output Types.Properties outProperties;
algorithm
 (outExp,outProperties):= match (inEnv,inExp)
 local ...
 case(_,Absyn.INTEGER(value=x))
 local Integer x;
 then (Exp.ICONST(x),Types.PROP(Types.T_INTEGER({})));

Introduction 43

 ...
 case(env,Absyn.CREF(cRef = cr))
 equation
 (exp,prop) = elabCref(env,cr);
 then (exp,prop);
 ...
 case(env,Absyn.IFEXP(ifExpe1,trueBranch=e2,eBranch=e3))
 local p.Exp e; Ex
 equation
 (e1_1,prop1)=elabExp(env,e1);
 (e2_1,prop2)=elabExp(env,e2);
 (e3_1,prop3)=elabExp(env,e3);
 (e,prop)=elabIfexp(env ,e1_1,prop1, e2_1, prop2,
 e3_1,prop3);
 then (e,prop);

end elabExp;

end match;

The function elabExp is used for elaborating expressions (type checking, constant
evaluation, etc.). The union type Absyn.Exp contains a record representing an
integer, a record representing a component reference (i.e., variable or constant), and
so on. There is an environment union type, Env.Env, for component lookups.

Another situation where pattern matching is useful is in list processing. Lists do
not exist in Modelica but are an important construct in MetaModelica. The
following function selects an element that fulfills a certain condition from a list.
The matchcontinue construct is used in this case instead of match. The
matchcontinue construct uses local backtracking to select the correct case:

• The first case that matches the given value is selected and evaluated
(marked case (a) in the example);

• If during the execution of case (a) the equation true = cond(x); fails
because cond(x) returns false all the variables bound previously become
un-bound and the next case marked case (b) is selected for execution.

• If case (b) fails too then the entire listSelect function fails.
function listSelect
 input list<Type_a> inTypeALst;
 input Func_anyTypeToBool inFunc;
 output list<Type_a> outTypeALst;
 public
 replaceable type Type_a constrainedby Any;
 partial function Func_anyTypeToBool
 input Type_a inTypeA;
 output Boolean outBoolean;
 Func_
algorithm

end anyTypeToBool;

 outTypeALst:=
 matchcontinue (inTpeALst,inFunc)
 local

44 Chapter 3 Extending Equation-Based Object-Oriented Languages

 list<Type_a> xs_1,xs; Type_a x;
 Func_anyTypeToBool cond;
 case ({},_) then {};
 case xs),cond) // case (a) ((x ::
 equation
 true = cond(x);
 xs_1 = listSelect(xs, cond);
 then (x :: xs_1);
 case ((x :: xs),cond) // case (b)
 equation
 false = cond(x);
 xs_1 = listSelect(xs, cond);
 then xs_1;
 end matchcontinue;

end listSelect;

The symbol :: is just syntactic sugar for the cons operator. The function goes
through the list one element at the time and if the condition is true the element is put
on a new list and otherwise it is discarded. Another example of pattern matching
with lists is given below. The function listThread takes two lists (of the same
type) and interleaves them together.

function listThread
 input list<Type_a> inTypeALst1;
 input list<Type_a> inTypeALst2;
 output list<Type_a> outTypeALst;
 replaceable type Type_a constrainedby Any;
algorithm
 outTypeALst:=
 matchcontinue (inTypeALst1,inTypeALst2)
 local
 list<Type_a> r_1,c,d,ra,rb;
 Type_a fa,fb;
 case ({},{}) then {};
 case ((fa :: ra),(fb :: rb))
 equation
 r_1 = listThread(ra, rb);
 c = (fb :: r_1);
 d = (fa :: c);
 then d;
 end matchcontinue;

end listThread;

Yet another application for pattern matching is walking over class hierarchies.
Modelica is an object-oriented language and one can use pattern matching to
explore a hierarchy of classes as presented in (Emir et al. 2007 [36]). Thus we
would like to be able to write something like this:

record Expression
 ..
end Expression;

.

Equations 45

// Defining new expressions
record NUM
 extends Expression;

 Integer value;
end NUM;

record R VA
 extends Expression;

 Integer value;
end VAR;

record MUL
 extends Expression;

 Expression left;
 Expression right;
end MUL;

matchcontinue(inExp)
 case (NUM(x)) ...

 case (VAR(x)) ...

 case (MUL(x1,x2)) ...

end matchcontinue;

Here we could use the fact that MUL extends Expression when we do the pattern
matching and in the static type checking. However, there are difficulties with this
approach. A discussion about these difficulties is given in the pattern-matching
section of this chapter (section 3.5).

3.1.3 Language Design

In the next sections we present the MetaModelica language design. The equations
types of the unified language are presented together with pattern-matching features
and exception handling.

3.2 Equations

The following sections presents the kinds of equations already present in Modelica
and detail the addition of the equations that support the definition of semantic
specifications.

46 Chapter 3 Extending Equation-Based Object-Oriented Languages

3.2.1 Mathematical Equations

Mathematical models almost always contain equations. There are basically four
main kinds of mathematical equations in Modelica which we exemplify below
expressed in traditional mathematical syntax.

Differential equations contain time derivatives such as dt
dx , usually denoted : x&

3+⋅= xax& (1)

Algebraic equations do not include any differentiated variables:
222 Lyx =+ (2)

Partial differential equations also contain derivatives with respect to other variables
than time:

2

2

z
a

t
a

∂
∂

=
∂
∂ (3)

Difference equations express relations between variables, e.g. at different points in
time:

2)(3)1(+=+ txtx (4)

3.2.2 Conditional Equations and Events

Behavior can develop continuously over time or as discrete changes at certain
points in time, usually called events. It is possible to express events and discrete
behavior solely based on conditional equations. An event in Modelica is something
that happens that has the following four properties:

• A point in time that is instantaneous, i.e., has zero duration.
• An event condition that switches from false to true for the event to happen.
• A set of variables that are associated with the event, i.e., are referenced or

explicitly changed by equations associated with the event.
• Some behavior associated with the event, expressed as conditional

equations that become active or are deactivated at the event. Instantaneous
equations are a special case of conditional equations that are active only at
events.

Modelica has several constructs to express conditional equations, e.g. if-then-else
equations for conditional equations that are active during certain time durations, or
when-equations for instantaneous equations.

Equations 47

time event 1 event 2 event 3

y

z

y,z

Figure 3-1. A discrete-time variable z changes value only at event instants, whereas

continuous-time variables like y may change both between and at events.

3.2.3 Single-Assignment Equations

A single-assignment equation is quite close to an assignment, e.g.:
x = eval_expr(env, e);

but with the difference that the unbound variable (here x) which obtains a value by
solving the equation, only gets its value once, whereas a variable in an assignment
may obtain its value several times, e.g.:

x := eval_expr(env, e);
x := eval_expr2(env, x);

3.2.4 Pattern Equations in Match Expressions

In this section we present our addition to the Modelica language which allows
definitions of semantic specifications. The new language features are pattern
equations, match expressions and union datatypes.

Pattern equations are a more general case than single-assignment equations, e.g.:
Env.BOOLVAL(x,y) = eval_something(env, e);

Unbound variables get their values by using pattern-matching (i.e., unification) to
solve for the unbound variables in the pattern equation. For example, x and e might
be unbound and solved for in the equations, whereas y and env could be bound and
just supply values.

48 Chapter 3 Extending Equation-Based Object-Oriented Languages

The following extension to Modelica is essential for specifying semantics of
language constructs represented as abstract syntax trees:

• Match expressions with pattern-matching case rules
• Local declarations
• Local equations.

It has the following general structure:
match expression optional-local-declarations

 case pattern-expression opt-local-declarations
 optional-local-equations then value-expression;
 ...
 else optional-local-declarations
 optional-local-equations then value-expression;

end match;

The then keyword precedes the value to be returned in each branch. The local
declarations started by the local keyword, as well as the equations started by the
equation keyword are optional. There should be at least one case...then
branch, but the else-branch is optional.

A match expression is closely related to pattern matching in functional
languages, but is also related to switch statements in C or Java. It has two important
advantages over traditional switch statements:

• A match expression can appear in any of the three Modelica contexts:
expressions, statements, or in equations.

• The selection in the case branches is based on pattern matching, which
reduces to equality testing in simple cases, but is unification in the general
case.

Local equations in match expressions have the following properties:

• Only algebraic equations are allowed as local equations, no differential
equations.

• Only locally declared variables (local unknowns) declared by local
declarations within the case expression are solved for, or may appear as
pattern variables.

• Equations are solved in the order they are declared (this restriction may be
removed in the future, allowing more general local algebraic systems of
equations).

• If an equation or an expression in a case-branch of a match-expression fails,
all local variables become unbound, and matching continues with the next
branch.

High-level Data Structures 49

3.3 High-level Data Structures

To support simple meta-modeling features the MetaModelica extends the Modelica
language with new constructs which we present in the following.

3.3.1 Union-types

To facilitate meta-modeling of abstract syntax trees we also need to introduce the
possibility to declare recursive tree data structures in Modelica, e.g.:

uniontype Exp
 record RCONST Real x1; end RCONST;
 record PLUS Exp x1; Exp x2; end PLUS;
 record SUB Exp x1; Exp x2; end SUB;
 record MUL Exp x1; Exp x2; end MUL;
 record DIV Exp x1; Exp x2; end DIV;
 record NEG Exp x1; end NEG;
end Exp;

A small expression tree, of the expression 12+5*13, is depicted in Figure 3-2.
Using the record constructors PLUS, MUL, RCONST, this tree can be constructed by
the expression PLUS(RCONST(12), MUL(RCONST(5), RCONST(13)))

PLUS

MUL RCONST

RCONST RCONST 12

5 13

Figure 3-2. Abstract syntax tree of the expression 12+5*13

The uniontype construct has the following properties:

• Union types can be recursive, i.e., reference themselves. This is the case in
the above Exp example, where Exp is referenced inside its member record
types.

• Record declarations declared within a union type are automatically inherited
into the enclosing scope of the union type declaration.

• Union types can be polymorphic
• A record type may currently only belong to one union type. This restriction

may be removed in the future, by introducing polymorphic variants.

This is a preliminary union type design, which however is very close (just different
syntax) to similar datatype constructs in declarative languages such as Haskell,

50 Chapter 3 Extending Equation-Based Object-Oriented Languages

Standard ML, OCaml, and RML. The union types can model any abstract syntax
tree while the match expressions are used to model the semantics, composition or
transformation of the specified language.

3.3.2 Lists, Tuples and Option Types

Besides union-types, the MetaModelica language extends Modelica with new high-
level types that improve the meta-modeling capability of the language. All these
constructs can be type-parameterized.

3.3.2.1 Lists

Lists are very useful data structures that are highly used in imperative or functional
programming. The syntax of a list is a comma-separated list of values or variables
of the same type, e.g. {..., ...}. The following is a list of integers, using the list
data constructor:

{1, 2, 3, 4}

The declaration of list variables uses a Java like syntax. For example a variable with
its value described by the list above has the following declaration:

list<Integer> varName;

In MetaModelica the list constructor {..., ...} is overloaded because the
Modelica language already contains the same syntax for array construction. The
MetaModelica compiler prototype deduces from the context and the variable
declarations if the constructor refers to an array or a list. In the pattern matching
context, the list constructor is used for the list decomposition.

List can also be constructed/deconstructed using the cons operator :: that
constructs/deconstructs a list from its head and its tail (the rest of the list):

1::{2, 3, 4} = {1, 2, 3, 4};

The nil keyword can be used to specify an empty list and is equivalent to {}.

3.3.2.2 Tuples

Tuples are like records, but without field names. They can be used directly, without
previous declaration of a corresponding tuple type. The syntax of a tuple is a
comma-separated list of values or variables, e.g. (..., ..., ...). The following is a tuple
of a real value and a string value, using the tuple data constructor:

(3.14, "this is a string")

The declaration of tuple variables uses a Java like syntax. For example a variable
with its value described by the tuple above has the following declaration:

tuple<Real, String> varName;

Solution of Equations 51

Tuples already existed in a limited way in previous versions of Modelica since
functions with multiple results are called using a tuple for receiving results, e.g.:

(a,b,c) := foo(x, 2, 3, 5);

In the pattern matching context the syntax that constructs the tuple,. reverses its
semantics and it used to access the values of its elements.

3.3.2.3 Options

Option types are used to model optional constructs. The option types are similar to
C/C++ or Java null values. The values of a variable of this type can be NONE or
SOME(value):

SOME(3.14);
NONE();

The declaration of option variables uses a Java like syntax. For example a variable
with its value described by the option above has the following declaration:

Option<Real> varName;

The SOME(...) and NONE() constructors are also used for decomposing option
values in the pattern matching context. An option type can also be viewed as a
union type consisting of two records SOME (with one field) and NONE (with no
fields).

3.4 Solution of Equations

The process of solving systems of equations is central for the execution of equation-
based languages. For example:

• Differential equations are solved by numeric differential equation solvers.
• Differential-algebraic equations are solved by numeric DAE solvers.
• Algebraic equations are solved by symbolic manipulation and/or numeric

solution
• Single-assignment equations are solved by performing an assignment.
• Pattern equations are solved by the process of unification which assigns

values to unbound variables in the patterns.

The first three solution procedures are used in current Modelica. By the addition of
local equations in match expressions to be solved at run-time, we generalize the
allowable kinds of equations in Modelica.

52 Chapter 3 Extending Equation-Based Object-Oriented Languages

3.5 Pattern Matching

In this section we present the design of the pattern matching expression construct.
Pattern matching expressions may occur where expressions can be used in Modelica
code. This section is partially based on (Stavåker et al. 2008 [149]).

Pattern matching is a well-known, powerful language feature found in functional
programming languages. In this section we present the design of pattern matching
for Modelica. A pattern matching construct is useful for classification and
decomposition of (possibly recursive) hierarchies of components such as the union
type structures in the MetaModelica language extension. We argue that pattern
matching not only is useful for language specification (as in the MetaModelica
case) but also to write concise and neat functional-style programs. One useful
application is in list processing (lists are currently missing from Modelica but are
part of MetaModelica). Other possible applications are in the generation of models
from other models, e.g. the generation of models with uncertainty equations or
models with different parameters. Another application is the generation of
documentation from models and checking of guidelines or certain properties of
models.

Pattern matching is a general operation that is used in many different application
areas. Pattern matching is used to test whether constructs have a desired structure,
to find relevant structure, to retrieve the aligning parts, and to substitute the
matching part with something else.

In term pattern matching terms are matched against incomplete terms with
variables and in, for instance, string pattern matching finite strings are matched
against regular expressions (a typical application would be searching for
substrings). Term pattern matching (which we will only consider henceforth) can be
stated as: given a value v and patterns p1,…,pN is v an instance of any of the p’s?

Language features for pattern matching (over terms) are available in all
functional programming languages, for instance Haskell (Hudak 2000 [68]), OCaml
(Leroy et al. 2007 [84]), and Standard ML (Milner et al. 1997 [97]). However,
pattern matching is currently missing from state-of-the-art object-oriented equation-
based (EOO) languages. Pattern matching features are also rare in imperative
object-oriented languages even though some research has been carried out (Liu and
Myers 2003 [87], Moreau et al. 2003 [102], Odersky and Wadler 1997 [110],
Zenger and Odersky 2001 [176]). In (Liu and Myers 2003 [87]), for instance, the
JMatch language which extends Java with pattern matching is described.

The language described in (Emir et al. 2007 [36]) promotes the use of pattern
matching constructs in object-oriented languages as a means of exploring class
hierarchies. One could for instance apply the visitor pattern to solve the same
problem but as (Odersky 2006 [109]) notes this requires a lot of code scaffolding
and nested patterns are not supported.

The pattern matching construct for Modelica was first presented in a paper on
Modelica meta-programming extensions (Pop and Fritzson 2006 [130]).

Pattern Matching 53

3.5.1 Syntax

We begin by giving the grammar rules.
match_keyword :
 match
 | matchcontinue

match_expression :
 match_keyword expression
 [opt_string_comment]
 local_element_list
 case_list case_else
 end match_keyword ";"

case_list :
 case_stmt case_list
 | case_stmt

equation_clause_case :
 equation equation_annotation_list
 | (* empty *)

case_stmt :
 case seq_pat
 [opt_string_comment]
 local_element_list
 equation_clause_case
 then expression ";"

case_else :
 else [opt_string_comment]
 local_element_list
 equation_clause_case
 then expression ";"
 | (* empty *)
local_element_list :
 local element_list
 | (* empty *)

The grammar rules that have been left out are rather self-describing (except the rule
for patterns, seq_pat, which will not be covered here). An
equation_annotation_list, for instance, is a list of equations. Only local,
time-independent equations may occur inside a pattern matching expression and
this must be checked by the semantic phase of the compiler. The difference between
a pattern matching expression with the keyword match and a pattern matching
expression with the keyword matchcontinue is in the fail semantics. When the
matchcontinue keyword is used a failure within the case statement execution will
continue with the execution of the next case that matches the same pattern. When
the match keyword is used, a failure in any of the cases will trigger the failure of
the entire function. The syntax can also be given (approximately) as follows.

54 Chapter 3 Extending Equation-Based Object-Oriented Languages

matchcontinue (<var-list>)
 local
 <var-decls>
 ...
 case (<pat-expr>)
 local
 <var-decls>
 equation
 <equations>
 then <expr>;
 ...
end matchcontinue;

The <pat-expr> expression is a sequence of patterns. A pattern may be:

• A wildcard pattern, denoted _.
• A variable, such as x.
• A constant literal of built-in type such as 7 or true.
• A variable binding pattern of the form x as pat.
• A constructor pattern of the form C(pat1,…,patN), where C is a record

identifier and pat1,…,patN are patterns. The arguments of C may be named
(for instance field1=pat1) or positional but a mixture is not allowed. We
may also have constructor patterns with zero arguments (constants).

3.5.2 Semantics

The semantics of a pattern matching expression is as follows: If the input variables
match the pattern-expression in a case-clause, then the equations in this case-clause
will be executed and the matchcontinue expression will return the value of the
corresponding then-expression. The variables declared in the uppermost variable
declaration section can be used (as local instantiations) in all case-clauses. The local
variables declared in a case-clause may be used in the corresponding pattern and in
the rest of the case-clause. The matching of patterns works as follows given a
variable v.

• A wildcard pattern, _, will succeed matching anything.
• A variable, x, will be bound to the value of v.
• A constant literal of built-in type will be matched against v.
• A variable binding pattern of the form x as pat: If the match of pat

succeeds then x will be bound to the value of v.
• A constructor pattern of the form C(pat1, …, patN): v will be matched

against C and the sub-patterns will be matched (recursively) against parts of
v.

Pattern Matching 55

3.5.3 Discussion on Type Systems

Modelica features a structural type system (Modelica.Association 2007 [100]).
Another class of type systems is nominal type systems. In a structural type system
two types are equal if they have the same structure and in a nominative type system
this is determined by explicit declarations or the name of the types. Consider the
following two records:

record REC1
 I
end REC1;

nteger int1, int2;

record REC2
 nteger int1, int2; I
end REC2;

In a structural type system these two types would be considered equal since they
have the same components. In a nominative type system, however, they would not
be equal since they do not have the same names. Also in a nominal type system a
type is a subtype of another type only if it is explicitly declared to be so (nominal
subtyping). Consider the following three records.

record A
 Integer B, C;
end A;

record E1
 Integer B, C, D;
end E1;

record E2
 extends A;
 I
end E2;

nteger D;

In a structural type system record E1 would be a subtype of record A while in a
nominative type system this would not be the case. Record E2, however, would be
considered to be a subtype of record A in a nominative type system since an
inheritance relation is explicitly declared. Java is an example of a language that uses
nominative typing while C, C++, and C# use both nominative and structural (sub)-
typing (Pierce 2002 [124]).

The typing rules in Modelica have to be augmented with nominal type system
rules when typing pattern matching constructs. This is rather easy to enforce as we
know that the records appearing in pattern matching should be part of a uniontype.
When checking if a record is a subtype of another record and any of them appear in
a uniontype then the subtyping rule will succeed only if they have the same name
(they are equivalent) or if there is a explicit inheritance relation between them.

56 Chapter 3 Extending Equation-Based Object-Oriented Languages

3.6 Exception Handling

Any mature modeling and simulation language should provide support for error
recovery. Errors might always appear in the runtime of such languages and the
developer should be able to specify alternatives when failures happen. In this
section we present the design of exception handling for Modelica. The next chapter
presents the implementation of exception handling. To our knowledge this is the
first approach of integrating equation-based object-oriented languages (EOO) with
exception handling.

According to the terminology defined in IEEE Standard 100 (IEEE 2000 [69]),
we define an error to be something that is made by humans. Caused by an error, a
fault (also bug or defect) exists in an artifact, e.g. a model. If a fault is executed this
results in a failure, making it possible to detect that something has gone wrong.

Approaches to statically prevent and localize faults in equation-based object-
oriented modeling languages are presented in (Bunus 2004 [19]) and (Broman 2007
[18]). However, here we focus on language mechanisms for dynamically handling
certain classes of faults and exceptional conditions within the application itself.
This is known as exception handling. An exception is a condition that changes the
normal flow of control in a program.

Language features for exception handling are available for most modern
programming languages, e.g. object oriented languages such as Java (Gosling et al.
2005 [62]), C++ (Stroustrup 2000 [150]), and functional languages such as Haskell
(Hudak 2000 [68]), OCaml (Leroy et al. 2007 [84]), and Standard ML (Milner et al.
1997 [97]). However, exception handling is currently missing from object-oriented
equation-based (EOO) languages.

A short sketch of the syntax of exception handling for Modelica was presented
in a paper on Modelica meta-programming extensions (Fritzson et al. 2005 [51]),
but the design was incomplete, not implemented, and no further work was done at
that time.

The design of exception handling capabilities in Modelica is currently work in
progress (Pop et al. 2008 [134]). The following constructs are being proposed:

• A try...catch statement or expression.
• A throw (...) call for raising exceptions.

We have tried to keep the design of syntax and semantics of exception handling in
Modelica as close as possible to existing language constructs from C++ and Java,
while being consistent with Modelica syntax style.

3.6.1 Applications of Exceptions

In this section we provide examples of exception handling usefulness. There are
three contexts in which exceptions can be thrown and caught: expression level,
algorithm level, and equation level.

Exception Handling 57

import Modelica.Exceptions=Exn;

function log
 input Real x;
 R
algorithm

output eal y;

 y :=
 if x <= 0
 then
 throw (Exn.InvalidArgumentException(
 message="Logarithm is undefined for ..."))
 else

end log;

 Modelica.Math.log(x);

The function log above will throw an exception if it is provided with an invalid
argument. This is not only useful for mathematical functions, but also for functions
(i.e. like the ones in the Modelica.Utilities package) that deal with errors due
to the operating system. A standard hierarchy of exceptions in common for all tools
could be defined in the Modelica Standard Library for all the exception categories
needed. Depending on the simulation runtime implementation (i.e., language of
choice) of the Modelica tool implementation, exceptions could be translated from
Modelica to the runtime and back.

A model that uses the try-catch construct in the expression and equation
contexts is presented below:

model Test
 // try to read a value from file
 // and if it fails just give it
 // a default value.
 parameter Real p=
 try
 RealParameter("file.txt","p") read
 catch(Exn.IOException e)
 0
 end try;
 Real x;
 Real y;
equation
 try
 log(x); y =
 catch(Exn.InvalidArgumentException e)
 // terminate the simulation with
 // a message on what went wrong
 terminate(e.message);
 end try;
end Test;

58 Chapter 3 Extending Equation-Based Object-Oriented Languages

In the Test model examples of exception handling in expressions and equations are
shown. In the case of exception handling in equations the example just terminates
the simulation with an exception.

As one may have noticed the exceptions can be thrown during:

• Compile time for expressions or functions that are evaluated at compile
time, e.g. as part of parameter expressions.

• Simulation time, due to exceptions thrown within the solver, functions,
expressions, or equations.

All the exceptions thrown during compile time are reported to the user. The
exceptions which are caught are reported as warnings and the un-caught ones are
reported as errors.

3.6.2 Exception Handling Syntax and Semantics

In this section we present the design of the exception handling constructs. The
grammar of the try-catch constructs is given below. The grammar follows the style
from the Modelica Specification (Modelica.Association 2007 [100]) and uses
constructs defined there. Different try clauses for each of the expression, statements
and equations contexts are defined.

exception_declaration:
 type_specifier IDENT
 ["(" exception_arguments ")"]

exception_arguments:
 expression
 ["," exception_arguments]
 | named_arguments
named_arguments:
 named_argument ["," named_arguments]

named_argument:
 IDENT "=" expression

name:
 IDENT ["." name]

throw_clause:
 throw ["(" name
 ["(" exception_arguments ")"] ")"]

try_clause_expression:
 try
 expression
 (else_catch_clause_expression
 | catch_clause_expression

Exception Handling 59

 { catch_clause_expresion }
 [else_catch_clause_expression])
 end try

catch_clause_expression:
 catch "(" exception declaration ")"
 expression

else_catch_clause_expression:
 elsecatch
 expression

try_clause_algorithm:
 try
 { statement ";" }
 (else_catch_clause_algorithm
 | catch_clause_algorithm
 { catch_clause_algorithm }
 [else_catch_clause_algorithm])
 end try

catch_clause_algorithm:
 catch "(" exception declaration ")"
 { statement ";" }

else_catch_clause_algorithm
 elsecatch
 { statement ";" }

try_clause_equation
 try
 { equation ";" }
 (else_catch_clause_equation
 | catch_clause_equation
 { catch_clause_equation }
 [else_catch_clause_equation])
 end try

catch_clause_equation:
 catch "(" exception_declaration ")"
 { equation ";" }

else_catch_clause_expression:
 elsecatch
 { equation ";" }

Throwing via throw; without any formal parameter can only appear inside the
catch clause and will throw the currently caught exception. This grammatical
constraint is not specified in the above grammar to keep it simple, since it can
instead be checked by the semantics phase.

60 Chapter 3 Extending Equation-Based Object-Oriented Languages

The try-catch clauses shown here belong to the various contexts rules in the
Modelica grammar: expressions, algorithm sections, and equation sections.

3.6.2.1 Exception Handling for Statements

The statement variant has approximately the following syntax:
try
 <st
catch(<exception_declaration>)

atements1>

 <statements2>
end try;

The semantics of a try-catch for statements is as follows: An exception generated
from a failure during the execution of statements1 will lead to the execution of
statements2 if the exception matches the catch clause.

3.6.2.2 Exception Handling for Expressions

The syntax of the expression variant is as follows:
try
 <ex
catch(<exception_declaration>)

pression1>

 <expression2>
end try;

The semantics of a try-catch for expressions is as follows: An exception generated
from a failure while executing expression1 will lead to the execution of
expression2 if the exception matches the catch clause.

3.6.2.3 Exception Handling for Equation Sections

What does it mean to have exception handling for equation-based models? For
example, if an uncaught exception, e.g. division by zero, occurs in any of the
expressions or statements executed during the solution of the equation-system
generated from the model, the catch could handle this, e.g. by simulating an
alternative model (providing alternate equations), or stopping the simulation in a
graceful way, e.g. by an error-message to the user.

The number of equations within the try construct must be the same as the
number of equations in the catch part. This restriction is needed because models
must be balanced. Of course, the restriction does not apply for the catch parts that
only terminates the simulation and reports an error.

The syntax of the equation variant is as follows:
try
 <equations1>
catch(<exception_declaration>)
 <equations2> | <terminate(...)>
end try;

Exception Handling 61

The semantics of a try-catch for equations is as follows: If a failure generating an
exception occurs during the solution of the equations in the set of equations denoted
equations1, then if the catch matches the raised exception, then instead the
equations2 set is solved.

The source of the exception can be in the expressions and functions called in
equations1, which are evaluated during the solving process. Certain exceptions
might originate from the solver. In that case, a few selected solver exceptions need
to be standardized and predefined.

The semantics of try-catch for equations is similar to the one for if-equations,
with the difference that the event triggering the catch block is when an exception is
thrown.

There could be several different semantics for try-catch in equation sections.
Some of them are discussed in Section 3.6.5.

3.6.2.4 Exception Handling and External Functions

The compiler should be able to check the exceptions in order to:

• Report an error if the catch part tries to catch an exception that will never be
thrown.

• Report exceptions that are not caught anywhere
• Generate efficient code for exceptions

The compiler can at compile time automatically find out what exceptions are
thrown from models and functions defined in Modelica. However, the compiler
must be provided with additional help when it comes to external functions.
Therefore, when declaring external functions, the exceptions that might be thrown
by them have to be declared too.

We could model this additional information in two ways: directly in the
grammar or as annotations.

Directly in the grammar as part of the element_list (see the Modelica
grammar for the element list specification) of the function or model:

throws_declaration:
 throws name { "," name } ";"

The possible exceptions to be thrown are not really needed to specify using a
special language construct, we could use annotations instead:

annotation(throws={name1, name2, ... };

Names used above are defined according to the exception name grammar rule
specified at the beginning of this section.

In the literature this feature of the compiler (or the language) is called Checked
exceptions (Roy and Haridi 2004 [138]).

62 Chapter 3 Extending Equation-Based Object-Oriented Languages

3.6.3 Exception Values

In this section we discuss different ways of representing exception values in
Modelica. In general exceptions are values of a user defined type. Certain
exceptions, such as DivisionByZero or ArrayIndexOutOfBounds are
predefined. The user should be able to define exceptions hierarchically (i.e.,
packages of exceptions) and use inheritance to add extra information (components)
to existing exceptions, thus creating specialized exceptions.

3.6.3.1 Exceptions as Types

We can model exceptions as a built-in Modelica type Exception. A pseudo-class
declaration of such a type and its usage would look like:

type Exception
 // the value of the exception is
 // a string, accessed directly
 StringType ’value’
end Exception;

// D
type E1

efining a new exception

 extends Exception;
end E1;

// Instantiate new exception
E1 e1 = "exception E1";
// Raise new exception
throw e1;

// A
type E2

dding more information to an exception

 extends E1;
 parameter String moreInfo;
 end E2;

// Instantiate the exception
E2 e2(moreInfo="E2 add") = "exception E2";

// Throw exception
throw(e2);

try
 ...
catch(E2 e2)
 // here you can access the e2 value directly
 // but you cannot access e2.moreInfo

catch(E1 e1)
 // here you can access the
 /
end try;

/ value of e1 directly

Exception Handling 63

Because we extend a basic type, it is possible to add more information to the
exception, but this information cannot be accessed via dot notation.

3.6.3.2 Exceptions as Records

Another way to model exceptions is as Modelica records.
record Exception

end Exception;

parameter String message;

// defining a new exception
record E1
 extends Exception(message="E1");

end E1;

parameter String moreInfo;

// instantiate new exception
E1 e1(moreInfo="More Info");

// ra
throw(e1);

ise new exception

// Try and catch
try ...
catch (E1 e1)
 // here you can access e.message
 // and e.moreInfo
catch (Exception e)
 / here you can access e.message /
end try;

Modeling exceptions as records has many of the desired properties that a user might
want. The problems we see here are that:

• Is not very intuitive to throw and catch arbitrary records.
• The hierarchical structure is partly lost during flattening, which means that

for the records used in the throw/try-catch constructs this information
should be preserved.

• The inheritance hierarchy is flattened for records and one would like to keep
it intact to be able to catch exceptions starting from very specific (at the
bottom of the inheritance hierarchy) to more general (at the top of the
inheritance hierarchy)

We think that a better approach is with a new restricted Modelica class called
exception.

3.6.3.3 Exceptions as new Restricted Class: exception

We believe that the best way to model exceptions in Modelica is by extending the
language with a new restricted class called exception. Moreover, similar design

64 Chapter 3 Extending Equation-Based Object-Oriented Languages

choices have been made in Java or Standard ML, with their predefined exception
types. In Java one can only throw objects of the java.lang.Throwable and its
superclass java.lang.Exception. The C++ language allows throwing of values
of any type. In Standard ML and OCaml exception values and their types need to be
defined using a special syntax.

Exceptions can be represented in Modelica as a new restricted class in the
following way:

exception E1

end E1;

parameter String message;

E1 e1(message="More Info");
throw(e1); // raise new exception

// defining a new exception
exception E2
 extends E1(message="E2");
 parameter String moreInfo;
end E2;

// instantiate new exception
E2 e2
throw(e2); // raise new exception

(moreInfo="More Info");

try ...
catch(E2 e2)
 // here you can access e.message
 // and e.moreInfo
catch(E1 e1)
 / re you can access e.message / he
end try;

Having a specific restricted class for exceptions would have the following
advantages:

• Throwing and catching only values of restricted class exception is more
intuitive than using records.

• Both the structural hierarchy and the inheritance hierarchy of the exceptions
can be kept during flattening and translated to C++, Java, Standard ML, or
OCaml code more easily.

• The type checking of throw and try-catch constructs would be more specific
and straightforward.

3.6.4 Typing Exceptions

Modelica features a structural type system, which means that two structures can be
in the subtype relationship even if they have no explicit inheritance specified
between them.

Exception Handling 65

The type checking procedure for exceptions has to be different than for all the other
constructs, namely:

• Only restricted classes of type exception can be thrown.
• When elaborating declarations of the restricted class exception the

subtype relationship applies only if there is specific inheritance relation
between exceptions. This is needed because the exceptions have to be
matched by name and have to be ordered so that the most specific case
(supertype) is first and the least specific (subtype) is last in a catch clause.

• When translation declarations of restricted class exception there will be
no flattening of the inheritance hierarchy.

• When elaborating catch clauses the compiler has to: i) match the exception
by name, ii) reorder the catch clauses in the inverse order of the inheritance
relation between exceptions or give an error if the less specific exceptions
are matched before the more specific ones.

• The compiler has to check if an exception specified in the catch clause will
actually be thrown from the try body or not. If such an exception is not
thrown the compiler can either discard the catch clause or issue a
warning/error at that specific point.

With these new rules the typing of exception declarations, exception values and
catch clauses can be achieved. After the translation, the runtime system and the
language in which was implemented (C++, Java, Standard ML) will provide the rest
of the checking for exceptions.

3.6.5 Further Discussion

During the design and implementation of exception handling we have encountered
various issues which we present in this section. The exception handling in
expressions and algorithm sections is straightforward. However when extending
exception handling for equation sections there are several questions which influence
the design choices that come to mind:

Questions: Is the exception handling necessary for equation sections? If yes, what is
the semantics that would bring the most usefulness to the language?

Answers: We believe that exception handling is necessary in the equation sections
at least to give more useful errors to the user (i.e., with terminate(message) in
the catch clause) or to provide an alternative for gracefully continuing the
simulation. Right now in Modelica there is no way to tell where a simulation failed.
There are assert statements that provide some kind of lower level checking but they
do not function very well in the context of external functions. As an example where
alternative equations for simulation might be needed we can think of the same
system at a different level of detail. Where the detailed model can fail due to

66 Chapter 3 Extending Equation-Based Object-Oriented Languages

complexity and numerical problem the simulation can be continued with the less
complex model.

3.6.5.1 Semantics of try-catch in Equation Sections

Several semantics can be employed to deal with try- catch clauses in equation
sections:

1. Terminate the simulation with a message (as we show in section 3.6.1)
2. Continue the simulation with the alternative equations from the catch clause

activated and the ones from the try-body disabled. When the exception occurs
the calculated values in that solver step are discarded and the solver is called
again with previous values and the alternative from the catch clause.

3. Signal the user that an exception occurred and restart the simulation from the
beginning with the catch-clause equations activated.

4. When an exception occurs, discard the values calculated in the current step and
activate the alternative equations from catch-clause. However, at the next step
try again the equations from the try-body. This will make the catch-clause
equation active only for the steps where an error might occur.

We believe that the most useful design for exception handling in equation sections
is the one that has both features 1 and 2 active.

3.7 Related Work

We are not aware of any other existing EOO language that contains general purpose
meta-modeling and meta-programming facilities.

With regards to the meta-modeling facilities present in the MetaModelica
language we can consider as related work the Unified Modeling Language (UML).
Modeling in the UML sense has more emphasis on graphical notation for modeling
rather than precise mathematical model definitions as in the modeling languages
mentioned in the previous sections. Initially, execution support was lacking, but
during recent years code generators from executable subsets of UML2 have
appeared. Also, during recent years, there has been an increased interest in model-
driven developments and the OMG has launched the model-driven architecture,
primarily based on UML models.

The idea of meta-modeling has attracted increased interest: a meta-model
describes the structure of models at the next lower abstraction level. Meta-modeling
and meta-programming allows transformations and composition of models and
programs, which is becoming increasingly relevant in order to specify and manage
complex industrial software and system applications.

However, UML has developed into a rather heterogeneous collection of
modeling notations. Also, precise mathematically defined semantics is not always
available for these graphical notations. By contrast, MetaModelica is defined

Conclusions and Future Work 67

exclusively based on equations, functions, and meta-functions. Similar meta-
programming facilities are present in functional languages like SML, Haskell and
OCaml but the execution strategy is different in these languages as they do not
support backtracking to select cases.

Further related work is presented in the next chapter where we give performance
evaluation of the MetaModelica compiler prototype implementation.

3.8 Conclusions and Future Work

We have presented the integration of two executable specification languages: RML
for Natural Semantics specifications of programming languages, and Modelica for
equation-based semantics and mathematical modeling of complex systems. The
language resulted from the integration is called MetaModelica − a unified
mathematical and semantical modeling language generalizing the concept of
equation and introducing local equations, match expressions and exception handling
in the Modelica language. This gives interesting perspectives for the future
regarding safe meta-modeling, model transformations, and compositions during
simulation, etc.

The OpenModelica compiler has been ported to the new unified Modelica
modeling language, resulting in ~140000 lines of code expressed in the unified
language. A compiler for MetaModelica has been completed and its implementation
and evaluation are the focus of the next chapter. We have also developed an
integrated development environment (see Chapter 8) based on Eclipse which
facilitates the development and debugging of MetaModelica models (PELAB 2006-
2008 [119]). The MetaModelica language can be used to write semantic
specifications for a broad spectrum of languages ranging from functional to
imperative languages. We have also translated all our RML specification examples
to MetaModelica in order to provide teaching material for the new language. The
current specifications include imperative, functional, equation-based, and object-
oriented languages.

The unified MetaModelica language gives new perspectives for a broad range of
items, from programming and modeling languages to physical systems, but also
including model transformations and composition. Apart from language
specification to generate interpreters and compilers, symbolic differentiation rules
for differentiating expressions and equations have been specified in MetaModelica
and is in use.

We have also presented the design of exception handling for Modelica. We
strongly believe in the need for a well designed exception handling in Modelica. By
adding exception handling constructs to the language we get a more complete
language and provide the developer with means to better control exceptional
conditions and errors. There are several issues that have to be considered when
designing and implementing these constructs which we have discussed in this
chapter.

68 Chapter 3 Extending Equation-Based Object-Oriented Languages

The design of pattern matching for Modelica was also addressed. By adding this
language feature to Modelica we provide a more powerful and complete language.
Pattern matching is useful for traversing hierarchies of components, for writing
functional-style programs, traversing lists, etc.. Pattern matching is the most useful
for handling MetaModelica constructs such as lists, tuple, options and union types.
The possibility to pattern match over record-hierarchies is also considered. Even if
decomposition of records can be done in a straightforward way through the dot-
notation, checking the structure of a hierarchical record would imply a lot of if-
statements that would be error-prone to be written.

One medium term goal for the MetaModelica language is its implementation in
the OpenModelica compiler, thus being bootstrapped in itself. A long-term vision is
the visual development of compilers for any language by using drag and drop on
semantic components from libraries which are then connected together in a similar
way the physical systems are modeled today in Modelica.

Chapter 4

Efficient Implementation of Meta-
Programming EOO Languages

4.1 Introduction

In this chapter we present the implementation details of the systems supporting the
MetaModelica language. To quickly prototype a compiler for the MetaModelica
language we extended the RML compiler to support the new syntax and some of the
new semantics.

For full MetaModelica language support we are currently working on extending
the OpenModelica compiler (that supports the Modelica language) with the missing
meta-modeling, meta-programming and exception handling features. Our goal is to
bootstrap the OpenModelica compiler, thereby making the MetaModelica compiler
prototype obsolete.

4.2 MetaModelica Compiler Prototype

The first prototype compiler for the MetaModelica language is based on the RML
compiler. The RML compiler was extended with a new parser for MetaModelica
and an internal translation phase from MetaModelica to RML. Also, debugging
facilities (see Chapter 5 and Chapter 7) were added and the garbage collection of
the RML system was extended with mutable references. The prototype is heavily
used in the development of the OpenModelica compiler for several years. Since we
switched to the MetaModelica syntax, implemented the debugger and the
interactive environment (MDT) various people from the Modelica community
started to provide contributions to the OpenModelica compiler.

70 Chapter 4 Efficient Implementation of Meta-Programming EOO Languages

However, our final goal is to be able to bootstrap the OpenModelica compiler to be
able to use the full Modelica language features together with the meta-programming
extensions.

MetaModelica Code
Parse

MetaModelica AST

MetaModelica to RML
transformation

RML AST

FOL AST

CPS AST

Code AST

ANSI-C

Executable

Reordering
Static Elaboration

(Typecheck)
RML AST to FOL

CPS to Code

Linking with the
 RML runtime system

Code to ANSI-C

FOL to CPS via Pattern-Matching Compiler

Figure 4-1. MetaModelica Compiler Prototype – compilation phases.

4.2.1 Performance Evaluation of the MetaModelica Compiler
Prototype

We are not aware of any language that is very similar to the MetaModelica
language. However, the meta-modeling and meta-programming parts of the
MetaModelica language are close to logic/functional languages. Backtracking is

MetaModelica Compiler Prototype 71

used within the match construct (matchcontinue) to select the correct case and the
specifications can contain logical variables. The union types are similar to the SML
datatype definitions, however MetaModelica functions have multiple inputs and
outputs not just one argument like in SML. Also, because a reordering phase is
applied to the MetaModelica code there is no need to explicitly declare mutually
recursive types and functions.

All the information, the test code and the files needed to reproduce our results
are available online at: http://www.ida.liu.se/~adrpo/phd/tests. Also you can contact
the author for any information regarding the performance evaluation tests.

We have compared the execution speed of our generated code with SWI-Prolog
5.6.9 (SWI-Prolog [151]), SICStus Prolog 3.11.2 (SICS [147]), Maude MSOS Tool
(MMT) on top of Maude 2.1.1 (Maude.Team [92]). The Maude MSOS Tool
(MMT) is an execution environment for Modular Structural Operational Semantics
(MSOS) (Mosses 2004 [103]) specifications that brings the power of analysis
available in the Maude system to MSOS specifications. The Maude MSOS Mini-
Freja translation was implemented by Fabricio Chalub and Christiano Braga and is
available as a case study together with sources from http://maude-msos-
tool.sourceforge.net/. SWI-Prolog is a widely known open source implementation
of Prolog. SICStus Prolog is a commercial Prolog implementation.

The closest match to the meta-modeling and meta-programming facilities of the
MetaModelica compiler prototype is the Maude MSOS Tool.

The test case is based on an executable specification of the Mini-Freja language
(Pettersson 1999 [122]) running a test program based on the sieve of Eratosthenes.
Mini-Freja is a call-by-name pure functional language. The test program calculates
prime numbers. The Prolog translation (mf.pl) was implemented by Mikael
Pettersson and this author corrected a minor mistake.

The comparison was performed on a Fedora Core4 Linux machine with two
AMD Athlon(TM) XP 1800+ processors at 1500 MHz and 1.5GB of memory.

Table 4-1. Execution time in seconds. The – sign represents out of memory.

MetaModelica SICStus SWI Maude MSOS Tool

8 0.00 0.05 0.00 2.92

10 0.00 0.10 0.03 5.60

30 0.02 1.42 1.79 226.77

40 0.06 3.48 3.879 -

50 0.13 - 11.339 -

100 1.25 - - -

200 16.32 - - -

http://www.ida.liu.se/%7Eadrpo/phd/tests
http://maude-msos-tool.sourceforge.net/
http://maude-msos-tool.sourceforge.net/

72 Chapter 4 Efficient Implementation of Meta-Programming EOO Languages

The memory consumption was at peak 9Mb for MetaModelica and the others
consumed the entire 1.5Gb of memory and aborted at around 40 prime numbers.
With this test we stressed only the meta-programming and meta-modeling part of
the compiler.

4.3 OpenModelica Bootstrapping

The MetaModelica compiler prototype cannot handle the entire Modelica language.
To construct a compiler for the complete MetaModelica language we decided to
extend the OpenModelica compiler (OMC) with the missing features: pattern
matching, exception handling, union types, lists, etc. This way the OpenModelica
compiler could be bootstrapped and the MetaModelica compiler would not be
needed anymore.

This is also according to our long-term vision of the meta-programming and
meta-modeling facilities in MetaModelica: to enable more modular and extensible
tooling, as earlier discussed.

4.3.1 OpenModelica Compiler Overview

The OpenModelica compiler phases are presented in the following (see also Figure
4-2). The MetaModelica code is first parsed and then translated into a so-called
“flat model”. This phase includes type checking, performing all object-oriented
operations such as inheritance, modifications, compilation of pattern matching,
translation of meta-functions to C code. The flat model includes a set of equations,
declarations, functions, and meta-functions, with all object-oriented structure
removed, apart from the dot notation within the names. This process is called the
“partial flattening” of the model.

The next step is to solve the system of equations. First the equations need to be
transformed into a suitable form for the numerical solvers. This is done by the
symbolic and the numerical module of the compiler. The simulation code generator
takes as input the flattened form of the equations. The equations are mapped into an
internal data structure that permits simple symbolic manipulations such as: common
subexpression elimination, algebraic simplifications, constant folding, etc. These
symbolic operations substantially decrease the complexity of the system of
equations. After this stage the Block Lower Triagular form of the system of
equations is computed.

Finally, in the last phase, the procedural code (in our implementation C code), is
generated based on the previously computed BLT blocks when each block is linked
to a numerical solver and the runtime for the meta functions. Within the C code the
meta functions are called like normal functions.

OpenModelica Bootstrapping 73

 MetaModelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

MetaModelica
models

Flat model

Sorted equations

Optimized sorted
equations

C Code

Executable

Translator Phases:
- Static Elaboration
- Type Checking
- Optimization to reduce
 nondeterminism within
 match constructs
- Pattern Matching compilation
- Translation of meta functions
 to continuation passing style
 (CPS)

Optimizer Phases:
- local CPS optimizations
- equation optimizations
- translation of CPS to Code
- Code optimizations

Figure 4-2. The stages of translation and execution of a MetaModelica model.

The detailed architecture of the OpenModelica compiler can be seen in Figure 4-3.
One can see that there are three main kinds of packages:

• Function packages that perform a specified function, e.g. Lookup, code
instantiation, etc.

• Data type packages that contain declarations of certain data types, e.g.
Absyn that declares the abstract syntax.

• Utility packages that contain certain utility functions that can be called from
any package, e.g. the Util package with general list processing functions.

The functionality classification is not clear cut, since certain packages perform
several functions. For example, the SCode package primarily defines the lower-
level SCode tree structure, but also transforms Absyn into SCode. The DAE
package defines the DAE equation representation, but also has a few routines to emit
equations via the Dump package.

74 Chapter 4 Efficient Implementation of Meta-Programming EOO Languages

SCode
/explode

Lookup

Parse DAELow Inst

Ceval

Static

Absyn SCode
DAE: Equations

Algorithms

(Env, name)
SCode.Class

Exp.Exp

SCode.Exp
(Exp.Exp,

 Types.Type)

(Env, name)

Mod Connect

Derive

CodeGen

VarTransform

ClassInf

Prefix

SimCodeGen

DAE: Functions

Absyn

Data Type
Modules:

SCode

Types

Algorithm

DAE

Exp

DAEEXT

Dump

Utility
Modules:

Debug

ModUtil

SystemPrint RTOpts

Builtin

DAELow.DAELow

C code

DAE,
substlist

DAE
Exp.Exp Exp.Exp

ClassInf.Event

Exp.Ident Prefix.Prefix

Types.Mod SCode.Mod Exp.Componentref DAE

ClassInf.State

.mo

Main

Util

ClassLoader

Dump DAE
Flat Modelica

MetaUtil

DFA

Patternm

Values.Value

Exp.Exp

Figure 4-3. OpenModelica compiler packages and their connection.

A short description of the most important packages is provided below:

• The Main package calls a number of functions in other packages, including the
parser package Parse, etc.

• The parser generates abstract syntax (provided by the Absyn package) which is
converted to the simplified intermediate form (specified in the SCode package).

• The code instantiation package Inst is the most complex module, and calls many
other packages. It calls Lookup to find a name in an environment, Prefix for
analyzing prefixes in qualified variable designators (components), Mod for
modifier analysis and Connect for connect equation analysis. It also generates
the DAE equation representation which is simplified by DAELow and fed to the
SimCodeGen code generator for generating equation-based simulation code, or
directly to CodeGen for compiling Modelica/MetaModelica functions into C
functions

• The Ceval package performs compile-time or interactive expression evaluation
and returns values. The Static package performs static semantics and type
checking.

• The DAELow package performs BLT sorting and index reduction. The DAE
package internally uses Exp.Exp, Types.Type and Algorithm.Algorithm;
data structures.

High-level Data Structures Implementation 75

• The Vartransform package called from DAELow performs variable substitution
during the symbolic transformation phase (BLT and index reduction).

• The Patternm package performs compilation of pattern match expressions,
calling the DFA and MetaUtil packages.

4.4 High-level Data Structures Implementation

The implementation of the MetaModelica language extensions in the OpenModelica
compiler involves the addition of several high-level data structures: union types,
lists, tuple types and option types. We describe the general course of action for
adding these novel high-level data structures. We refer to Figure 4-3 for an
overview of the most important packages of the OpenModelica compiler and their
interactions.

Generally, a new data structure type must be added to the compiler type system.
Adding a new simple type to the compiler (such as an integer type) is a relatively
straightforward process: the new type is added to the type system package (Types)
and rules for matching expressions of this new type are added as well. In the back-
end the new type should be matched against a corresponding type in the target
language. Minor changes in a few other packages are needed as well.

However in this case we are dealing with high-level and, in some cases,
parameterized data types, which need to be handled in a different way. The array
parameterized data type, for instance, is treated in a separate manner in the
OpenModelica compiler.

The new data structures may come with new syntax (other than the type
keyword). For instance the list data structure uses new syntax for declaring the list
type as well as list constructor syntax for building lists.

Shortly, the implementation for the extensions with the four high-level data
structures mentioned above (union types, lists, tuple types and option types) follows
these steps:

• Addition to the parser and the abstract syntax package. Note that lists, tuples and
option type variables are parsed as variables of new complex types and union
type variables are parsed as variables of a new restricted class.

• New type matching rules to the type system, etc.
• New expressions associated with the new data structures need to be handled. For

instance the cons-constructor expression (::) in connection with the list type or
the union type record constructor call - MyRecord(1,2,3,4).

• A union type restricted class declaration is treated in a special manner. Lists,
tuples, and option types do not involve class declarations (tuples and option
types can be said to involve class declarations explicitly).

• The new types should be handled as input and output to functions and in match
expressions.

76 Chapter 4 Efficient Implementation of Meta-Programming EOO Languages

• A declaration of a variable of the new types has to be treated separately in the
instantiation phase (the Inst package).

• The new types and the corresponding expressions and constructs are mapped to
suitable target code constructs.

A description of the main packages that have been modified follows:

Absyn: New abstract syntax for the constructs has been added to this package.

Parser: ANTLR is used as an external OpenModelica parser. From a formal
grammar, ANTLR generates a program that determines whether sentences conform
to the language. Typically only a lexer and a parser are used but in the ANTLR case
there is also a walker. The walker maps the abstract syntax from the parser into the
abstract syntax of the OpenModelica Compiler, given by the constructs in Absyn.h
(generated from the Absyn package). The new syntax constructs have been added to
the lexer, parser and walker.

ClassInf: New states for the new types have been added to this package.

Codegen: In this package the new variable types are mapped to void-pointers.
Expressions, such as the Exp.CONS expression representing the list cons
constructor, are mapped into boxes consisting of two fields: a header and the data
(in this case a first and a second field).

The same strategy is applied for union types, option types and tuples – they are
all represented as boxes and void-pointers to these boxes. An option type variable
will thus result in a void-pointer that eithers points to a nil-symbol/empty box or a
normal box, in the generated code.

Exp: This package contains expressions after the instantiation phase, that is,
expression with type information and which have been, perhaps, constant evaluated.

Inst: This is one of the most complex package of the compiler. In the function
instElement a new case-branch has been added that takes care of variable
declaration of the new MetaModelica types.

One must consider the fact that a type may be derived. When handling a
variable/component the function instElement will lookup the type of the variable
in the environment.

The type information is stored in a SCode.Class structure. This is true for both
builtin types and derived types. In the new case-branch for the explicit
MetaModelica variable declaration a SCode.Class structure with derived type is
created (and not looked up in the environment).

Both the new case-branch as well as the case-branch for normal
variables/components will call instVar which will call functions for instantiating
the type class information: instClass, instClassIn and instClassDef. In
instClassDef new case-branches have been added to handle SCode.Classes of
derived MetaModelica types. These case-branches may call instClass recursively
since we may have recursive type declarations.

Pattern Matching Implementation 77

Prefix: New rules for prefixing the new expressions have been added.

SCode: The union type restricted class declarations are transformed into more
suitable form in this package.

Static: In the function elabExp (the function that elaborates expressions) new rules
have been added that elaborates for instance an Exp.CONS expression.

Types: New type records have been added to this package. In the function
subtype, rules for matching these new types have been added.

For more information regarding the implementation of high-level data structures in
the OpenModelica compiler the reader is referred to (Björklén 2008 [13])

4.5 Pattern Matching Implementation

To achieve the meta-programming facilities in the OpenModelica compiler we have
designed and implemented a pattern matching compiler. Since a pattern matching
expression may contain complex nested patterns and partial overlaps between cases
it should be compiled into a simpler, less complex, form. Thus, a pattern matching
expression is compiled into intermediate form (typically if-elseif-else nodes).

The pattern matching construct has been implemented in OMC using the
algorithm described in (Pettersson 1999 [122]). Here a pattern is viewed as an
alternation and repetition-free regular expression over atomic values, constructor
names and wildcards. The algorithm first transforms a matchcontinue expression
into a Deterministic Finite Automata (DFA) with subpatterns on the arcs. This DFA
is then transformed into if-elseif-else nodes. The main goal of the algorithm is to
unify overlapping patterns into common branches in the DFA in order to reduce
code replication. This algorithm will also try to construct branches to already
existing states in order to reduce further code replication. The end result will have
no nested patterns and no overlap between different if-cases.

The algorithm is composed of four steps: Preprocessing, Generating the DFA,
Merging of equivalent states and Generating Intermediate Code. The preprocessing
step takes all the match rules and produces a matrix of (preprocessed) patterns and a
vector of final states (one for each row of patterns). In the next step the DFA is
generated from the matrix and the vector of final states. In the following step
equivalent states are merged and finally, in the last step, the intermediate code is
generated.

We give a small example to illustrate the intuitive idea behind the algorithm (we
use SML style syntax).

case xs
 of C(1) => A1
 | C(2) => A2
 | C2() => A3

The corresponding matrix and right-hand side vector:

78 Chapter 4 Efficient Implementation of Meta-Programming EOO Languages

xs=C(ys=1)		A1
xs=C(ys=2)	,	A2
xs=C2()		A3

We select the first column (the only column). The constructor C matches the first
two cases and the constructor C2 matches the last case. Since C2() does not contain
any subpattern we are done on this “branch” and we reach the final state. We must
continue to match on C’s subpatterns, however, and we introduce a new variable ys.
The variable ys is a pattern-variable, such a variable will be introduced for every
sub-pattern.

case xs
 of C(ys) => ...
 | C2() => A3

The rest of the matrix and vector:
| ys=1 | | A1 |
| ys=2 |, | A2 |

We match the rest of the matrix and vector and we get the result:
case s x
 of C(ys) =>
 (case ys
 of 1 => A1
 | 2 => A2)
 | C2() => A3

Note that in the real algorithm a DFA would first be created (with a state for each
case and right-hand side and arcs for C, C2, ‘1’ and ‘2’). This DFA would then be
transformed into simple-cases.

4.5.1 Implementation Details

The specific OpenModelica translation path for Modelica code with matchcontinue
constructs is presented in Figure 4-4. The matchcontinue expression has been added
to the abstract syntax, Absyn. The pattern matching algorithm is invoked on the
matchcontinue expression in the Inst package. The main function of the pattern
matching algorithm is PatternM.matchMain which is given in a light version
below.

The first function to be called in matchMain is ASTToMatrixForm which
creates a matrix out of the patterns as well as a list of right-hand sides (the code in a
case clause except the actual pattern). This corresponds to step 1 of the above
described algorithm. The list of right-hand side will actually only contain
identifiers, and not all code in a right-hand side, so that the match algorithm does
not need to pass along a lot of extra code. The code in the right-hand sides is saved
in another list and is later added.

Pattern Matching Implementation 79

Figure 4-4. Pattern Matching Translation Strategy.

The matchMain function is presented below.
function matchMain
 input Absyn.Exp matchCont;
 input Env.Cache cache;
 input Env.Env env;
 output Env.Cache outCache;
 A
algorithm

output bsyn.Exp outExpr;

 (outCache,outExpr) :=
 matchcontinue (matchCont,cache,env)
 ...
 case(localMatchCont,localCache,localEnv)
 local
 ...
 equation
 (localCache,...,rhList,patMat,...) =
 ASTtoMatrixForm(localMatchCont, localCache, localEnv);
 ...
 (startState,...) = matchFunc(patMat,rhList,STATE(...));
 ...

SCode

Inst

Parse

Modelica Code
with Pattern Matching

Absyn

SCode

DAE

CodeGen

PatternM

DFA

C++ Functions

80 Chapter 4 Efficient Implementation of Meta-Programming EOO Languages

 dfaRec = DFA.DFArec(..., startState, ...);
 ...
 (localCache,expr) =
 DFA.fromDFAtoIfNodes(dfaRec,...,
 localCache,localEnv,...);
 then (localCache,expr);
 end matchcontinue;
end matchMain;

After this step, the function matchFunc is called with the matrix of patterns, the
right-hand side list and a start state. This function will single out a column, create a
branch and a new state for all matching patterns in the column and then call itself
recursively on each new state and a modified version of the matrix. The function
(roughly) distinguishes between three cases:

• All the patterns in the uppermost matrix row are wildcards.
• All the patterns in the uppermost matrix row are wildcards or constants.
• At least one of the patterns in the uppermost matrix row is a constructor call.

However, due to the fail semantics of a matchcontinue expression we cannot simply
discard all cases below a row with only wildcards as is explained in (Pettersson
1999 [122]). This is due to the fact that a case-clause with only wildcards may fail
and then an attempt to match the subsequent case-clause should be carried out.

Finally, the created DFA is transformed into if-else-elseif nodes (intermediate
code) in the function fromDFAtoIfNodes. This corresponds to step 3 and 4 of the
algorithm described above. The pattern matching algorithm returns a value block
expression containing the if-else-elseif nodes (see section 4.5.1.3). C++ code is then
generated for the value block expression in the Codegen package.

4.5.1.1 Example of Code Generation

We first give an example of the compilation of a matchcontinue expression over
simple types. In the next section we discuss the compilation of pattern matching
over more complex types (union types, lists, etc.).

 function func
 input Integer i1;
 input Integer i2;
 output Integer x1;
 algorithm
 x1 := matchcontinue (i1,i2)
 local Integer x;
 case (x as 1,2)
 equation
 false = (x == 1);
 then 1;
 case (_,_) then 5;
 end matchcontinue;
 end func;

Pattern Matching Implementation 81

The code above is first compiled into intermediate form as seen in Figure 4-4. The
following C++-code is then generated from the intermediate code (note that the
code is somewhat simplified):

{
 modelica_integer x;
 modelica_integer LASTRIGHTHANDSIDE__;
 integer_array BOOLVAR__; /* [2] */
 alloc_integer_array(&BOOLVAR__, 2, 1, 1);
 while (1) {
 try {
 state1:
 if ((i1 == 1) && (BOOLVAR__[1]|| BOOLVAR__[2])) {
 state2:
 if ((i2 == 2) && BOOLVAR__[1]) {
 goto finalstate1;
 }
 else {
 state3:
 if (BOOLVAR__[2]) { goto finalstate2; }
 }
 }
 else {
 goto state3;
 }
 break;
 finalstate1:
 LASTRIGHTHANDSIDE__ = 1;
 x = i1;
 if (x == 1) { throw 1; }
 x1 = 1;
 break;
 finalstate2:
 LASTRIGHTHANDSIDE__ = 2;
 x1 = 5;
 break;
 }
 catch(int i) {
 BOOLVAR__[LASTRIGHTHANDSIDE__]=0;
 }
 }
}

Each state label corresponds to a state in the DFA (which was the intermediate
result of the pattern matching algorithm) and each if-case corresponds to a branch.
See Figure 4-5 for the generated DFA.

82 Chapter 4 Efficient Implementation of Meta-Programming EOO Languages

state1

state2 state3

finalstate1 finalstate2

i1==1

i2==2

_

_

Figure 4-5. Code Example Generated DFA.

Note that if a case-clause fails then the next case-clause will be matched, since we
have a matchcontinue expression. There is an array (BOOLVAR__) with an entry for
each final state in the DFA. If a fail occurs an exception will be thrown and the
catch-clause at the bottom will be executed. The catch-clause will set the array
entry of the case-clause that failed to zero so that when the pattern matching
algorithm restarts (notice the while(1) loop) this case-clause will not be entered
again.

4.5.1.2 Pattern Matching over Union, Lists, Tuples and Option Types

The remaining MetaModelica constructs (that are not present in Modelica) are
currently being added to OMC: lists, union types, option types and tuples.

We briefly discuss pattern matching over variables holding these types.
Consider first an example with union types given below.

uniontype UT

 record REC1
 Integer field1;
 Integer field2;
 end REC1;

 record REC2
 ...
 end REC2;

end UT;

Pattern Matching Implementation 83

matchcontinue (x)
 case (REC1(1,2)) ...
 case (REC1(1,_)) ...
 ...
end matchcontinue;

The example above will result in the following intermediate code.
if (getHeaderNum(x) == 0) then
 Integer $x1 = getVal(x, 1);
 Integer $x2 = getVal(x, 2);
 if ($x1 == 1) then
 if ($x2 == 2) then
 ...
 elseif (true) then
 ...
 end if;
 end if;
elseif (...)
 ...
end if;

Note that static type checking is performed by the compiler to make sure that REC1
is a member of the type of variable x and that it contains two integer fields etc.

Union types are represented as boxed-values, with a header and subsequent
fields, in C++. Each record in a union type is represented by a number (an
enumeration). Since REC1 is the first record in the union type it is represented by
number zero (0). The function getHeaderNum is a builtin function that retrieves
the header of variable x. The function getVal is also a builtin function that
retrieves a data field (given by an offset) from the variable x.

Lists are compiled in a similar fashion.
matchcontinue (x)
 case (1 :: var) ...
 ...
end matchcontinue;

Will result in:
if (true)
then
 Integer $x1 = getVal(x, 1);
 list<Integer> $x2 = getVal(x, 2);
 if ($x1 == 1) then
 ...
 elseif (...)
 ...
 end if;
end if;

84 Chapter 4 Efficient Implementation of Meta-Programming EOO Languages

The symbol :: is the cons constructor. Lists are also implemented as boxed values
in the generated C++ code so this can be done in a straightforward way. An
example of pattern matching over tuples is given below.

matchcontinue (x)
 case ((5, false)) ...
 case ((5, true)) ...
 ...
end matchcontinue;

Will result in:
if (true)
then

Integer $x1 = getVal(x, 1);
Boolean $x2 = getVal(x, 2);

 if ($x1 == 5) then
 ...
 elseif (...)
 ...
 end if;
end if;

Tuples are, just as union types and lists, implemented as boxed values in C++. The
builtin function getVal takes an index and offsets into a boxed value in order to
obtain the correct field. Finally, option types are dealt with in a similar manner as
union types.

Note that the reason why we need a run-time type check of union types is that a
union type variable may hold any of several record types, which one can only be
determined at run-time. When it comes to lists and tuples only one type can exist in
a matchcontinue column, if this is violated it will be detected by the static type
checker leading to a compile-time error.

4.5.1.3 Value Block Expression

The value block expression allows equations and algorithm statements to be nested
within another equation or algorithm statement. A value block expression contains a
declaration part, a statements or equations part and a return expression. The return
value of the value block is the value of the evaluated return expression. A value
block has been added to OMC mainly because of its use as an intermediate data
structure for the pattern matching expression.

4.6 Exception Handling Implementation

In this section we briefly present the OpenModelica implementation of exception
handling. When referring to the exception hierarchy we mean both the structural
hierarchy and the inheritance hierarchy.

Exception Handling Implementation 85

Modelica Code
with exception handling and

exception Hierarchy

FlatModelica Code
with exception handling and

exception hierarchy

DAE with exception handling
and the exception hierarchy

C++ Code and
C++ exception handling and

C++ exception Hierarchy

Figure 4-6. Exception handling translation strategy.

The general translation of Modelica with exception handling follows the path
described in Figure 4-6. The exception handler and the exception hierarchy are
passed through the compiler via the intermediate representations of each phase until
the C++ code is generated (or any other language code used in the backends of
different Modelica compilers).

The specific OpenModelica translation path for Modelica code with exception
handling is presented in Figure 4-7.

Implementing exception handling support in the OpenModelica compiler
required the following extensions:

• The parser was extended with the proposed exception handling grammar.
• Each intermediate representation of the OpenModelica compiler was

augmented with support for exceptions.

Both the structural and the inheritance hierarchy of the exceptions are passed
through the OpenModelica compiler until C++ code is generated.

86 Chapter 4 Efficient Implementation of Meta-Programming EOO Languages

C++ Code and
C++ Exception handling and

C++ Exception Hierarchy

SCode

Inst

DAELow

Parse

CodeGen

SimCodeGen

Absyn

SCode

DAE Functions DAE Eq/Alg

DAELowC++ Functions

C++ Simulation Code

Modelica Code
with Exceptions

Figure 4-7. OpenModelica implementation.

4.6.1 Translation of Exception Values

The translation from the internal representation to C++ code is straightforward: a
Modelica exception maps to a C++ class. For example, the following Modelica
code with exceptions:

exception E
 parameter String message;
end E;

exception E1
 extends E(message="E1");
 parameter Integer id = 1;
end E1;

Exception Handling Implementation 87

is translated into the following C++ code:
class E
{
 public:
 modelica_string message;
 E(modelica_string message_modification)
 {
 message = message_modification;
 }
 E()
 {
 message = "";
 }
}

class E1 : public E
{
 public:
 modelica_integer id;
 E1(modelica_string message_modification,
 modelica_integer id_modification)
 {
 message = message_modification;
 id = id_modification;
 }
 E1()
 {
 message = "E1";
 id = 1;
 }
}

The following Modelica code for exception instantiation and exception throwing:

E e; throw(e);
E1 e1; throw(e1);

E1 e2(message="E2", id=2);
throw(e2);

E1 e3
throw(e3);

(message="E3");

is translated to the following C++ code:
E *e = new E(); throw e;
E1 *e1 = new E1(); throw e1;

E1 *e2 = new E1("E2", 2);
throw e2;

88 Chapter 4 Efficient Implementation of Meta-Programming EOO Languages

E1 *e3 = new E1();
e3->message = "E3”;
throw e3;

Is also possible to represent exception values in C++ as objects allocated on the
stack, i.e.: E1 e2("E2", 2);.

4.6.2 Translation of Exception Handling

The C++ exception handling code follows the Modelica code. The table below
defines the translation procedure for Modelica including the MetaModelica
extensions.
Modelica
Expressions C++

x :=
try
 exp
catch(E e)

1

 exp2
end try;

modelica_type temp;
try
{
 temp = exp1;
}
catch(E *e)
{
 temp = exp2;
}
x = temp;

Modelica
Statements

C++

try
 <s

catch(E e)
tmts>

 <stmts>
end try;

try
{

// Modelica corresponding
// C++ statements

}
catch(E *e)
{

// Modelica corresponding
// C++ statements

}

Modelica
Equations

C++

try
 <e

catch(Ex1 e1)
qnsA>

 <eqnsB>
end try;

event1=false;
event2=false;

while time < stopTime
{

Garbage Collection 89

try
 <e

catch(Ex2 e2)
qnsC>

 <eqnsD>
end try;

 try{
 call SOLVER for problem:
 if event1 then
 eqnsB;
 else
 eqnsA
 end if;

 if event2 then
 eqnsD;
 else
 eqnsC;
 end if;
 }
 catch(Ex1 *e1)
 {
 discard possible calculated current
 step values;
 reinit the solver with previous step
 values;
 event1 = true;
 }
 catch(Ex2 *e2)
 {
 discard possible calculated current
 step values;
 reinit the solver with previous step
 values;
 event2 = true;
 }
}

4.7 Garbage Collection

Garbage collection features relieves the programmer from the task of allocating and
freeing memory. A very good survey of garbage collection is given in (Wilson 1994
[174]).

The OpenModelica compiler runtime features a generational garbage collector
with two regions: young and current. The collector was ported and adapted from the
MetaModelica compiler prototype. During execution, the data is allocated into the
young region. When the young region fills a minor collection takes place and the
live data is copied into the current region. When the current region is 80% filled a
major collection takes place and the live data from the current region is copied to
the reserve region and the regions switch places. If after a major collection the
current region is still 80% filled then the current region is expanded so that is only
20% filled.

90 Chapter 4 Efficient Implementation of Meta-Programming EOO Languages

4.7.1 Layout of Data in Memory

All variable values (except 31 bit integers) are boxed to be distinguished by the
garbage collector. Every boxed value has a small integer as its header. Composite
values are boxed structures. The structure header contains a small integer tag which
is used for pattern matching. Logical variables are represented as boxed references.
A different header is used to represent unbounded or bounded logical variables.

Execution and Garbage Collection

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

440

460

52
4 2

88

2 0
97

 15
2

4 1
94

 30
4

6 2
91

 45
6

8 3
88

 60
8

10
 48

5 76
0

12
 58

2 91
2

14
 68

0 06
4

16
 77

7 21
6

18
 87

4 36
8

20
 97

1 52
0

23
 06

8 67
2

25
 16

5 82
4

27
 26

2 97
6

29
 36

0 12
8

31
 45

7 28
0

33
 55

4 43
2

35
 65

1 58
4

37
 74

8 73
6

39
 84

5 88
8

41
 94

3 04
0

44
 04

0 19
2

46
 13

7 34
4

48
 23

4 49
6

50
 33

1 64
8

52
 42

8 80
0

68
 15

7 44
0

Young gen. size (words)

Se
co

nd
s

Collection time (s) Execution time (s)

Figure 4-8. Garbage Collection time (s) vs. Execution time (s)

Garbage Collection 91

4.7.2 Performance Measurements

We have measured the performance of the OpenModelica runtime system garbage
collector. The OpenModelica compiler was instructed to run a script that:

• Loads a large model RRLargeModel2.mo of 1659 equations/variables.
More info about the test files is given in section 5.4.2 and information about
the test machine in section 5.4.1.

• Executes a check of the loaded model.

The OpenModelica compiler was executed multiple times with different young
generation sizes and the execution time of the garbage collection time was
generated together with the total execution time. The results are presented in Figure
4-8. At a young region of ~16MB (4MWords) the GC time is below 10 seconds out
of 230 seconds total execution time which is ~4%. The GC time varies between
40% for a really small young region to 0.25% for a large young region. Increasing
the young region over 80MB (20 MWords) does not improve the execution time.

Garbage Collection Time

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44

52
4 2

88

2 0
97

 15
2

4 1
94

 30
4

6 2
91

 45
6

8 3
88

 60
8

10
 48

5 76
0

12
 58

2 91
2

14
 68

0 06
4

16
 77

7 21
6

18
 87

4 36
8

20
 97

1 52
0

23
 06

8 67
2

25
 16

5 82
4

27
 26

2 97
6

29
 36

0 12
8

31
 45

7 28
0

33
 55

4 43
2

35
 65

1 58
4

37
 74

8 73
6

39
 84

5 88
8

41
 94

3 04
0

44
 04

0 19
2

46
 13

7 34
4

48
 23

4 49
6

50
 33

1 64
8

52
 42

8 80
0

68
 15

7 44
0

Young gen. size (words)

Se
co

nd
s

Figure 4-9. Garbage Collection time (s).

The table below presents the entire dataset for the garbage collector performance
results.

92 Chapter 4 Efficient Implementation of Meta-Programming EOO Languages

Table 4-2. Garbage Collection Performance.

Young
generation
(words)

Current
generation
(words)

Collection
time (s)

Execution
time (s)

Minor
collections

Major
collections

524288 3787930 172.33 437.88 23681 4986

1048576 4194304 40.65 263.31 11840 824

2097152 8388608 18.08 231.81 5920 180

3145728 12582912 11.54 231.14 3946 77

4194304 16777216 9.09 226.75 2960 42

5242880 20971520 6.96 222.91 2368 26

6291456 25165824 5.56 215.01 1973 18

7340032 29360128 5.27 222.58 1691 13

8388608 33554432 4.36 224.02 1480 10

9437184 37748736 4.39 224.36 1315 8

10485760 41943040 3.51 223.81 1184 6

11534336 46137344 3.83 224.22 1076 6

12582912 50331648 3.03 223.02 986 4

13631488 54525952 2.78 222.14 910 3

14680064 58720256 2.39 222.06 845 3

15728640 62914560 2.42 222.69 789 2

16777216 67108864 2.51 222.36 740 2

17825792 71303168 2.07 221.51 696 2

18874368 75497472 2.21 223.39 657 2

19922944 79691776 1.83 218.75 623 1

20971520 83886080 1.75 210.81 592 1

22020096 88080384 1.51 223.09 563 1

23068672 92274688 2.01 221.92 538 1

24117248 96468992 1.58 220.77 514 1

25165824 100663296 1.46 219.67 493 1

26214400 104857600 1.33 221.06 473 1

27262976 109051904 1.38 222.74 455 0

28311552 113246208 1.29 223.16 438 0

Conclusions 93

29360128 117440512 1.39 223.56 422 0

30408704 121634816 1.06 223.84 408 0

31457280 125829120 1.16 223.01 394 0

32505856 130023424 1.11 222.75 381 0

33554432 134217728 1.05 220.17 370 0

34603008 138412032 1.21 220.78 358 0

35651584 142606336 1.16 219.81 348 0

36700160 146800640 1.23 219.13 338 0

37748736 150994944 0.87 218.66 328 0

38797312 155189248 0.94 217.14 320 0

39845888 159383552 0.99 219.24 311 0

40894464 163577856 0.91 218.97 303 0

41943040 167772160 1.01 220.02 296 0

42991616 171966464 0.81 216.11 288 0

44040192 176160768 0.91 222.53 281 0

45088768 180355072 0.85 221.86 275 0

46137344 184549376 1.05 221.63 269 0

47185920 188743680 0.91 221.25 263 0

48234496 192937984 0.71 222.41 257 0

49283072 197132288 0.85 222.58 251 0

50331648 201326592 0.81 216.81 246 0

51380224 205520896 0.93 218.42 241 0

52428800 209715200 0.58 220.19 236 0

62914560 251658240 0.66 218.45 197 0

68157440 272629760 0.56 217.25 182 0

4.8 Conclusions

This chapter presented the existing MetaModelica compiler prototype and our
current work targeting the OpenModelica compiler bootstrapping.

Also, the MetaModelica compiler prototype implementation is presented and its
performance compared to related systems is evaluated. The performance results
show that the prototype is robust and generates very efficient code.

94 Chapter 4 Efficient Implementation of Meta-Programming EOO Languages

The chapter further presents implementation of high-level data structures, pattern
matching and exception handling in the OpenModelica compiler.

The garbage collector of the OpenModelica compiler is presented and evaluated.
The performance results show that the collector is efficient enough and the
collection time takes a rather small part of the total execution time. In the future,
further development (increasing the number of generations, allocation of similar
structures in different regions without any header, etc) of the garbage collector
could be investigated.

Part III

Debugging of Equation-based
Object Oriented Languages

Chapter 5

Portable Debugging of EOO Meta-
Programs

5.1 Introduction

The OpenModelica compiler is built from a large specification of the Modelica
language written in MetaModelica. Further development of such a large
specification is difficult without debugging tools. This chapter presents the design,
implementation and evaluation of several debugging frameworks for
MetaModelica. During his PhD work the author has designed and implemented four
debugging frameworks (two for Natural Semantics specifications and two for
MetaModelica specifications) supported by different integrated environments:
Emacs, Eclipse-based Modelica Development Tooling (MDT), and Eclipse-based
Structural Operational Semantics Development Tooling (SOSDT).

5.2 Debugging Method – Code Instrumentation

Our debugging implementation approach is based on instrumentation of the
intermediate code representation (IR). During compilation the IR is instrumented
with debugging nodes which are just calls to a debugging API.

The first debugging framework adds the debugging instrumentation very early
in the compilation process, at the abstract syntax tree representation. We call this
method early instrumentation.

The second debugging framework adds the debugging instrumentation very late
in the compilation process, at the code representation. We call this method late
instrumentation.

98 Chapter 5 Portable Debugging of EOO Meta-Programs

MetaModelica Code

Parser
MetaModelica AST

MetaModelica to RML
transformation

Early
Debugging

Instrumentation

Late
Debugging

Instrumentation

RML AST

FOL AST

CPS AST

Code AST

ANSI-C

Executable

Reordering
Static Elaboration

(Typecheck)
RML AST to FOL

CPS to Code

Linking with the
 RML runtime system

Code to ANSI-C

FOL to CPS via Pattern-Matching Compiler

Figure 5-1. Early vs. Late Debugging Instrumentation in MetaModelica compiler.

5.2.1 Early Instrumentation

The design, implementation and evaluation of the debugging framework based on
early instrumentation is presented in Chapter 7 and in (Pop and Fritzson 2005 [127],
Pop and Fritzson 2005 [128]).

Type Reconstruction 99

5.2.2 Late Instrumentation

The debugging framework based on early instrumentation was a positive start
which encouraged us to experiment more with this idea and try to improve the
compilation and run-times.

The debugging framework based on late instrumentation is an improvement of
the early instrumentation debugging framework. We disabled the early
instrumentation phase in the compiler and added a new phase closer to code
generation. As a consequence we had to pass the debugging information (position
of identifiers, function calls, type information, etc) through all the compiler phases.

5.3 Type Reconstruction

During debugging, both values and the types of the variables need to be available to
the user. To provide type information for the user, the runtime system of the
MetaModelica compiler prototype and the compiler itself had to be extended. In the
following we present the type reconstruction procedure implemented in all the
debugging frameworks we developed.

During the compilation phase the types of all the variables and the variable
scope in the program is recorded in a program database for each package. During
code generation the program database for a package is stored as static information
(using C structures and variables) in the generated C code for that particular
package. Our first debugging framework generated separate files with the program
database for each package; this proved out to be very problematic as these
additional files had to be stored in the same directory with the executable and the
executable had to read and parse these additional files at startup (see more .in
Chapter 7).

Before and after each function call the available (live) variables and the pointer
to their boxed value are registered with the debugging runtime. During execution,
when the debugger stops at a breakpoint, the available (live) variables are queried
for their position in the source code (package, function and line number) and for
their value pointer (the value pointer points to the boxed representation of the
variable value). The position information for a variable is used to query the program
database to fetch its type declaration. The debugger now has two structures:

• The type of the variable
• The pointer to the boxed variable value

These two structures are processed top-down simultaneously to output a variable
value and its specified type. If the variable value represents a complex data
structure (for example an AST representation) then the components of the variable
value are matched with the components of the type declaration and the procedure
continues recursively until the entire value is presented. Our first debugging
framework printed the values on the standard output. The latest debugging

100 Chapter 5 Portable Debugging of EOO Meta-Programs

framework sends the value information (including type information) to the Eclipse
(Eclipse.Foundation 2001-2008 [29]) environment for display.

Figure 5-2. Variable value display during debugging using type reconstruction.

5.4 Performance Evaluation

This section presents an evaluation of the debugging frameworks based on early
and late instrumentation. We tested the compile times and run-times of the
compiled programs.

5.4.1 The Test Machine

The tests were run on a HP NC6400 laptop with 2GB of memory and a Core 2 Duo
processor at 2GHz with Windows XP.

5.4.2 The Test Files

The MetaModelica compiler is a compiler-compiler, it takes as an input a compiler
specification and generates as output an executable compiler for that specification.
To test our debugging frameworks we compiled the OpenModelica compiler
specification and measured the compilation times and execution times of the
resulting compiler.

The OpenModelica compiler specification is very large:

Performance Evaluation 101

• 4,65 MB of MetaModelica sources, ~140 000 lines of code
• 52 Packages
• 5422 Functions

To test the speed of the generated code with debugging we ran the OpenModelica
compiler on:

• A large model; RRLargeModel2.mo provided by MathCore engineering.
The model has 1659 equations/variables and ~27108 lines of code. The
model can be provided on request.

• A small model: BouncingBall.mo presented below. This model has 5
equations/variables and is part of the OpenModelica release.

The BouncingBall.mo model:
model BouncingBall
 parameter Real e=0.7 "coefficient of restitution";
 parameter Real g=9.81 "gravity acceleration";
 Real h(start=1) "height of ball";
 Real v "velocity of ball";
 Boolean flying(start=true) "true, if ball is flying";
 Boolean impact;
 Real v_new;
equation
 impact = h <= 0.0;
 der(v) = if flying then -g else 0;
 der(h) = v;
 when {h <= 0.0 and v <= 0.0, impact} then
 v_new = if edge(impact) then -e*pre(v) else 0;
 flying = v_new > 0;
 reinit(v, v_new);

end BouncingBall;

end when;

The OpenModelica compiler was instructed using scripts to load the models and run
a check on them. For example the script RRLargeModel2.mos has the following
contents:

loadFile("RRLargeModel2.mo");");
checkModel(RRLargeModel2);

The script for loading and checking the BouncingBall model is similar to the one
above:

loadFile("BouncingBall.mo");
checkModel(BouncingBall);

The checkModel function instantiates (flattens) the model, generates the hybrid
DAE equation system and verifies if the system is balanced (number of equations is
equals with the number of variables) hence solvable.

102 Chapter 5 Portable Debugging of EOO Meta-Programs

5.4.3 Compilation Performance

The performance of the MetaModelica system while compiling the OpenModelica
specification is presented below.

The translation time was calculated by running the MetaModelica system on the
.mo files until C code is generated. The total compilation time includes also the
compilation of each generated C file using gcc with the highest optimization level
(–O3) and the linking time.

The number of generated C functions is higher for the late instrumentation
debugging as some of the low level optimizations are disabled to achieve one to one
mapping of debugging information to the C code.

The size of the generated C code source is larger for early instrumentation
because the high-level optimizations cannot be applied in the presence of early
debugging instrumentation.

The compilation time with late instrumentation debugging is roughly 3 times
slower (and with early instrumentation about 4 times slower) due to increased code
size. These results are comparable to the debugger (Tolmach 1992 [155]) for
Standard ML designed and implemented by Andrew P. Tolmach in the Standard
ML of New Jersey (SML/NJ) system. He reports a compilation slowdown by a
factor of 5.

Table 5-1. Compilation performance (no debugging vs. early vs. late
instrumentation)

Gen. C
sources
(MB)

No. gen.
C
functions

Translation
time (s)

Total
Compilation
time (s)

No debugging 37 25 027 131.78 269.86
Early instrumentation 130 52 241 155.16 850.35
Late instrumentation 103 95 560 179.38 610.61

5.4.4 Run-time Performance

The run time performance of the generated OpenModelica compiler on the scripts
RRLargeModel2.mos and BouncingBall.mos is presented below.

The execution time with late instrumentation debugging is about 4 times slower
than with no debugging and about 6 times faster than the execution time with early
instrumentation debugging. These results are comparable to the Standard ML of
New Jersey (SML/NJ) debugger (Tolmach 1992 [155]) where they report a
execution slowdown by a factor of 3 due to code instrumentation.

The stack usage is about the same for the large model. For the smaller model the
late instrumentation uses more stack as the optimization that moves code and inline
functions is disabled because the type reconstruction procedure would not work
otherwise.

Tracing and Profiling 103

Table 5-2. Running performance of script RRLargeModel2.mos.

Running
time (s)

Minor
Collections

No. Function
Calls

Stack
(words)

No debugging 223.01 394 2 059 658 665 119 760
Early instrumentation 5395.47 565 3 654 044 108 119 912
Late instrumentation 864.36 421 2 077 495 068 119 780

Table 5-3. Running performance of script BouncingBall.mos.

Running
time (s)

Minor
Collections

No. Function
Calls

Stack
(words)

No debugging 0.01 0 284 706 365
Early instrumentation 1.84 0 3 012 932 415
Late instrumentation 0.04 0 474 064 2221

5.5 Tracing and Profiling

Tracing and profiling are also supported for the MetaModelica compiler prototype.
The tracing functionality is very useful at pinpointing the location (function name)
if the compiler crashes due to programming errors and the profiling functionality
can pinpoint function that need re-design to improve their execution speed.

5.5.1 Tracing

The tracing functionality is enabled in the MetaModelica compiler prototype by a
compilation flag: -ftrace. The flag instructs the compiler to instrument all
generated C functions with additional code that outputs the function name on the
standard error. The generated executable only outputs the trace on the standard error
if is given the –trace flag. The tracing functionality is very efficient at pin-
pointing where the executable crashes as the last function in the trace is where the
error happened. The tracing functionality adds very little slowdown (~1.5%) to the
generated executable as presented in Table 5-4.

Table 5-4. The impact of tracing on execution time.

 First run Second run Average
Without tracing (s) 213.09 212.78 212.935
With tracing (s) 216.33 215.88 216.105
Slowdown (%) 1.52 1,45 1,48

Because the executable compiled with tracing is very efficient, we decided to
compile the OpenModelica compiler releases with tracing by default. This way if a
compiler crash happens the user can re-run it with –trace and discover where the

104 Chapter 5 Portable Debugging of EOO Meta-Programs

error happened (function name). The user can then report the error and its location
to the OpenModelica development team for investigation.

The table presents the performance evaluation of the OpenModelica compiler
running times while executing RRLargeModel2.mos (presented in section 5.4.2)
compiled with and without tracing enabled.

5.5.2 Profiling

Profiling of executables generated by MetaModelica compiler prototype is
supported through GNU GCC profiling facilities and the GNU profiler gprof.
Because the MetaModelica compiler prototype generates C code, the C code can be
compiled with profiling instrumentation using GCC. The profiling functionality can
be enabled in the MetaModelica compiler prototype by using the –p flag. The
executables compiled with profiling will dump a gmon.out file when executed. To
display the profile information of the executable one can run the GNU gprof tool:

adrpo@KAFKA ~> gprof omc

Each sample counts as 0.01 seconds.
 % cumulative self
 time seconds seconds calls name
 34.53 37.25 37.25 384695481 System__hash
 13.29 51.59 14.34 257363327 Env__treeAdd2
 ...

By analyzing the output produced by GNU gprof one can pinpoint what functions
take the most of the execution time. Using this information the compiler developer
can re-evaluate and re-design the functions that have the most impact on execution
time.

5.6 The Eclipse-based Debugging Environment

We have developed an Eclipse-based debugging environment for the late
instrumentation debugging framework. The Eclipse environment is implemented as
a set of plugins which are available in the Modelica Development Tooling (MDT)
environment (presented in Chapter 8). In this section we present the GUI facilities
of the existing debugging functionality.

The debugger functionality is presented Figure 5-3. The figure presents a
debugging session of the OpenModelica compiler specification stopped at a
breakpoint set after the parser invocation. In the top-right part a complex variable
value (the AST of the parsed model) is explored (browsed). In the top-left part the
stack trace is presented. In the bottom-left part the execution point is shown. In the
bottom-right part the contents of the Modelica file is presented (and the current
function is outlined). The middle-left part presents the model that was given as
input to the debugged compiler.

The Eclipse-based Debugging Environment 105

Figure 5-3. Advanced debugging functionality in MDT.

5.6.1 Starting the Modelica Debugging Perspective

The Eclipse platform provides several perspectives targeted to specific tasks (source
code editing for a particular language, graphical modeling, debugging, etc). When a
perspective is activated the environment configures itself to show and make
available only the needed features for a particular task.

To be able to run in debug mode, the user has to go through the following steps:
i) Creating and setting the debug configuration,
ii) Setting breakpoints to stop the execution at interesting places,
iii) Running the created debug configuration to start debugging.

All these steps are presented below using images.

106 Chapter 5 Portable Debugging of EOO Meta-Programs

5.6.2 Setting the Debug Configuration

While the Modelica perspective is activated, the user can select the bug icon on the
toolbar and choose the Debug alternative in order to access the dialog for building
debug configurations.

Figure 5-4. Accessing the debug configuration dialog.

To create the a debug configuration, the user can right click on the classification
Modelica Development Tooling (MDT) and select New as in Figure 5-5. A
name for the debugging configuration needs to be specified.

Figure 5-5. Creating the Debug Configuration.

The Eclipse-based Debugging Environment 107

The user also selects the executable to be debugged and provides command line
parameters. The additional tabs available can be used for further debug
configuration settings such as the environment in which the executable should be
run.

Figure 5-6. Specifying the executable to be run in debug mode.

5.6.3 Setting/Deleting Breakpoints

To enable breakpoints the user opens a file and double clicks on the editor ruler.

Figure 5-7. Setting/deleting breakpoints.

108 Chapter 5 Portable Debugging of EOO Meta-Programs

5.6.4 The Debugging Session and the Debug Perspective

The debugging session can be started from the menu by selecting the newly created
debugging configuration.

Figure 5-8. Starting the debugging session.

The Eclipse platform will automatically detect that a debugging session has started
and will prompt the user to switch to the debugging perspective.

Figure 5-9. Eclipse will ask if the user wants to switch to the debugging perspective.

The Eclipse-based Debugging Environment 109

5.6.4.1 The Debugging Perspective

When the debugging perspective is selected by the user the environment activates
and displays several views that are targeted to debugging: Variables, Breakpoints,
Stack trace, Console and the Editor focused on the current execution point.

Figure 5-10. The debugging perspective.

At any time the user can switch between the available perspectives, activate
additional views or change the placing of the views in the environment.

Figure 5-11. Switching between perspectives.

110 Chapter 5 Portable Debugging of EOO Meta-Programs

5.7 Conclusions

The increased ease of use, the high abstraction, and the expressivity of the
MetaModelica language are very attractive properties. However, these properties
come with the drawback that programming and modeling errors are often hard to
find. To overcome these issues, several debugging methods and integrated
frameworks for run-time debugging of the MetaModelica language have been
designed, analyzed, implemented, and evaluated on non-trivial industrial
applications.

We have presented in this chapter these portable debugging methods and their
integration within the MDT development environment. The evaluation of the
implemented debugging frameworks shows that the debugging methods are reliable
and efficient. The chapter also considers tracing and profiling of MetaModelica
code.

To conclude, this chapter presents a comprehensive Modelica debugger for an
extended algorithmic subset of the Modelica language, including the meta-
programming extensions. This replaces debugging of algorithmic code using
primitive means such as print statements or asserts which is complex, time-
consuming and error- prone. The debugger is portable since it is based on
transparent source code instrumentation techniques that are independent of the
implementation platform. The usual debugging functionality found in debuggers for
procedural or traditional object-oriented languages is supported, such as setting and
removing breakpoints, single-stepping, inspecting variables, back-trace of stack
contents, tracing, etc. The debugger is integrated with the Modelica Development
Tooling (MDT) environment within Eclipse. More information about MDT is given
in Chapter 8.

Chapter 6

Run-time Debugging of EOO
Languages

Random changes to a program fix bugs.

6.1 Introduction

The development of today’s complex products requires advanced integrated
environments and modeling languages for modeling and simulation. Equation-based
object-oriented declarative (EOO) languages are emerging as the key approach to
physical system modeling and simulation. The increased ease of use, the high
abstraction and the expressivity of EOO languages are very attractive properties.
However, these attractive properties come with the drawback that programming and
modeling errors are often hard to find. In this chapter we propose an integrated
framework for run-time debugging of equation-based modeling languages. The
framework integrates classical debugging techniques with special techniques for
debugging EOO languages and is based on graph visualization and interaction. The
debugging framework targets the Modelica language.

6.2 Debugging Techniques for EOO Languages

In the context of debugging declarative equation-based object-oriented languages
both the static and the dynamic (run-time) aspects have to be addressed.

The static aspect of debugging EOO languages deals with inconsistencies in the
underlying system of equations:

112 Chapter 6 Run-time Debugging of EOO Languages

• Overconstrained system: the number of variables is smaller than the number
of equations, which means that some equations have to be removed when
solving the system of equations.

• Underconstrained system: the number of variables is larger than the number
of equations, which means that more equations have to be added in order to
solve the system of equations.

The dynamic (run-time) aspect of debugging EOO languages addresses run-time
errors that may appear due to faults in the simulated model:

• Model configuration: when parameters values for the model simulation are
incorrect.

• Model specification: when the equations that specify the model behavior are
incorrect.

• Algorithmic code: when the functions called from equations return incorrect
results.

Methods for both static and dynamic (run-time) debugging of EOO languages have
been proposed earlier (Bunus 2004 [19], Bunus and Fritzson 2003 [20]). With the
new Modelica 3.0 language specification, static debugging of Modelica presents
rather small benefits, since all model components are already required to be
balanced. All models from checked libraries will already be balanced; only newly
written models might be unbalanced.

In the context of the dynamic (run-time) aspect of debugging of EOO languages,
(Bunus 2004 [19]) proposes an automated algorithmic debugging solution in which
the user has to provide a correct diagnostic specification of the model which is used
to generate assertions at runtime. Moreover, starting from an erroneous variable
value the user explores the dependent equations (a slice of the program) and acts
like an “oracle” to guide the debugger in finding the error.

In this chapter we present a different approach that does not require the user to
write diagnostic specifications of the model. Our method is based the integration
between graph visualization/interaction and execution-based debugging of
algorithmic code.

6.3 Proposed Debugging Method

In this section we present our run-time debugging method. The proposed integration
within a general debugging framework for EOO languages is presented in the next
section.

Proposed Debugging Method 113

Error Discovered

Interactive Dependency Graph
These equations contributed to the result

Code viewer
Show which model or function
the equation node belongs to

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

Follow if error
is in an equation

Simulation Results
These are the intermediate simulation
results that contributed to the result

Follow if error
is in a function

Algorithmic Code Debugging
Normal execution point debugging of

functions

Build graph

What now?
Where is the equation or code that

generated this error?

Interactive Dependency Graph

Error Discovered
What now?

Where is the equation or code that
generated this error?

Build graph

These equations contributed to the result

Code viewer
Show which model or function
the equation node belongs to

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

Follow if error
is in an equation

Follow if error
is in a function

Simulation ResultsAlgorithmic Code Debugging
These are the intermediate simulation
results that contributed to the result

Normal execution point debugging of
functions

Figure 6-1. Debugging approach overview.

6.3.1 Run-time Debugging Method

Our method partly follows the approach proposed in (Bunus and Fritzson 2003
[20]). However, our approach does not require the user to write diagnostic
specifications of models. Also, the approach we present here can also handle the
debugging of algorithmic code using classic debugging techniques (Pop et al. 2006
[131]).

An overview of our debugging strategy is presented in Figure 6-1. In short, our
run-time debugging method is based on the integration of the following:

• Graph visualization and interaction.
• Presentation of simulation results and modeling code.
• Mapping of errors to model code positions.
• Execution-based debugging of algorithmic code.

In the following we present a possible debugging session.

114 Chapter 6 Run-time Debugging of EOO Languages

During the simulation phase, the user discovers an error in the plotted results. The
user marks either the entire plot of the variable that presents the error or parts of it
and starts the debugging framework. The debugger presents an (IDG) interactive
dependency graph (the dynamic program slice with respect to the variable with the
wrong value) where nodes consist of all the equations, functions, parameter value
definitions, and inputs that were used to calculate the wrong variable value. The
variable with the erroneous value is displayed in a special node which is the root of
the graph. The interactive dependency graph contains two types of edges:

1. Calculation dependency edges: the directed edges labeled by variables or
parameters which are inputs (used for calculations in this equation) or outputs
(calculated from this equation) from/to the equation displayed in the node.

2. Origin edges: the undirected edges that tie the equation node to the actual
model which this equation belongs to.

The user interacts with the dependency graph in several ways:

• Displaying simulation results through selection of the variables (or
parameters) names (edge labels). The plot of a variable is shown in a popup
window. In this way the user can quickly see if the plotted variable has
erroneous values.

• Classifying a variable as having wrong values: addition of the variable to
the set of variables with wrong values.

• Classifying an equation as correct eliminates the equation node from the
graph and builds a new graph based on the inputs of the correct equation
node.

• Building a new dependency graph based on the new set of variables with
wrong values (classified variables) or by modifying the equations or
parameter values nodes.

• Displaying model code by following origin edges.

• Invoking the algorithmic code debugging subsystem when the user suspects
that the result of a variable calculated in an equation which contains a
function call is wrong, but the equation seems to be correct.

Using these interactive dependency graph facilities the user can follow the error
from manifestation to origin.

Our debugging method can also start from multiple variables with wrong values
with the premise that the error might be at the confluence of several dependency
graphs.

The Run-time Debugging Framework 115

6.4 The Run-time Debugging Framework

In this section we present the first prototype of the debugging framework based on
the proposed method from the previous section. The debugging framework is
limited to error tracking of a single variable with wrong results.

Modelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

Modelica model

Flat Model

Sorted equations

Optimized sorted
equations

C Code

Executable

Figure 6-2. Translation stages from Modelica code to executing simulation.

6.4.1 Translation in the Debugging Framework

The debugging framework is closely related to the translation process. The
translation process from the modeling language down to simulation code is
presented in the following. The Modelica translation process has several stages
(Figure 6-2):

• Parser – breaks the model down into tokens and builds the abstract syntax
tree. (not in Figure 6-2)

116 Chapter 6 Run-time Debugging of EOO Languages

• Translator (Flattening and elaboration) – reports the errors and flatten the
model hierarchy and applying modification.

• Analyzer – analyses the system of equations and sorts the equations in the
order they need to be solved

• Optimizer – optimizes the sorted system of equations
• Code Generator – generates C code linked with the simulation runtime and

solvers.
• C Compiler – compiles the generated C code to an executable
• Simulation – the executable is executed to generate the simulation results.

As one cans see, the translation process is complex and most of the transformations
performed on the models are destructive. For debugging purposes all the
transformations performed in each stage needs to be recorded to be able to point the
errors to the user using the high level Modelica code.

The Run-time Debugging Framework 117

Save element position

Normal Translation ProcessDebugging Translation
Process Additional Steps

Save element origin
(model and position)

Save equation elements origin
(model and position)

Executable

C Code

Optimized sorted
equations

Sorted equations

Flat Model

Modelica model

Modelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

Save the optimizer
transformations changes

Save all the available
origin information

Executable with all the
available origin information

Simulation with run-time
debugging functionality

Figure 6-3. Translation stages from Modelica code to executing simulation with
additional debugging steps.

The debugging framework alters the Modelica translation stages by introducing
means to map (and save such mapping) each transformed model element back to its
origin as presented in Figure 6-3.

The additional origin information needed by the debugging framework is saved
by the debugging translation process within a file: debug-info.xml. The debug
file is read by the simulation run-time only when needed.

If an error appears in the simulation results, the user can mark the variable with
the wrong value and the error time interval(s) on the simulation plot. The simulation
with run-time debugging functionality is then invoked with the error information.

118 Chapter 6 Run-time Debugging of EOO Languages

Simulation run-time
with debugging

GUI

Dependency
Graph
Viewer

Source Code
And

Variable Value
Display

Plotting
and

Error marking

Debugging information
saved in the

Translation Phase

Variable name;
Time intervals

Mark error

Variable
Dependency
Graph Builder

Calculate variable value

Is the wrong variable in
given time interval

Read debugging info

Do we have a breakpoint
in algorithmic code

Variable values
Send variable
value to GUI

Add algorithmic
code breakpoint

Send dependency
graph to GUI

Figure 6-4. Run-time debugging framework overview.

6.4.2 Debugging Framework Overview

The run-time debugging framework overview is presented in Figure 6-4. The figure
presents the interaction between the components of the graphical user interface
(GUI) and the components of the simulation run-time with debugging. Typically,
the user debugging starts at the end of a simulation when the user observes the
erroneous behavior of a plotted variable value. The user marks the variable name
and the time interval and invokes the debugging functionality. The simulation
runtime with debugging is then invoked with the user selection as input.

In the next section we detail the debugging framework components.

6.4.3 Debugging Framework Components

The debugging framework has several components which deal with the user
interaction (GUI part) and the handling of the debugging information (simulation
runtime part). The information saved during the translation process also plays an
important role in the debugging framework.

The Run-time Debugging Framework 119

6.4.3.1 Plotting and Error Marking

This GUI component shows the values of a variable during simulation time. The
component has special functionality which helps the user to mark an error on the
plot using the mouse. The user markings are encoded as a variable name and time
intervals. After marking the error, the user invokes the debugging functionality with
this marking.

6.4.3.2 Dependency Graph Viewer

The dependency graph viewer is a GUI component that displays an interactive
graph. The graph is given by the dependency graph builder component. The graph
shows the calculated variable name and value, the equation in which this value was
calculated and all the additional data (parameters, equation blocks, etc) which was
used to calculate this value.

In this implementation the user has limited graph interaction possibilities. When
the user double clicks on a graph node or edge, the origin of the selected element
(variable, equation or parameter) is computed from the debugging information and
the Source Code and Variable Value Display component is shown presenting the
original source code element.

6.4.3.3 Source Code and Variable Value Display

The source code display is handled by this component. Also, the user can set
breakpoints on the algorithmic code within this view. If the runtime reaches a
breakpoint, the execution breaks and the variable values from this model can be
examined.

6.4.3.4 Dependency Graph Builder

The most complex component of the debugging framework is the dependency graph
builder. This component starts from a variable name and builds the dependency
graph for that variable based on the debugging information saved in the translation
phase.

The constructed graph is based on the Block Lower Triangular Dependency
Graph (BLTDG) which is computed from the Block Lower Triangular form by
considering the data dependencies. The calculation of the BLTDG is presented in
detail in (Bunus 2004 [19]). The constructed graph contains also additional
information regarding the origin of each involved element.

6.4.4 Implementation Status

Currently we are working on the integration of the debugging framework
components. The debugging framework is developed in Eclipse as a set of plugins
that integrate our into our MDT development environment (for code browsing and
algorithmic code debugging presented in Chapter 5, Chapter 8 and also in (Pop et

120 Chapter 6 Run-time Debugging of EOO Languages

al. 2006 [131])) with graph visualization and interaction libraries. The
OpenModelica compiler has been adapted to produce the additional debugging
information, the dependency graph and the simulation results.

6.5 Conclusions and Future Work

In this chapter we presented an integrated run-time debugging framework for EOO
languages based on graph visualization and interaction. Our method partly follows
the approach proposed in (Bunus and Fritzson 2003 [20]). However, our approach
does not require the user to write diagnostic specifications of models. The approach
we present here can also handle the debugging of algorithmic code using classic
debugging techniques (Pop et al. 2006 [131]).

We argue that such debugging framework will ease both the run-time debugging
and the understanding of EOO language models.

We are aware that the scalability of our method might be an issue and we plan to
research different filtering techniques for pruning the dependency graph.

Our short term goal is to finalize the prototype implementation of the proposed
debugging framework, evaluate it and report experience on debugging a set of
selected models, and release it as part of the OpenModelica Development
Environment.

Chapter 7

Debugging Natural Semantics
Specifications

This chapter presents the design, implementation, and usage of a debugging
framework for the Relational Meta-Language (RML) which is a language for
writing executable Natural Semantics specifications. The language is successfully
used at our department for writing large specifications for a range of languages like
Java, Modelica, Pascal, MiniML etc. The RML system previously had no
debugging facilities, which made it hard for specification writers to debug their
specifications. With this work we address these issues by providing a debugging
framework for debugging high level Natural Semantics specifications in RML.

The MetaModelica compiler prototype presented in Chapter 5 shares the same
compiler and runtime system with the RML system. Thus all the contributions and
results presented in this chapter also apply to the MetaModelica compiler prototype.
Also, the contributions presented in Chapter 5 also apply to the RML system.

7.1 Introduction

No programming language environment can be considered mature if is not
supported by a strong set of tools which include debugging and profiling. At our
department we have developed a language called Relational Meta-Language (RML)
(PELAB 1994-2008 [117], Pettersson 1995 [120], Pettersson 1999 [122]) for
writing Natural Semantics specifications.

The RML language is extensively used for teaching and writing large
specifications for different languages like Java, Modelica, MiniML (Clément et al.
1986 [23]), Pascal, Modelica, etc. Even if the RML language has a short/medium
learning curve, the absence of debugging facilities previously created problems of
understanding, debugging and verification of large specifications.

122 Chapter 7 Debugging Natural Semantics Specifications

To overcome these issues a debugging framework for RML was designed and
implemented. The debugger is based on abstract syntax tree instrumentation
(program transformation) in the RML compiler and some runtime support. Type
reconstruction is performed at runtime in order to present values of the user defined
types. For inspecting complex variable values, an external data browser was
implemented. Post mortem analysis is possible by recording parts of or the entire
specification trace in an XML file, which can be queried using available XML tools
(XML (W3C [158]), XQuery (W3C [166]), XPath and XSLT (W3C [159]), etc).

7.2 Related Work

As pointed out in (Liebermann 1997 [85]), the computer science community is
constantly ignoring the debugging problem even though the debugging phase of
software development takes more than the overall development time. With our
work we contribute to improving this state of affairs.

In lazy functional languages like Haskell the execution order is hard to
understand. Partly for these reasons the Evaluation Dependence Tree (EDT) tree
(Nilsson 1998 [106]) concept was proposed to help the understanding and
debugging of the language. On the other hand, RML is a strict functional language
where arguments are evaluated before the call and it is, in this respect, closer to
Standard ML (Milner et al. 1997 [97]). Our work is related to the work done on the
Standard ML debugger (Tolmach and Appel 1995 [154], Tolmach 1992 [155]). We
have not yet implemented time traveling, but this is one of our future work
directions. General design ideas were inspired from (Pettersson 1998 [121]).

Using assertions and print statements for debugging was and unfortunately still
is many programmers choice for debugging programs. Source code instrumentation
(or program transformation) that changes the program code in order to facilitate
debugging is an approach present in the literature (Fritzson et al. 1994 [48], Pope
and Naish 2003 [135]).

Explanation of program execution in deductive systems like Deductive
Databases (Mallet and Ducassé 1999 [89]) or Description Logic reasoners
(McGuinness 1996 [93], McGuinness and Borgida 1995 [94], McGuinness and
Silva 2003 [95]) has similarities with our RML debugger because they generate and
analyze proof-trees (or derivation trees). RML is based on the style and visual
layout of Natural Semantics and has a top-down left-right determinate search with
local backtracking as proof procedure.

7.3 The rml2c Compiler and the Runtime System

The rml2c compiler is written in Standard ML ‘97 (Milner et al. 1997 [97]) using
the Standard ML of New Jersey (SML/NJ) (SML/NJ-Fellowship 2004-2008 [148])
compiler. The rml2c compiler (Figure 7-1) uses several intermediate

The rml2c Compiler and the Runtime System 123

representations on which it makes extensive optimizations. The front-end generates
ANSI-C code which is linked with the runtime system.

module Dump
 with “absyn.rml”
 relation dump: Absyn.Program =>
()

RML AST

FOL AST

Parse

Reordering
Static Elaboration

(Typecheck)
RML AST to FOL

FOL to CPS via Pattern-Matching Compiler

CPS AST

CPS to Code

Code AST

Linking with the
 RML runtime system

ANSI-C

Code to ANSI-C

Executable

Debugging
Instrumentation

Figure 7-1. The rml2c compiler phases.

Immediately after parsing, the specification structure is saved in the RML Abstract
Syntax Tree (AST). A reordering phase is performed in order to arrange the
declarations in the correct order of dependencies. The static elaboration phase is
performing type inference and it checks the program correctness. After the static
elaboration phase the current RML AST representation is translated to FOL (a
language similar to First Order Logic) representation. On this representation
optimizations that improve determinism are applied and the result is translated to
CPS (Continuation Passing Style) via a Pattern-Matching Compiler. Optimizations
like constant and copy propagation and also inlining are applied to the CPS
representation. The CPS representation is translated to a low level imperative
representation (Code) that has explicit memory management, data construction and

124 Chapter 7 Debugging Natural Semantics Specifications

control flow. In the last phase the Code is translated to ANSI-C. All these phases
are depicted in Figure 7-1.

The RML system has two runtime systems: one for fast execution and one for
profiling and some logging of the runtime internals.

7.4 Debugger Design and Implementation

The design of the debugger had the following requirements as starting points:

• Conventional debugger functionality (breakpoints, variable value
inspections, call chain, stack trace, etc.)

• Inspection/printing of large values.
• Type querying facilities for variables, relations, datatypes.
• Special features for failure discovery. In RML, when a relation fails, the

entire specification can also fail. Because of this, is very important to have
special functionality for discovering where and under what conditions such
failure took place.

• Modular design for easy integration with other tools and graphical user
interfaces.

• Reuse of the existing rml2c compiler and runtime system.

These requirement specifications were driven by existing tool implementation (the
rml2c compiler and the runtime system) and easy future extensions and
integration. Also, extensive user knowledge and experience about writing RML
specifications was used to derive the debugger requirements.

According to the requirements, the only changes of the rml2c compiler and
runtime system to support debugging were:

• Addition of a new phase that instruments the RML AST with debugging
nodes. This phase is triggered from a command line parameter.

• Small changes to the static elaboration phase to output a program database
with names and types for all the language identifiers. This program database
is used from external tools such as the RML Project Browser and the RML
debugging runtime system to query for types of identifiers.

• Addition of a new runtime which has debugging functionality.

The new tools that were developed to aid the debugging task were the RML Data
Browser, the Emacs Mode for RML debugging and the Post Mortem Analysis tool.

Overview of the RML Integrated Environment 125

7.5 Overview of the RML Integrated Environment

The RML integrated environment with debugging and the various interactions
between the components are presented in Figure 7-2.

In the following we only describe the use of the toolbox with regards to
debugging. The RML Project Browser is a navigator for RML specifications that
ease the browsing of relations and datatypes.

rml2c compiler
External
Program
Database

Linking with one of
the

RML runtimes

ANSI-C

RML Project Browser

Emacs Mode
for

RML Debugging

RML Data Value Browser

Execution
Recording in

XML

Executable
with

Debugging

Post Mortem
Analysis Tool

module Dump
 with “absyn.rml”
 relation dump: Absyn.Program => ()
 ...

Figure 7-2. Tool coupling within the RML integrated environment with debugging.

The rml2c compiler takes as input an RML specification. The specification is
instrumented with debug nodes. Then, the normal compilation phases are applied
until C code is generated. The generated C code is compiled and linked with the
debugging runtime system. Also, the compiler dumps the program database at the
end of static elaboration phase, after performing type inference.

When started, the executable reads in the program database and waits for user
commands. This is a good time to set breakpoints using commands or helpers from
Emacs Mode for RML Debugging. Then the execution can be resumed. At
breakpoints one can print variable values directly in the standard output or they can
be sent to the RML Data Value Browser for thorough inspection.

User commands are available in the debugger for recording of the execution as
an XML trace. The XML trace can be analyzed post-mortem using XML tools. In
this way, when a certain relation fails and generates the failure of the entire

126 Chapter 7 Debugging Natural Semantics Specifications

specification, one can understand when and why that happens by a post-mortem
analysis of the execution trace.

7.6 Design Decisions

This section discusses the design decisions that were taken in the design process of
our debugging tools.

7.6.1 Debugging Instrumentation

The RML compiler has several intermediate representations on which aggressive
optimizations are applied. Because of this, debugging approaches that keep a
mapping between intermediate representations and store reverse transformations of
optimizations were out of the question. The best available approach was to apply
debugging instrumentation at the RML AST level.

7.6.2 External Program Database

In order to present variable values using user-defined data structure one has to do
type reconstruction at runtime. There were two possibilities of keeping a program
database with the defined relations, variables, types and datatypes:

• Storing the needed information obtained after type inference in SML data
structures and generating C code with this information in the Code to C
phase of the compilation.

• Exporting the needed information to external files which can be read later
by the runtime system.

We choose the second alternative because this kind of information is also useful in
powerful RML IDE (which includes the RML Project Browser) that provides code
assistance (IntelliSense), displaying of types when hovering over variables and
relations, pattern writing wizards, project browser, etc. We have already developed
such an IDE for RML (Pop and Fritzson 2006 [129]).

7.6.3 External Data Value Browser

After implementing the printing of variable values to standard output it soon
became apparent that for large values such displaying is unreadable. As an
alternative we have implemented a very simple but practical value browser
prototype. One nice feature: the browser provides immediate information about
where tin the specification code each part of the data structure was defined. Future

Instrumentation Function 127

work on this prototype could provide new functionality i.e., for searching, and
analyses of the variables.

7.6.4 Why not an Interpreter?

Interpreters are good when one wants hands-on development with fast feedback.
However, they are quite slow, because optimizations cannot be applied if one wants
to give a clear feedback to the user. Also, we already had the compiler. Fast
feedback to the developer can also be achieved by incremental compilation
techniques, which is an approach we are currently working on.

7.7 Instrumentation Function

In this section we define the transformations that are performed by the
instrumentation function over the RML AST. The instrumentation function is
simple but very effective. In order to define this function we need to explain in
more detail the parts of the RML language. The specification of RML is presented
in (PELAB 1994-2008 [117], Pettersson 1995 [120], Pettersson 1999 [122]).

RML modules have two parts: the interface specification (which defines the
signatures that are to be exported from the current module) and the actual
declaration of relations, private module types, datatypes, relations, and global
values. Clauses (rules and axioms) can be grouped together in relations. Rules have
three parts: the matching pattern, premises, and results. Axioms are just rules
without premises.

Premises (also called goals) can be of the following types:

Bindings let pat = exp

Unification var = exp

Relation calls longIdentifier(expseq) => patseq

Negation not premise

Sequence premise & premise

Table 7-1. RML premise types. These constructs are swept for
variables to be registered with the debugging runtime system.

Clauses (rules and axioms) have the following form:
rule <premise>

 var(pat) => result

128 Chapter 7 Debugging Natural Semantics Specifications

axiom var(pat) => result

Premises can be optional in rules or a sequence of premises. Axioms are just rules
without premises.

The debugging instrumentation Instr function transforms only premises in the
following way:

Instr(premise) =
 RML.register_in(parameters) &
 RML.debug(...) & premise &
 RML.register_out(results)

For a sequence of premises the result variables from the last executed premise,
together with the parameter of the next premise, are registered with the debugging
framework. Then the debug function RML.debug(...) checks for breakpoints,
user commands or single-stepping. The debug function has as parameters the source
filename, the line/column number of the premise, and the premise textual
representation.

As one can see, for each premise a sequence of three premises are generated. We
could have got the live variables for a premise from the runtime system, but we use
instead call premises that register these in/out variables. We used this approach
because in the runtime system some variables are not present due to optimizations
and also a mapping should have been kept that map existing source code variable
names to positional parameters of relations. The parameters of variable registration
functions are built by sweeping the premises for variables that appear in expressions
or patterns.

7.8 Type Reconstruction in the Runtime System

The debugging runtime system loads the program database files at startup and
stores them in some internal structures. When the program is executed in the
RML.debug(...) function the filename and the line/column position of the current
execution point are known. With this knowledge and the name of the variable to be
printed the program database information is searched for a rule that frames this
point and contains the variable. The variable type is then retrieved.

The variable values are stored in the RML runtime heap as tagged pointers or
immediate values. Immediate values are only integers. All other values are boxed
and tagged. The tags contain information about the structure and elements of the
values.

Starting from the variable type and the variable pointer which was registered
using the register_in/register_out functions the variable value is traversed.
At the same time the variable type is unfolded and the new type components are
mapped to the current variable components.

Debugger Implementation 129

7.9 Debugger Implementation

The implementation of the debugger follows the proposed design closely.

7.9.1 The rml2c Compiler Addition

In the rml2c compiler we implemented the instrumentation phase as a separate
Standard ML module that has as input the RML AST and as output the transformed
RML AST with the debug nodes added. This additional phase is triggered by a
command line parameter to the rml2c compiler. Also, the instrumentation can be
applied selectively module or relation-wise in order to instrument only the
problematic parts of the specification and achieve a faster debugging execution.

In the static elaboration phase, after type inference is performed we saved the
type information (that was normally discarded) in an identifier dictionary based on
balanced search trees. At the end of the phase we write this information to the
program database file in a flat format composed of: the identifier type, the file
where it appears, the identifier, the line/column number and its type. A small
portion of the program database file for our exp1.rml example specification is
presented in the appendix.

7.9.2 The Debugging Runtime System

All the low-level runtime debugger functionality is implemented in C. The user
commands are read by a command parser and the program database is read using
another parser. The parsers are implemented using Flex (Lex) (GNU 2005 [58]) and
Bison (Yacc) (GNU 2005 [56]) and the readline library (GNU 2005 [60]) (for
history, command input handling, etc).

The program database is read and stored internally in the runtime as a list. An
ordering phase is then performed to have the information indexed over module
name (filename) and line number.

The RML.debug(...) relation is implemented also in C and uses the RML
foreign function interface. The relation checks if a breakpoint was reached and in
that case stops the execution, prints the next premise to be executed and waits for
user commands. The relations RML.register_in("var_name", var, ...)
and RML.register_out("var_name", var, ...) save the live variable
information in internal arrays as (variable name, pointer to variable value) pairs.
Only registered variables can be printed or sent to the external variable value
browser.

The printing or sending of the variable values is realized by recursive functions
that traverse both the value structure and the value type at the same time. The type
of a certain variable is retrieved from the program database information by
matching the file, the name of the variable, and the positional frame of the rule.

130 Chapter 7 Debugging Natural Semantics Specifications

These traversing and displaying functions take into consideration the printing depth,
which is a debugger setting and can be changed using commands. Sockets are used
when variable values are sent to the external browser.

7.9.3 The Data Value Browser

The browser is implemented in Java to have the same high portability as the RML
system. The browser waits to read variable value information from sockets and
displays them in a tree structure constructed by using the traversal depth.

Syntax highlighting of RML files is performed by the browser, using a similar
Emacs RML Mode style to keep the users on familiar grounds.

7.9.4 The Post-Mortem Analysis Tool

In this tool, at the moment we have only implemented a Failure analyzer that helps
users understand where and why their specification failed. The analyzer is
implemented in Java and replays the specification execution by navigation in the
saved XML trace. One can stop, go back and forward in time, display variable
values, etc. In general users start from the end of the execution and go back to
where their specification failed.

The trace files can be quite large, on the order of several hundred megabytes.
To overcome this problem we gave the users the possibility to configure the tracer
using a small specification file that contains:

• Module, relation and/or rule to be traced.
• Selection of variable names to include only their value in the trace.

This file is read by the tracer function and all the information is filtered accordingly.
We plan to implement more analyses and automated debugging in the future.

Also, tuning of the specification data structures and its operational properties could
be suggested by trace analysis.

7.10 Debugger Functionality

The Emacs RML debug mode is implemented as a specialization of the Grand
Unified Debugger (GUD) interface (gud-mode) from Emacs (GNU 2005 [57]).
Because the RML debug mode is based on the GUD interface, some of the
commands have the same familiar key bindings. The actual commands sent to the
debugger are also presented together with GUD commands preceded by the RML
debugger prompt: rmldb@>.

Debugger Functionality 131

If the debugger commands have several alternatives these are presented using the
notation:alt1|alt2. The optional command components are presented using
notation: [optional].

In the Emacs interface: M-x stands for holding down the Meta key (mapped to
Alt in general) and pressing the key after the dash, here x, C-x stands for holding
down the Control (Ctrl) key and pressing x, <RET> is equivalent with
pressing the Enter key and <SPC> with pressing Space key.

The next subsections present a debugging session on the RML example
specification for the Exp1 language presented in section 2.5.1.

7.10.1 Starting the RML Debugging Subprocess

The command for starting the RML debugger under Emacs:
M-x rmldb <RET> executable <RET>

Figure 7-3. Using breakpoints.

132 Chapter 7 Debugging Natural Semantics Specifications

7.10.2 Setting/Deleting Breakpoints

A part of a session using this type of commands is shown in Figure 7-3. The
presentation of the commands follows.

To set a breakpoint on the line the cursor (point) is at:
C-x <SPC>
rmldb@> break on file:lineno|string <RET>

To delete a breakpoint placed on the current source code line (gud-remove):
C-c C-d
C-x C-a C-d
rmldb@> break off file:lineno|string <RET>

Instead of writing break one can use alternatives br|break|breakpoint.
Alternatively one can delete/display all breakpoints using:

rmldb@> clear <RET>
rmldb@> show <RET>

Figure 7-4. Stepping and running.

Debugger Functionality 133

7.10.3 Stepping and Running

To perform one step (gud-step) in the RML code:
C-c C-s
C-x C-a C-s
rmldb@> step <RET>
rmldb@> <RET>

To continue after a step or a breakpoint (gud-cont):
C-c C-r
C-x C-a C-r
rmldb@> run <RET>

Examples of using these commands are presented in Figure 7-4.

7.10.4 Examining Data

There are no GUD key bindings for these commands but they are inspired from the
GNU Project debugger (GDB) (GNU 2005 [59]).

To print the contents/size of a variable one can write:
rmldb@> print variable_name <RET>
rmldb@> sizeof variable_name <RET>

at the debugger prompt. The size is displayed in bytes.
Variable values to be printed can be of a complex type and very large. One can

restrict the depth of printing using:
rmldb@> [set] depth integer <RET>

Moreover, we have implemented an external data value browser written in Java
called RMLDataViewer to browse the contents of such a large variable. To send the
contents of a variable to the external viewer for inspection one can use the
command:

rmldb@> browse|graph var_name <RET>

at the debugger prompt. The debugger will try to connect to the RMLDataViewer
and send the contents of the variable. The external data browser has to be started a
priori. If the debugger cannot connect to the external viewer within a specified
timeout a warning message will be displayed. More about the external
RMLDataViewer tool can be found in section 7.11.

134 Chapter 7 Debugging Natural Semantics Specifications

Figure 7-5. Examining data.

If the variable which one tries to print does not exist in the current scope, a
notifying warning message will be displayed.

Automatic printing of variables at every step or breakpoint can be specified by
adding a variable to a display list:

rmldb@> display variable_name <RET>

Removing a display variable from the display list:
rmldb@> undisplay variable_name <RET>

To print the entire display list or to remove all variables from it:
rmldb@> display <RET>
rmldb@> undisplay <RET>

Debugger Functionality 135

Printing the current live variables (variables available in the scope):
rmldb@> livevars <RET>

Instructing the debugger to print or to disable the print of the live variable names at
each step/breakpoint:

rmldb@> [set] livevars on|off]<RET>

Figure 7-5 shows examples of some of these commands within a debugging session.

Figure 7-6. Additional debugging commands.

136 Chapter 7 Debugging Natural Semantics Specifications

7.10.5 Additional Commands

Additional commands provide functionality for displaying the call chain, the stack
contents, the runtime status, etc. A session using some of these commands is
presented in Figure 7-6.

The stack trace can be displayed using:
rmldb@> backtrace <RET>

Because the contents of the stack can be quite large, one can print a filtered view of
it:

rmldb@> fbacktrace filter_string <RET>

Also, one can restrict the numbers of entries the debugger is storing using:
rmldb@> maxbacktrace integer <RET>

Also, the call chain is available in the debugger. Similar commands as for the
backtrace are available for call chain trace.

For displaying the status of the RML runtime:
rmldb@> status <RET>

The status of the RML runtime comprises information regarding the garbage
collector, allocated memory, stack usage, etc.

The current debugging settings can be displayed using:
rmldb@> settings <RET>

The settings printed are, i.e., the maximum remembered stack entries, the depth of
variable printing, the current breakpoints, the live variables, the list of the display
variables and the status of the runtime system.

One can invoke the debugging help or exit the debugger by issuing:
rmldb@> help <RET>
rmldb@> quit <RET>

7.11 The Data Value Browser

The RMLDataViewer is a browser for variable values and a new addition to our
debugging tools for RML. The need for such a tool became apparent when
debugging specifications that use very large data structures (for example abstract
syntax tree definitions for a certain language).

From the executable, at the debugging prompt one can invoke a browse
command which sends the queried variable value for displaying in the external
browser. The variable values can be limited in depth using set depth command. In
this way only needed parts of the variable value are sent.

The Data Value Browser 137

Figure 7-7. Browser for variable values showing the current

execution point (bottom) and the variable value (top).

The variable values are displayed in the browser as trees. The trees are collapsed,
but one can expand them further until the needed information is found. The children
of the root are the browsed variable names. When users click on the variable names
the bottom part of the browser shows (using tabs) the file where the execution point
is/was when the variable was sent to the browser. This functionality is presented in
Figure 7-7. To make it easy for users to understand their variables, the browser
shows datatype definitions connections to pieces of variable values like in Figure
7-8.

138 Chapter 7 Debugging Natural Semantics Specifications

Figure 7-8. When datatype constructors are selected, the bottom part presents
their source code definitions for easy understanding of the displayed values.

The screens were captured while debugging the OpenModelica compiler
specification and the variable value consists of the abstract syntax tree of the
Modelica language.

7.12 The Post-Mortem Analysis Tool

As pointed out in the debugger design and implementation, one can record parts of
or the entire execution trace of the specification in an XML file. The trace can then
be analyzed by tools that point out specific issues.

Performance Evaluation 139

In our post-mortem analysis environment we have developed a tool called Failure
analyzer. The Failure analyzer is a replay debugger which is able to walk back and
forth in time, display variable values, execution points, etc. When their specification
fails the users can run this analyzer over the recorded trace, start from the end of the
execution and go back and investigate where the execution has failed and why. This
tool was very important for our users, because, for large specifications, is not trivial
to understand where and why your specification failed.

The Failure analyzer tool is similar to the data value browser, but has buttons for
navigation in time, setting/deleting breakpoints and displaying values.

7.13 Performance Evaluation

In this section we make performance evaluation of our debugging strategy on three
real-world semantic specifications that define compilers for extended Pascal
(petrol), a small functional language (MiniML (Clément et al. 1986 [23])) and a
large Modelica compiler (OpenModelica). The first two specifications are part of
the examples bundled with the RML system (PELAB 1994-2008 [117], Pettersson
1995 [120], Pettersson 1999 [122]) and the Modelica compiler was implemented in
the OpenModelica project and is also available for download at the project address.
The semantic specifications were compiled to two versions of executables, one in
release mode and one in debugging mode. The compilers were then used to compile
programs and the compilation performance was measured.

We have tested the performance of our debugger on an Intel Pentium Mobile at
1.5Ghz with 480 MB of RAM memory. We compared code growth, execution time,
stack consumption, and number of relation calls.

If we consider that a premise (one call) is executed in O(1) then the complexity
of the call combined with the instrumentation will be O(number of variables from
the premise)+O(premise)+O(call to the step function) which is a complexity in the
order of the numbers of variables present in the specification.

7.13.1 Code Growth

Table 7-2 below shows the additional number of lines of code added during code
instrumentation. The code growth is between 1.3 and 1.7 which is quite limited. We
can see that for very large specifications like the OpenModelica compiler the code
grows less than for smaller specifications. The code growth was measured on the
files obtained from the abstract syntax tree unparsing before and after the
instrumentation. The comments were ignored.

test/mode
(debug/normal)

normal debug

petrol (1.63) 2513 4083

140 Chapter 7 Debugging Natural Semantics Specifications

miniml (1.57) 1112 1747

OpenModelica (1.36) 57186 77961

Table 7-2. Size (#lines) without and with instrumentation.

7.13.2 The Execution Time

The execution time was also measured and the results are presented below.

test/mode
(debug/normal)

normal
(seconds)

debug
(seconds)

petrol (24.63) 0.12 2.96

Miniml (11.19) 6.14 68.71

OpenModelica (20.55) 0.20 4.11

Table 7-3. Running time without and with debugging.

Table 7-3 presents a performance evaluation of our debugger. As one can notice,
the programs compiled in debug mode are between 10 and 25 times slower than the
programs compiled without debugging. We find this acceptable, as this is the first
prototype. For the user, the delay times due to the added debugging code are
practical. We can note also that very large specifications can be debugged without
too much penalty.

7.13.3 Stack Consumption

We have investigated the stack consumption needed during debugging versus the
normal memory consumption. The results are summarized in Table 7-4.

test/mode
 (debug/normal)

normal
 (words)

debug
(words)

petrol (1.19) 249 297

miniml (1.01) 8966 9126

OpenModelica (1.06) 1447 1543

Table 7-4. Used stack without and with debugging.

Conclusions and Future Work 141

It is normal that the debugging version of the runtime needs more stack because it
has more calls. This can be seen in the next subsection in Table 7-5. However, one
can see that the stack growth due to debugging is small, which means that the high
level optimization (that improve determinism) in the rml2c compiler are very
effective.

7.13.4 Number of Relation Calls

Presented in Table 7-5 is the total number of relations called during execution. Here
one can see that the debugger is using a large number of calls to register variables
and to check breakpoints or steps.

test/mode
(debug/normal)

normal debug

petrol (6.30) 350305 2209984

miniml (16.30) 2809705 45805284

OpenModelica (5.30) 510321 2706378

Table 7-5. Number of performed relation calls.

7.14 Conclusions and Future Work

In this chapter we have presented our practical debugging framework for Natural
Semantics. The debugging design, implementation and usage (functionality) was
detailed.

We can report that some of our RML users who have debugged their
specifications using this debugging framework have given us positive feedback and
also various suggestions for improvement.

While this is a good start, many improvements can be made to this framework.
As future direction we plan to improve the debugger execution speed, implement
time traveling without the need of execution tracing, define more post-mortem
analyses. One of our goals is to integrate of all our tools in an integrated
development environment (IDE) for RML based on the Eclipse platform
(Eclipse.Foundation 2001-2008 [29]). We already designed and implemented such
an RML IDE (Pop and Fritzson 2006 [129]).

Part IV

Advanced Integrated
Environments

Chapter 8

Modelica Development Tooling (MDT)

The OpenModelica (MDT) Eclipse Plugin integrates the OpenModelica compiler
and debugger with the Eclipse Integrated Development Environment Framework..
MDT, together with the OpenModelica compiler and debugger, provides an
environment for Modelica development projects. This includes browsing, code
completion through menus or popups, automatic indentation even of syntactically
incorrect models, and model debugging. Simulation and plotting is also possible
from a special command window. To our knowledge, this is the first Eclipse plugin
for an equation-based language. Eclipse (Eclipse.Foundation 2001-2008 [29]) is an
open source framework for creating extensible integrated development
environments (IDEs) using plugins.

8.1 Introduction

The goal of our work with the Eclipse framework integration in the OpenModelica
modeling and development environment is to achieve a more comprehensive and
powerful environment. It can be useful to first take a general look at this area
including some background.

8.1.1 Integrated Interactive Programming Environments

An integrated interactive modeling and simulation environment is a special case of
programming environment aimed at applications in modeling and simulation. Thus,
it should fulfill the requirements both from general integrated environments and
from the application area of modeling and simulation mentioned in the thesis.

The main idea of an integrated programming environment in general is that a
number of programming support functions should be available within the same tool
in a well-integrated way. This means that the functions should operate on the same
data and program representations, exchange information when necessary, resulting
in an environment that is both powerful and easy to use. An environment is
interactive and incremental if it gives quick feedback, e.g. without recomputing

146 Chapter 8 Modelica Development Tooling (MDT)

everything from scratch, and maintains a dialogue with the user, including
preserving the state of previous interactions with the user. Interactive environments
are typically both more productive and more fun to use.

There are many things that one wants a programming environment to do for the
programmer, particularly if it is interactive. What functionality should be included?
Comprehensive software development environments are expected to provide
support for the major development phases, such as:

• Requirements analysis.
• Design.
• Implementation.
• Maintenance.

A programming environment can be somewhat more restrictive and need not
necessarily support early phases such as requirements analysis, but it is an
advantage if such facilities are also included. The main point is to provide as much
computer support as possible for different aspects of software development, to free
the developer from mundane tasks so that more time and effort can be spent on the
essential issues. The following is a partial list of integrated programming
environment facilities, some of which are were already mentioned in (Sandewall
1978), that should be provided for the programmer:

• Administration and configuration management of program modules and
classes, and different versions of these.

• Administration and maintenance of test examples and their correct results.
• Administration and maintenance of formal or informal documentation of

program parts, and automatic generation of documentation from programs.
• Support for a given programming methodology, e.g. top-down or bottom-

up. For example, if a top-down approach should be encouraged, it is natural
for the interactive environment to maintain successive composition steps
and mutual references between those.

• Support for the interactive session. For example, previous interactions
should be saved in an appropriate way so that the user can refer to previous
commands or results, go back and edit those, and possibly re-execute.

• Enhanced editing support, performed by an editor that knows about the
syntactic structure of the language. It is an advantage if the system allows
editing of the program in different views. For example, editing of the
overall system structure can be done in the graphical view, whereas editing
of detailed properties can be done in the textual view.

• Cross-referencing and query facilities, to help the user understand
interdependences between parts of large systems.

• Flexibility and extensibility, e.g. mechanisms to extend the syntax and
semantics of the programming language representation and the functionality
built into the environment.

Introduction 147

• Accessible internal representation of programs. This is often a prerequisite
to the extensibility requirement. An accessible internal representation means
that there is a well-defined representation of programs that are represented
in data structures of the programming language itself, so that user-written
programs may inspect the structure and generate new programs. This
property is also known as the principle of program-data equivalence.

Early work in interactive integrated programming environments supporting a
specific language was done in the InterLisp system for the Lisp language:
(Teitelman 1974), common principles and experience of early interactive Lisp
environments are described in (Sandewall 1978), interactive and incremental Pascal
with the DICE system: (Fritzson 1983), the integrated Mjölner environment,
(Lindskov, Knudsen, Lehrmann-Madsen, and Magnusson 1993).

8.1.2 The Eclipse Framework

Eclipse (Eclipse.Foundation 2001-2008 [29]) is an open source framework for
creating extensible integrated development environments (IDEs). One of the goals
of the Eclipse platform is to avoid duplicating common code that is needed to
implement a powerful integrated environment for development of software. By
allowing third parties to easily extend the platform via the plugin concept, the
amount of new code that needs to be written is decreased.

8.1.3 Eclipse Platform Architecture

By itself, Eclipse does not provide extensive end-user functionality. The important
contribution of Eclipse is based on its plugins. The smallest architectural unit of the
Eclipse platform is the plugin.

At the core of Eclipse is the Eclipse Platform Runtime. The Runtime in itself
mostly provides the loading of external plugins. The Java Development Tooling
(JDT) is for example a collection of plugins that are loaded into Eclipse when they
are requested. The fact that Eclipse is in itself written in Java and comes with the
Java Development Tooling as default often leads newcomers to believe that Eclipse
is a Java IDE with plugin capabilities. It is in fact the other way around, with
Eclipse being just a base for plugins, and the Java Development Tooling plugging
into this base.

To extend Eclipse, a set of new plugins must be created. A plugin is created by
extending a certain extension point in Eclipse. There are several predefined
extension points in Eclipse, and plugins can provide their own extension points.
This means that you can plug in plugins into other plugins.

An extension point can have several plugins attached, and what plugin will be
used is determined by a property file. For example, the Modelica Editor is loaded at
the same time as the Java Editor is loaded. When a user opens a Java file, the Java

148 Chapter 8 Modelica Development Tooling (MDT)

Editor will be used, based on a property in the Java Editor extension. In this case, it
is the file name extension that determines what editor that should be used.

As the number of plugins in Eclipse can be very large, a plugin is not actually
loaded into memory before its contribution is directly requested by the user. This
design makes the memory impact reasonably low while running Eclipse.

A user-friendly aspect of Eclipse is the Eclipse Update Manager which allows
you to install new plugins just by pointing Eclipse to a certain website. This website
is provided by the developers of the plugin that you may wish to install. An update
site at the OpenModelica web site is for example provided for easy installation of
the latest version of MDT.

8.1.4 OpenModelica MDT Eclipse Plugin

The MDT Eclipse plugin provides file and class hierarchy browsing and text editing
capabilities. Some syntax highlighting facilities and a compilation manager are also
included in MDT, as well as integration to the debugger.

Figure 8-1. The architecture of Eclipse, with possible plugin positions marked.

The Eclipse framework (Figure 8-1) has the advantage of making it easy to add
future extensions.

OpenModelica Environment Architecture 149

8.2 OpenModelica Environment Architecture

The MDT Eclipse plugin is integrated in the OpenModelica environment which
consists of several interconnected subsystems, as depicted in Figure 8-2 below.

Arrows denote data and control flow. Several subsystems provide different
forms of browsing and textual editing of Modelica code.

Modelica
Compiler

Interactive
session handler

Execution

Graphical Model
Editor/Browser

Textual
Model Editor

Modelica
Debugger

Emacs
Editor/Browser

DrModelica
NoteBook

Model Editor

Eclipse Plugin
Editor/Browser

Figure 8-2. The architecture of the OpenModelica environment.

OpenModelica is structured as several communicating processes in a client-server
architecture, primarily exchanging information through a Corba interface, see
Figure 8-3. The OpenModelica compiler/interpreter (OMC) is the server,
communicating with clients. The Eclipse MDT plugin is one of the clients.

Messages from the Corba interface are of two kinds. The first group consists of
expressions or user commands which are evaluated by the Ceval package. The
second group consists of declarations of classes, variables, etc., assignments, and
client-server API calls that are handled via the Interactive package, which also
stores information about interactively declared/assigned items at the top-level in an
environment structure.

A more detailed description of the OpenModelica compiler (OMC) is given in
section 4.3 of Chapter 4 where the important packages of the compiler are
described.

150 Chapter 8 Modelica Development Tooling (MDT)

Parse

Client: Eclipse
Plugin

Corba

Client: OMShell
Interactive

Session Handler

Server: Main Program
Including Compiler,

Interpreter, etc.

Interactive

SCode

Inst

Ceval
plot

system

etc.

Untyped API

Typed Checked Command API

Client: Graphic
Model Editor

Figure 8-3. The client-server architecture of the OpenModelica environment.

8.3 Modelica Development Tooling (MDT) Eclipse
Plugin

As mentioned, the Modelica Development Tooling (MDT) Eclipse Plugin provides
an environment for working with Modelica development projects.

The following features are available:

• Browsing support for Modelica projects, packages, and classes.
• Wizards for creating Modelica projects, packages, and classes.
• Syntax color highlighting.
• Syntax checking.
• Code completion when writing code to reference a class.
• Code completion/signature information when writing function calls.
• Browsing of the Modelica Standard Library and other Modelica package

hierarchies.
• Support for MetaModelica extensions to standard Modelica.

Modelica Development Tooling (MDT) Eclipse Plugin 151

8.3.1 Using the Modelica Perspective

The most convenient way to work with Modelica projects is to use to the Modelica
perspective. To switch to the Modelica perspective, choose the Window menu item,
and select Open Perspective followed by Other... Select the Modelica
option from the dialog presented and click OK.

8.3.2 Creating a Project

To start a new project, use the New Modelica Project Wizard. It is accessible
through File->New->Modelica Project or by right-clicking in the Modelica
Projects view and selecting New->Modelica Project.

Figure 8-4. Creating a new package.

8.3.3 Creating a Package

To create a new package inside a Modelica project, select File->New->Modelica
Package. Enter the desired name of the package and a description of what it
contains.

8.3.4 Creating a Class

To create a new Modelica class, select where in the hierarchy that you want to add
your new class and select File->New->Modelica Class. When creating a

152 Chapter 8 Modelica Development Tooling (MDT)

Modelica class you can add different restrictions on what the class can contain.
These can for example be model, connector, block, record, or function.

Figure 8-5. Creating a new class.

When you have selected your desired class type, you can select modifiers that add
code blocks to the generated code. ‘Include initial code block’ will for
example add the line ‘initial equation’ to the class.

Figure 8-6. Syntax checking.

Modelica Development Tooling (MDT) Eclipse Plugin 153

8.3.5 Syntax Checking

Whenever a Modelica (.mo) file is saved by the Modelica Editor, it is checked for
syntactical errors. Any errors that are found are added to the Problems view and
also marked in the source code editor.

Errors are marked in the editor as a red circle with a white cross, a squiggly red
line under the problematic construct, and as a red marker in the right-hand side of
the editor. To reach the problem, one can either click the item in the Problems view
or select the red box in the right-hand side of the editor.

8.3.6 Code Completion

MDT supports Code Completion in two variants. The first variant, code completion
when typing a dot after a class (package) name, shows alternatives in a menu:

Figure 8-7. Code completion using a popup menu after a dot

The second variant is useful when typing a call to a function. It shows the function
signature (formal parameter names and types) in a popup when typing the
parenthesis after the function name, here the signature Real sin(SI.Angle u)
of the sin function:

154 Chapter 8 Modelica Development Tooling (MDT)

Figure 8-8. Code completion showing a popup function signature after typing a left
parenthesis.

8.3.7 Automatic Indentation

MDT also has support for automatic indentation. When typing the Return (Enter)
key, the next line is indented correctly. You can also correct indentation of the
current line or a range selection using CTRL+I or “Correct Indentation” action on
the toolbar or in the Edit menu.

Figure 8-9. Example of code before indentation.

Modelica Development Tooling (MDT) Eclipse Plugin 155

Figure 8-10. Example of code after automatic indentation.

Indentation can be applied to incomplete code as a heuristic Modelica scanner is
used and the indentation is based only on the tokens generated by this scanner. The
indenter indents one line at a time. For example, consider that line four (4) in Figure
8-10 should be indented. The indenter asks the heuristic scanner to give tokens from
in backwards direction to the start of the file until a scope introducer is recognized,
which for this particular file is model MoonAndEarth. The reference position of
the start of the scope introducer is computed and line four (4) is indented from this
reference position on indent unit. The indentation result is presented in Figure 8-10.

Indenting Modelica code is far from trivial when incomplete (possibly incorrect)
code should be indented correctly. Most of the difficulty comes from Modelica
scopes which are hard to recognize using just a scanner and some logic behind it. In
languages like C/C++ and Java finding enclosing scopes is very easy as one
character tokens are used for the scope opening and closing: "{" and "}". In
Modelica you need at least two tokens and a lot of case analysis to find where a
scope starts and ends. Complications also arise when mixing if statements with if
expressions (which was further complicated by the introduction of the conditional
declarations). In this particular case we implemented a parser emulator that
recognizes these constructs based on scanner tokens delivered backwards.

156 Chapter 8 Modelica Development Tooling (MDT)

The indenter works in almost all cases, but there are cases in which it is
impossible to find the correct indentation. For example when the indentation of a
line consisting of end Name; is requested and the scope introducer for Name is not
found (that is identifier Name followed backwards by class, model, package,
block, record, connector etc.) then the indenter fails and returns the indentation
of the previous line.

8.4 The OpenModelica Debugger Integrated in
Eclipse

We have integrated our algorithmic debugger (Chapter 5), also (Pop and Fritzson
2005 [128]) within the Eclipse debugging framework.

The communication protocol between MDT and the debugger (which is
included in the compiled executable build for simulation) is based on a client-server
architecture and is implemented via sockets. The debugger is the client and MDT is
the server. When the debugged model is simulated, the debugger receives from
MDT all the breakpoints set within the algorithmic code. Then the debugger
resumes the program. When a break condition becomes true the debugger stops the
program and listens on commands it may receive from MDT. The commands
accepted by the MDT client are classic: variable value printing, stack trace printing,
stepping, running, etc. MDT sends appropriate commands to the debugger, parses
the information received and displays it within the MDT debugging views to be
inspected by the programmer.

Because algorithmic code can be executed millions of times within a simulation,
is very important to be able to specify breakpoints based on variable values and/or
the number of times a function executes. These types of breakpoints were newly
added to the debugging framework and are now available.

8.5 Simulation and Plotting from MDT

Simulation and plotting is possible from a special command window, where
commands are sent to OMC. For example, to simulate:

>> simulate(Influenza,startTime=0.0, stopTime=3.0)

record
 resultFile = "Influenza_res.plt"
end record

The simulated population is plotted, which is shown in Figure 8-11.
>> plot({Infected_Popul.p})
true

Conclusions 157

Figure 8-11. Plot of the Influenza model.

8.6 Conclusions

The OpenModelica integrated development environment for Modelica has been
augmented with a plugin to the Eclipse framework. The plugin, called MDT
(Modelica Development Tooling) (Pop et al. 2006 [131]), is primarily aimed at
development of large models or specifications. It has support for browsing, editing,
code completion, automatic indentation, building executables, and debugging. It
also allows simulation and plotting from a special command window. Further
extension and integration of MDT with UML-based modeling is presented in
Chapter 10.

To summarize, MDT provides a rather complete integrated development
environment, and it is also the first available Eclipse plugin for an equation-based
language.

Chapter 9

Parsing-Unparsing and Refactoring

In this chapter based on (Fritzson et al. 2008 [52]) we present a strategy for
comment- and indentation preserving refactoring and unparsing for Modelica. The
approach is general, and is currently being implemented for Modelica in the
OpenModelica environment. We believe this to be one of the first unparsing
approaches for equation-based object-oriented languages that can preserve all user-
defined indentation and comment information, as well as fulfilling the principle of
minimal replacement at refactorings.

9.1 Introduction

Integrated programming environments, e.g. InterLisp (Warren 1974 [171]) and
Eclipse (Eclipse.Foundation 2001-2008 [29]) provide various degrees of support for
program transformations intended to improve the structure of programs – so-called
refactorings (Fowler et al. 1999 [39]) (see also Section 9.7).

Such operations typically operate on abstract syntax tree (AST) representations
of the program. Therefore the program needs to be converted to tree form by
parsing before refactoring, and be converted back into text by the process of
unparsing, also called pretty printing This is supported by a number of
environments (section 9.7).

However, a well-known problem is that of preserving comments and user-
defined indentation while performing refactorings. Essentially all current
environments either loose the comments (except for special comments that are part
of the language syntax and AST representation), or move them to some other place.
User-defined indentation is typically lost and replaced by machine-generated
standard indentations. This is accepted by some developers, but judged as
unacceptable by others. However, if the objective only is to improve indentation,
then a semi-automatic indenter can be used instead (section 9.5.3.3).

160 Chapter 9 Parsing-Unparsing and Refactoring

Currently Modelica-based tools are handling only declaration comments that are
part of the model and are discarding or moving all the other comments, i.e. the ones
between /* */ and after //…. Such behavior is highly undesirable from a user
perspective and heavily affects the ease-of-use of code-versioning tools.

A goal for the work presented here is to support Modelica code refactoring with
minimal disruption of user-defined comments and indentation. In this chapter we
present such an approach for unparsing in conjunction with refactorings.

9.2 Comments and Indentation

Regard the following contrived Modelica example. It has one declaration comment
which is part of the language syntax, and two “textual” comments Itemcomm and
MyComm which would be eliminated by a conventional parser. It is also nicely hand
formatted so that the start positions of each component name in the text are
vertically aligned.

record MODIFICATION "Declaration comment"
 Boolean finalItem; //Itemcomm
 Each /* MyComm */ eachRef;
 ComponentRef componentReg;
end MODIFICATION;

Assume that this is parsed and unparsed by a conventional (comment-preserving)
unparser, putting two blanks between the type and the component name of each
component. The manual indentation would be lost, and the “textual” comments
would be moved to some standard positions (or be lost):

record MODIFICATION "Declaration comment"
 Boolean finalItem; //Itemcomm
 Each eachRef; /* MyComm */
 ComponentRef componentReg;
end MODIFICATION;

9.3 Refactorings

Below we make some general observations and give examples of refactorings.

9.3.1 The Principle of Minimal Replacement

For a refactoring to have minimal disruption on the existing code, it is desired that it
supports the principle of minimal replacement:

• When replacing a subtree, the minimal subtree that contains the change should
be replaced.

Refactorings 161

This also has the consequence of minimal loss or change of comments. For
example, if a name (an identifier) is changed, only the identifier node in the tree
should be replaced, not the surrounding subtree.

9.3.2 Some Examples of Refactorings

Here we mention a few common refactorings. There are also numerous, more
advanced and specialized refactorings.

• Component name change. Change name of a component name in a record. For
example:
record MODIFICATION "Declaration comment"
 Boolean finalItem; //Itemcomm
 Each /* MyComm */ eachRef;
 ComponentRef componentReg;
end MODIFICATION;

The name of the component reference name is currently componentReg, which is
an error. It should be componentRef. We would like to change the name both in
the declaration and all its uses, thus avoiding updating all named references by
hand, which would be quite tedious.

• Function name change. Change the name of a function, both the declaration and
all call sites.

• Add record component. Add a new component declaration to a record. In
MetaModelica, that would also mean putting an underscore '_' at the correct
position in all patterns for that record type with positional matching.

• Add function formal parameter. Add an input or output formal parameter to a
function. The question is, how much is possible to do automatically? Adding
arguments to recursive calls to the function itself is no great problem, but calls
from other functions can be more problematic since meaningful input data needs
to be provided. This can be handled easily in those cases a default value can be
passed to the function's new formal parameter.

9.3.3 Representing Comments and User-Defined Indentation

How should information about comments and user defined indentation be
represented in the internal (AST) program representation? There are basically two
possibilities for a chunk of code, e.g. a model:

• Tree. The AST representation is the main storage (the TRUTH). Comments and
indentation as extra nodes/attributes in the AST.

162 Chapter 9 Parsing-Unparsing and Refactoring

• Text. The text representation, including indentation and comments, is the main
storage (the TRUTH).

The tree approach may seem natural, since the refactorings and the compiler operate
on the tree representation. However, it has some disadvantages:

• Since white space and comments can appear essentially anywhere, between
nodes, associated with nodes, the AST will become cluttered and increase the
required memory usage and complexity of the tree, perhaps by a factor 2-3.

• The large number of extra nodes in the AST may complicate code accessing and
traversing the tree.

Regarding the text representation we make the following observations:

• The text representation exists from the start, since this is the storage form used
in the file system. Environments like Eclipse use text buffers for direct
interaction with the programmer.

• The text representation includes all indentation and comment information, and is
compact.

• The structure of the program in the text representation is not apparent, and
cannot be easily manipulated.

Why not combine the advantages of each representation, and try to avoid the
disadvantages?

• Use the text representation as the basic storage format including indentation and
comment information. The text might be conceptually divided into chunks,
where for example each class definition gives rise to a text chunk.

• Use the tree representation for compilation and refactoring. Create it when
needed and keep it during the current session. Create it piece-wise, e.g. for one
class at a time.

• Create a mapping from the tree representation to the text representation; each
node in the tree has a corresponding position and size in the text representation.
Create this mapping when needed, for appropriate pieces (e.g. class definitions)
of the total model.

9.4 Implementation

The strategy used for the implementation is described in the following sections.

Implementation 163

9.4.1 Base Program representation

The text representation is the TRUTH, the source, and the AST representation is a
secondary representation derived from the source, used during compilation and
refactoring.

The class information attribute of a class definition in the AST should be
extended, e.g. with the byte start position (directly addressing within a file), or by a
text chunk corresponding to the text of a class declaration. A package which
contains classes would instead refer to the definitions of those classes.

Text positions and text sizes of each AST node should be indirectly associated
with each AST node.

9.4.2 The Parser

The following special considerations need to be addressed by the parser:

• In order not to clutter the produced AST tree, the parser produces two trees: a
standard AST tree, and a positioning tree (produced in parallel) with the same
number of nodes, containing text positions and sizes of each subtree.

• The parser should return the start text position and text size of each built AST
tree. Moreover, if there are any comments within the AST tree text range, a list
of the start positions and sizes of these comments should be associated with the
parallel tree node.

• The pure AST tree should be clean and not cluttered with position and comment
information.

• As mentioned, a text position tree with the same number of nodes and children
as the AST is created in parallel to the AST. The positioning tree is only
produced when needed for refactorings or text positioning, and thrown away
when not needed.

For example, a child nr 3 of a node at level 2, will find its text positions in the
parallel tree in the node at level 2 and child nr 3.

9.4.3 The Scanner

The text position and size of each token is returned together with the token itself.

9.4.4 The New Unparser

The new unparser will use a combined strategy as follows, combining existing text
with new text generated by the tree unparser:

164 Chapter 9 Parsing-Unparsing and Refactoring

• If there exist already indented text associated with a node, use this text to
produce the unparsing text.

• If there is no existing text, this must be a new tree node produced by the
refactoring tool. Call the tree unparser to convert this subtree into text that is
inserted into the final unparsing result.

9.5 Refactoring Process

The following steps are to performed in this order during the actual refactoring:

• Traverse the AST and perform insertion/deletion/ replacement of subtrees.
• For each insertion/deletion/replacement operation, put each such an operation

descriptor in a list, together with the text position and size of the text of the
subtree to be replaced/deleted etc.

• After traversal, sort these operations according to text position, and perform the
operations in the text in backwards order (take those at the highest text position
first).

9.5.1 Example of Function Name Refactoring

The example below is used to illustrate the refactorings and the used combined tree
and text chunk representation.

All loaded models (including the Modelica package) reside in an un-named
top-level scope that we can call Top. A model may be a top-level model, but more
typically a package which in turn may consist of subpackages:

01 within ParentPackage;
02 package ack p
03 function addOne "function that adds 1"
04 input Real x = 1.0; // line comment
05 output Real y; /* multiple
06 line
07 comment */
08 algorithm
09 y := x + 1.0;
10 end addOne;
11
12 class myClass
13 Real y;
14 equation
15 y = addOne(5); // Call to addOne
16 end myClass;
17 end pack;

Refactoring Process 165

Line numbers are given to help the reader follow the example. The position tree
constructed by the parser is given in the appendix as it is quite large. A portion of
the abstract syntax tree is also shown in order to understand the example.

A function name refactoring will be applied to the example which will change
the name of the function "addOne" to "add1", The refactoring can be performed
in the OpenModelica environment by loading the example and calling the
interactive API function:

loadFileForRefactoring("Example.mo");
refactorFunctionName(pack.addOne, "add1");

The compiler will execute the first command by calling the new parser that also
builds the position tree together with the AST:

(ast,posTree) = Parse.refactorParse(file);

The result of the load command is two trees. The second (posTree) is the position
tree presented (partly) in the appendix. The first (ast) is the abstract syntax tree of
the loaded file which is presented also in the appendix entirely. Here is just a
overview picture of the AST:

Figure 9-1. AST of the Example.mo file.

The figure shows that the program has one package with two public elements which
are class definitions.

Actually only two refactoring operations are needed to implement any
refactoring: add and delete or add and replace.

When refactorFunctionName is called the compiler will perform these
operations:

166 Chapter 9 Parsing-Unparsing and Refactoring

9.5.1.1 Lookup pack.addOne

Lookup of a class definition is performed by walking the AST while keeping track
of a numbered path in the tree. To reach the addOne identifier, the path: 1, 6, 1, 1,
1, 5, 2, 1, 1 is applied. The path goes via the following AST nodes in order to reach
the desired class name: PROGRAM [1] / CLASS [6] / PARTS [1] / PUBLIC
[1] / ELEMENTITEM [1] / ELEMENT [5] / CLASSDEF [2] / CLASS [1]
/ IDENT("addOne") [1].

9.5.1.2 Lookup Any Uses of pack.addOne

Lookup of the uses are performed by walking the AST, keeping track of the scope,
while keeping track of a numbered path. To reach the function call of addOne, the
path: 1, 6, 1, 1, 1, 5, 2, 1, 1 is applied. The path goes via the following AST nodes:
PROGRAM [1] / CLASS [6] / PARTS [1] / PUBLIC [2] / ELEMENTITEM
[1] / ELEMENT [5] / CLASSDEF [2] / CLASS [6] / PARTS[1] /
EQUATIONS [1] / EQUATIONITEM [1] / EQ_EQUALS [2] / CALL[1] /
CREF_IDENT [1] / IDENT("addOne") [1].

9.5.1.3 Apply the Refactoring to the Actual Text

Now that the paths needed for the minimal refactoring were discovered in the AST,
apply these paths to the position tree and fetch the positions of the elements at the
end of the paths:

• Function name: IDENT, Start:047, End:053
• Function use: IDENT, Start:313, End:319

The text operations are applied bottom-up because otherwise the character positions
of the elements below an applied operation would change. Ordering of text
operations is needed to have them applied in a bottom-up fashion:

• ReplaceText(file, 319, 313, "add1");
• ReplaceText(file, 53, 47, "add1");
• Close(file);
• (ast, posTree) = // re-parse the file Parse.refactorParse(file);

After the file is closed either a reparsing is performed to load the new AST (as
exemplified here) or the refactoring operations are perfomed on the tree already in
the memory. Of course the best alternative would be to perform the refactoring
during lookup as we have implemented it in the OpenModelica compiler.

As one can notice the comments stay in place so there is minimal disruption to
the text representation. This is very valuable from a user point of view but also for
code-versioning tools.

Refactoring Process 167

9.5.2 Calculation of the Additional Overhead

There is not too much overhead for the refactoring both with respect to memory
usage and time spent walking the tree. In the following table we discuss such
overhead and give specific numbers for needed memory size and time complexity
of the refactoring procedure.

Memory overhead Time overhead

Space is required for storing the
position tree. The size of this space is
two integers (of 4 bytes) for each AST
node. Also the list of operations to be
applied to the text needs memory for
storing the paths and the operations
themselves, but this memory is
negligible compared to the AST and
position tree and can also be freed.

Example: there are about 50 nodes in
the example, which means an
additional memory of ~ 50NrNodes x
2Positions x 4Bytes = 400Bytes are
needed for the position tree. Of
course, the position tree can be built
on demand and then freed when
memory is needed.

Walking two trees while performing
the refactoring has a time impact of
NumberOfNodesWalked x O(1) to
walk a node: O(NrOfNodesWalked).
Walking the position tree while and
applying the text operations to the file
is negligible compared to the
refactoring operation.

Example: it took about 0.2 seconds to
perform the function name refactoring
for the example file using the
OpenModelica system. Refactoring
old graphical annotations of the
Modelica Standard Library version 1.6
to the new style graphical annotations
took about 9.6 seconds, which is very
good for such a demanding
refactoring.

9.5.3 Unparsers/Prettyprinters versus Indenters

As mentioned previously, an unparser converts an AST program representation into
(nicely indented) text. A reformatting indentation tool uses another approach: it
operates directly on the text representation to produce a more nicely indented text.

9.5.3.1 Pretty printers/Unparser Generators

An unparser generator produces an unparser from a specification, a grammar-like
description of unparsing-related aspects of the language. A number of systems
mentioned in Section 9.5.3 support unparsing or generation of unparsers from such
specifications.

168 Chapter 9 Parsing-Unparsing and Refactoring

9.5.3.2 OpenModelica Tree Unparser

The current OpenModelica version 1.4 unparser is hand implemented in
MetaModelica, recursively traversing the AST while generating the Modelica text
representation. It can be invoked by the OpenModelica list command. Comments
are currently lost (except for declaration comments).

9.5.3.3 Reformatting Indentation in the OpenModelica Eclipse Plugin

A text reformatting indentation tool operates directly on the text representation, and
analyzes the text by a combination of scanning and piecemeal heuristic partial
parsing to recognize certain combinations of tokens. It inserts or removes white
space in order to produce a nice indentation, or improve an existing one. Such
mechanisms are typically invoked by the user on a few lines at a time, and are not
completely automatic; the user is often required to perform the final adjustments.
An advantage with this approach is that comments are not lost.

This kind of indentation tool is for example available for a number of languages
in their respective Emacs modes, or as part of Eclipse plugins, e.g. for C++, Java,
and more recently for Modelica in the OpenModelica MDT Eclipse plugin.

MDT includes support for automatic indentation, as described in Chapter 8 and
in (Pop et al. 2006 [131]). When typing the Return (Enter) key, the next line is
indented correctly. The user can also correct indentation of the current line or a
range selection using CTRL+I or “Correct Indentation” action on the toolbar or in
the Edit menu.

Indentation can be applied to incomplete code as a heuristic Modelica scanner is
used and the indentation is based only on the tokens generated by this scanner. The
indenter indents one line at a time. For example, consider that line four (4) in Figure
8-10 should be indented. The indenter asks the heuristic scanner to give tokens from
the starting token in backwards direction to the start of the file until a scope
introducer is recognized, which for this particular file is model MoonAndEarth.
The reference position of the start of the scope introducer is computed and line four
(4) is indented from this reference position one indent unit. The indentation result is
presented in Figure 8-10.

Indenting Modelica code is far from trivial when incomplete (possibly incorrect)
code should be indented correctly. Most of the difficulty comes from Modelica
scopes which are hard to recognize using just a scanner and some logic behind it. In
languages like C/C++ and Java finding enclosing scopes is very easy as one
character tokens are used for the scope opening and closing: "{" and "}". In
Modelica you need at least two tokens and much more case analysis to find where a
scope starts and ends. Complications also arise when mixing if-statements with if-
expressions (which was further complicated by the introduction of conditional
declarations in the Modelica language). In this particular case we implemented a
parser emulator that recognizes these constructs based on scanner tokens delivered
backwards.

The indenter works well in almost all cases, but there are cases in which is
impossible to find the correct indentation. For example when the indentation of a

Further Discussion 169

line consisting of "end Name;" is requested and the scope introducer for Name is
not found (that is identifier Name followed backwards by class, model,
package, block, record, connector etc.) then the indenter fails and returns the
indentation of the previous line.

9.6 Further Discussion

This section addresses additional questions raised during a presentation of the
article that this chapter is based on at the Modelica 2008 conference:

Question: “A question I have always had is whether there are any "mistakes" in the
grammar that should be corrected with respect to these issues. Similarly, how is
this handled with the Java tools in Eclipse?”
Answer: The answer to this question highly depends on the syntactic mistake the
user made. For example if an "end if;" is missing at the end of an equation
section, but is followed by "end Model;", then such a mistake can be
automatically corrected using a heuristic parser. However, if an opening scope is
missing, i.e., model Model (or alternatively an ending scope) there is no way to
know where it should be introduced. There are a lot of places that can be proposed:

• Just after the enclosing scope starts (after i.e., package MyPack introduction)
if there exists such scope or the start of the file if no such scope exists.

• Just after the every existing ending scope of a model found by going backwards
from the end Model;

Figure 9-2. Syntax checking.

170 Chapter 9 Parsing-Unparsing and Refactoring

Right now the Eclipse environment will call the OpenModelica compiler to parse
the file each time the file is saved. The parsing errors are reported in the Eclipse
environment as a list of errors, but also underlined where the error occurs as shown
in Figure 9-2. Of course if the user selects an entire file and calls the automatic
indentation routine, the indentation will work correctly if there are no large
grammatical errors in the file.

Question: “Dymola’s pretty printing algorithm does not appear to be deterministic
(it sometimes changes files for no reason just because they have been re-saved).
Please discuss this deterministic issue and also what implications the algorithms
will have for version control tools (i.e. avoiding complex or unnecessary changes
since this will complicate "merge" operations).”
Answer: As exemplified in Sections 9.3.1 and 9.5.1 the disruption to the actual text
is minimal so the code-versioning tools would have no problem with merging
operations. This was one of our goals when designing and implementing the
refactoring tools presented in the chapter. The algorithms in this chapter also apply
to Modelica models constructed programmatically because these can also be viewed
as refactorings. In general the construction of models programmatically is
performed by a visual component diagram editor. The editor will give commands:
addModel(…), addComponent(…), addConnection(…), etc., to the internal
handler of the textual model (that works on the AST and the positionTree) which in
the case of a file with code formatting will minimally disrupt the existing code and
add all the new code correctly indented at the end or in other appropriate places.

9.7 Related Work

The term refactoring and its use in a general and systematic sense was introduced
by Martin Fowler et al (Fowler et al. 1999 [39]), also based on earlier work, even
though similar code transformation operations were previously available, e.g. in the
InterLisp environment (Warren 1974 [171]).

Early work in interactive integrated programming environments including
unparsing/pretty printing supporting a specific language was done in the InterLisp
system for the Lisp language (Warren 1974 [171]), common principles and
experience of early interactive Lisp environments are described in (Sandewall 1978
[143]), a generic editor/unparser/parser generator used for Pascal (and later Ada) in
the DICE system (Fritzson 1984 [42]), (Fritzson 1983 [41]), the integrated Mjölner
environment with mullti-language editing and unparsing support (Lindskov et al.
1993 [86]). None of these approaches preserve comments when unparsing, except
the InterLisp environment where the comments were already part of the AST which
was just pretty printed with a more readable indentation. However, also in the
InterLisp case, all hand indentation and white space added by the user is lost, and
text style comments (not part of the AST) are also lost.

Many parser generation systems, e.g. ANTLR (Parr 2005 [116]), Eli (Kastens et
al. 2007 [77]), CoCo (Mössenböck et al. 2000 [105]), also support unparsing from

Conclusions 171

the generated AST, but do not support preservation of comments and hand-made
indentation.

9.8 Conclusions

We have given a preliminary description of refactorings together with an approach
for comment- and indentation preserving unparsing. This is currently ongoing work.
Part of the unparser and the refactorings are implemented. A prototype was
implemented and it will be part of a new OpenModelica release.

9.9 Appendix

Here we give (parts of) the generated position tree (posAST) for the code in the
example section. The start and end are given in character offsets. The nodes that
have -1 as start/end position do not actually exist in the text, but they appear in here
to have 1-to-1 mapping to the AST definitions.
(Program, (Start: 1, End: 366, {
 (list<Class>, (Start: 23, End: 366, {

(Class,(Start: 23, End: 366, { (Ident, (Start: 31, End: 35)
 (Boolean Partial, (Start: -1, End: -1)
 (Boolean Final, (Start: -1, End: -1)
 (Boolen Ecapsulated, (Start: -1, End: -1)
 (Restriction, (Start: 23, End: 30)
 (ClassDef, (Start: 35, End: 356, {
 (list<ClassPart>, (Start: 38, End: 356, {
 (ClassPart, (Start: 38, End: 356, {
 (list<ElementItem>, (Start: 38, End: 356, {
 (ElementItem, (Start: 38, End: 264, {
 (Element, (Start: 38, End: 264, {
 (Boolean final, (Start: -1, End: -1)
 (Option<RedeclareKeywords>, (Start: -1, End: -1)
 (InnerOuter, (Start: -1, End: -1)
 (Ident, (Start: -1, End: -1)
 (ElementSpecEL5, (Start: 38, End: 264, {
 (Boolean replaceable, (Start: -1, End: -1)
 (Class, (Start: 53, End: 264, {
 (Ident, (Start: 47, End: 53)
 (Boolean Partial, (Start: -1, End: -1)
 (Boolean Final, (Start: -1, End: -1)
 (Boolen Ecapsulated, (Start: -1, End: -1)
 (Restriction, (Start: 38, End: 46)
 (ClassDef, (Start: 53, End: 264, {
 (list<ClassPart>, (Start: 53, End: 264, {
 (ClassPart, (Start: 80, End: 250, {

172 Chapter 9 Parsing-Unparsing and Refactoring

 (list<ElementItem>, (Start: 80, End: 221, {
 (ElementItem, (Start: 80, End: 100, {
 (Element, (Start: 80, End: 100, {
 (Boolean final, (Start: -1, End: -1)
 (Option<RedeclareKeywords>,
 (Start: -1, End: -1)
 (InnerOuter, (Start: -1, End: -1)
 (Ident, (Start: 91, End: 92)
 (ElementSpecEL3, (Start: 91, End: 100, {
 (ElementAttributes,(Start: 80, End: 85,{
 (Boolean flow, (Start: -1, End: -1)
 (Variability, (Start: -1, End: -1)
 (Direction, (Start: 80, End: 85)
 (ArrayDim, (Start: -1, End: -1)})
 (TypeSpec, (Start: 86, End: 90, {
 (Path, (Start: 86, End: 90, {
 (Ident, (Start: 86, End: 90)})
 (Option<ArrayDim>,
 (Start: -1, End: -1)
 })
 ... // truncated text due to its large size
 }) (Option<String>, (Start: -1, End: -1)
 }) (Info, (Start: -1, End: -1)
 })

})
(Within, (Start: 1, End: 7,
 (Path, (Start: 8, End: 22, {(Ident, (Start: 8, End: 22)}))

Here is another version of the example with character positions for end and start of
a Modelica construct:

[001]within[007] [008]ParentPackage;[022]
[023]package[030] [031]pack[035]
[036] [038]function[046] [047]addOne[053] [054]"function
that adds 1"[076]
[077] [080]input[085] [086]Real[090] [091]x[092]
[093]=[094] [095]1.0;[099]
 [100]// line comment[115]
[116] [119]output[125] [126]Real[130] [131]y;[133]
 [139]/* multiple
 line
 comment */[221]
[222] [224]algorithm[233]
[234] [237]y[238] [239]:=[241] [242]x[243] [244]+[245]
[246]1.0;[250]
[251] [253]end[256] [257]addOne;[264]
[265]
[266] [268]class[273] [274]myClass[281]
[282] [286]Real[290] [291]y;[293]
[294] [296]equation[304]

Appendix 173

[305] [309]y[310] [311]=[312] [313]addOne[319](5);[323]
[324]// Call to addOne[341]
[342] [344]end[347] [348]myClass;[356]
[357]end[360] [361]pack;[366]

Parts of the abstract syntax tree (AST) of the Example.mo in the example section is
presented below. The AST has exactly the same structure as the position tree.

adrpo@KAFKA /c/home/adrpo/doc/projects/modelica2008/
$ omc +d=dump Example.mo
Absyn.PROGRAM([
 Absyn.CLASS(Absyn.IDENT("pack"),
 false, false, false, Absyn.R_PACKAGE,
 Absyn.PARTS(
 [Absyn.PUBLIC(
 [Absyn.ELEMENTITEM(
 Absyn.ELEMENT(false, _, Absyn.UNSPECIFIED ,
 "function",
 Absyn.CLASSDEF(false,
 Absyn.CLASS(Absyn.IDENT("addOne"),
 false, false, false, Absyn.R_FUNCTION,
 Absyn.PARTS(
 [Absyn.PUBLIC(
 [Absyn.ELEMENTITEM(
 Absyn.ELEMENT(false, _, Absyn.UNSPECIFIED,
 "comp",
 Absyn.COMPONENTS(Absyn.ATTR(false,
 Absyn.VAR, Absyn.INPUT,[]),
 Absyn.PATH(Absyn.IDENT("Real")),
 [Absyn.COMPONENTITEM(
 Absyn.COMPONENT(Absyn.IDENT("x"),[],
 SOME(Absyn.CLASSMOD([],
 SOME(Absyn.REAL(1.0))))), NONE)]),
 Absyn.INFO("Example.mo",
 false, 4, 4, 4, 22)), NONE)),
 Absyn.ELEMENTITEM(
 Absyn.ELEMENT(false, _,
 Absyn.UNSPECIFIED , "component",
 Absyn.COMPONENTS(Absyn.ATTR(false,
 Absyn.VAR, Absyn.OUTPUT, []),
 Absyn.PATH(Absyn.IDENT("Real")),
 [Absyn.COMPONENTITEM
 (Absyn.COMPONENT("y",[],NONE), NONE)]),
 Absyn.INFO("Example.mo",
 false, 5, 4, 5, 17)), NONE))]),
 Absyn.ALGORITHMS(
 ALGORITHMITEM(
 ALG_ASSIGN(
 Absyn.CREF(Absyn.CREF_IDENT("y", [])),
 Absyn.BINARY(
 Absyn.CREF(Absyn.CREF_IDENT("x", [])),

174 Chapter 9 Parsing-Unparsing and Refactoring

 Absyn.ADD,
 Absyn.REAL(1.0)))))],
 SOME("function that adds 1")),
 Absyn.INFO("Example.mo", false, 3, 3, 10, 13))
 ... // truncated text due to its large size
], // end of Absyn.CLASS list
 Absyn.WITHIN(Absyn.IDENT("ParentPackage")
) // end Absyn.PROGRAM

Chapter 10

UML and Modelica System Modeling
with ModelicaML

10.1 Introduction

Complex products are increasingly consisting of both software and hardware
components which are closely interacting. Thus, modeling tools and processes need
to support co-design of software and hardware in an integrated way. Currently,
UML is the dominant graphical modeling notation for software, whereas Modelica
is the major object-oriented mathematical modeling language for component-
oriented modeling of complex physical systems, e.g., systems containing
mechanical, electrical, electronic, hydraulic, thermal, control, electric power or
process-oriented subcomponents. Here we present the first comprehensive UML-
Modelica-SysML integrated modeling environment as a ModelicaML profile
integrated in Eclipse as a plugin. The profile reuses some artifacts from the System
Modeling Language (SysML) profile, and combines the major UML diagrams with
Modelica graphic connection diagrams. Requirement, equation, and simulation
diagrams are also supported in an integrated way. Moreover, the availability of the
UML-style internal class diagram view for Modelica classes may also ease the
understanding of modeling with Modelica for software developers with a UML
background.

One of the most important paradigm shifts occurring in engineering system
design and product development may well be the adoption of common system
models, as a foundation for product/system design. This allows for a much more
effective product development process since a system can be analyzed and tested in
all stages of design.

The development in system modeling has come to the point where complete
modeling of systems is possible, e.g. the complete propulsion system, fuel system,
hydraulic actuation system, etc., including embedded software can be modeled and
simulated concurrently. This does not mean that all components are dealt with down

176 Chapter 10 UML and Modelica System Modeling with ModelicaML

to the very smallest details of their behavior. It does, however, mean that all
functionality is modeled, at least qualitatively.

Furthermore, in contrast to the usual problem oriented approach, the test
applications to be simulated with the model typically are not explicitly known when
the model is established. Perhaps more importantly, an aspect-oriented system
model can carry all information about the system under development, and be the
blueprint that all engineers work towards.

Model-based product development needs multi-disciplinary competence. Until
recently rather few efforts have been started to bring these together despite the
industrial importance of such an integration.

10.2 SysML vs. Modelica

The System Modeling Language (SysML) has recently been proposed and defined
as an extension of UML targeting at systems engineers. The goal of SysML is to
unify different approaches and languages used by system engineers into a single
standard which supports specification, analysis, design and verification of complex
systems. SysML models may span different domains, for example, electrical,
mechanical and software. Even if SysML provides means to describe system
behavior like Activity and State Chart Diagrams, the precise behavior can not be
described and simulated without complex transformations and additional
information provided for SysML models. In that respect, SysML is rather
incomplete compared to Modelica.

Analogous to SysML, Modelica was created to unify and extend various object-
oriented mathematical modeling languages. It has powerful means for describing
precise component behavior and functionality in a declarative way. Modelica
models can be graphically composed using Modelica connection diagrams which
depict the structure of designed system. However, complex system design is more
that just a component assembly. In order to build a complex system, system
engineers have to gather requirements, specify system components, define system
structure, define design alternatives, describe overall system behavior and perform
its validation and verification.

The current work combines UML with Modelica. Particularly, a UML profile
for Modelica, named ModelicaML, is proposed. The ModelicaML UML profile is
based on the SysML UML profile and reuses its artifacts required for system
specification. SysML diagrams are also extended to support all Modelica
constructs. We argue that with ModelicaML system engineers are able to specify
entire systems, starting from requirements, continuing with behavior and finally
perform system simulations.

ModelicaML: a UML profile for Modelica 177

10.3 ModelicaML: a UML profile for Modelica

ModelicaML reuses several diagrams types from SysML without any extension,
extends some of them, and also provides several new ones. The ModelicaML
diagram overview is shown in Figure 10-1. Diagrams are grouped into four
categories: Structure, Behavior, Simulation and Requirement. In the following we
present the most important ModelicaML profile diagrams. For a full description of
the profile, please refer to (Akhvlediani 2007 [1]).

The most important properties of the ModelicaML profile are outlined below:

• The ModelicaML profile supports modeling with all Modelica constructs
and properties i.e. restricted classes, equations, generics, discrete variables,
etc.

• Using ModelicaML diagrams it is possible to describe all aspects of a
system being designed and thus support system development process phases
such as requirements analysis, design, implementation, verification,
validation and integration.

• ModelicaML is partly based on SysML, but reuses and extends its elements.
• The profile supports mathematical modeling with equations since equations

specify behavior of a (Modelica) system. Algorithm sections are also
supported.

• Simulation diagrams are introduced to model and document simulation
parameters and results in a consistent and usable way.

• The ModelicaML meta-model is consistent with SysML in order to provide
SysML-to-ModelicaML conversion.

Figure 10-1. ModelicaML diagrams overview.

Three SysML diagram types have been partly reused and changed for the
ModelicaML profile:

178 Chapter 10 UML and Modelica System Modeling with ModelicaML

• The SysML Block Definition Diagram has been updated and renamed to
Modelica Class Diagram.

• The SysML Internal Block Diagram has been updated and renamed to
Modelica Internal Class Diagram (some of the SysML constructs are
disabled).

• The Package Diagram has been changed in order to fully support the
Modelica language (i.e. Modelica package constants).

Thus, the following diagram types are available in the ModelicaML profile:

• The Modelica Class Diagram usually describes class definitions and their
relationships such as inheritance and containment.

• The Modelica Internal Class Diagram describes the internal class structure
and interconnections between parts.

• The Package Diagram groups logically connected user defined elements
into packages. In ModelicaML the primarily purpose of this diagram is to
support the specifics of the Modelica packages.

• Activity, Sequence, State Machine, Use Case, Parametric and Requirements
diagrams have been reused without modification from SysML.

• Two new diagrams, Simulation Diagram and Equation Diagram, not
present in SysML, have been included in the ModelicaML profile.

10.3.1 Modelica Class Diagrams

Modelica uses restricted classes such as class, model, block, connector,
function and record to describe a system. Modelica classes have essentially the
same semantics as SysML blocks and provide a general-purpose capability to model
systems as hierarchies of modular components. ModelicaML extends SysML
blocks by defining features which are relevant or unique to Modelica.

The purpose of the Modelica Class Diagram is to show features of Modelica
classes and relationships between classes. Additional kind of dependencies and
associations between model elements may also be shown in a Modelica Class
Diagram. For example, behavior description constructs – equations, may be
associated with particular Modelica Classes. The detailed description of structural
features of ModelicaML is provided below. ModelicaML structural extensions are
defined based on the SysML block definitions

10.3.1.1 ModelicaML Class Definition

The graphical notation of ModelicaML class definitions is shown in Figure 10-2.
Each class definition is adorned with a stereotype name that indicates the class type
it represents.

ModelicaML: a UML profile for Modelica 179

Figure 10-2. ModelicaML class definitions.

The ModelicaML Class Definition has several compartments to group its features:
parameters, parts, variables. Some compartments are visible by default; some are
optional and may be shown on ModelicaML Class Diagram with the help of a tool.
Property signatures follow the Modelica textual syntax and not the SysML original
syntax, reused from UML. A ModelicaML/SysML tool may allow users to choose
between UML or Modelica style textual signature presentation. Using Modelica
syntax on a diagram has the advantage of being more compatible with Modelica and
being more straightforward for Modelica users. The Modelica syntax is quite simple
to learn even for users not acquainted with Modelica.

ModelicaML provides extensions to SysML in order to support the full set of
Modelica constructs and features. For example, ModelicaML defines unique class
definition types ModelicaClass, ModelicaModel, ModelicaBlock,
ModelicaConnector, ModelicaFunction and ModelicaRecord that correspond to
class, model, block, connector, function and record restricted Modelica
classes.

10.3.1.2 Modelica Internal Class Diagram

The Modelica Internal Class Diagram is based on the SysML Internal Block
Diagram. The Modelica Class Diagram defines Modelica classes and relationships
between classes, like generalizations, association and dependencies, whereas a
Modelica Internal Class Diagram shows the internal structure of a class in terms of
parts and connections. The Modelica Internal Class Diagram is similar to Modelica
connection diagram, which presents parts in a graphical (icon) form.

An example Modelica model presented as a Modelica Internal Class diagram is
shown in Figure 10-3.

180 Chapter 10 UML and Modelica System Modeling with ModelicaML

Figure 10-3. ModelicaML Internal Class vs. Modelica Connection Diagram.

Usually Modelica models are presented graphically via Modelica connection
diagrams (Figure 10-3, bottom). Such diagrams are created by the modeler using a
graphic connection editor by connecting together components from available
libraries. Since both diagram types are used to compose models and serve the same
purpose, we briefly compare the Modelica connection diagram to the Modelica
Internal Class Diagram. The main advantage of the Modelica connection diagram
over the Internal Class Diagram is that it has better visual comprehension as
components are shown via domain-specific icons known to application modelers.
Another advantage is that Modelica library developers are able to predefine
connector locations on an icon, which are related to the semantics of the
component. In the case of a ModelicaML Internal Class Diagram a
SysML/ModelicaML tool should somehow point out at which side of a rectangular
presentation of a part to place a port (connector).

One of the advantages of the Internal Class Diagram is that it directly supports
nested structures. However, nested structures are also available behind the icons in
a Modelica connection diagram, thus using the drawing area more effectively.

ModelicaML: a UML profile for Modelica 181

The main advantage of the Internal Class Diagram is that it highlights top-level
Modelica model parameters and variables specification in separate compartments.

Other SysML elements, such as Activities and Requirements which do not exist
in Modelica but are very important for additional model specification can be
combined with both Internal Class Diagram and Modelica connection diagrams.

10.3.1.3 Package Diagram

A UML Package is a general purpose model element for grouping other elements
within a separate namespace. With a help of packages, designers are able group
elements to correspond to different structures/views of a system. ModelicaML
extends SysML packages in order to support Modelica packaging features, in
particular: package inheritance, generic packages, constant declaration within a
package, package “instantiation” and renaming import (see (Fritzson 2004 [44]) for
Modelica packages details).

A diagram which contains package elements and their relationships is called a
Package Diagram. Modelica packages have a hierarchical structure containing
package elements as nodes. In Modelica, packages are used to structure model
elements into libraries. A snapshot of the Modelica Standard Library hierarchy is
shown in Figure 10-4 using UML notation. Package nodes in the hierarchy are
connected via the package containment link.

Figure 10-4. Package hierarchy modeling.

10.3.1.4 Parametric Diagrams

SysML defines Constraint blocks which specify mathematical expressions, like
equations, to constrain physical properties of a system. Constraint blocks are
defined in the Block Definition diagram and can be packaged into domain-specific
libraries for later reuse. There is a special diagram type called Parametric Diagram

182 Chapter 10 UML and Modelica System Modeling with ModelicaML

which relates block parameters with certain constraints blocks. The Parametric
Diagram is included in ModelicaML without any modifications.

The Modelica class behavior is usually described by equations, which also
constrain Modelica class parameters, and have a domain-specific usage. SysML
constraint blocks are less powerful means of domain model description than
Modelica equations. Since models in Modelica are expressed by equations,
definition complexity of Constraint blocks with parameters for each of equations
may results in limited use for Modelica designers. However, grouping constraint
blocks into libraries can be useful for system engineers who use Modelica and
SysML. SysML Parametric diagram may be used during the initial design phase,
when equations related to a class are being identified using Parametric Diagrams
and finally associated (via an Equation Diagram) with a Modelica class or set of
classes.

10.3.1.5 Equation Diagrams

As was stated previously, model behavior in Modelica is primarily expressed by
equations, see Figure 10-5. Compared to traditional programming constructs such
as assignment statements and control structures, equations do not prescribe a certain
data flow direction. The order in which equations appear in a model, do not
influence their meaning and semantics. The only requirement for a system of
equations is that it should be solvable. For further details about Modelica equations,
see Chapter 3, section 3.2.

partial class TwoPin
 Pin p, n;
 Voltage v;
 Current i;
equation
 v = p.v – n.v;
 0 = p.i + n.i;
 i = p.i;
end TwoPin;

class Resistor
 extends TwoPin;
 parameter Real R(unit = "Ohm");
equation
 R * I = v;
end Resistor

Figure 10-5. Equation modeling example with a Modelica Class Diagram.

Besides simple equality equations, Modelica allows other kind of equations be
presented within a model. For each of such kind of equations (i.e. when/if/initial
equations) ModelicaML defines a graphical construct. It’s up to designer to decide
whether to use simple equations block representation or specific construct for
equation modeling. Algorithm sections are modeled similar to equations, as text.

ModelicaML: a UML profile for Modelica 183

10.3.1.6 Simulation Diagram

ModelicaML introduces a new diagram type, called Simulation Diagram, used for
simulation modeling. Simulation is usually performed by a simulation tool which
allows parameter setting, variable selection for output and plotting. The Simulation
Diagram may be used to store any simulation experiment, thus helping to keep the
history of simulations and its results.

When integrated with a modeling and simulation environment, a simulation
diagram may be automatically generated by a simulation tool. Figure 10-6 shows an
example of a Simulation Diagram. The Simulation Diagram provides the following
facilities:

• Support for simulation planning.
• Structured presentation of parameter passing and simulation results.
• Running simulations directly from the Simulation Diagram.
• The Simulation Diagram may be generated by a simulation tool.
• Association of simulation results with requirements from a domain expert.
• Additional documentation e.g. by: Note, Problem Rationale text boxes of

SysML
• Support for storing model simulation history.

The Simulation Diagram introduces new diagram elements: “Parameter” element
and two stereotyped dependency associations, “simParameter” and “simResults”.

Figure 10-6. Simulation diagram example.

184 Chapter 10 UML and Modelica System Modeling with ModelicaML

10.3.1.7 Requirement Diagrams

Requirement diagrams have been included in ModelicaML from SysML without
any modification. Requirement Diagrams have several attributes: ID, Level, Status,
Name and Description. Requirements support hierarchical modeling, i.e., more
specific requirements can derived from more general ones.

Requirements can be linked to any other ModelicaML element via satisfies
or satisfiedBy relations. Any tool implementing the ModelicaML profile can be
used to build, query, trace, and manage requirements.
The Modelica language does not support a standard requirements representation.
Since the ModelicaML profile supports requirements, we need a way to save these
requirements in a Modelica file. Requirements can be represented in Modelica in
several ways which we will describe in detail in the next section.

10.3.1.8 Other Diagram Types

Other SysML diagram types such as Use Case Diagram, Activity Diagrams and
Allocations, and State Machine Diagrams are included in ModelicaML without
modifications. ModelicaML reuses Sequence Diagrams from SysML and changes
the semantics of message passing. Modelica doesn’t support method declaration
within a single class but supports declaration of functions as a restricted class type.
In the case of ModelicaML, each lifeline (message passing) represents a Modelica
class including block, model, and function restricted classes. Thus, functions are
presented as lifelines, and call to a function is modeled as an arrow pointing to it
from the caller class (from an algorithm section only). Message name is optional in
this case.

10.4 The ModelicaML Integrated Design Environment

Eclipse (Eclipse.Foundation 2001-2008 [29]) is an open source framework for
creating extensible integrated development environments (IDEs). One of the goals
of the Eclipse platform is to avoid duplicating common code that is needed to
implement a powerful integrated environment for development of software. By
allowing third parties to easily extend the platform via the plugin concept, the
amount of new code that needs to be written is decreased.

For the development of our prototype we used several Eclipse frameworks:

• EMF – Eclipse Modeling Framework (Eclipse.Foundation 2008 [30])is an
Eclipse framework for building domain-specific model implementations.
The EMF implementation is based on Meta Object Facility (MOF) standard
and implements the “Essential MOF” (EMOF) part of a standard. EMF is
used by the GMF and UML2 frameworks.

• GMF – Graphical Modeling Framework (Eclipse.Foundation 2008 [32])
provides a generative component and runtime infrastructure for developing

The ModelicaML Integrated Design Environment 185

graphical editors based on EMF and GEF (Eclipse.Foundation 2008 [31]).
GMF consists of tooling, generative and runtime parts, depends on the EMF
and GEF frameworks and also on other EMF related tools.

• The UML2 Eclipse Meta-Model Implementation. The UML2 Eclipse project
is an EMF based implementation of a UML2 meta-model for the Eclipse
Platform to support development of UML modeling tools. The UML2
project doesn’t aim to provide any graphical modeling or diagram
interchange capabilities as it only implements UML abstract syntax. UML2
Tools focus on editing capabilities.

10.4.1 Integrated Design and Development Environment

The Modelica Development Tooling (MDT) (Pop et al. 2006 [131]) and Chapter 8,
is part of the OpenModelica system and provides an environment for working with
Modelica projects. The following features are available:

• Browsing support and wizards for creating Modelica projects, packages, MSL.
• Syntax color highlighting, syntax and semantic checking.
• Code assistance for packages and function calls
• Support for MetaModelica meta-programming extensions to standard Modelica
• Debugging support for Modelica and MetaModelica algorithmic sections.

We have extended the MDT plugin with a design view to facilitate ModelicaML
integration. The ModelicaML integrated design environment where SysML/
ModelicaML diagrams are created is shown in Figure 10-7. It consists of a diagram
file browser (left), diagram editor (middle), tool palette (right), properties editor
(bottom) and a diagram outline (bottom left).

The Project Browser lists all Modelica Class and Internal Class diagram files of
a project together with existing Modelica files.

The Diagram Editor is a tool where diagrams can be created and graphical
elements laid out. It has the following graphical features: Graphical elements like
Modelica Class or Model can be picked up from a Tool palette and created on a
Diagram editor pane in a drag-and-drop way. Elements in a palette are grouped by
Standard tools (zooming, note, etc), Nodes and Links elements. The tool palette for
Modelica Class and Internal Class diagram contains different sets of elements.

The Property Editor can be used for changing the properties of the object
selected on the diagram editor pane. Property elements vary depending on a type of
a chosen object.

186 Chapter 10 UML and Modelica System Modeling with ModelicaML

Figure 10-7. ModelicaML Eclipse based design environment with a Class diagram.

The ModelicaML diagrams can be automatically generated from Modelica source
files. The integrated tool can also generate Modelica source code from ModelicaML
diagrams. However, the implementation of the Modelica code generation and
ModelicaML diagram generation is, at the moment, in an experimental stage. In the
current implementation ModelicaML diagrams are saved both in Modelica form
and also the XMI dialect written to XML files. Further work is needed to save
diagram position information within Modelica source code as annotations.

10.4.2 The ModelicaML GMF Model

The Eclipse editor is created from a GMF model of the ModelicaML profile. The
model describes the existing elements and their properties. As an example, in
Figure 10-8 we present the Requirement Diagram element and its properties.

From the GMF model an editor that supports common operations on that model
is automatically generated. The generated code can be extended to deal with issues
specific to ModelicaML.

The ModelicaML Integrated Design Environment 187

Figure 10-8. ModelicaML GMF Model (Requirements)

188 Chapter 10 UML and Modelica System Modeling with ModelicaML

10.4.3 Modeling with Requirements

The ModelicaML/MDT Eclipse environment supports modeling with requirements.
The following functionality is available in the development environment:

• Hierarchies of requirements can be created.
• Requirements can be traced during the development process.
• Requirements can be queried with respect to any of their attributes.

Figure 10-9. Modeling with Requirement Diagrams.

Examples of modeling with Requirement Diagrams are presented in Figure 10-9
and in the Appendix section of this chapter.

Representing Requirements in Modelica 189

10.5 Representing Requirements in Modelica
While the default storage of ModelicaML diagrams is within XML files, our goal is
to be able to save this information within normal Modelica files. Having this
information within Modelica code would make it accessible to other Modelica and
UML tools. Using this information tools could provide additional functionality. For
example Modelica tools could display the inheritance hierarchy of a library, display
the requirements for a specific class, etc.

To find the best way to encode the ModelicaML diagram information within
Modelica we have experienced with several ways of encoding the Requirement
Diagrams.

10.5.1 Using Modelica Annotations

A requirement could be saved as an annotation in the following way (the top
requirement from Figure 10-9):
type RequirementStatus =
 enumeration(Incomplete, Draft, Started);

annotation(
 Requirement(
 id="S5.4.1",
 level=0,
 status=RequirementStatus.Incomplete,
 name="Master Cylinder Efficacy",
 description="A master cylinder…"));

The problem with Modelica annotations is that they can only be present at specific
places within code and they are usually tied to a class definition. Because
requirements are usually cross cutting is impossible to represent all requirements as
such annotations. Another problem using annotations is the representation of
hierarchies of requirements. Linking of a class with a requirement via a satisfy
relation could be possible using Modelica extends, but would be cumbersome.

10.5.2 Creating a new Restricted Class: requirement

A requirement could be saved as a standard class marked with an
isRequirement annotation or alternatively using a new restricted class in the
following way (also in the Figure 10-10 diagrams in the Appendix):

requirement R1
 String name="Master Cylinder Efficiency";
 String id="S5.4.1";
 Integer level=0;
 RequirementStatus status=

190 Chapter 10 UML and Modelica System Modeling with ModelicaML

 RequirementStatus.Incomplete;
 String description=”A master cylinder
 shall have…”;
end R1;

Now, we can use extends over requirements to build hierarchies:
requirement R2
 extends R1;
 String name"Loss Of Fluid";
 String id="S5.4.1a";
 Integer level=1;
 RequirementStatus status=
 RequirementStatus.Started;
 String description="Prevent complete
 loss of fluid";
...
end R2;

To link requirements to Modelica elements one can use annotations:
model BreakSystem
 annotation(satisfy=R1);
...
end BreakSystem;

We believe that the best way to encode requirements within Modelica would be to
create a new restricted class. Using this new class, requirements can be fully
modeled in Modelica.

We will propose in the Modelica Association to introduce the requirement
restricted class into the Modelica specification. In Modelica, the requirement class
could also have equation or algorithm sections that impose constraints to be verified
against the class linked with the requirement.

10.6 Conclusion and Future Work

In this chapter we have presented the ModelicaML profile and its prototype
integration in the OpenModelica MDT Eclipse plugin. To our knowledge this is the
first comprehensive Modelica-UML-SysML integrated environment for product
design.

UML Statecharts and Modelica have previously been combined, see
e.g.(Ferreira and Oliveira 1999 [38], Nordwig 2002 [107]). SysML is rather new
but it has already been adopted for system on chip design (Vanderperren and
Dehane 2005 [168]) evaluated for code generation (Vanderperren and Dehane 2006
[169]), and extended with bond graphs support (Turki and Soriano 2005 [156]).

The support for Modelica in ModelicaML allows precisely defining, specifying
and simulating physical systems. Modelica provides the means for defining
behavior for SysML block diagrams while the additional modeling capabilities of

Appendix 191

SysML provides additional modeling and specification power to Modelica (e.g.
requirements and inheritance diagrams, etc).

We are currently working on finalizing the implementation details of the Eclipse
ModelicaML prototype and releasing the first version for evaluation as part of the
OpenModelica environment. Additional functionality such as synchronization of
ModelicaML diagrams and Modelica code, storage of ModelicaML information
within new Modelica annotations, etc. is also planned.

10.7 Appendix

Figure 10-10. Modeling with requirements (Requirements palette).

192 Chapter 10 UML and Modelica System Modeling with ModelicaML

Figure 10-11. Modeling with requirements (Connections).

Chapter 11

An Integrated Framework for Model-
driven Product Design and
Development Using Modelica

This chapter presents our work in the area of model-driven product development
processes. The focus is on the integration of product design tools with modeling and
simulation tools. The goal is to provide automatic generation of models from
product specifications using a highly integrated set of tools. Also, we provide the
designer with the possibility of selecting the best design choice, verified through
(automatic) simulation of different implementation alternatives of the same product
model. To have a flexible interaction among various tools of the framework an
XML representation of the Modelica modeling language called ModelicaXML is
used. For efficient search in a large base of simulation models the Modelica
Database was designed.

11.1 Introduction

Designing products is a complex process. Highly integrated tools are essential to
help a designer to work efficiently. Designing a product includes early design phase
product concept modeling and evaluation, physical modeling and simulation and
finally the physical product realization. For conceptual modeling and physical
modeling and simulation available tools provide advanced functionality. However,
the integration of such tools is a resource consuming process that today requires
large amounts of manual, and error prone work. Also, the number of physical
models available to the designer in the product concept design phase is typically
quite large. This has an impact on the selection of the best set of component choices
for detailed product concept simulation.

194 Chapter 11 A Framework for Model-Driven Product Design and Development

To address these issues we have integrated new product concept design tools with
physical modeling and simulation tools in a framework for product design. In our
proposed framework, the product concept design phase of the product development
process is based on Function-Means tree decomposition (Andreasen 1980 [3]). This
phase is implemented in a first version of a prototype tool called FMDesign,
(Johansson and Krus 2005 [73]) developed in cooperation with the Machine Design
Group, IKP, Linköping University.

As an example of Function-Means tree decomposition we give a landing
function in an airplane. This function can be represented by two different means:
hydraulic landing gear or electric landing gear. Each of the two alternatives can be
selected and configured to simulate its properties.

Starting from FMDesign tool, our integration work extends the framework in
two ways:

1. Providing a Selection and Configuration Tool that helps the designer to choose
a specific implementation for the means in the function-means tree from a
Modelica model/ component database. This tool also provides component
configuration and has links to a Modelica standard based simulation
environment for component editing.

2. Providing an Automatic Model Generation Tool that helps the designer to
choose the best implementation from different design choices by evaluation
through simulation of automatically generated models of candidate product
concepts. If the designer is not pleased with the results, he/she can either
implement new models for the components that did not perform in the desired
way or reiterate in the design process and choose other alternatives for
implementing different functions in the product, or change the configuration
parameters for models at deeper levels of detail.

The chapter is structured as follows: The next section (section 11.2) presents an
overview of our proposed framework. Section 11.3 enters in the details of the
framework components and their interaction. Section 11.4 presents our conclusion
and future work.

The presented system has similarities with the Schemebuilder tool (Bracewell
and D.A.Bradley 1993 [16]) and Modelith framework (Johansson et al. 2002 [72],
Larsson et al. 2002 [81]). However our work is more oriented towards the design of
advanced complex products that require systems engineering, and targeted to the
simulation modeling language Modelica, which to our knowledge has more
expressive power in the areas of our research, than many tools for systems
engineering that are currently widely used. For details on Systems Engineering, see
(INCOSE 1990-2008 [70]).

Architecture overview 195

11.2 Architecture overview

The architecture of our extended framework is presented in Figure 11-1. The entire
product concept design process is iterative.

Engineering
Design

System X

Product Concept
Design Tool

(FMDESIGN)

Requirements
Database

F1
M1a M1b M1c

F1a.1 F1a.2 F1a.3

ModelicaXML
Generated
Models

Simulation
Evaluation

Optimisation

Modelica
Simulation
Source code

Means
Evaluations

Operation
Cases

Product Concept Design
Database

Reference Links

F = Function
M = Means

Modelica Model
Database

Selection and Configuration
Tool

Automatic
Model

Generator
Tool

Figure 11-1. Design framework for product development.

Starting from requirements for a product the designer will use the FMDesign
prototype for modeling alternative product concepts. The knowledge base for
designing a product is organized into function-means trees. A function in the
product can be realized by alternative means. A product concept is a set of means
that document selected solution alternatives for implementing the functions in a
product concept. Example of a function is "Actuator Power Supply", with
means "Hydraulic Power Supply" or "Electrical Power Supply".
Means must be implemented by (physical) components arranged in a bill-of-
material like tree of implementation objects.

One can roughly say that a means and its implementation are the same, but at
different levels of detail. Implementation objects (not shown in the figure) may
represent existing component products on the market or manufactured components.
Implementation objects carry data that is important for the product concept design,

196 Chapter 11 A Framework for Model-Driven Product Design and Development

and references to more detailed design information like CAD-drawings, simulation
models etc. Some (physical components) may implement several means, like an
aircraft wing that creates lift and stores fuel.

To map suitable simulation model implementations to a means, the designer
would use the Modelica Database query facility provided by the Selection and
Configuration Tool. This tool also provides configuration of the simulation
components and uses the desired Modelica environment for component editing.

When the product concept design phase of the product is sufficiently complete,
the designer can generate code for simulation from the implementation tree using
the Automatic Model Generator Tool. The generator will output models (different
versions for different product concepts) in ModelicaXML. From ModelicaXML the
models are translated to Modelica to be simulated. The designer can review the
simulation results in any available Modelica tools and then selects (in FMDesign)
the desired model alternative for the implementation. If the designer sees that some
means do not perform in the desired way, a customized simulation model can be
built, or a search conducted for more alternatives for that specific means.

11.3 Detailed framework description

In this section we present the tools from our proposed framework. Also, we briefly
explain in each section how they interact.

11.3.1 ModelicaXML

Modelica is translated to ModelicaXML (Pop and Fritzson 2003 [126]) using a
Modelica parser (Figure 11-2).

ModelicaXML represents an XML serialization of the Abstract Syntax Tree of
the Modelica language obtained after the parsing. In our framework, ModelicaXML
is used as an interchange format between the different design tools.

The advantages of having an alternative representation for Modelica in XML are:

• Flexible interaction and translation between different types of physical
modeling languages and modeling tools. Also, easy generation of model
documentation.

• Basic search and query functionalities over models.
• Easy transformation and composition of models Chapter 13 and (Pop et al.

2004 [133]).

For more information on ModelicaXML the reader is referred to Chapter 12, (Pop
and Fritzson 2003 [126]) and (Fritzson 2004 [44]).

Detailed framework description 197

Modelica
code

Modelica
XML

Modelica Parser

read

output

class Test "comment"
Real x;
Real xdot;

equation
xdot = der(x);

end Test;

<modelicaxml>
<definition ident= "Test"

comment="comment">
<component ident="x" type="Real"

visibility="public" />
<component ident="xdot" type="Real"

visibility="public" />
<equation>...</equation>

</definition>
</modelicaxml>

modelicaxml

definition

component

component

equation

Figure 11-2. Modelica and the corresponding ModelicaXML representation.

11.3.2 Modelica Database (ModelicaDB)

The features of the Modelica language and Modelica tools has made easy for
designers to create models. Also, the Modelica community has a growing code-
base. In order to cope with interoperability between Modelica and other modeling
languages we first developed ModelicaXML. However, scalability and efficient
search features for XML require extensive skills in vendor specific products. To
quickly get such features without taking on that huge learning effort, we have
designed the Modelica Database (ModelicaDB).

The Modelica Database is populated with Modelica models and libraries by
importing their ModelicaXML representation. The UML model of this database is
presented in the appendix (section 11.5). For space reasons we use a somewhat
customized compressed graphical representation of UML class diagrams, where
inheritance is represented with a box between the class name and attributes box,
where inherited super classes are preceded with a "->". For details on UML see
(OMG [115]).

Here we briefly explain the most important structures. They are tightly coupled
with the Modelica structure (Fritzson 2004 [44], Pop and Fritzson 2003 [126]):

• Modelica Repository: contains several Modelica Models.

198 Chapter 11 A Framework for Model-Driven Product Design and Development

• Class: A class represents the fundamental model element from the Modelica
language. It can include several Component clauses, Equation and
Algorithm statements. The component sections can be declared as public or
protected in order to provide only the desired interface to the outer world.
Specifying that the equation or algorithm sections are only active at the
initialization phase they can be declared as initial.

• Component: used to define parameters, variables, constants, etc to be used
inside a class.

• Equations and Algorithms are used to specify the behavior for a class.

In the product design framework the role of ModelicaDB is to provide searching
and organization features of a large base of simulation models. This base grows
with every product model developed or with the import of additional simulation
models from other sources (i.e. the Modelica community). For example, if we want
to obtain all the models that have certain parameter names we have to search in the
database for all classes that have a component with the attribute
variabilityPrefix set to "parameter" and have the specified name. These
searches will be integrated in FMDesign using dialogs and completely transparent
for the user.

11.3.3 FMDesign

The FMDesign (Figure 11-3) prototype tool (Johansson and Krus 2005 [73]) helps
the designer in creating product specifications using function-means trees.

Figure 11-3. FMDesign – a tool for conceptual design of products.

Detailed framework description 199

The created product model is stored in a product design library for later reuse.
Throughout the product concept design process the designer can use the existing
concepts stored in the product design library in order to model the desired product.
A somewhat simplified meta-model of the information structure edited in
FMDesign is presented as an UML class diagram in the appendix (section 11.5).

In the framework, FMDesign is the central front-end to specific components.
FMDesign delegates searches in the ModelicaDB using the Selection and
Configuration Tool and it uses the Automatic Model Generation Tool to generate
the models for simulation.

As we can see in Figure 11-3, the work area is divided into several parts:

• Products: Here products are created, deleted and selected. When a product
is selected, the trees owned by it and described below, are displayed.

• Requirements Tree: in this view the requirements for a product can be
specified.

• Function-Means Tree: in this view the designer can define the operation
states, functions, their alternative means etc, of the selected product.

• Product Concepts: Allows creating, deleting and selecting product concepts.
• Product Concept Tree: displays the currently selected Product Concept

Tree, and allows the user to select which means that will implement
different functions in the product, using drag-drop. Selected means can be
customized for the current product concept by overriding the default values
for its design variables owned by a selected means.

• Implementation Tree: displays and provides functionality for editing one of
many configurable Implementation Trees for the currently selected product
concept. These implementation trees organize the implementation objects
that represent and refer to more detailed models of physical objects,
functional models, simulation models, geometrical layout models etc, and
organize them into trees that are useful for interfacing with tools later in the
product development process.

We only use the Implementation Tree of type simulation to generate the Modelica
simulation model for a product. The Implementation Tree of type geometrical can
be used in the visualization of the product.

11.3.4 The Selection and Configuration Tool

The Selection and Configuration Tool extends the framework by adding integrated
search capabilities in FMDesign. The tool is coupled with the Implementation Tree
for a Product Concept. The designer uses the selection tool to search (query) the
Modelica Database for desirable simulation components to implement a certain
means. An implementation object in the simulation implementation tree represents

200 Chapter 11 A Framework for Model-Driven Product Design and Development

the selected simulation component. Simulation component to means mapping
reflects the various design choices made by the designer. In this way, the designer
can experiment with different simulation component implementations at various
level of detail for a specific means. When choosing alternatives for a specific means
the designer has two possibilities: to browse the repository of simulation models
classified according to physical concepts or to use the search dialog. The search
dialog provides the following functionality:

• Textual/pattern search of components, search for a component in a specific
physical domain, search for a component with specific parameters.

• Adding/deleting a product concept specific means to simulation component
mapping where the simulation component is referred from an
implementation object.

After building the means-component mappings the designer can choose to edit or
configure components by using the configuration dialog that provides the following
functionality:

• Set implementation component parameters or parameters ranges.
• Edit the simulation component in the desired Modelica environment and use

the edited component, which is also automatically added to the Modelica
Database.

11.3.5 The Automatic Model Generator Tool

The Automatic Model Generator Tool provides the second extension of the
framework.

The model generator tool has as input the Implementation Tree (Figure 11-3,
lower right) of a product and as output the complete simulation model with the
alternative design choices.

The automatic model generator traverses the Implementation Tree of a Product
Concept and outputs ModelicaXML models by choosing the combination of
selected components for means. The generated models are then translated to
Modelica for means evaluation through simulation. To simulate the models any tool
supporting Modelica compiler can be used.

After the simulation of the generated models, the results are used as feedback
for the designer. Using this feedback the designer can then choose the best-suited
model, based on the simulation results.

11.4 Conclusions and Future Work

As future work we want to explore the use of ontologies for product concept design
and for the classification of the available component libraries. The languages

Conclusions and Future Work 201

developed by the Semantic Web (Berners-Lee et al. 2001 [12],
SemanticWebCommunity [146], W3C [162], W3C [164], W3C [165]) community
will be used. Research efforts based on this standard are integrating experience of
many promising research areas, for instance declarative rules, which still lack a
vendor neutral exchange formats for industrial applications. The semantic web
standard lacks important functionality for quality assurance and other necessary
functionality, which today is implemented in commercial products, but will open up
for sharing of important research results with industry in collaborative
environments. Also we would like to improve the Automatic Model Generator Tool
by using parts of the composition and transformation framework described in
Chapter 13 and (Pop et al. 2004 [133]).

In the future we want to provide automatic evaluation through simulation of the
generated models based on the constraints collected from the Product's Requirement
Tree.

202 Chapter 11 A Framework for Model-Driven Product Design and Development

11.5 Appendix

Figure 11-4. FMDesign information model.

Appendix 203

Figure 11-5. ModelicaDB meta-model.

Part V

Meta-programming and
Composition of EOO
Languages

Chapter 12

ModelicaXML: A ModelicaXML
Representation with Applications

This chapter presents the Modelica XML representation with some applications.
ModelicaXML provides an Extensible Markup Language (XML) alternative
representation of Modelica source code. The language was designed as a standard
format for storage, analysis and exchange of models. ModelicaXML represents the
structure of the Modelica language as XML trees, similar to Abstract Syntax Trees
(AST) generated by a compiler when parsing Modelica source code. The
ModelicaXML (DTD/XML-Schema) grammar that validates ModelicaXML
documents is introduced. We reflect on the software-engineering analyses one can
perform over ModelicaXML documents using standard and general XML tools and
techniques. Furthermore we investigate how we can use more powerful markup
languages, like the Resource Description Framework (RDF) and the Web Ontology
Language (OWL), to express some of the Modelica language semantics.

12.1 Introduction

The structure of a Modelica model can be derived from the source code
representation, by using a Modelica compiler front-end (the lexical analyzer and the
parser).

The compiler front-end takes the source code representation and transforms it to
abstract syntax trees (AST), which are easier to handle by the rest of the compiler.
As pointed out in (Badros 2000 [11]), a clear disadvantage of this procedure is the
need of embedding a compiler front-end in every tool that needs access to the
structure of the program. Writing such a front-end for an evolving and advanced
language like Modelica is not trivial, even with the support of automated tools like
Flex (GNU 2005 [58])/Bison (GNU 2005 [56]) or ANTLR (Parr 2005 [116]).

To overcome these problems, a standard, easily used, structured representation
is needed. ModelicaXML is such a representation that defines a structure similar to
abstract syntax trees using the XML markup language.

208 Chapter 12 ModelicaXML: A ModelicaXML Representation with Applications

This representation provides more functionality than a typical C++ class library
implementing an AST representation of Modelica:

• Declarative query languages for XML can be used to query the XML
representation.

• The XML representation can be accessed via standard interfaces like
Document Object Model (DOM) (W3C [157]) from practically any
programming language.

The usages of the ModelicaXML representation for Modelica models, combined
with the power of general XML tools, will ease the implementation of tasks like:

• Analysis of Modelica programs (model checkers and validators).
• Pretty printing (un-parsing).
• Translation between Modelica and other modeling languages (interchange).
• Query and transformation of Modelica models.

Although ModelicaXML captures the structured representation of Modelica source
code, the semantics of the Modelica language cannot be expressed without
implementing specific XML-based tools. To address this issue we have investigated
the benefits of using other markup languages like the Resource Description
Framework (RDF) and the Web Ontology Language (OWL). These languages,
developed in the Semantic Web Community (Berners-Lee et al. 2001 [12],
SemanticWebCommunity [146], W3C [162]), are used to express semantics of data
in order to be automatically processed by machines. We believe that using such
technology for Modelica models would enable several applications in the future:

• Models could be automatically translated between modeling tools.
• Models could become autonomous (active documents) if they are packaged

together with the operational semantics from the compiler, and therefore,
they could be simulated in a normal browser.

• Software information systems (SIS) could more easily be constructed for
Modelica, facilitating model understanding and information finding.

• Model consistency could be checked using Description Logic (DL) (Baader
et al. 2003 [10], DescriptionLogicsWebsite [24]).

• Certain models could be translated to and from the Unified Modeling
Language (UML) (OMG [115]).

The chapter is structured as follows: Related work is presented in Section 12.2.
Modelica, XML and the ModelicaXML Document Type Definition (DTD) are
discussed in Section 12.3. In Section 12.4 we present the software-engineering tasks
one can perform on the ModelicaXML representation using XML tools and
technologies. Section 12.5 investigates the use of RDF and OWL for representing
semantics of Modelica models. Conclusions, future research directions and
summary of the work are presented in Section 12.6.

Related Work 209

12.2 Related Work

In the field of general programming languages, JavaML (Badros 2000 [11]) has
been developed as structured representation of Java source code. JavaML
emphasizes the power of such structured representation when leveraging XML
tools. When it comes to domain specific modeling languages, there are several
(Björn et al. 2002 [14], Freiseisen et al. 2002 [40], Larsson et al. 2002 [81])
approaches to specifying models in XML. These approaches deal with model
transformation, exchange and management (regarding adaptation to already existing
simulation tools) or with code generation from the intermediate XML
representation to C++. Our interest focuses more on providing flexible and general
software-engineering tooling support for the Modelica programmer. For this
purpose the ModelicaXML is covering the full Modelica language, including
algorithm sections and expression operators. Furthermore, we consider more
powerful markup languages for defining some of the Modelica static semantics and
we discuss future use of such Semantic Web technologies.

12.3 Modelica XML Representation

In section 2.6 we briefly introduced the concepts of XML and DTD. Here we give
an example of a Modelica model with its ModelicaXML representation.

12.3.1 ModelicaXML Example

To introduce the Modelica XML representation, we give a Modelica example and
show its corresponding representation as ModelicaXML.

Elements are in bold, attributes are in italic and entities are using underline
throughout this section, except from Modelica keywords.

class dOrderSystem Secon
 parameter Real a=1;
 Real x(start=0); Real xdot(start=0);
 equation
 xdot=der(x);
 der(xdot)+a*der(x)+x=1;
end SecondOrderSystem;

For ease of presentation, a ModelicaXML document is split into several parts, each
representing a more nested level. The ellipses from one level are detailed in the next
level:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE program SYSTEM
 "ModelicaXML.dtd">
<program within="...">

210 Chapter 12 ModelicaXML: A ModelicaXML Representation with Applications

 <definition ident="SecondOrderSystem"
 restriction="class">
 ...
 < definition> /
</program>

The root element is a Modelica program. The child elements of program are a
sequence of definition elements and an optional within attribute (see Figure
12-1, section 12.3.2 for schemata).

<definition ident="SecondOrderSystem"
 restriction="class">
 <component>...</component>
 ...
 <equation>...</equation>
 ...
</definition>

The definition element can have import, extends, elements, equation, or
algorithm as sub-elements. In our case we only have component (i.e., variable)
and equation sub-elements inside definition (see Figure 12-2, section 12.3.2
for schemata).

<component ident="a" type="Real"
 variability="parameter"
 visibility "public"> =
 <modification_equals>
 <real_literal value="1"/>
 modification_equals> </
</component>
...
<component ident="x"
 type="Real"
 visibility blic"> ="pu
 <modification_arguments>
 <element_modification>
 <component_reference ident="start"/>
 <modification_equals>
 <real_literal value="0"/>
 </modification_equals>
 </element_modification>
 < modification_arguments> /
 </component>

The first component (i.e., variable, see Figure 12-3, section 12.3.2 for schemata)
has the variability attribute set to "parameter" as in "parameter Real
a=1;". The second component declaration (i.e., variable) in the example
represents the "Real x(start=0);" line from our Modelica class. All
components have the visibility attribute set to "public". The last component
is similar to the second component and is not presented.

Modelica XML Representation 211

<equation>
 <equ_equal>
 <component_reference ident="xdot"/>
 <call>
 <component_reference ident="der"/>
 <function_arguments>
 <component_reference ident="x"/>
 function_arguments> </
 </call>
 </equ_equal>
</equation>

Equations are enclosed in the equation element (see Figure 12-4, section 12.3.2
for schemata)

The equation section of the SecondOrderSystem model describes two
equations. The first equation is quite straightforward. Equality is represented by an
equ_equal element with two elements inside. The right-hand side is a function call
(using the call element) to a derivative and the left hand side is a component
reference represented with the element with the same name. The second equation
below is more complex. It has function calls represented using the call element,
binary operations (see Figure 12-6, section 12.3.2 for schemata) such as add, mul
for addition (+) and multiplication (*). The component_reference elements
denote variable references. For the function calls, the arguments are specified using
the element function_arguments that can contain expressions, named arguments
or for indices.

<equation>
 <eq_equal>
 <add><call><component_reference ident="der"/>
 <function_arguments>
 <component_reference ident="xdot" />
 </function_arguments>
 </call>
 <add <component_reference ident="x"/> >
 <mul>
 <component_reference ident="a"/>
 <call>
 <component_reference ident="der"/>
 <function_arguments>
 <component_reference ident="x" />
 </function_arguments>
 < call> /
 </mul>
 </add>
 </add>
 <integer_literal value="1"/>
 </equ_equal>
</equation>

ModelicaXML Schemata are explained in the next section.

212 Chapter 12 ModelicaXML: A ModelicaXML Representation with Applications

12.3.2 ModelicaXML Schema (DTD/XML-Schema)

When designing the ModelicaXML representation we started from the Modelica
grammar. We simplified the common cases to compact the XML representation
without loss of information or structure. The Modelica DTD/XML-Schema has a
rather close correspondence to the Modelica grammar with the following
exceptions: attributes are used to make the XML representation more concise and
the DTD/XML-Schema jumps over some non-terminals from the Modelica
grammar to make the XML representation more compact.

The OpenModelica Project parser for Modelica source code, written in ANTLR
(Parr 2005 [116]), was changed to output the ModelicaXML representation. There
are many components in the OpenModelica Project that use the ANTLR Modelica
parser. Using ModelicaXML such tools can be decoupled from this parser. One
clear advantage of this approach is that only one parser is maintained and future
Modelica language extensions or modifications could be easily integrated.

For presentation purposes we translated our first DTD implementation to XML-
Schema using XML Spy (Altova 2008 [2]). The purpose of this translation was to
generate pictures from the XML-Schema. Also, another reason was to have
schemata files in both formats for future use. Perhaps, the DTD variant will be
discontinued in the future because the XML-Schema is more widely used now.

All elements from our schema have the optional attributes from the location
entity (which are sline, scolumn, eline and ecolumn) and the info
attribute, which can be used to store additional information. These location
attributes are used to generate a mapping between key elements in our schema and
the Modelica source code representation. In the following we present some of the
important elements from the DTD/XML-Schema.

The content of our ModelicaXML root element, namely program is depicted in
Figure 12-1. Inside the root element we can have none or several definition
elements. The optional attribute within can be used inside a program element.
The rounded corner boxes on the line connecting two elements can be sequence
(like in Figure 12-1) or choice (like in the bottom part of Figure 12-2).

Figure 12-1. The program (root) element of the ModelicaXML Schema.

The required attributes for definition are ident and restriction (which can
have one of the "class", "model", "record", "block", "connector",
"type", "package", or "function" values). Optional attributes are final,
partial, encapsulated, replaceable, innerouter, visibility (one of
"public", "protected" values) and string_comment.

The definition element is detailed in Figure 12-2. Presented in the picture at
the bottom are the derived element (that handles constructs of the type "class X

Modelica XML Representation 213

= Y;") and the enumeration element used to declare enumeration types. The
upper part of Figure 12-2 shows the other allowed elements that can appear inside
the definition element. All the elements in the upper part have the visibility
attribute, taking one of the "public" or "protected" values. The visibility
attribute values are stating the "public" or "protected" part from the Modelica
source code. We can see that the definition element is recursive, which allows
the declaration of classes inside classes.

The definition element can contain import, extends, external,
equation, algorithm, annotation and component elements. The latter can
use constrain element for handling statements like "type X=Y extends Z;".

Figure 12-2. The definition element from the ModelicaXML Schema.

214 Chapter 12 ModelicaXML: A ModelicaXML Representation with Applications

Component elements, with schemata presented in Figure 12-3, have attributes
representing the Modelica type prefix (flow, variability and direction), and
type name (type).

The name of the component is stored in the ident attribute. These attributes are
important because one can query the ModelicaXML representation for a specific
component having desired type and ident. How XML query languages can be used
is explained in section 12.4.

The type_array_subscripts element and the array_subscripts element
are expressing the fact that Modelica array subscripts can be declared either at the
type level or at the component level.

Figure 12-3. The component element from the ModelicaXML Schema.

One can use the element modification_arguments to further modify the
component. Comments for a component can be specified with the comment
element. The elements modification_equals and modification_assign are
used to modify the component; as sub-elements they can have Modelica
expressions.

An equation element, presented in Figure 12-4, can have initial as an
attribute to state if it represents a Modelica initial equation.

The content and the structure of the equation element are closely following
the definition from the Modelica Language Specification. The equ_connect
element takes component references as arguments here, instead of connect
references, as in the version 2.0 of the Modelica Language Specification.

Modelica XML Representation 215

Figure 12-4. The equation element from the ModelicaXML Schema.

The collapsed parts from the equ_if and equ_when elements are the Modelica
expressions, detailed in Figure 12-6. The Modelica expressions are present in the
collapsed parts of the algorithm elements alg_if and alg_when and alg_while.

The algorithm element is presented in Figure 12-5. We point out that the
elements alg_break and alg_return are recently added statements of the
algorithm section in the latest version (2.1) Modelica Language Specification.

The elements that can appear in ModelicaXML expressions can be found in
Figure 12-6. These are binary operations, literals, component references, array
constructions, array operators and logical operations.

The constructs from the ModelicaXML schemata not covered here, along with
the full "modelicaXML.xsd" (the XML-Schema version) and "modelica-
XML.dtd" (the DTD version), can be found at the OpenModelica Project website.

216 Chapter 12 ModelicaXML: A ModelicaXML Representation with Applications

Figure 12-5. The algorithm element from the ModelicaXML Schema.

Figure 12-6. The expressions from ModelicaXML schema.

ModelicaXML and XML Tools 217

12.4 ModelicaXML and XML Tools

This section introduces various XML tools and explains their usage in conjunction
with ModelicaXML. In the following, in different sub-sections we cover: the
stylesheet language for transformation (XSLT) (W3C [159]), the query language for
XML documents (XQuery) (W3C [166]) and the Document Object Model (DOM)
(W3C [157]).

12.4.1 The Stylesheet Language for Transformation (XSLT)

XSL is a stylesheet language for XML. XSLT is the part of XSL that deals with
transformation of XML documents.

Using XSLT one can implement pretty printers (un-parsers) that can transform
ModelicaXML back into Modelica source code. Alternative transformations could
transform ModelicaXML into other general, modeling or markup languages
(HTML, XHTML, etc). Transformers that translate other modeling languages
(provided that they have an XML representation) into ModelicaXML can also be
implemented with XSLT. Using XSLT and ModelicaXML, implementation of
HTML documentation generators, similar with what the commercial software
Dymola provides, becomes trivial. We cannot provide the HTML documentation
generator here because of space reasons, but it will be included in the
OpenModelica Project.

We illustrate the usage of XSLT with an example that transforms Modelica
code. For this example we assume that Modelica code was already translated to
ModelicaXML. After the transformation, one can output the Modelica code from
the changed ModelicaXML representation using our "modelicaxml-
2modelica.xslt" stylesheet from the OpenModelica Project.

Example of changing a component name, both in the declaration of the
component and in the component references:

<xsl:stylesheet version="1.0 ...">
<!-- example of component rename -->
<xsl:param name="comp_old_name"/>
<xsl:param name="comp_new_name"/>
<!-- we echo everything that is not a component or a
component reference -->
<xsl:template match="*|@*|text()">
 <xsl:copy>
 <xsl:apply-templates select="*|@*|text()"/>
 </xsl:copy>
</xsl:template>
<!-- we match the old component and we output the new name
-->
<xsl:template match="component
 [@ident=$comp_old_name]">
 <component ident="{$comp_new_name}">

218 Chapter 12 ModelicaXML: A ModelicaXML Representation with Applications

 <xsl:apply-templates/>
 </component>
<!-- we match the old component reference and we output the
new component name -->
</xsl:template>
<xsl:template match="component_reference
 [@ident=$comp_old_name]">
 <component_reference
 ident _name}"> ="{$comp_new
 <xsl:apply-templates/>
 </component_reference>
</xsl:template>
</xsl:stylesheet>

The XSLT engine is using templates that match on the XML tree structure. The
matching is performed by the XPath expression appearing as the value of the match
attributes. By using xsl:apply-templates element we instruct the XSLT engine
to apply the rest of the templates on the sub-tree that we already matched. When
this stylesheet is applied on our SecondOrderSystem example from section 12.3.1
with the parameters "xdot" and "xdot_new" it will change the component name
and all the component references of xdot to xdot_new.

XSLT can distinguish between components with the same name defined in
different classes by the use of XPath expressions. To rename such occurrences we
first match the class in which is defined and then the actual component. This applies
for both declarations and component references.

A search-and-replace tool could perform this transformation, but such a tool has
no knowledge about the context and it will replace even the occurrences appearing
inside comments.

12.4.2 The Query Language for XML (XQuery)

XQuery is a query language similar with what SQL is for relational databases.
Using XQuery, one can easily retrieve information from XML documents. The
XQuery and XSLT are overlapping in some features, and our example could be
implemented in XSLT also.

We give a short example of a query over our “SecondOrderSystem.xml”
example from section 12.3.1. In words, “find all parameter components with type
Real and show the initialization value”:

<table border="1">
{
 for $b in
 (document("SecondOrderSystem.xml")/*/
 definition/component)
 where $b/@type = "Real" and
 $b/@variability="parameter"
 return <tr><td>

ModelicaXML and XML Tools 219

 { $b/@* }
 { $b/modification_equals }
 </td></tr>
}
</table>

We executed this query in the Qexo (GNU 2005 [61]) implementation of XQuery
and the result in HTML is as follows:

<table border="1">
 <tr><td>
 ident="a" type="Real"
 variability="parameter"
 visibility="public"
 <modification_equals>
 <real_literal value="1" />
 </modification_equals>
 </td></tr>
</table>

As expected, the attributes and the set value of the element corresponding to
"parameter Real a=1;" from our Modelica example was returned as the
answer.

Using XQuery, any types of queries can be asked about the Modelica model.
This opens-up the possibility of easily debugging very large models. User interfaces
can be implemented to hide the query building from the user. Static type checking
can also be implemented as a series of queries on the model, but is not trivial,
because the class hierarchy is not explicitly defined in XML.

XQuery uses XPath as sub-language to select the part of tree that matches the
XPath expression. In our XML representation one can match an entire component
having a specified ident attribute. The XPath language can be used to handle
scooping.

12.4.3 Document Object Model (DOM)

The Document Object Model (DOM) (W3C [157]) is a standard interface that
allows programs to access/update the content, structure and style of XML
documents. DOM is similar with a general tree-management library.

There are open-source implementations for DOM APIs in Java, C, C++, Perl,
Python and other programming languages.

Any Modelica tool written in various programming languages can use the DOM
API to directly access/modify the ModelicaXML representation.

220 Chapter 12 ModelicaXML: A ModelicaXML Representation with Applications

12.5 Towards an Ontology for the Modelica Language

This section investigates the possibility of using the markup languages Resource
Description Framework (RDF) (W3C [161]), RDF Vocabulary Description
Language (RDFS) (W3C [160]) and OWL (W3C [164], W3C [165]) developed in
the Semantic Web (Berners-Lee et al. 2001 [12], SemanticWebCommunity [146],
W3C [162]) for development of a Modelica ontology.

An ontology is a description (like a formal specification of a program) of both
the objects in a certain domain and the relationships between them. In the context of
the Semantic Web there is a layered approach for specifying increasingly richer
semantics for the upper layers as in Figure 12-7.

At the bottom, in top of Unicode and Uniform Resource Identifiers (URI) is
XML, namespaces (NS) and XML-Schema. XML specifies a term list with no
relations. On top of XML comes RDF to define a vocabulary and some relations.
RDFS (RDF schema) defines a vocabulary for constructing RDF vocabularies.

Figure 12-7. The Semantic Web Layers.

The Ontology layer uses languages like OWL to define description logic
relationships.

With ModelicaXML we are now only at the XML level! Using RDF we can
express graphs and we can model inheritance relationships and place queries over
this relation. This can be achieved easily with a smart parser. Using OWL we can
place restrictions over relations and concepts and we can reason with inference
using Description Logics.

12.5.1 The Semantic Web Languages

This sub-section briefly introduces the Semantic Web Languages: Resource
Description Framework (RDF/RDFS) and Web Ontology Language (OWL).

Towards an Ontology for the Modelica Language 221

We illustrate the use of Semantic Web Languages by taking a Modelica model and
its representation in OWL.

class Body "Generic body"
 Real mass;
 String name;
end ody; B
class CelestialBody "Celestial body"
 extends Body;
 constant Real g = 6.672e-11;

end CelestialBody;

parameter Real radius;

CelestialBody moon(name = "moon",
 mass = 7.382e22, radius = 1.738e6);

Body body_instance(name = "some body",
 mass = 7.382e22);

Our Modelica model has two classes (concepts) Body and CelestialBody the
latter being a subclass of the former (by using "extends" statement).

The encoding in OWL is as follows:
<?xml version="1.0" ?>
<rdf:RDF
 <!-- namespaces declaration -->
 xmlns=".../inheritance.owl#"
 xmlns:modelica=".../inheritance.owl#"
 xml:base=".../inheritance.owl">
 <owl:Ontology rdf:about=".../inheritance.owl" />

 <!-- define Body -->
 <owl:Class rdf:ID="Body">
 <rdfs:label>Generic Body</rdfs:label>
 </owl:Class>
 < mass!-- define -->
 <owl:DatatypeProperty rdf:ID="mass">
 <rdfs:domain rdf:resource="#Body"/>
 <rdfs:range rdf:resource="XMLSchema#float"/>
 </owl:DatatypeProperty>
 <!-- define name -->
 <owl:DatatypeProperty rdf:ID="name">
 <rdfs:domain rdf:resource="#Body"/>
 <rdfs:range
 Schema#string"/> rdf:resource="XML
 </owl:DatatypeProperty>

 <!-- define CelestialBody -->
 <owl:Class rdf:ID="CelestialBody">
 <rdfs:label>Celestial Body</rdfs:label>
 <rdfs:subClassOf

222 Chapter 12 ModelicaXML: A ModelicaXML Representation with Applications

 rdf:resource="#Body" />
 <!-- cardinality restriction on the g constant:
 one and only one in CelestialBody -->
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#g"/>
 <owl:cardinality rdf:datatype
 ="XMLSchema#nonNegativeInteger">
 1
 </owl:cardinality>
 </owl:Restriction>
 rdfs:subClassOf> </
 </owl:Class>
 <!-- define g -->
 <owl:DatatypeProperty rdf:ID="g">
 <rdfs:domain
 rdf:resource="#CelestialBody"/>
 <rdfs:range ´
 rdf:resource=" XMLSchema#float"/>
 </owl:DatatypeProperty>
 <!-- define radius -->
 <owl:DatatypeProperty
 rdf:ID="radius">
 <rdfs:domain rdf:resource="#CelestialBody"/>
 <rdfs:range rdf:resource=" XMLSchema#float"/>
 </owl:DatatypeProperty>
<!-- instance declaration of CelestialBody -->
<CelestialBody rdf:ID="moon">
 <name rdf:datatype="XMLSchema#string">moon</name>
 <mass rdf:datatype="XMLSchema#float">7.382e22</mass>
 <radius rdf:datatype="XMLSchema#float">1.738e6</radius>
 <g rdf:datatype="XMLSchema#float">6.672e-11</g>
 <g rdf:datatype="XMLSchema#float">
 intentional error
 (string is not float)
 </g>
</CelestialBody>

<!-- instance declaration of Body -->
<Body rdf:ID="body_instance">
 <name rdf:datatype="XMLSchema#string">
 some body
 </name>
 <mass rdf:datatype="XMLSchema#float">
 7.382e22
 </mass>
 <-- intentional error (Body does not have a radius) -->
 <radius rdf:datatype="XMLSchema#float">1.738e6</radius>
</Body>

 </rdf:RDF>

Towards an Ontology for the Modelica Language 223

In the OWL representation of the Modelica model we first define Body as being an
owl:Class with "Generic body" as label. The attributes of Body, namely: mass
and name are represented as owl:DatatypeProperty. The datatype is a binary
relation having a range (type) and a domain (in our case the Body concept). As
range we use the datatypes from XML-Schema, in our case, for mass we use
"float" and for name we use "string".

The class CelestialBody is defined as owl:subclassOf the Body class
according to the "extends" statement from our Modelica model. As an OWL
feature in the definition of CelestialBody we show a local cardinality restriction
placed on the g relation. This means that in the instances of CelestialBody, the g
component has to appear exactly once. The representation of g or radius
components is similar to the representation of mass or name.

The moon instance of the CelestialBody class sets the values of the
components. We intentionally added the g component twice and with a wrong type.
We also declare an instance of the Body class that has a radius component (which
is an error).

To verify the model, our file: "inheritance.owl" was fed into an OWL
Validator (Rager 2003 [136]).

The validator, as expected, reports the following errors:

• For the g component that has a string as value: “Range Type Mismatch. Use
of this property implies that object is of type XMLSchema#float”.

• For the radius component in the body_instance declaration: ”Domain Type
Mismatch. Use of this property implies that subject is of type
#CelestialBody. Subject is declared type [Body]”

• For the moon instance: “Cardinality Violation. Resource #moon violates
the cardinality restriction on class #CelestialBody for property #g. Resource
has 2 statements with this property. Maximum cardinality is 1”.

The OWL language has more constructs than our example has covered. One can
consult the OWL website (W3C [164], W3C [165]) for more details.

12.5.2 The roadmap to a Modelica representation using Semantic
Web Languages

In the example above we have presented a small ontology that models our Modelica
model, consisting of both classes and instances. With a clever parser, such
ontologies could be generated from Modelica libraries and then used for composing
Modelica models.

The roadmap to a Modelica representation in OWL has the following steps:

• Define an RDFS vocabulary for Modelica source code constructs. Such a
vocabulary should include concepts like class, model, record, block, etc.

224 Chapter 12 ModelicaXML: A ModelicaXML Representation with Applications

• Transform the Modelica libraries in their OWL representation using the
above vocabulary.

• An OWL validator can then check the correctness of both the concepts and
the instances of these concepts.

At the end of this roadmap we would have Modelica represented in OWL. The
future benefits of such a representation were underlined in the Introduction section.
Here, we briefly explain how they could be achieved.

12.5.2.1 The Autonomous Models

In the OpenModelica Project, the Modelica compiler is built from the formal
specification (expressed in Natural Semantics (Kahn 1988 [75])) of the Modelica
Language. This specification can be compiled to executable form using the
Relational Meta-Language (RML) system (PELAB 1994-2008 [117], Pettersson
1995 [120], Pettersson 1999 [122]). The rules from Natural Semantics could be
translated to OWL or RuleML (RuleML [139]) and shipped together with the
model. Using the rules from the model a normal browser could compile and
simulate the Modelica model. We assume that the platform should have a C
compiler.

12.5.2.2 The Software Information System (SIS)

Having the Modelica ontologies that model the source code one could use the
approach detailed in (Welty 1995 [172]) and build the domain model of the
problem. Merging them together would result in a Software Information System.

Using such a Software Information System, users can ask queries about the
Modelica source code concepts (components, classes, etc) that are classified
according to the domain model concepts of the problem.

12.5.2.3 Model consistency could be checked using Description Logic

Modelica models represented in OWL (Description Logics) can be fed into a
reasoning tool like FaCT (Horrocks [67]) or Racer (Haarslev et al. 2004 [63]) for
consistency checking.

Moreover, such support would be of great help to the Modelica library designers
that could formally check relevant properties of the class hierarchies.

The checks one can do using Description Logics on the Modelica OWL
representation are the following:

• Ensure that the classes and the class hierarchy are consistent (ensure that a
class can have instances and is not over-constrained).

• Find the explicit relations between classes, regarding for example sub-
typing or equivalence.

Conclusions and Future work 225

12.5.2.4 Translation of Models to/from Unified Modeling Language

The UML language has its XML representation called XMI (OMG [111]).
Translation from Modelica models conforming to a Modelica ontology to XMI
could be possible using XSLT.

12.6 Conclusions and Future work

We have presented the ModelicaXML language and some applications of XML
technologies. We have shown that there are some missing capabilities with such
XML representation and we addressed some of them. We have presented a roadmap
to an alternative representation of Modelica in OWL and the use of representation
together with the Semantic Web technology.

As future work, we consider completing the ModelicaXML with the definition
of all the intermediate steps representations from Modelica to flat Modelica and
further to the code generation. This complete representation would allow various
open-source tools to act at these formally defined levels, independent of each other.
More information could be added in the future to such XML representation, like:
model configuration, simulation parameters, etc.

Further insights in the direction of Semantic Web Languages and their use to
express Modelica semantics are necessary. Compilation in both directions between
OWL and the Relational Meta-Language (RML) is worth considering.

Chapter 13

Composition of XML dialects: A
ModelicaXML case study

This chapter investigates how software composition and transformation can be
applied to domain specific languages used today in modeling and simulation of
physical systems. More specifically, we address the composition and transformation
of the Modelica language. The composition targets the ModelicaXML (described in
the previous chapter) dialect which is the XML representation of the Modelica
language. By extending the COMPOST concrete composition layer with a
component model for Modelica, we provide composition and transformation of
Modelica. The design of our COMPOST extension is presented together with
examples of composition programs for Modelica.

13.1 Introduction

Commercial Modelica tools such as MathModelica and Dymola as well as open-
source tools such as the OpenModelica system can be used for modeling with the
Modelica language. While all these tools have high capabilities for compilation and
simulation of Modelica models, they:

• Provide little support for configuration and generation of components and
models from external data sources (databases, XML, etc).

• Provide little support for security, i.e. protection of “intellectual property”
through obfuscation of components and models.

• Do not provide automatic composition of models using a composition
language. This would be very useful for automatic generation of models
from various CAD products.

228 Chapter 13 Composition of XML dialects: A ModelicaXML case study

• Provide little support for library designers (no automatic renaming of
components in models, no support for comparison of two version of the
same component at the structure level, etc.).

We address these issues by extending the COMPOST framework with a Modelica
component model that acts on the ModelicaXML representation.

The use of XML technology for software engineering purposes is highly present
in the literature today. The SmartTools system (Attali et al. 2001 [8], Attali et al.
2001 [9]) uses XML technologies to automatically generate programming
environments specially tailored to a specific XML dialect that represents the
abstract syntax of some desired language. The use of Abstract Syntax Trees
represented as XML for aspect-oriented programming and component weaving is
presented in (Schonger et al. 2002 [145]). The OpenModelica System project
investigates some transformations on Modelica code like meta-programming
(Aronsson et al. 2003 [4]). The bases of uniform composition for XML, XHTML
dialect and the Java language were developed in the European project Easycomp
(EasyComp 2004 [28]). However, the possibilities of this framework can be further
extended and tested by supporting composition for an advanced domain specific
language like Modelica.

The chapter is structured as follows. The next section introduces Modelica,
ModelicaXML, and COMPOST. Section 13.3 presents our COMPOST extension
and its usage through various examples of composition and transformation
programs for Modelica. Conclusion and future work can be found in Section 13.4.
The appendix, gives the ModelicaXML representation for some of the examples.

13.2 Background

In this section give a short description of the COMPOST framework and present a
short Modelica model and its ModelicaXML representation.

13.2.1 Modelica and ModelicaXML

Modelica has a structure similar to the Java language, but with equation and
algorithm sections for specifying behavior instead of methods. Also, in contrast to
Java, where one would use assignment statements, Modelica is primary an
equation-based language. We give a short Modelica model and its ModelicaXML
representation:

class HelloWorld "HelloWorld comment"
 Real x(start = 1);
 parameter Real a = 1;
 equation
 der(x) = -a*x;
end HelloWorld;

Background 229

In the example we have defined a class called HelloWorld, which has two
components and one equation. The first component declaration (second line) creates
a component x, with type Real. All Modelica variables have a start attribute,
which can be initialized using a modification equation like (start = 1).

The second declaration declares a so called parameter named a, of type Real
and set equal to an integer with value 1. The parameters are constant during
simulation; they can be changed only during the set-up phase, before the actual
simulation.

The software composition is not performed directly on the Modelica code, but
instead, on an alternative representation of it: ModelicaXML (Chapter 13 and (Pop
and Fritzson 2003 [126])). As an example, the HelloWorld class translated to
ModelicaXML would have the following representation:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE modelica SYSTEM "modelica.dtd">
<program>
 <definition ident="HelloWorld" restriction="class"
 string_comment="HelloWorld comment">
 <component visibility="public" type="Real"ident="x">
 <modification_arguments>
 <element_modification>
 <component_reference ident="start"/>
 <modification_equals <integer_literal value="1"/> >
 </modification_equals>
 </element_modification>
 </modification_arguments>
 < component> /
 <component visibility="public" variability="parameter"
 type="Real" ident="a">
 <modification_equals><integer_literal value="1"/>
 < modification_equals> /
 </component>
 <equation>
 <equ_equal>
 <call><component_reference ident="der"/>
 <function_arguments>
 <component_reference ident="x"/>
 </function_arguments>
 </call>
 <sub operation="unary">
 <mul><component_reference ident="a"/>
 <component_reference ident="x"/>
 </mul>
 < sub/ >
 </equ_equal>
 </equation>
 </definition>
</program>

230 Chapter 13 Composition of XML dialects: A ModelicaXML case study

The translation of the Modelica into ModelicaXML is straightforward. The abstract
syntax tree (AST) of the Modelica code is serialized as XML using the
ModelicaXML format. ModelicaXML is validated against the modelica.dtd
Document Type Definition (DTD) (W3C [158]). Using the XML representation for
Modelica, generation of documentation, translation to/from other modeling
languages can be simplified.

13.2.2 The Compost Framework

COMPOST is a composition framework for components such as code or document
fragments, with special regard to construction time. Its interface layer called
UNICOMP for universal composition provides a generic model for fragment
components in different languages and different concrete component models. 1

Components are composed by COMPOST as follows. First, the components,
i.e., templates containing declared and implicit hooks, are read from file. Then, a
composition program in Java applies composition operations to the templates, and
transforms them towards their final form. (The transformations rely on standard
program transformation techniques.) After all hooks have been filled, the
components can be pretty-printed to textual form in a file again. They should no
longer contain declared hooks so that they can be compiled to binary form.

13.2.2.1 The notions of components and composition

Fragment-based composition with COMPOST (Aßmann and Ludwig 2005 [7]) is
based on the observation that the features of a component can be classified in
several dimensions. These dimensions are the language of the component, the
model of the component, and abstract component features. The dimensions depend
on each other and can be ordered into a layer structure of 5 layers (Figure 13-1):

1. Transformation Engine Layer. The most basic layer encapsulates knowledge
about the contents of the components, i.e., about the concrete language of the
component. Fragment-based component composition needs a transformation
engine that transforms the representation of components (Aßmann 2003 [5]).
For such transformation engines, COMPOST reuses external tools, such as the
Java refactoring engine RECODER (Ludwig [88]). This transformation engine
layer contains adapters between COMPOST and the external tools.

2. Concrete Composition Layer. On top of the pure fragment layer, this layer
adds information for a concrete component model, e.g., Java fragment
components, or ModelicaXML fragment components. Concrete composition
constraints are incorporated that describe valid compositions, which can refer
to the contents of the components. For instance, a constraint could be defined

1 COMPOST and its interface layer UNICOMP can also model runtime and other types
of component models.

Background 231

that disallows to encapsulating a Java method component into another Java
method component.

3. Time Specific Composition Layer. On this layer the time of the composition
is taken into account: static or runtime composition.

4. Abstract Composition Layer. In this layer, knowledge is modeled that does
not depend on the concrete component language, or on the concrete component
model. General constraints are modeled, for instance, that each component has
a list of subcomponents, the component hierarchy is a tree, or composition
expressions employ the same type of component, independently of the concrete
type.

5. UNICOMP Interface Layer. The interfaces of the abstract composition layer
have been collected into a separate interface layer, UNICOMP. This set of
interfaces provides a generic fragment component model, from which different
concrete component models can be instantiated.

Figure 13-1. The layers of COMPOST.

For COMPOST applications, UNICOMP hides underlying concrete information
about the component model to a large extent. An application uses COMPOST in a
similar way as a component framework with an Abstract Factory (Gamma et al.
1994 [54]). When a component is created, its concrete type is given to the
COMPOST factory. However, after creation, the application only uses the
UNICOMP generic interfaces. Hence, generic applications can be developed that
work for different component models, but use generic composition operations.

232 Chapter 13 Composition of XML dialects: A ModelicaXML case study

Already on the Abstract Composition Level, the following uniform operations for
fragment components are available:

• Other uniform basic operations. COMPOST composition operators can
address hooks and adapt them during composition for a context. As a basic
set of abstract composition operators, copy, extend, and rename are
available.

• Uniform parameterizations. Template processing works for completely
different types of component models. After a semantics for composition
points and bind operations has been defined, generic parameterization
programs can be executed for template processing.

• Uniform extensions. The extension operator works on all types of
components.

• Uniform inheritance. On the abstract composition layer COMPOST defined
several inheritance operators that can be employed to share components, be
it Java, or XML-based components. Inheritance is explained as a copy-and-
extend operation, and both copy and extend operations are available in the
most abstract layer.

• Uniform connection. COMPOST allows for uniform connection operations,
as well for topologic as well as concrete connections (Aßmann 2003 [5]).

• Uniform aspect weaving. Based on these basic uniform operations, uniform
aspect weaving operations (Karlsson 2003 [76]), can be defined.

The great advantage of the layer structure is that new component models, e.g., for
XML languages, can be added easily as we show in this chapter. In fact,
COMPOST is built for extension: adding a new component model is easy, it
consists of adding appropriate classes in the concrete composition levels,
subclassing from the abstract composition level as we show in Section 13.3.

13.2.2.2 Composition Constraints

Each COMPOST layer contains constraints for composition. These constraints
consist of code that validates components and compositions.

• Composite component constraints. A component must be composite, i.e.,
the composed system is a hierarchy of subsystems. A component is the
result of a composite composition expression or a composition program.

• Composition typing constraints. Composition operations must fit to
components and their composition points. For instance, a composer may
only bind appropriate values to composition points (fragments to fragments,
runtime values to runtime values), or use a specific extension semantics.

• Constraints on the content of components. For instance, for a Java
composition system, this requires that the static semantics of Java is
modeled, and that this semantics controls the composition. For an XML

COMPOST extension for Modelica 233

dialect, semantic constraints can be modeled, for instance, that all links in a
document must be valid, i.e., point to a reasonable target. Our extended
framework presented in this chapter provides parts of the Modelica
semantics in top of the ModelicaXML format.

With these constraints, it should be possible to type-check composition expressions
and programs in the UNICOMP framework. Many of these constraints can be
specified in a logic language, such as first order logic (Datalog) or OWL (W3C
[165]), and can be generated to check objects on every layer.

13.2.2.3 Support for staged composition

COMPOST supports staged composition as follows. Firstly, the UNICOMP layer
has been connected to the Component Workbench, the visual component editor of
the VCF (Oberleitner and Gschwind 2002 [108]). Composition programs for
fragment component models can be edited from the Component Workbench, and
executed via COMPOST.

So far, a case study has been build for a web-based conference reviewing system
that requires Java and XHTML composition. This chapter shows how to compose
Modelica components by using its alternative XML representation: ModelicaXML.

Secondly, COMPOST can be used to prepare components such that they fit into
component models of stage 2 and 3. For instance, COMPOST connectors can
prepare a Java class for use in CORBA context (Aßmann et al. 2000 [6]). They can
also be used to insert event-emitting code, to prepare a class for Aspect-Oriented
Programming.

13.3 COMPOST extension for Modelica

This section describes the Modelica component model. The architecture of our
system is presented. Modelica Box and Hook hierarchies are explained. Finally,
various composition programs are given as examples.

13.3.1 Overview

The architecture of the composition system is given in Figure 13-2. A Modelica
parser is employed to generate the ModelicaXML representation. ModelicaXML is
fed into the COMPOST framework where it can be composed and transformed. The
result is transformed back into Modelica code by the use of a ModelicaXML
unparser.

234 Chapter 13 Composition of XML dialects: A ModelicaXML case study

Figure 13-2. The XML composition. System Architecture Overview.

13.3.2 Modelica Box Hierarchy

Besides general classes, Modelica uses so called restricted class constructs to
structure information and behavior: models, packages, records, types, functions,
connectors and blocks. Restricted classes have most properties in common with
general classes, but have some restrictions, e.g. there are no equations in records.

Modelica classes are composed of elements of different kinds, e.g.:

• Import or extends declarations.
• Public or protected variable declarations.
• Equation and algorithm sections.

Each of the Modelica restricted classes and each of the element types have their
corresponding box class in the Modelica Box hierarchy (Figure 13-3).

In our case, the boxes (templates) are mapped to their specific element types in
the ModelicaXML representation. For example, the ModelicaClass box is
mapped to a <define ident="ClassName">..</define> element. The
ModelicaClass box can contain several ModelicaElement boxes and can con-
tain itself in the case that one Modelica class is declared inside another class.

COMPOST extension for Modelica 235

The boxes that inherit from ModelicaContainer represent the usual constructs of
the Modelica language. The boxes that inherit from ModelicaElement are
defining the contents of the boxes that inherit from ModelicaContainer.

The boxes incorporate constraints derived from Modelica static semantics. For
example, constraints specify that inside a ModelicaRecord is not allowed to have
ModelicaEquationSections.

Figure 13-3. The Modelica Box Hierarchy defines

a set of templates for each language structure.

While these constraints in our case were specified in the Java code, a future
extension will automatically generate these constraints from external specifications
expressed in formalisms such as Document Type Definition (DTD) (W3C [158]),
Web Ontology Language (OWL) (W3C [164], W3C [165]) or Relational Meta-
Language (RML) (PELAB 1994-2008 [117], Pettersson 1995 [120], Pettersson
1999 [122]).

13.3.3 Modelica Hook Hierarchy

Implicit Hooks are fragments of Modelica classes that have specific meaning
according to Modelica code structure and semantics. By using Hooks one can easily
change/extract parts of the code. In the Modelica Hook Hierarchy presented in
(Figure 13-4) only Implicit Hooks are defined for the Modelica code.

236 Chapter 13 Composition of XML dialects: A ModelicaXML case study

There is no need to define Declared Hooks especially for Modelica, because the
XMLDeclaredHook already performs this operation. One can have an XML
declared hook that extracts from the XML document the contents of an element
with a specified tag, i.e., <extract ...>.

Hooks are used to configure parts of boxes. The XMLImplicitHook is
specialized as ModelicaParameterHook or ModelicaModificationHook.

ModelicaParameterHook binds variable components in ModelicaXML that
have variability attribute set to "parameter". To provide typing constraints,
specific hooks for real_literal, integer_literal, string_literal types
have been declared. These constraints the binding of the parameters to values of
proper type.

Figure 13-4. The Modelica Hook Hierarchy.

ModelicaModificationHook targets component declarations that have their
elements changed by modifiers. In the HelloWorld example in Section 13.2.1, the
modifier is imposing on component x to change its start value. At the
ModelicaXML level the ModelicaModificationHook is searching for XML
elements of the form:

<component ident="ComponentName">
 <modification_arguments>
 <element_modification>
 <component_reference ident="element"/>
 <modification_equals>value initialization e.g.

COMPOST extension for Modelica 237

 <integer_literal>1</integer_literal>
 </modification_equals>
 </element_modification>
 < modification_arguments> /
</component>

This hook will bind proper values to the modified elements.
Also, other types of implicit hooks can be specified like hooks for the left hand

side or the right hand side of an equation hooks that change types of components,
hooks that change the documentation part of a class declaration, etc.

13.3.4 Examples of Composition and Transformation Programs

This subsection gives concrete examples on the usages of our framework. The
examples are written in Java, but they could easily be performed using a tool that
has visual abstractions for the composition operators. For presentation issues only
the Modelica code is given in the examples below and their corresponding
ModelicaXML representation is presented in Section 13.5.

13.3.4.1 Generic Parameterization with Type Checking

To be able to reuse components into different contexts they should be highly
configurable. Configuration of parameters in Modelica is specified in class
definitions and can be modified in parameter declaration. The values can be read
from external sources using external functions implemented in C or Fortran. In the
example below we show how the parameters of a Modelica component can be
configured using implicit hooks. Because we use Java, the parameter/value list can
be read from any data source (XML, SQL, files, etc). The example is based on the
following Modelica class:

class Engine
 parameter Integer cylinders = 4;
 Cylinder c[cylinders];
 /* additional parameters, variables and equations */
end Engine;

Different versions of the Engine class can be automatically generated using a
composition script. Also, the parameter values are type checked before they are
bound to ensure their compatibility. The composition script is given below partially
in Java, partially in pseudo-code:

ModelicaCompositionSystem cs = new
 ModelicaCompositionSystem();

ModelicaClass templateBox =
 cs.createModelicaClass("Engine.mo.xml");

/* read parameters from configuration file, XML or SQL */

238 Chapter 13 Composition of XML dialects: A ModelicaXML case study

foreach engine entry X
{
 ModelicaClass engineX =
 templateBox.cloneBox().rename("Engine_"+X);

 foreach engine parameter
 {
 engineX.findHook("parameterName").bind(parameterValue);
 /* typed parameterization */
 }
 engineX.print();
}

Using a similar program, the modification of parameters can be performed in
parameter declarations.

13.3.4.2 Class Hierarchy Refinement using Declared Hooks

When designing libraries one would like to split specific classes into a more general
part and a more specific part. As an example, one could split the class defined
below into two classes that inherit from each other, one more generic and one more
specific, in order to exploit reuse. Also if one wants to add a third class, e.g.
RectangularBody, to the created hierarchy the transformation above would be
beneficial. The specific class that should be modified is given below:

class CelestialBody "Celestial Body"
 Real mass;
 String name;
 constant Real g = 6.672e-11;
 parameter Real radius;
end CelestialBody;

The desired result, the two split classes where one inherits from the other, is shown
below:

class Body "Generic Body"
 Real mass;

ring name; St
end Body;

class CelestialBody "Celestial Body"
 extends Body;
 constant Real g = 6.672e-11;
 parameter Real radius;
end CelestialBody;

One can see that this transformation extracts parts of classes and inserts them into a
new created class. Also, the old class is modified to inherit from the newly created
class.

This transformation is performed with the help of one declared hook (for the
extraction part) and an implicit hook for the superclass, with its value bound to the

COMPOST extension for Modelica 239

newly created class. The user will guide this operation by specifying, with a
declared hook or visually, which parts should be moved in the new class. The
composition program that performs these transformations is as follows:

ModelicaCompositionSystem cs = new
 ModelicaCompositionSystem();
ModelicaClass bodyBox = cs.createClass("Body.mo.xml");
ModelicaClass celestialBodyBox =
 cs.createModelicaClass("Celestial.mo.xml");
ModelicaElement extractedPart =
 celestialBody.findHook("extract").getValue();

/* empty the hook contents */
celestialBody.findHook("extract").bind(null);

bodyBox.append(extractedPart)
bodyBox.print();
celestialBody.findHook("superclass").bind("Body");
/* or findSuperclass().bind("Body"); */

celestialBody.print();

Similar transformations can be used to compose Modelica models based on the
interpretation of other modeling languages. During such composition some classes
need to be wrapped to provide a different interface. For example, when there is only
a force specified for moving a robot arm, but the available library of components
only provides electrical motors that generate a force proportional to a voltage input.

13.3.4.3 Composition of classes or model flattening

Mixin composition of the entire contents of two or more classes into one another is
performed when the models are flattened i.e. as the first operation in model
obfuscation or at compilation time. The content of the classes composed below is
not relevant for this particular operation. The composition program that
encapsulates this behavior is as follows:

ModelicaCompositionSystem cs = new
 ModelicaCompositionSystem();
ModelicaClass resultBox =
 cs.createModelicaClass("Class1.mo.xml");
ModelicaClass firstMixin =
 cs.createModelicaClass("Class2.mo.xml");
ModelicaClass secondBox =
 cs.createModelicaClass("Result.mo.xml");

resultBox.mixin(firstMixin);
resultBox.mixin(secondMixin);
resultBox.print();

240 Chapter 13 Composition of XML dialects: A ModelicaXML case study

It first reads the two classes from files, creates a new result class and pastes the
contents of the first classes inside the new class.

13.4 Conclusions and Future work

We have shown how composition on Modelica, using its alternative the
ModelicaXML representation, can be achieved with a small extension of the
COMPOST framework. While this is a good start, we would like to extend our
work in the future with some additional features like:

• More composition operators and more transformations, i.e., obfuscation,
symbolic transformation of equations, aspect oriented debugging of
component behavior by weaving assert statements in equations, etc.

• Implementation of full Modelica semantics to guide the composition, based
on the already existing Modelica compiler implemented in the
OpenModelica system.

• Validation of the composed or transformed components with the
OpenModelica compiler.

• Automatic composition of Modelica models based on interpretation of other
modeling languages.

Modelica should provide additional constraints on composition, based on the
domain knowledge. These constraints are specifying, for example, that specific
components should not be connected even if their connectors allow it. We would
like to further investigate how these constraints could be specified by library
developers.

13.5 Appendix

CelestialBody in ModelicaXML format before transformation:
<definition ident="CelestialBody" restriction="class"
 string_comment="Celestial Body"/>
 <component visibility="public"
 ident="mass" type="Real"/>
 <component visibility="public"
 ident="name" type="String"/>
 <component visibility="public"
 variability="constant" ident="g"
 type="Real">
 <modification_equals>
 <real_literal value="6.672e-11"/>
 </modification_equals>
 </component>

Appendix 241

 <component visibility="public"
 variability="parameter" ident="radius"
 type="Real"/>
</definition>

CelestialBody and Body in ModelicaXML format after transformation:
<definition ident="Body" restriction="class"
 string_comment="Generic Body"/>
 <component visibility="public" ident="mass" type="Real"/>
 <component visibility="public"
 ident="name" type="String"/>
</definition>

<definition ident="CelestialBody" restriction="class"
 string_comment="Celestial Body"/>
 <extends type="Body"/>
 <component visibility="public"
 variability="constant" ident="g"
 type="Real">
 <modification_equals>
 <real_literal value="6.672e-11"/>
 modification_equals> </
 </component>
 <component visibility="public" variability="parameter"
 ident="radius" type="Real"/>
</definition>

The Engine class representation in ModelicaXML:
<definition ident="Engine" restriction="class">
 <component visibility="public" variability="parameter"
 type="Integer" ident="cylinders">
 <modification_equals>
 <integer_literal value="4"/>
 </modification_equals>
 < component> /
 <component visibility="public" type="Cylinder" ident="c">
 <array_subscripts>
 <component_reference ident="cylinders"/>
 </array_subscripts>
 </component>
</definition>

Part VI

Conclusions and Future Work

Chapter 14

Conclusions and Future Work

As most of the chapters in this thesis have their own specific conclusions and future
work, this final chapter presents our general conclusions to the work presented. A
summary of the main results and the main contributions of the thesis are reiterated
here. We also provide directions for future research.

14.1 Conclusions

The thesis presents the new MetaModelica language that successfully employs
meta-modeling and meta-programming features to address the entire product
modeling process. Portable debugging methods and tools that support the new
language were also designed, implemented, and analyzed in the thesis.

The design, implementation and evaluation of efficient compilers targeting the
MetaModelica language are presented in the thesis. The implemented compilers are
publicly available and extensively used in industry and academia for large
applications.

Moreover, the tools (compilers, debuggers, model editors, and additional tools)
supporting the MetaModelica language were integrated into an advanced
development environment based on the Eclipse platform. The integrated
development environment was evaluated on non-trivial industrial applications.

The integration of Modelica-based modeling and simulation tools with model-
driven product design tools within a flexible framework that supports scalable
model selection and configuration is also proposed.

Most of our thesis contributions have been implemented and integrated into
open-source development environments for EOO languages. The evaluations
performed using several case studies show the efficiency of our meta-modeling and
meta-programming methods and tools.

We conclude that the work presented in this thesis supports our research hypothesis:

• EOO languages can be successfully generalized to support software
modeling, thus addressing the whole product modeling process.

246 Chapter 14 Conclusions and Future Work

• Integrated environments that support such a generalized EOO language can
be created and effectively used on real-sized applications.

The integrated model-driven environments and the new MetaModelica language
presented in the thesis provide efficient and effective methods for designing and
developing complex product models. Methods and tools for debugging,
management, serialization, and composition of models are also contributed.

To reiterate, the main research contributions of the thesis are:

• The design, implementation and evaluation of a new general executable
mathematical modeling and semantics meta-modeling language called
MetaModelica. The MetaModelica language extends the existing Modelica
language with support for meta-modeling, meta-programming and
exception handling facilities.

• The design, implementation and evaluation of advanced portable debugging
methods and frameworks for runtime debugging of MetaModelica and
semantic specifications.

• The design, implementation, and evaluation of several integrated model-
driven environments supporting creation, development, refactoring,
debugging, management, composition, serialization and graphical
representation of models in EOO languages. Additionally, an integrated
model-driven product design and development environment based on EOO
languages is also contributed.

• Alternative representation of EOO models based on XML and UML/SysML
are investigated and evaluated. Transformation and invasive composition of
EOO models has also been investigated.

The thesis also discusses our work in comparison to related work and outlines the
differences, the advantages and the weaknesses of our contributions.

14.2 Future Work Directions

While most of the research goals of the thesis have been achieved the presented
work can be further improved and extended. In this section we present possible
future work directions:

• Most of the language support (pattern matching, exception handling, the
high-level data structure extensions, etc) needed for the OpenModelica
compiler bootstrapping has been implemented. Our current work targets the
integration of the MetaModelica compiler prototype runtime with the
OpenModelica compiler runtime to finalize the compiler bootstrapping
procedure. The OpenModelica compiler bootstrapping will provide further
optimization, simplification, and modularization of the current compiler

Future Work Directions 247

specification due to providing full MetaModelica language support,
compared to the subset supported by the prototype. When the bootstrapping
procedure has been completed, the current MetaModelica compiler
prototype will retire and the compilation chain of OpenModelica will be
highly simplified. Due to easier programming based on the full
MetaModelica language, a simplified compilation procedure, and a
simplified compiler specification we expect more contributions from the
OpenModelica community developers.

• Further work on the MetaModelica unified language design targeting the
equation evaluation strategies is needed. In the current design and
implementation the order of equations in the meta-programming functions is
important. We intend to remove this restriction in the future.

• The modularity and scalability of the MetaModelica language should be
further researched. Investigation of the suitability and possible adaptation of
the current Modelica component model with regards to software modeling
should be carried out. Alternative formalisms such as attribute grammars
(Ekman and Hedin 2007 [33]) can provide ideas for improvements in the
language design, modularity, and equation evaluation strategies used in the
MetaModelica language and its supporting environments to further extend
the expressivity and usefulness of the language.

• Model-driven design and development of whole products is briefly
investigated in the thesis. However we consider that more research is
needed in this area, especially on the integration of all our existing tools in
the product design and development process. The Modelica-UML-SysML
(ModelicaML) and the FMDesign environments could be integrated to
support several views of the same product model. Another research
direction worth investigating is the integration of our Modelica tools with
existing SysML tools via the ModelicaML profile. Such integration will
provide full system simulation capabilities to existing SysML tools.

• Our general run-time debugging framework for EOO languages should be
fully implemented, evaluated and integrated with existing static equation-
based debugging frameworks.

• The tools for generation of alternative EOO model representations (XML,
ModelicaML) and invasive composition engine should be integrated into
our MDT environment.

Bibliography

[1] David Akhvlediani. Design and Implementation of a UML profile for
Modelica/SysML, Department of Computer and Information Science,
Linköping University, 2007, Master Thesis No: LITH-IDA-EX--06/061—SE

[2] Altova, XmlSpy System. 2008, Altova. www: http://www.xmlspy.com/. Last
Accessed: 2008.

[3] Mogens Myrup Andreasen. Machine Design Methods Based on a Systematic
Approach (Syntesemetoder på systemgrundlag), Lund Technical University,
1980

[4] Peter Aronsson, Peter Fritzson, Levon Saldamli, Peter Bunus, and Kaj
Nyström. Meta Programming and Function Overloading in OpenModelica. in
3rd International Modelica Conference. 2003. Linköping.
(http://www.modelica.org). p. 431-440

[5] Uwe Aßmann, Invasive Software Composition. 2003: Springer-Verlag
Heidelberg. ISBN: 3540443851.

[6] Uwe Aßmann, Thomas Genßler, and Holger Bär. Meta-programming Grey-
box Connectors. in International Conference on Object-Oriented Languages
and Systems (TOOLS Europe). 2000. Piscataway, NJ. IEEE Press

[7] Uwe Aßmann and Andreas Ludwig, COMPOST (The Software COMPOsition
SysTem). 2005, 1998-2003 Karlsruhe University, IPD Prof. Goos,1998-2003
Andreas Ludwig, 2001-2003 Uwe Aßmann,2001-2003 Linköpings Universitet,
IDA, PELAB, RISE. www: http://www.the-compost-system.org/. Last
Accessed: 2005.

[8] Isabelle Attali, Carine Courbis, Pascal Degenne, Alexandre Fau, Didier
Parigot, and Claude Pasquier. SmartTools: A Generator of Interactive
Environments Tools. in International Conference on Compiler Construction
(CC2001). 2001. Genova, Italy. www: http://www-sop.inria.fr/smartool/.

[9] Isabelle Attali, Carine Courbis, Pascal Degenne, Alexandre Fau, Joël Fillon,
Didier Parigot, Claude Pasquier, and Claudio Sacerdoti Coen. SmartTools: a

http://www.xmlspy.com/
http://www.modelica.org)/
http://www.the-compost-system.org/
http://www-sop.inria.fr/smartool/

250

development environment generator based on XML technologies. in The XML
Technologies and Software Engineering (ICSE'2001). 2001. Toronto, Canada.
ICSE workshop proceedings. www: http://www-sop.inria.fr/smartool/.

[10] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter Patel-Schneider, Description Logics Handbook. 2003, New York, NY:
Cambridge University Press.

[11] Greg Badros. JavaML: A Markup Language for Java Source Code. in
Proceedings of The 9th International World Wide Web Conference. 2000.
Amsterdam, Nederlands

[12] Tim Berners-Lee, James Hendler, and Ora Lassila, The Semantic Web, in
Scientific American. 2001.

[13] Simon Björklén. Extending Modelica with High-Level Data Structures,
Department of Computer and Information Science, Linköping University,
2008, Master Thesis

[14] Johansson Björn, Jonas Larsson, Magnus Sethson, and Petter Krus. An XML-
Based Model Representation for model management, transformation and
exchange. in ASME International Mechanical Engineering Congress. 2002.
New Orleans, USA

[15] Patrik Borras, Dominique Clement, Thierry Despeyroux, Janet Incerpi, Gilles
Kahn, Bernard Lang, and Valérie Pascual. CENTAUR: The System. in ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments. 1988. 24 of SIGPLAN. p. 14-24

[16] R.H. Bracewell and D.A.Bradley. Schemebuilder, A Design Aid for Conceptual
Stages of Product Design. in International Conference on Engineering Design,
IECD'93. 1993. The Hague

[17] Gilad Bracha and W. Cook. Mixin-based inheritance. in OOPSLA/ECOOP'90.
1990. ACM SIGPLAN Notices. p. 303-311

[18] David Broman. Safety, Security, and Semantic Aspects of Equation-Based
Object-Oriented Languages and Environments, Department of Computer and
Information Science, Linköping University, 2007, Licentiate Thesis No: 1337,
http://www.ep.liu.se/theses/abstract.xsql?dbid=10134

[19] Peter Bunus. Debugging Techniques for Equation-Based Languages,
Department of Computer and Information Science, Linköping University,
2004, PhD Thesis No: 873

[20] Peter Bunus and Peter Fritzson. Semi-Automatic Fault Localization and
Behavior Verification for Physical System Simulation Models. in 18th IEEE

http://www-sop.inria.fr/smartool/
http://www.ep.liu.se/theses/abstract.xsql?dbid=10134

251

International Conference on Automated Software Engineering. 2003.
Montreal, Canada

[21] Emil Carlsson. Translating Natural Semantics to Meta-Modelica, Department
of Computer and Information Science, Linköping University, 2005, Master's
Thesis No: LITH-IDA-EX--05/073--SE

[22] Ernst Christen and Kenneth Bakalar, VHDL-AMS - A Hardware Description
Language for Analog and Mixed-signal Applications. IEEE Transactions on
Circuits and Systems, Part II: Express Briefs, 1999. 46(10): p. 1263-1272.

[23] Dominique Clément, Joëlle Despeyroux, Thierry Despeyroux, and Gilles
Kahn. A Simple Applicative Language: Mini-ML. in the ACM Conference on
Lisp and Functional Programming. 1986. also available as research report RR-
529, INRIA, Sophia-Antipolis, May 1986.

[24] DescriptionLogicsWebsite, Description Logics, maintained by Carsten Lutz.
www: http://dl.kr.org/. Last Accessed: 2005.

[25] Thierry Despeyroux. Executable Specification of Static Semantics. in
Semantics of Data Types. 1984. Berlin, Germany. Springer-Verlag. Lecture
Notes in Computer Science (LNCS) No:173. p. 215-233

[26] Thierry Despeyroux, TYPOL: A Formalism to Implement Natural Semantics.
1988, INRIA, Sofia-Antipolis. www: http://www.inria.fr/rrrt/rt-0094.html.

[27] Dynasim, Dymola. 2005. www: http://www.dynasim.se/. Last Accessed: 2005.

[28] EasyComp, The EasyComp EU project website. 2004. www:
http://www.easycomp.org/. Last Accessed: 2004.

[29] Eclipse.Foundation, Eclipse Development Platform. 2001-2008. www:
http://www.eclipse.org/. Last Accessed: 2008.

[30] Eclipse.Foundation, Eclipse Modeling Framework (EMF). 2008. www:
http://www.eclipse.org/emf. Last Accessed: 2008.

[31] Eclipse.Foundation, Graphical Editing Framework (GEF). 2008. www:
http://www.eclipse.org/gef. Last Accessed: 2008.

[32] Eclipse.Foundation, Graphical Modeling Framework (GMF). 2008. www:
http://www.eclipse.org/gmf. Last Accessed: 2008.

[33] Torbjörn Ekman and Görel Hedin. The JastAdd Extensible Java Compiler. in
The 22nd Annual ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA).
2007. Montreal, Canada

http://dl.kr.org/
http://www.inria.fr/rrrt/rt-0094.html
http://www.dynasim.se/
http://www.easycomp.org/
http://www.eclipse.org/
http://www.eclipse.org/emf
http://www.eclipse.org/gef
http://www.eclipse.org/gmf

252

[34] Hilding Elmqvist, Dag Brück, Sven Erik Mattsson, Hans Olsson, and Martin
Otter, Dymola, Dynamic Modeling Laboratory, User's Manual. 2003.

[35] Hilding Elmqvist, Sven Erik Mattsson, and Martin Otter. Modelica - A
Language for Physical System Modeling, Visualization and Interaction. in
IEEE Symposium on Computer-Aided Control System Design. 1999. Hawaii,
USA

[36] Burak Emir, Martin Odersky, and John Williams. Matching Objects With
Patterns. in Proceeding of 21st European Conference on Object-Oriented
Programming (ECOOP). 2007. Berlin, Germany. Springer. LNCS 4609

[37] Georgina Fábián. A Language and Simulator for Hybrid Systems, Technische
Universiteit Eindhoven, 1999

[38] Jorge A. Ferreira and João P. Estima de Oliveira. Modelling hybrid systems
using statecharts and Modelica. in 7th IEEE International Conference on
Emerging Technologies and Factory Automation. 1999. Barcelona, Spain. 2. p.
1063-1069

[39] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts,
Refactoring: Improving the Design of Existing Code. 1999: Addison Wesley.
ISBN: 0201485672.

[40] Wolfgang Freiseisen, Robert Keber, Wihelm Medetz, Petru Pau, and Dietmar
Stelzmueller. Using Modelica for testing embedded systems. in the 2nd
International Modelica Conference. 2002. Munich, Germany.
(http://www.modelica.org)

[41] Peter Fritzson, Symbolic Debugging through Incremental Compilation in an
Integrated Environment. Journal of Systems and Software, 1983. 3: p. 285-
294.

[42] Peter Fritzson. Towards a Distributed Programming Environment based on
Incremental Compilation, Department of Computer and Information Science,
Linköping University, 1984, PhD Thesis No: 109

[43] Peter Fritzson, Efficient Language Implementation by Natural Semantics.
1998.

[44] Peter Fritzson, Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. 2004: Wiley-IEEE Press. 940. ISBN: 0-471-471631.

[45] Peter Fritzson, MathModelica - An Object Oriented Mathematical Modeling
and Simulation Environment. Mathematica Journal, 2006. 10(1).

http://www.modelica.org/

253

[46] Peter Fritzson, Peter Aronsson, Peter Bunus, Vadim Engelson, Levon
Saldamli, Henrik Johansson, and Andreas Karstöm. The Open Source
Modelica Project. in Proceedings of The 2th International Modelica
Conference. 2002. Munich, Germany

[47] Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj Nyström, Adrian Pop,
Levon Saldamli, David Broman, Peter Bunus, Vadim Engelson, Henrik
Johansson, and Andreas Karstöm, The OpenModelica Modeling, Simulation
and Software Development Environment. Simulation News Europe, 2005.
44/45.

[48] Peter Fritzson, Mikhail Auguston, and Nahid Shahmehri, Using Assertions in
Declarative and Operational Models for Automated Debugging. Journal of
Systems and Software, 1994. 25(3): p. 223-232.

[49] Peter Fritzson and Peter Bunus. Modelica, a General Object-Oriented
Language for Continuous and Discrete-Event System Modeling and
Simulation. in 35th Annual Simulation Symposium. 2002. San Diego,
California

[50] Peter Fritzson and Vadim Engelson. Modelica, a general Object-Oriented
Language for Continuous and Discrete-Event System Modeling and
Simulation. in 12th European Conference on Object-Oriented Programming
(ECOOP'98). 1998. Brussels, Belgium

[51] Peter Fritzson, Adrian Pop, and Peter Aronsson. Towards Comprehensive
Meta-Modeling and Meta-Programming Capabilities in Modelica. in 4th
International Modelica Conference. 2005. Hamburg, Germany.
(http://www.modelica.org)

[52] Peter Fritzson, Adrian Pop, Kristoffer Norling, and Mikael Blom. Comment-
and Indentation Preserving Refactoring and Unparsing for Modelica. in 6th
International Modelica Conference. 2008. Bielefeld, Germany.
(http://www.modelica.org)

[53] Peter Fritzson, Lars Viklund, Dag Fritzson, and Johan Herber, High Level
Mathematical Modeling and Programming. Scientific Computing, IEEE
Software, 1995: p. 77-87.

[54] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software. 1994, Reading,
MA: Addison Wesley.

[55] Sabine Glesner and Wolf Zimmermann, Natural semantics as a static program
analysis framework. ACM Transactions on Programming Languages and
Systems (TOPLAS), 2004. 26(3): p. 510-577.

http://www.modelica.org/
http://www.modelica.org/

254

[56] GNU, Bison (a general-purpose parser generator). 2005, The Free Software
Foundation. www: http://www.gnu.org/software/bison. Last Accessed: 2005.

[57] GNU, Emacs, The Grand Unified Debuger (GUD). 2005, The Free Software
Foundation. www:
http://www.gnu.org/software/emacs/manual/html_node/Debuggers.html#Debu
ggers. Last Accessed: 2005.

[58] GNU, Flex (a fast lexical analyser generator). 2005, The Free Software
Foundation. www: http://www.gnu.org/software/flex/. Last Accessed: 2005.

[59] GNU, The GNU Project debugger. 2005, The Free Software Foundation.
www: http://www.gnu.org/software/gdb/gdb.html. Last Accessed: 2005.

[60] GNU, The GNU Readline Library. 2005, The Free Software Foundation. www:
http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html. Last Accessed:
2005.

[61] GNU, Qexo - The GNU Kawa implementation of XQuery. 2005, The Free
Software Foundation. www: http://www.gnu.org/software/qexo. Last
Accessed: 2005.

[62] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java Language
Specification. 3rd edition ed. 2005: Prentice Hall. ISBN: 978-0321246783.

[63] Volker Haarslev, Ralf Möller, and Michael Wessel, RACER User’s Guide and
Reference Manual. 2004. www: http://www.sts.tu-
harburg.de/~r.f.moeller/racer/. Last Accessed: 2005.

[64] George T. Heineman and William T. Councill, Component-Based Software
Engineering, ed. George T. Heineman and William T. Councill. 2001: Addison
Wesley.

[65] Sir Charles Antony Richard Hoare, Communicating Sequential Processes.
1985: Prentice-Hall.

[66] Mikael Holmén. Natural Semantics Specification and Frontend Generation for
Java 1.2, Department of Computer and Information Science, Linköping
University, 2000, Master Thesis No: LiTH-IDA-Ex-00/60

[67] Ian Horrocks, The FaCT System. www:
http://www.cs.man.ac.uk/~horrocks/FaCT/. Last Accessed: 2005.

[68] Paul Hudak, The Haskell School of Expression. 2000, New York: Cambridge
University Press. ISBN: 0521644089.

http://www.gnu.org/software/bison
http://www.gnu.org/software/emacs/manual/html_node/Debuggers.html#Debuggers
http://www.gnu.org/software/emacs/manual/html_node/Debuggers.html#Debuggers
http://www.gnu.org/software/flex/
http://www.gnu.org/software/gdb/gdb.html
http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html
http://www.gnu.org/software/qexo
http://www.sts.tu-harburg.de/%7Er.f.moeller/racer/
http://www.sts.tu-harburg.de/%7Er.f.moeller/racer/
http://www.cs.man.ac.uk/%7Ehorrocks/FaCT/

255

[69] IEEE, IEEE 1000 The Authoritative Dictionary of IEEE Standard Terms. 2000,
IEEE Press: New York, USA.

[70] INCOSE, International Council on System Engineering. 1990-2008. www:
http://www.incose.org. Last Accessed: 2008.

[71] ITI.GmbH, SimulationX. 2008. www: http://www.iti.de/. Last Accessed: 2008.

[72] Björn Johansson, Jonas Larsson, Magnus Sethson, and Petter Krus. An XML-
Based Model Representation for Model Management Transformation and
Exchange. in ASME International Mechanical Engineering Congress. 2002.
New Orleans, USA. LiTH-IKP-CR-562

[73] Olof Johansson and Petter Krus. FMDesign - A Tool and Interchange Format
for Product Concept Designs. in ASME International Design Engineering
Technical Conferences & Computers and Information In Engineering
Conference. 2005. Long Beach, California, USA

[74] Olof Johansson, Adrian Pop, and Peter Fritzson. ModelicaDB - A Tool for
Searching, Analysing, Crossreferencing and Checking of Modelica Libraries.
in 4th International Modelica Conference. 2005. Hamburg-Harburg, Germany.
(http://www.modelicaorg)

[75] Gilles Kahn, Natural Semantics, in Programming of Future Generation
Computers, Niva M., Editor. 1988, Elsevier Science Publishers: North
Holland. p. 237-258.

[76] Mattias Karlsson. Component-Based Aspect Weaving Through Invasive
Software Composition, Department of Computer and Information Science,
Linköping University, 2003, Master's thesis

[77] Uwe Kastens, William McCastline Waite, and Anthony M. Sloane, Generating
Software from Specifications. 2007: Jones and Bartlett Publishers. ISBN:
0763741248.

[78] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and
J. Irwin. Aspect-oriented programming. in ECOOP'97. 1997. Springer Verlag.
Lecture Notes in Computer Science (LNCS) No:1241. p. 220-242

[79] Simon Lacoste-Julien, Hans Vangheluwe, Juan de Lara, and Pieter J.
Mosterman. Meta-modelling hybrid formalisms. in IEEE International
Symposium on Computer-Aided Control System Design. 2004. Taipei, Taiwan.
IEEE Computer Society Press, Invited paper. p. 65-70

[80] Juan de Lara, Esther Guerra, and Hans Vangheluwe. Meta-Modelling, Graph
Transformation and Model Checking for the Analysis of Hybrid Systems. in
Applications of Graph Transformations with Industrial Relevance (AGTIVE

http://www.incose.org/
http://www.iti.de/
http://www.modelicaorg/

256

2003). 2003. Charlottesville, Virginia, USA. Springer-Verlag. Lecture Notes in
Computer Science (LNCS) No:3062. p. 292 - 298

[81] Jonas Larsson, Björn Johansson, Petter Krus, and Magnus Sethson. Modelith:
A Framework Enabling Tool-Independent Modeling and Simulation. in
European Simulation Symposium. 2002. Dresten, Germany

[82] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg Nordstrom,
Jonathan Sprinkle, and Gabor Karsai, Composing Domain-Specific Design
Environments. Computer, 2001. November: p. 44-51.

[83] Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason Garrett,
Charles Thomason, Greg Nordstrom, Jonathan Sprinkle, and Peter Volgyesi.
The Generic Modeling Environment. in Workshop on Intelligent Signal
Processing. 2001. Budapest, Hungary. www:
http://www.isis.vanderbilt.edu/Projects/gme/.

[84] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme
Vouillon, The Objective Caml System. Documentation and User's Manual.
2007. www: http://caml.inria.fr/pub/docs/manual-ocaml.

[85] Henry Liebermann, The Debugging Scandal and What To Do About It.
Communications of the ACM, 1997. 40(4): p. 27-29.

[86] J. Lindskov, Knudsen, M. Lofgren, O. Lehrmann Madsen, and B. Magnusson,
Object-Oriented Environments - The Mjølner Approach. 1993: Prentice Hall.
ISBN: 0-13-009291-6.

[87] Jed Liu and Andrew C. Myers. JMatch: Iterable Abstract Pattern Matching for
Java. in Proceeding of the 5th International Symposium on Practical Aspects
of Declarative Languages (PADL). 2003. New Orleans, LA, USA. Springer.
Lecture Notes in Computer Science (LNCS) No:2562. p. 110-127

[88] Andreas Ludwig, The RECODER Refactoring Engine. www:
http://recoder.sourceforge.net. Last Accessed: 2008.

[89] Sarah Mallet and Mireille Ducassé. Generating deductive database
explanations. in International Conference on Logic Programming. 1999. Las
Cruces, New Mexico. MIT Press

[90] John J. Marciniak, Encyclopedia of software engineering. Vol. 1 A-N. 1994,
New York, NY: Wiley-Interscience.

[91] MathCore, MathModelica, MathCore. www: http://www.mathcore.se/. Last
Accessed: 2008.

http://www.isis.vanderbilt.edu/Projects/gme/
http://caml.inria.fr/pub/docs/manual-ocaml
http://recoder.sourceforge.net/
http://www.mathcore.se/

257

[92] Maude.Team, The Maude System Website, University of Illinois. www:
http://maude.cs.uiuc.edu/. Last Accessed: 2008.

[93] Deborah L. McGuinness. Explaining Reasoning in Description Logics, Rutgers
University, 1996, PhD. Thesis

[94] Deborah L. McGuinness and Alex Borgida. Explaining Subsumption in
Description Logics. in Fourteenth International Joint Conference on Artificial
Intelligence. 1995

[95] Deborah L. McGuinness and Paulo Pinheiro da Silva. Infrastructure for Web
Explanations. in 2nd International Semantic Web Conference (ISWC2003).
2003. USA. Springer-Verlag. Lecture Notes in Computer Science (LNCS)
No:2870. p. 113-129

[96] M. Douglas (Malcolm) McIlroy. Mass produced software components. in
NATO Software Engineering Conference. 1968. Garmicsch, Germany. p. 138-
155

[97] Robert Milner, Mads Tofte, Robert Harper, and David MacQueen, The
Definition of Standard ML - Revised. 1997: MIT Press. ISBN: 0-262-63181-4.

[98] Oh Min and C. C. Pantelides, A Modeling and Simulation Language for
Combined Lumped and Distributed Parameter System. Computers and
Chemical Engineering, 1996. 20(6-7): p. 611-633.

[99] Modelica.Association, Modelica: A Unified Object-Oriented Language for
Physical Systems Modeling, Language Specification. 1996-2008. www:
http://www.modelica.org/. Last Accessed: 2008.

[100] Modelica.Association, The Modelica Language Specification Version 3.0.
2007, Modelica.Association. www: http://www.modelica.org. Last Accessed:
2008.

[101] Modelica-Association, Modelica - A Unified Object-Oriented Language for
Physical Systems Modeling - Tutorial and Design Rationale Version 2.0. 2005.
www: http://www.modelica.org/. Last Accessed: 2005.

[102] Pierre-Etienne Moreau, Chistophe Ringeissen, and Marian Vittek. A Pattern
Matching Compiler for Multiple Target Languages. in Compiler Construction,
part of 12th Joint European International Conferences on Theory and Practice
of Software (ETAPS). 2003. Warsaw, Poland. Springer. Lecture Notes in
Computer Science (LNCS) No:2622. p. 61-76

[103] Peter D. Mosses, Modular structural operational semantics. Journal of
Functional Programming and Algebraic Programming. Special issue on SOS.,
2004. 60-61: p. 195-228.

http://maude.cs.uiuc.edu/
http://www.modelica.org/
http://www.modelica.org/
http://www.modelica.org/

258

[104] D. Musser and A. Stepanov. Generic Programming. in ISSAC:the ACM
SIGSAM International Symposium on Symbolic and Algebraic Computation.
1988

[105] Hanspeter Mössenböck, Markus Löberbauer, and Albrecht Wöß, The Compiler
Generator Coco/R. 2000, University of Linz. www: http://www.ssw.uni-
linz.ac.at/coco/. Last Accessed: 2008.

[106] Henrik Nilsson. Declarative Debugging for Lazy Functional Languages,
Deparment of Computer and Information Science, Linköping University, 1998,
PhD. Thesis

[107] André Nordwig. Formal Integration of Structural Dynamics into the Object-
Oriented Modeling of Hybrid Systems. in Proceedings of the 16th European
Simulation Multiconference on Modelling and Simulation. 2002.
Fachhochschule Darmstadt, Darmstadt, Germany. SCS Europe. p. 128-134

[108] Johann Oberleitner and Thomas Gschwind. Composing distributed components
with the Component Workbench. 2002. Springer-Verlag. Lecture Notes in
Computer Science (LNCS) No:2596

[109] Martin Odersky, Raising Your Abstraction: In Defense of Pattern Matching.
2006. www: http://www.artima.com/weblogs/viewpost.jsp?thread=166742.
Last Accessed: 2008.

[110] Martin Odersky and Philip Wadler. Pizza into Java: Translating Theory into
Practice. in Proceedings of Principles of Programming Languages (POPL).
1997. Paris, France. ACM, New York, NY, USA

[111] OMG, CORBA, XML and XMI Resource Page, Object Management Group.
www: http://www.omg.org/xml/. Last Accessed: 2008.

[112] OMG, Meta-Object Facility (MOF), Object Management Group. www:
http://www.omg.com/mof. Last Accessed: 2008.

[113] OMG, Model Driven Architecture (MDA), Object Management Group. www:
http://www.omg.com/mda. Last Accessed: 2008.

[114] OMG, System Modeling Language (SysML), Object Management Group.
www: http://www.omgsysml.org. Last Accessed: 2008.

[115] OMG, Unified Modeling Language (UML), Object Management Group. www:
http://www.omg.com/uml. Last Accessed: 2008.

[116] Terence Parr, ANTLR Practical Computer Language Recognition and
Translation. 2005. www: http://www.antlr.org/book/. Last Accessed: 2008.

http://www.ssw.uni-linz.ac.at/coco/
http://www.ssw.uni-linz.ac.at/coco/
http://www.artima.com/weblogs/viewpost.jsp?thread=166742
http://www.omg.org/xml/
http://www.omg.com/mof
http://www.omg.com/mda
http://www.omgsysml.org/
http://www.omg.com/uml
http://www.antlr.org/book/

259

[117] PELAB, Relational Meta-Language (RML) Environment. 1994-2008,
Programming Environments Laboratory (PELAB). www:
http://www.ida.liu.se/~pelab/rml. Last Accessed: 2008.

[118] PELAB, Open Modelica System. 2002-2008, Programming Environments
Laboratory. www: http://www.openmodelica.org. Last Accessed: 2008.

[119] PELAB, Modelica Development Tooling (MDT). 2006-2008, PELAB. www:
http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/. Last Accessed:
2008.

[120] Mikael Pettersson. Compiling Natural Semantics, Department of Computer and
Information Science, Linköping University, 1995, PhD Thesis No: 413

[121] Mikael Pettersson. Portable Debugging and Profiling. in 7th International
Conference on Compiler Construction. 1998. Lisbon, Portugal. Springer-
Verlag. Lecture Notes in Computer Science (LNCS) No:1383

[122] Mikael Pettersson, Compiling Natural Semantics. Lecture Notes in Computer
Science (LNCS). Vol. 1549. 1999: Springer-Verlag.

[123] Mikael Pettersson and Peter Fritzson. DML - A Meta-language and System for
the Generation of Practical and Efficient Compilers from Denotational
Specifications. in the 1992 International Conference on Computer Languages.
1992. Oakland, California

[124] Benjamin C. Pierce, Types and Programming Languages. 2002,
Massachusetts, CA, USA: The MIT Press, Massachusetts Institute of
Technology. ISBN: 0-262-16209-1.

[125] Gordon Plotkin, A structural approach to operational semantics. 1981, Århus
University: Århus, Denmark.

[126] Adrian Pop and Peter Fritzson. ModelicaXML: A Modelica XML
representation with Applications. in 3rd International Modelica Conference.
2003. Linköping, Sweden. (http://www.modelica.org). www: ModelicaXML
Tools: http://www.ida.liu.se/~adrpo/modelica/.

[127] Adrian Pop and Peter Fritzson. Debugging Natural Semantics Specifications.
in Sixth International Symposium on Automated and Analysis-Driven
Debugging. 2005. Monterey, California

[128] Adrian Pop and Peter Fritzson. A Protable Debugger for Algorithmic Modelica
Code. in 4th International Modelica Conference (Modelica2005). 2005.
Hamburg-Harburg, Germany. (http://www.modelica.org)

http://www.ida.liu.se/%7Epelab/rml
http://www.openmodelica.org/
http://www.ida.liu.se/%7Epelab/modelica/OpenModelica/MDT/
http://www.modelica.org)/
http://www.ida.liu.se/%7Eadrpo/modelica/
http://www.modelica.org/

260

[129] Adrian Pop and Peter Fritzson. An Eclipse-based Integrated Environment for
Developing Executable Structural Operational Semantics Specifications. in 3rd
Workshop on Structural Operational Semantics. 2006. Bonn, Germany.
Elsevier Science. Electronic Notes in Theoretical Computer Science (ENTCS)
No:175, Issue 1. p. 71-75

[130] Adrian Pop and Peter Fritzson. MetaModelica: A Unified Equation-Based
Semantical and Mathematical Modeling Language. in 7th Joint Modular
Languages Conference. 2006. Oxford, UK. Springer. Lecture Notes in
Computer Science (LNCS) No:4228. p. 211-229

[131] Adrian Pop, Peter Fritzson, Andreas Remar, Elmir Jagudin, and David
Akhvlediani. OpenModelica Development Environment with Eclipse
Integration for Browsing, Modeling and Debugging. in The 5th International
Modelica Conference. 2006. Vienna, Austria. (http://www.modelica.org)

[132] Adrian Pop, Olof Johansson, and Peter Fritzson. An Integrated Framework for
Model-Driven Design and Development using Modelica. in the 45th
Conference on Simulation and Modelling (SIMS 2004). 2004. Copenhagen,
Danemark. www: http://www.scansims.org/sims2004/index.htm.

[133] Adrian Pop, Ilie Savga, Uwe Aßmann, and Peter Fritzson. Composition of
XML dialects: A ModelicaXML case study. in Software Composition Workshop
2004, affiliated with ETAPS 2004. 2004. Barcelona, Spain. Elsevier. Electronic
Notes in Theoretical Computer Science (ENTCS) No:114. p. 137-152. www:
http://www.elsevier.com/locate/issn/15710661.

[134] Adrian Pop, Kristian Stavåker, and Peter Fritzson. Exception Handling for
Modelica. in 6th International Modelica Conference. 2008. Bielefeld,
Germany. (http://www.modelica.org)

[135] Bernard Pope and Lee Naish. Practical aspects of Declarative Debugging in
Haskell 98. in 5th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming. 2003. Uppsala, Sweden. p. 230-240

[136] Dave Rager, OWL Validator. 2003. www: http://owl.bbn.com/validator/#www.
Last Accessed: 2005.

[137] Johan Ringström, Peter Fritzson, and Mikael Pettersson. Generating an
Efficient Compiler for a Data Parallel Language from Denotational
Specifications. in Int. Conf. of Compiler Construction. 1994. Edinburgh.
Springer Verlag. LNCS 786

[138] Peter van Roy and Seif Haridi, Concepts, Techniques, and Models of Computer
Programming. 2004, Cambridge, MA, USA: MIT University Press. ISBN: 0-
262-22069-5.

http://www.modelica.org/
http://www.scansims.org/sims2004/index.htm
http://www.elsevier.com/locate/issn/15710661
http://www.modelica.org/
http://owl.bbn.com/validator/#www

261

[139] RuleML, The Rule Markup Initiative, maintained by Harold Boley and Said
Tabet. www: http://www.ruleml.org/. Last Accessed: 2008.

[140] Levon Saldamli. PDEModelica - Towards a High-Level Language for
Modeling with Partial Differential Equations, Department of Computer and
Information Science, Linköping University, 2002, Licenciate Thesis

[141] Levon Saldamli, Bernhard Bachmann, Peter Fritzson, and Hansjürg Wiesmann.
A Framework for Describing and Solving PDE Models in Modelica. in 4th
International Modelica Conference. 2005. Hamburg-Harburg.
(http://www.modelica.org)

[142] Levon Saldamli, Peter Fritzson, and Bernhard Bachmann. Extending Modelica
for Partial Differential Equations. in 2nd International Modelica Conference.
2002. Munich, Gernany

[143] Erik Sandewall, Programming in an Interactive Environment: the "Lisp''
Experience. ACM Computing Surveys (CSUR), 1978. 10(1): p. 35-71.

[144] Ilie Savga, Adrian Pop, and Peter Fritzson, Deriving a Component Model from
a Language Specification:an Example Using Natural Semantics. 2004,
Linköping University: Linköping. www: http://www.ida.liu.se/~adrpo/reports.

[145] Stefan Schonger, Elke Pulvermüller, and Stefan Sarstedt. Aspect-Oriented
Programming and Component Weaving: Using XML Representations of
Abstract Syntax Trees. in Second Workshop on Aspect-Oriented Software
Development (In: Technical Report No. IAI-TR-2002-1). 2002. Rheinische
Friedrich-Wilhelms-Universität Bonn, Institut für Informatik III. p. 59-64

[146] SemanticWebCommunity, Semantic Web Community Portal, maintained by
Stefan Decker and Michael Sintek. www: http://www.semanticweb.org/. Last
Accessed: 2008.

[147] SICS, SICStus Prolog Website, Swedish.Institute.of.Computer.Science. www:
http://www.sics.se/sicstus/. Last Accessed: 2008.

[148] SML/NJ-Fellowship, Standard ML of New Jersey. 2004-2008. www:
http://www.smlnj.org/. Last Accessed: 2008.

[149] Kristian Stavåker, Adrian Pop, and Peter Fritzson. Compiling and Using
Pattern Matching in Modelica. in 6th International Modelica Conference.
2008. Bielefeld, Germany. (http://www.modelica.org)

[150] Bjarne Stroustrup, The C++ Programming Language: Special Edition. 3rd
Edition ed. 2000: Addison-Wesley. ISBN: 0-201-88954-4.

http://www.ruleml.org/
http://www.modelica.org/
http://www.ida.liu.se/%7Eadrpo/reports
http://www.semanticweb.org/
http://www.sics.se/sicstus/
http://www.smlnj.org/
http://www.modelica.org/

262

[151] SWI-Prolog, SWI-Prolog Website, University of Amsterdam. www:
http://www.swi-prolog.org/. Last Accessed: 2006.

[152] Michael Tiller, Introduction to Physical Modeling with Modelica. 2001:
Kluwer Academic Publishers.

[153] Michael M. Tiller, Introduction to Physical Modeling with Modelica. 2001:
Kluwer Academic Publishers.

[154] Andrew Tolmach and Andrew W. Appel, A debugger for Standard ML.
Journal of Functional Programming, 1995. 5(2).

[155] Andrew P. Tolmach. Debugging Standard ML, Princeton University, 1992,
PhD. Thesis

[156] Skander Turki and Thierry Soriano. A SysML Extension for Bond Graphs
Support. in Proceeding of the International Conference on Technology and
Automation (ICTA). 2005. Thessaloniki, Greece

[157] W3C, Document Object Model (DOM), World Wide Web Consortium (W3C).
www: http://www.w3.org/DOM/. Last Accessed: 2008.

[158] W3C, Extensible Markup Language (XML), Word Wide Web Consortium
(W3C). www: http://www.w3.org/XML/. Last Accessed: 2008.

[159] W3C, The Extensible Stylesheet Language Family (XSL/XSLT/XPath/XSL-FO),
Word Wide Web Consortium (W3C). www: http://www.w3.org/Style/XSL.
Last Accessed: 2008.

[160] W3C, RDF Vocabulary Description Language (RDFS/RDF-Schema), World
Wide Web Consortium (W3C). www: http://www.w3.org/TR/rdf-schema/.
Last Accessed: 2008.

[161] W3C, Resource Description Framework (RDF), Word Wide Web Consortium
(W3C). www: http://www.w3c.org/RDF. Last Accessed: 2008.

[162] W3C, Semantic Web, World Wide Web Consortium (W3C). www:
http://www.w3.org/2001/sw/. Last Accessed: 2008.

[163] W3C, Standard Generalized Markup Language (SGML), World Wide Web
Consortium (W3C). www: http://www.w3.org/MarkUp/SGML. Last Accessed:
2008.

[164] W3C, Web Ontology Language (OWL), Word Wide Web Consortium (W3C).
www: http://www.w3.org/TR/2003/CR-owl-features-20030818/. Last
Accessed: 2008.

http://www.swi-prolog.org/
http://www.w3.org/DOM/
http://www.w3.org/XML/
http://www.w3.org/Style/XSL
http://www.w3.org/TR/rdf-schema/
http://www.w3c.org/RDF
http://www.w3.org/2001/sw/
http://www.w3.org/MarkUp/SGML
http://www.w3.org/TR/2003/CR-owl-features-20030818/

263

[165] W3C, Web Ontology Language (OWL) Overview, World Wide Web
Consortium (W3C). www: http://www.w3.org/TR/owl-features/. Last
Accessed: 2008.

[166] W3C, XML Query (XQuery), Word Wide Web Consortium (W3C). www:
http://www.w3.org/XML/Query. Last Accessed: 2008.

[167] W3C, XML Schema (XSchema), Word Wide Web Consortium (W3C). www:
http://www.w3.org/XML/Schema. Last Accessed: 2008.

[168] Yves Vanderperren and Wim Dehane. SysML and Systems Engineering
Applied to UML-Based SoC Design. in Proceeding of the 2nd UML-SoC
Workshop at 42nd Design and Automation Conference (DAC). 2005. Anaheim,
USA

[169] Yves Vanderperren and Wim Dehane. From UML/SysML to Matlab/Simulink:
Current State and Future Perspectives. in The Conference on Design,
Automation and Test in Europe (DATE). 2006. Munich, Germany. p. 93-93

[170] Hans Vangheluwe and Juan de Lara. Domain-Specific Modelling with AToM3.
in 4th OOPSLA Workshop on Domain-Specific Modeling. 2004. Vancouver,
Canada

[171] Teitelman Warren, INTERLISP Reference Manual. 1974, Xerox Palo Alto
Research Center: Palo Alto, CA.

[172] Christopher Welty. An Integrated Representation for Software Development
and Discovery, Rensselaer Polytechnic Institute, 1995, PhD Thesis

[173] Lars Viklund, Johan Herber, and Peter Fritzson. The implementation of
ObjectMath - a hight-level programming enviornment for scientific computing.
in Compiler Construction - 4th International Conference (CC'92). 1992.
Springer-Verlag. Lecture Notes in Computer Science (LNCS) No:641. p. 312-
318

[174] Paul R. Wilson. Uniprocessor Garbage Collection Techniques. in The
International Workshop on Memory Management. 1994. Lecture Notes In
Computer Science (LNCS) No:637

[175] Wolfram, Mathematica. 2008. www: http://www.wolfram.com/. Last
Accessed: 2008.

[176] Matthias Zenger and Martin Odersky. Extensible Algebraic Datatypes with
Defaults. in Proceedings of the International Conference on Functional
Programming. 2001. Firenze, Italy

http://www.w3.org/TR/owl-features/
http://www.w3.org/XML/Query
http://www.w3.org/XML/Schema
http://www.wolfram.com/

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

No 14 Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977, ISBN
91-7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verification
of Time Margins in Digital Designs, 1977, ISBN
91-7372-157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91-
7372-168-9.

No 22 Jaak Urmi: A Machine Independent LISP Compil-
er and its Implications for Ideal Hardware, 1978,
ISBN 91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Queries
in a Meta-Database System 1978, ISBN 91-7372-
232-4.

No 51 Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

No 54 Sture Hägglund: Contributions to the Develop-
ment of Methods and Tools for Interactive Design
of Applications Software, 1980, ISBN 91-7372-
404-1.

No 55 Pär Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Ab-
stract Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-
7372-489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91-7372-527-
7.

No 94 Hans Lunell: Code Generator Writing Systems,
1983, ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Program-
ming Environment based on Incremental Compila-
tion,1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372-805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

No 165 James W. Goodwin: A Theory and System for

Non-Monotonic Reasoning, 1987, ISBN 91-7870-
183-X.

No 170 Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-
225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-
7870-301-8.

No 192 Dimiter Driankov: Towards a Many Valued Logic
of Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Support
and Discourse Management in User Interface Man-
agement Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for Knowl-
edge Acquisition, 1991, ISBN 91-7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to Interac-
tive Design in Multiple Inheritance Hierar-
chies,1991, ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic For-
malism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic De-
bugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-Cog-
nitive and Computational Aspects, 1992, ISBN 91-
7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-
873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge Man-
agement Systems with an Active Expert Methodolo-
gy, 1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complexity

of Reasoning about Plans, 1992, ISBN 91-7870-
979-2.

No 292 Mats Wirén: Studies in Incremental Natural Lan-
guage Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic Slic-
ing with Applications to Debugging and Testing,
1993, ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using Clas-
sification and Defaults, 1993, ISBN 91-7871-078-2.

No 312 Arne Jönsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach,
1993, ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in Phys-
ical Environments: Compositional Modelling and
Framework for Verification, 1994, ISBN 91-7871-
237-8.

No 371 Bengt Savén: Business Models for Decision Sup-
port and Learning. A Study of Discrete-Event Man-
ufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-
516-4.

No 383 Andreas Kågedal: Exploiting Groundness in Log-
ic Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic Con-
trol Situations, 1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996,
ISBN 91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning Perspec-
tive - Development and Evaluation of the SSIT
Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning: Algo-
rithms and Complexity, 1996, ISBN 91-7871-704-
3.

No 437 Johan Boye: Directional Types in Logic Program-
ming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Rela-
tional Database Technology for Finite Element
Analysis Applications, 1996, ISBN 91-7871-827-9.

No 459 Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-
855-4.

No 461 Lena Strömbäck: User-Defined Constructions in

Unification-Based Formalisms,1997, ISBN 91-
7871-857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och används efter företagsförvärv, 1997, ISBN 91-
7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The Co-
operative Perspective on Knowledge-Based Deci-
sion Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management Sys-
tems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

No 498 Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN
91-7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Hetero-
geneous Real-Time Systems, 1997, ISBN 91-7219-
035-3.

No 503 Johan Ringström: Compiler Generation for Data-
Parallel Programming Langugaes from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-
045-0.

No 512 Anna Moberg: Närhet och distans - Studier av
kommunikationsmmönster i satellitkontor och flexi-
bla kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a Par-
allel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault
Prevention - An Empirical Study in Software Engi-
neering, 1998, ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for Pri-
oritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level Syn-
thesis,1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data -
From Discrete to Continuous, 1999, ISBN 91-7219-
402-2.

No 563 Eva L Ragnemalm: Student Modelling based on
Collaborative Dialogue with a Learning Compan-
ion, 1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN
91-7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and

Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating Inhib-
itory Mechanisms in Mental Image Reinterpretation
- Towards Cooperative Human-Computer Creativi-
ty, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narra-
tives, 1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organization-
al Aspects of Requirements Engineering Methods -
A practice-oriented approach, 1999, ISBN 91-
7219-541-X.

No 595 Jörgen Hansson: Value-Driven Multi-Class Over-
load Management in Real-Time Database Systems,
1999, ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN
91-7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective on
the Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-
7219-547-9.

No 607 Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN
91-7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i praktiken
- En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-
7219-709-9.

No 637 Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and
Knowledge Together: Information Systems Design
for Autonomy and Control in Command Work,
2000, ISBN 91-7219-796-X.

No 660 Erik Larsson: An Integrated System-Level Design
for Testability Methodology, 2000, ISBN 91-7219-
890-7.

No 688 Marcus Bjäreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information Pro-
vision - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN-91-7373-
126-9.

No 724 Paul Scerri: Designing Agents for Systems with
Adjustable Autonomy, 2001, ISBN 91 7373 207 9.

No 725 Tim Heyer: Semantic Inspection of Software Arti-
facts: From Theory to Practice, 2001, ISBN 91 7373
208 7.

No 726 Pär Carlshamre: A Usability Perspective on Re-
quirements Engineering - From Methodology to
Product Development, 2001, ISBN 91 7373 212 5.

No 732 Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN
91 7373 258 3.

No 745 Johan Åberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems,
2002, ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Team-
work Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for
Time Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-suppor-ted In-
ter-organisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-
314-8.

No 749 Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory De-
sign of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-
318-0.

No 765 Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of
Distributed Tactical Operations, 2002, ISBN 91-
7373-421-7.

No 772 Pawel Pietrzak: A Type-Based Framework for Lo-
cating Errors in Constraint Logic Programs, 2002,
ISBN 91-7373-422-5.

No 758 Erik Berglund: Library Communication Among
Programmers Worldwide, 2002,
ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented
Dynamic Systems Using a Logic-Based Framework,
2002, ISBN 91-7373-424-1.

No 779 Mathias Broxvall: A Study in the
Computational Complexity of Temporal
Reasoning, 2002, ISBN 91-7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for
Enabling Interoperability of Structured and
Object-Oriented Analysis and Design Tools, 2002,
ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En studie
av den Internetbaserade encyklopedins bruksegen-
skaper, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination of
Complex Systems´ Development, 2003, ISBN 91-
7373-604-X

No 808 Klas Gäre: Tre perspektiv på förväntningar och
förändringar i samband med införande av informa-

tionsystem, 2003, ISBN 91-7373-618-X.
No 821 Mikael Kindborg: Concurrent Comics - program-

ming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of Infor-
mation Systems with GIS Functionality in Public
Health Informatics: A Requirements Engineering
Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

No 833 Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-
Time Systems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic
Behaviour of Large Distributed Systems to Improve
Development and Testing - An Emperical Study in
Software Engineering, 2003, ISBN 91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engineer-
ing Tool Data Representation and Exchange, 2004,
ISBN 91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for

Digital TV, 2004, ISBN 91-7373-940-5.
No 869 Jo Skåmedal: Telecommuting’s Implications on

Travel and Travel Patterns, 2004, ISBN 91-7373-
935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of Or-
ganising when Implementing and Using Enterprise
Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of On-
tologies in Information-Providing Dialogue Sys-
tems, 2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Health-
care Professionals, 2004, ISBN 91-7373-971-5

No 882 Robert Eklund: Disfluency in Swedish
human-human and human-machine travel booking
dialogues, 2004. ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign Lin-
quistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using Fi-
nite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Production-
inventory systems - Modellling and Analysis in
both a traditional and an e-business context, 2004,
ISBN 91-85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interac-
tion, 2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-
5.

No 918 Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

No 920 Luis Alejandro Cortés: Verification and Schedul-
ing Techniques for Real-Time Embedded Systems,
2004, ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.

No 933 Mikael Cäker: Management Accounting as Con-
structing and Opposing Customer Focus: Three Case
Studies on Management Accounting and Customer
Relations, 2005, ISBN 91-85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other Exten-
sions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN: 91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured Infor-
mation Extraction, 2005, ISBN 91-85297-98-4.

No 947 Ola Angelsmark: Constructing Algorithms for
Constraint Satisfaction and Related Problems -
Methods and Applications, 2005, ISBN 91-85297-
99-2.

No 963 Calin Curescu: Utility-based Optimisation of Re-
source Allocation for Wireless Networks, 2005.
ISBN 91-85457-07-8.

No 972 Björn Johansson: Joint Control in Dynamic Situa-
tions, 2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

No 979 Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-
85457-54-X.

No 983 Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour,
2005, ISBN 91-85457-60-4.

No 986 Yuxiao Zhao: Standards-Based Application Inte-
gration for Business-to-Business Communications,
2005, ISBN 91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for Auto-
mated Planning, 2006, ISBN 91-85497-28-2.

No 1005 Aleksandra Tešanovic: Developing Re-
usable and Reconfigurable Real-Time Software us-
ing Aspects and Components, 2006, ISBN 91-
85497-29-0.

No 1008 David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

No 1009 Iakov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with De-
tailed Contact Analysis, 2006, ISBN 91-85497-43-
X.

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact Sat-
isfiability Problems, 2006, ISBN 91-85523-97-6.

No 1016 Levon Saldamli: PDEModelica - A High-Level
Language for Modeling with Partial Differential
Equations, 2006, ISBN 91-85523-84-4.

No 1017 Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-
79-8.

No 1018 Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN
91-85523-77-1.

No 1019 Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Coopera-
tion, 2006, ISBN 91-85523-71-2.

No 1021 Andrzej Bednarski: Integrated Optimal Code
Generation for Digital Signal Processors, 2006,
ISBN 91-85523-69-0.

No 1022 Peter Aronsson: Automatic Parallelization of
Equation-Based Simulation Programs, 2006, ISBN
91-85523-68-2.

No 1030 Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-
85523-35-6.

No 1034 Jon Edvardsson: Techniques for Automatic
Generation of Tests from Programs and Specifica-
tions, 2006, ISBN 91-85523-31-3.

No 1035 Vaida Jakoniene: Integration of Biological Data,
2006, ISBN 91-85523-28-3.

No 1045 Genevieve Gorrell: Generalized Hebbian
Algorithms for Dimensionality Reduction in Natu-
ral Language Processing, 2006, ISBN 91-85643-
88-2.

No 1051 Yu-Hsing Huang: Having a New Pair of
Glasses - Applying Systemic Accident Models on
Road Safety, 2006, ISBN 91-85643-64-5.

No 1054 Åsa Hedenskog: Perceive those things which can-
not be seen - A Cognitive Systems Engineering per-
spective on requirements management, 2006, ISBN
91-85643-57-2.

No 1061 Cécile Åberg: An Evaluation Platform for
Semantic Web Technology, 2007, ISBN 91-85643-
31-9.

No 1073 Mats Grindal: Handling Combinatorial Explosion
in Software Testing, 2007, ISBN 978-91-85715-74-
9.

No 1075 Almut Herzog: Usable Security Policies for
Runtime Environments, 2007, ISBN 978-91-
85715-65-7.

No 1079 Magnus Wahlström: Algorithms, measures, and
upper bounds for satisfiability and related prob-
lems, 2007, ISBN 978-91-85715-55-8.

No 1083 Jesper Andersson: Dynamic Software Architec-
tures, 2007, ISBN 978-91-85715-46-6.

No 1086 Ulf Johansson: Obtaining Accurate and Compre-
hensible Data Mining Models - An Evolutionary
Approach, 2007, ISBN 978-91-85715-34-3.

No 1089 Traian Pop: Analysis and Optimisation of
Distributed Embedded Systems with Heterogene-
ous Scheduling Policies, 2007, ISBN 978-91-
85715-27-5.

No 1091 Gustav Nordh: Complexity Dichotomies for CSP-
related Problems, 2007, ISBN 978-91-85715-20-6.

No 1106 Per Ola Kristensson: Discrete and Continuous
Shape Writing for Text Entry and Control, 2007,
ISBN 978-91-85831-77-7.

No 1110 He Tan: Aligning Biomedical Ontologies, 2007,
ISBN 978-91-85831-56-2.

No 1112 Jessica Lindblom: Minding the body - Interacting
socially through embodied action, 2007, ISBN 978-
91-85831-48-7.

No 1113 Pontus Wärnestål: Dialogue Behavior Manage-
ment in Conversational Recommender Systems,
2007, ISBN 978-91-85831-47-0.

No 1120 Thomas Gustafsson: Management of Real-Time
Data Consistency and Transient Overloads in Em-
bedded Systems, 2007, ISBN 978-91-85831-33-3.

No 1127 Alexandru Andrei: Energy Efficient and Predicta-
ble Design of Real-time Embedded Systems, 2007,
ISBN 978-91-85831-06-7.

No 1139 Per Wikberg: Eliciting Knowledge from Experts in
Modeling of Complex Systems: Managing Variation
and Interactions, 2007, ISBN 978-91-85895-66-3.

No 1143 Mehdi Amirijoo: QoS Control of Real-Time Data
Services under Uncertain Workload, 2007, ISBN
978-91-85895-49-6.

No 1150 Sanny Syberfeldt: Optimistic Replication with For-
ward Conflict Resolution in Distributed Real-Time
Databases, 2007, ISBN 978-91-85895-27-4.

No 1155 Beatrice Alenljung: Envisioning a Future Decision
Support System for Requirements Engineering - A
Holistic and Human-centred Perspective, 2008,
ISBN 978-91-85895-11-3.

No 1156 Artur Wilk: Types for XML with Application to
Xcerpt, 2008, ISBN 978-91-85895-08-3.

No 1183 Adrian Pop: Integrated Model-Driven
Development Environments for Equation-Based
Object-Oriented Languages, 2008, ISBN 978-91-
7393-895-2.

Linköping Studies in Statistics
No 9 Davood Shahsavani: Computer Experiments De-

signed to Explore and Approximate Complex Deter-
ministic Models, 2008, ISBN 978-91-7393-976-8.

Linköping Studies in Information Science

No 1 Karin Axelsson: Metodisk systemstrukturering- att
skapa samstämmighet mellan informa-tionssyste-
markitektur och verksamhet, 1998. ISBN-9172-19-
296-8.

No 2 Stefan Cronholm: Metodverktyg och användbarhet
- en studie av datorstödd metodbaserad syste-
mutveckling, 1998. ISBN-9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om an-
veckling med kalkylprogram, 1999. ISBN-91-7219-
606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos in-
formationssystem och affärsprocesser, 2000. ISBN
91-7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier för
processbestämning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X

No 6 Ulf Melin: Koordination och informationssystem i
företag och nätverk, 2002, ISBN 91-7373-278-8.

No 7 Pär J. Ågerfalk: Information Systems Actability -
Understanding Information Technology as a Tool
for Business Action and Communication, 2003,
ISBN 91-7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra
systemutvecklingsverksamheter - en taxonomi

för metautveckling, 2003, ISBN91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens värden -
Effekter av IT i äldreomsorg, 2004, ISBN 91-7373-
963-4.

No 10 Ewa Braf: Knowledge Demanded for Action -
Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration -
method and computerized tool support, 2005, ISBN
91-85297-48-8.

No 12 Malin Nordström: Styrbar systemförvaltning - Att
organisera systemförvaltningsverksamhet med
hjälp av effektiva förvaltningsobjekt, 2005, ISBN
91-85297-60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra förutsättningar för
polisarbete, 2005, ISBN 91-85299-43-X.

No 14 Benneth Christiansson, Marie-Therese Chris-
tiansson: Mötet mellan process och komponent -
mot ett ramverk för en verksamhetsnära kravspeci-
fikation vid anskaffning av komponentbaserade in-
formationssystem, 2006, ISBN 91-85643-22-X.

	Part I Motivation, Introduction, Background and Related Work
	Chapter 1 Introduction
	1.1 Research Objective (Motivation)
	1.2 Contributions
	1.3 Thesis Structure
	1.4 Publications

	Chapter 2 Background and Related Work
	2.1 Introduction
	2.1.1 Systems, Models, Meta-Models, and Meta-Programs
	2.1.2 Meta-Modeling and Meta-Programming Approaches

	2.2 The Modelica Language
	2.2.1 An Example Modelica Model
	2.2.2 Modelica as a Component Language

	2.3 Modelica Environments
	2.3.1 OpenModelica
	2.3.2 MathModelica, Dymola, SimulationX

	2.4 Related Equation-based languages: gProms, VHDL-AMS and the χ language
	2.5 Natural Semantics and the Relational Meta-Language (RML)
	2.5.1 An Example of Natural Semantics and RML
	2.5.2 Specification of Syntax
	2.5.3 Integrated Environment for RML

	2.6 The eXtensible Markup Language (XML)
	2.7 System Modeling Language (SysML)
	2.7.1 SysML Block Definitions

	2.8 Component Models for Invasive Software Composition
	2.9 Integrated Product Design and Development

	Part II Extending EOO Languages for Safe Symbolic Processing
	Chapter 3 Extending Equation-Based Object-Oriented Languages
	3.1 Introduction
	3.1.1 Evaluator for the Exp1 Language in the Unified Language
	3.1.2 Examples of Pattern Matching
	3.1.3 Language Design

	3.2 Equations
	3.2.1 Mathematical Equations
	3.2.2 Conditional Equations and Events
	3.2.3 Single-Assignment Equations
	3.2.4 Pattern Equations in Match Expressions

	3.3 High-level Data Structures
	3.3.1 Union-types
	3.3.2 Lists, Tuples and Option Types
	3.3.2.1 Lists
	3.3.2.2 Tuples
	3.3.2.3 Options

	3.4 Solution of Equations
	3.5 Pattern Matching
	3.5.1 Syntax
	3.5.2 Semantics
	3.5.3 Discussion on Type Systems

	3.6 Exception Handling
	3.6.1 Applications of Exceptions
	3.6.2 Exception Handling Syntax and Semantics
	3.6.2.1 Exception Handling for Statements
	3.6.2.2 Exception Handling for Expressions
	3.6.2.3 Exception Handling for Equation Sections
	3.6.2.4 Exception Handling and External Functions

	3.6.3 Exception Values
	3.6.3.1 Exceptions as Types
	3.6.3.2 Exceptions as Records
	3.6.3.3 Exceptions as new Restricted Class: exception

	3.6.4 Typing Exceptions
	3.6.5 Further Discussion
	3.6.5.1 Semantics of try-catch in Equation Sections

	3.7 Related Work
	3.8 Conclusions and Future Work

	Chapter 4 Efficient Implementation of Meta-Programming EOO Languages
	4.1 Introduction
	4.2 MetaModelica Compiler Prototype
	4.2.1 Performance Evaluation of the MetaModelica Compiler Prototype

	4.3 OpenModelica Bootstrapping
	4.3.1 OpenModelica Compiler Overview

	4.4 High-level Data Structures Implementation
	4.5 Pattern Matching Implementation
	4.5.1 Implementation Details
	4.5.1.1 Example of Code Generation
	4.5.1.2 Pattern Matching over Union, Lists, Tuples and Option Types
	4.5.1.3 Value Block Expression

	4.6 Exception Handling Implementation
	4.6.1 Translation of Exception Values
	4.6.2 Translation of Exception Handling

	4.7 Garbage Collection
	4.7.1 Layout of Data in Memory
	4.7.2 Performance Measurements

	4.8 Conclusions

	Part III Debugging of Equation-based Object Oriented Languages
	Chapter 5 Portable Debugging of EOO Meta-Programs
	5.1 Introduction
	5.2 Debugging Method – Code Instrumentation
	5.2.1 Early Instrumentation
	5.2.2 Late Instrumentation

	5.3 Type Reconstruction
	5.4 Performance Evaluation
	5.4.1 The Test Machine
	5.4.2 The Test Files
	5.4.3 Compilation Performance
	5.4.4 Run-time Performance

	5.5 Tracing and Profiling
	5.5.1 Tracing
	5.5.2 Profiling

	5.6 The Eclipse-based Debugging Environment
	5.6.1 Starting the Modelica Debugging Perspective
	5.6.2 Setting the Debug Configuration
	5.6.3 Setting/Deleting Breakpoints
	5.6.4 The Debugging Session and the Debug Perspective
	5.6.4.1 The Debugging Perspective

	5.7 Conclusions

	Chapter 6 Run-time Debugging of EOO Languages
	6.1 Introduction
	6.2 Debugging Techniques for EOO Languages
	6.3 Proposed Debugging Method
	6.3.1 Run-time Debugging Method

	6.4 The Run-time Debugging Framework
	6.4.1 Translation in the Debugging Framework
	6.4.2 Debugging Framework Overview
	6.4.3 Debugging Framework Components
	6.4.3.1 Plotting and Error Marking
	6.4.3.2 Dependency Graph Viewer
	6.4.3.3 Source Code and Variable Value Display
	6.4.3.4 Dependency Graph Builder

	6.4.4 Implementation Status

	6.5 Conclusions and Future Work

	Chapter 7 Debugging Natural Semantics Specifications
	7.1 Introduction
	7.2 Related Work
	7.3 The rml2c Compiler and the Runtime System
	7.4 Debugger Design and Implementation
	7.5 Overview of the RML Integrated Environment
	7.6 Design Decisions
	7.6.1 Debugging Instrumentation
	7.6.2 External Program Database
	7.6.3 External Data Value Browser
	7.6.4 Why not an Interpreter?

	7.7 Instrumentation Function
	7.8 Type Reconstruction in the Runtime System
	7.9 Debugger Implementation
	7.9.1 The rml2c Compiler Addition
	7.9.2 The Debugging Runtime System
	7.9.3 The Data Value Browser
	7.9.4 The Post-Mortem Analysis Tool

	7.10 Debugger Functionality
	7.10.1 Starting the RML Debugging Subprocess
	7.10.2 Setting/Deleting Breakpoints
	7.10.3 Stepping and Running
	7.10.4 Examining Data
	7.10.5 Additional Commands

	7.11 The Data Value Browser
	7.12 The Post-Mortem Analysis Tool
	7.13 Performance Evaluation
	7.13.1 Code Growth
	7.13.2 The Execution Time
	7.13.3 Stack Consumption
	7.13.4 Number of Relation Calls

	7.14 Conclusions and Future Work

	Part IV Advanced Integrated Environments
	Chapter 8 Modelica Development Tooling (MDT)
	8.1 Introduction
	8.1.1 Integrated Interactive Programming Environments
	8.1.2 The Eclipse Framework
	8.1.3 Eclipse Platform Architecture
	8.1.4 OpenModelica MDT Eclipse Plugin

	8.2 OpenModelica Environment Architecture
	8.3 Modelica Development Tooling (MDT) Eclipse Plugin
	8.3.1 Using the Modelica Perspective
	8.3.2 Creating a Project
	8.3.3 Creating a Package
	8.3.4 Creating a Class
	8.3.5 Syntax Checking
	8.3.6 Code Completion
	8.3.7 Automatic Indentation

	8.4 The OpenModelica Debugger Integrated in Eclipse
	8.5 Simulation and Plotting from MDT
	8.6 Conclusions

	Chapter 9 Parsing-Unparsing and Refactoring
	9.1 Introduction
	9.2 Comments and Indentation
	9.3 Refactorings
	9.3.1 The Principle of Minimal Replacement
	9.3.2 Some Examples of Refactorings
	9.3.3 Representing Comments and User-Defined Indentation

	9.4 Implementation
	9.4.1 Base Program representation
	9.4.2 The Parser
	9.4.3 The Scanner
	9.4.4 The New Unparser

	9.5 Refactoring Process
	9.5.1 Example of Function Name Refactoring
	9.5.1.1 Lookup pack.addOne
	9.5.1.2 Lookup Any Uses of pack.addOne
	9.5.1.3 Apply the Refactoring to the Actual Text

	9.5.2 Calculation of the Additional Overhead
	9.5.3 Unparsers/Prettyprinters versus Indenters
	9.5.3.1 Pretty printers/Unparser Generators
	9.5.3.2 OpenModelica Tree Unparser
	9.5.3.3 Reformatting Indentation in the OpenModelica Eclipse Plugin

	9.6 Further Discussion
	9.7 Related Work
	9.8 Conclusions
	9.9 Appendix

	Chapter 10 UML and Modelica System Modeling with ModelicaML
	10.1 Introduction
	10.2 SysML vs. Modelica
	10.3 ModelicaML: a UML profile for Modelica
	10.3.1 Modelica Class Diagrams
	10.3.1.1 ModelicaML Class Definition
	10.3.1.2 Modelica Internal Class Diagram
	10.3.1.3 Package Diagram
	10.3.1.4 Parametric Diagrams
	10.3.1.5 Equation Diagrams
	10.3.1.6 Simulation Diagram
	10.3.1.7 Requirement Diagrams
	10.3.1.8 Other Diagram Types

	10.4 The ModelicaML Integrated Design Environment
	10.4.1 Integrated Design and Development Environment
	10.4.2 The ModelicaML GMF Model
	10.4.3 Modeling with Requirements

	10.5 Representing Requirements in Modelica
	10.5.1 Using Modelica Annotations
	10.5.2 Creating a new Restricted Class: requirement

	10.6 Conclusion and Future Work
	10.7 Appendix

	Chapter 11 An Integrated Framework for Model-driven Product Design and Development Using Modelica
	11.1 Introduction
	11.2 Architecture overview
	11.3 Detailed framework description
	11.3.1 ModelicaXML
	11.3.2 Modelica Database (ModelicaDB)
	11.3.3 FMDesign
	11.3.4 The Selection and Configuration Tool
	11.3.5 The Automatic Model Generator Tool

	11.4 Conclusions and Future Work
	11.5 Appendix

	Part V Meta-programming and Composition of EOO Languages
	Chapter 12 ModelicaXML: A ModelicaXML Representation with Applications
	12.1 Introduction
	12.2 Related Work
	12.3 Modelica XML Representation
	12.3.1 ModelicaXML Example
	12.3.2 ModelicaXML Schema (DTD/XML-Schema)

	12.4 ModelicaXML and XML Tools
	12.4.1 The Stylesheet Language for Transformation (XSLT)
	12.4.2 The Query Language for XML (XQuery)
	12.4.3 Document Object Model (DOM)

	12.5 Towards an Ontology for the Modelica Language
	12.5.1 The Semantic Web Languages
	12.5.2 The roadmap to a Modelica representation using Semantic Web Languages
	12.5.2.1 The Autonomous Models
	12.5.2.2 The Software Information System (SIS)
	12.5.2.3 Model consistency could be checked using Description Logic
	12.5.2.4 Translation of Models to/from Unified Modeling Language

	12.6 Conclusions and Future work

	Chapter 13 Composition of XML dialects: A ModelicaXML case study
	13.1 Introduction
	13.2 Background
	13.2.1 Modelica and ModelicaXML
	13.2.2 The Compost Framework
	13.2.2.1 The notions of components and composition
	13.2.2.2 Composition Constraints
	13.2.2.3 Support for staged composition

	13.3 COMPOST extension for Modelica
	13.3.1 Overview
	13.3.2 Modelica Box Hierarchy
	13.3.3 Modelica Hook Hierarchy
	13.3.4 Examples of Composition and Transformation Programs
	13.3.4.1 Generic Parameterization with Type Checking
	13.3.4.2 Class Hierarchy Refinement using Declared Hooks
	13.3.4.3 Composition of classes or model ﬂattening

	13.4 Conclusions and Future work
	13.5 Appendix

	Part VI Conclusions and Future Work
	Chapter 14 Conclusions and Future Work
	14.1 Conclusions
	14.2 Future Work Directions

	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

