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Chapter 1

Generation of Language Implementations from
Specifications

The implementation of compilers and interpreters for non-trivial programming languages is a complex
and error prone process, if done by hand. Therefore, formalisms and generator tools have been
developed that allow automatic generation of compilers and interpreters from formal specifications. This
offerstwo major advantages:

o High-level descriptions of language properties, rather than detailed programming of the
translation process.
o High degree of correctness of generated implementations.

The high level specifications are typically more concise and easier to read than a detaled
implementation in some traditional low-level programming language. The declarative and modular
specification of language properties rather than detailed operational description of the trandation
process, makes it much easier to verify the logical consistency of language constructs and to detect
omissions and errors. Thisis virtually impossible for a traditional implementation, which often requires
time consuming debugging and testing to obtain a compiler of acceptable quality. By using automatic
compiler generation tools, correct compilers can be produced in a much shorter time than otherwise
possible. This, however, requires the availability of generator tools of high quality, that can produce
compiler components with a performance comparable to hand-written ones.

1.1 Using Meta-Modelica for Programming Language Modeling

The Meta-Modelica specification or modeling language was originally developed as an object-oriented
declarative equation-based specification formalism for mathematical modeling of complex systems, in
particular physical systems.

However, it turns out that with some minor extensions, the Modelica language is well suited for
another modeling task, namely modeling of the semantics, i.e., the meaning, of programming language
congtructs. The semantics of a language construct can usually be modeled in terms of combinations of
more primitive builtin constructs. One example of primitive builtin operations are the integer arithmetic
operators. These primitives are combined using inference and pattern-matching mechanisms in the
specification language.



14 Peter Fritzson Language Modeling and Symbolic Transformations with Meta-Modelica

Well-known language specification formalisms such as Natura Semantics and Structured
Operational Semantics are also declarative equation-based formalisms. These fit well into the style of the
Meta-Modelica specification language, which explains why Modelica with some minor extensions is
well-suited as a language specification formalism. However, only an extended subset of Modelica called
Meta-Modelica is needed for language specification since many parts of the language designed for
physical system modeling are not used at al, or very little, for the language specification task.

This text introduces the use of Meta-Modelica for programming language specification, in a style
reminiscent of Natural or Operational Semantics, but using Modelica's properties for enhanced
readability and structure.

Another great benefit of using and extending Modelicain this direction is that the language becomes
suitable for meta-programming and meta-modeling. This means that Modelica can be used for
transformation of models and programs, including transforming and combining Modelica models into
other Modelica models.

However, the main emphasis in the rest of this text is on the topic of generating compilers and
interpreters from specificationsin Meta-Modelica.

1.2  Compiler Generation

The process of compiler generation is the automatic production of a compiler from formal specifications
of source language, target language, and various intermediate formalisms and transformations. This is
depicted in Figure 1-1, which also shows some examples of compiler generation tools and formalisms
for the different phases of a typical compiler. Classical tools such as scanner generators (e.g. Lex) and
parser generators (e.g. Yacc) were first developed in the 1970:s. Many similar generation tools for
producing scanners and parsers exist.

However, the semantic analysis and intermediate code generation phase is still often hand-coded,
although attribute grammar based tools have been available for practical usage for quite some time. Even
though attribute grammars are easy to use for certain aspects of language specifications, they are less
convenient when used for many other language aspects. Specifications tend to become long and involve
many details and dependencies on externa functions, rather than clearly expressing high level
properties. Denotational Semantics is a formalism that provides more abstraction power, but is
considered hard to use by most practitioners, and has problems with modularity of specifications and
efficiency of produced implementations. We will not further discuss the matter of different specification
formalisms, and refer the reader to other literature, e.g. [Pagan81??] which gives an easy to read
introduction to several formalisms, including Attribute Grammars and Denotational Semantics. (??Also
reference to [Louden2003?7] and [Pierce200277])

Semantic aspects of language trandation include tasks such as type checking/type inference, symbol
table handling, and generation of intermediate code. If automatic generation of translator modules for
semantic tasks should become as common as generation of parsers from BNF grammars, we need a
specification formalism that is both easy to use and that provides a high degree of abstraction power for
expressing language trandation and analysis tasks. The Meta-Modelica formalism fulfils these
requirements, and have therefore chosen this formalism for semantics specification in this text.
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Formalism Generator Compiler Program
tool phase representation
| ————————————— Text
Regular Lex N
expressons T * Scanner
J ;;;;;;;;;;;; Token sequence
BNF
grammar Yace Parser
| ,,,,,,,,,,,,, Abstract syntax
Semantics modp Semantics
inModelica ———* Type checking
Int. form gen.
l ,,,,,,,,,,,,, Intermediate form
Optimizer .
e Optimix -
ecification — Optimizer
il (or modp) P
| ,,,,,,,,,,,,, Intermediate form
Instruction set (BEG) v
ription Machine code
descriptio Ceneror

| ;;;;;;;;;;;; Machine code

Figure 1-1. Generation of implementations of compiler phases from different formalisms. Meta-Modelica
is used to specify the semantics module, which is generated using the tool momc.

The second necessary requirement for widespread practical use of automatic generation of semantics
parts of language implementations is that the generated result need to be roughly as efficient as hand-
written implementations., a generator tool, mome, that produces highly efficient implementationsin C—
roughly of the same efficiency as hand-written ones, and a Modelica debugger for debugging
specifications. Modelica also enables modularity of specification through a module system with
packages, and interfaceability to other tools since the generated modules in C can be readily combined
with other frontend or backend modules.

The later phases of a compiler, such as optimization of the intermediate code and generation of
machine code are also often hand-coded, although code generator generators such as BEG [ref?7], and
BURG [ref?7], [refAndersson,Fritzson-95?7] have been developed during the late 1980s and early
1990:s. A product version of BEG available in the CoSy compiler generation toolbox [??ref] also
includes global register alocation and instruction scheduling. [ ??also reference the Karlsruhe version]

The optimization phase of compilersis generally hand coded, although some prototypes of optimizer
generators have recently appeared. For example, an optimizer generator tool called Optimix [ref?7?], has
appeared as one of the toolsin the CoSy [ref??] compiler generation system.

Meta-Modelica can also be used for these other phases of compilers, such as optimization of
intermediate code and final code generation.. Intermediate code optimization works rather well since this
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is usualy a combination of anaysis and transformation that can take advantage of patterns, tree
transformation expressions, and other features of the Meta-Modelica language.

Regarding final machine code generation modules of most compilers — these are probably best
produced by specialized tools such as BEG, which use specific algorithms such as dynamic
programming for “optimal” instruction selection, and graph coloring for register allocation. However, in
this book we only present a few very simple examples of final code generation, and essentially no
examples of advanced code optimization.

1.3 Interpreter Generation

The case of generating an interpreter from formal specifications can be regarded as a simplified special
case of compiler generation. Although some systems interpret text directly (e.g. command interpreters
such as the Unix C shell), most systems first perform lexical and syntactic analysis to convert the
program into some intermediate form, which is much more efficient to interpret than the textual
representation. Type checking and other checking is usually done at run-time, either because this is
required by the language definition (as for many interpreted languages such as LISP, Postscript,
Smalltalk, etc.), or to minimize the delay until execution is started.

The semantic specification of a programming language intended as input for the generation of an
interpreter if usualy dlightly different in style compared to a specification intended for compiler
generation. Ideally, they would be exactly the same, and there exist techniques such as partia evaluation
[ref?7] that sometimes can produce compilers also from specifications of interpreters.

Formalism  Generator Interpreter Program
tool phase representation
J ~~~~~~~~~~~~ Text
Redar o
expressions — » Scanner

. Token sequence

BNF Yace
grammar T Parser
J ;;;;;;;; . Abstract syntax
Semantics modp Interpreter /
inModelica —*
Evaluator

(Interpretive
semantics)
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Figure 1-2. Generation of atypical interpreter. The program text is converted into an abstract syntax
representation, which is then evaluated by an interpreter generated by the Meta-Modelica momc system.
Alternatively, some other intermediate representation such as postfix code can be produced, which is
subsequently interpreted.

In practice, an interpretive style specification often expresses the meaning of a language construct by
invoking a combination of well-defined primitives in the specification language. A compilation oriented
specification, however, usually defines the meaning of language constructs by specifying a trandation to
an equivalent combination of well-defined constructs in some target language. In this text we will show
examples of both interpretive and translation-oriented specifications.

(BRK)






19

Chapter 2

Expression Evaluators and Interpreters in Meta-
Modelica

We will introduce the topic of language specification in Meta-Modelica through a number of example
languages.

The reader who would first prefer a general overview of some language properties of the Meta
Modelica subset for language specification may want to read Chapter 5 before continuing with these
examples. On the other hand, the reader who has no previous experience with formal semantic
specification and is more interested in “hands-on” use of Meta-Modelica for language implementation is
recommended to continue directly with the current chapter and later take a quick glance at those
chapters.

First we present avery small expression language called Expl.

2.1 The Exp1 Expression Language
A very simple expression evaluator (interpreter) is our first example. This calculator evaluates constant
expressions such as.

12 + 5%*3

or
-5 * (10 - 4)

The evaluator accepts text of a constant expression, which is converted to a sequence of tokens by the
lexical analyzer (e.g. generated by Lex or Flex) and further to an abstract syntax tree by the parser (e.g.
generated by Yacc or Bison). Finaly the expression is evaluated by the interpreter (generated by the
Meta-Modelica compiler), which in the above case would return the value 27. This corresponds to the
general structure of atypical interpreter as depicted in Figure 1-2.

211 Concrete Syntax

The concrete syntax of the small expression language is shown below expressed as BNF rules in Yacc
style, and lexical syntax of the allowed tokens as regular expressionsin Lex style. All token names arein
upper-case and start with T to be easily distinguishable from nonterminals which are in lower-case.
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/* Yacc BNF Syntax of the expression language Expl */

expression :  term
| expression weak operator term

term : u_element
| term strong operator u_element

u_element :  element
| unary operator element

element :  T_INTCONST
| T _LPAREN expression T RPAREN

weak operator : T _ADD | T _SUB
strong operator : T MUL | T DIV
unary operator : T_SUB

/* Lex style lexical syntax of tokens in the expression language Expl */

dlglt ("O" | nqn | non | n3n | ngn | ngn | ngn | nzn | ngn | ||9||)
digits {digit}+

{digits} return T INTCONST;

ngn return T _ADD;

n_n return T_SUB,’

"k return T MUL;

n/m return T DIV;

e return T LPAREN;
" return T RPAREN;

Lex also allows a more compact notation for a set of aternative characters which form a range of
characters, asin the shorter but equivalent specification of digit below:

digit [0-9]

2.1.2  Abstract Syntax of Exp1 with Union Types

The role of abstract syntax is to convey the structure of constructs of the specified language. It abstracts
away (removes) some details present in the concrete syntax, and defines an unambiguous tree
representation of the programming language constructs. There are usually several design choices for an
abstract syntax of a given language. First we will show a simple version of the abstract syntax of the
Expl language using the Meta-Modelica abstract syntax definition facilities.

2.1.3  The uniontype Construct

To be able to declare the type of abstract syntax trees we introduce the uniontype construct into
Modelica
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e A union type specifies aunion of one or more record types.
e Itsrecord types and constructors are automatically imported into the surrounding scope.
e Union types can be recursive — they can reference themselves.

A common usage is to specify the types of abstract syntax trees. In this particular case the following
holds for the Exp union type:

e TheExp typeisaunion type of six record types
e ltsrecord constructors are INTConst, ADDop, SUBop, MULop, DIVop, and NEGop.

The Exp union type is declared below. Its constructors are used to build nodes of the abstract syntax
trees for the Exp language.

/* Abstract syntax of the language Expl as defined using Meta-Modelica */

uniontype Exp
record INTconst Integer x1; end INTconst;
record ADDop Exp x1; Exp x2; end ADDop;
record SUBop Exp x1; Exp x2; end SUBop;
record MULop Exp x1; Exp x2; end MULop;
record DIVop Exp x1; Exp x2; end DIVop;
record NEGop Exp x1; end NEGop;

end Exp;

Using the Exp abstract syntax definition, the abstract syntax tree representation of the simple expression
12+5*13 will be as shown in Figure 2-1. The Integer datatype is predefined in Meta-Modelica. Other

predefined Meta-Modelica data types are Real, Boolean, and string as well as the parametric type
congtructors array, list, and Option.

ADDop
INTconst MULop
12
INTconst INTconst
5 13

Figure2-1. Abstract syntax tree of 12+5* 13 in the language Expl.

The uniontype declaration defines a union type Exp and constructors (in the figure: AbDDop, MULop,
INTconst) for each node type in the abstract syntax tree, as well as the types of the child nodes.
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214 Semantics of Exp1

The semantics of the operations in the small expression language Expl follows below, expressed as an
interpretive language specification in Meta-Modelica in a style reminiscent of Natural and/or
Operational Semantics.. Such specifications typically consists of a number of functions, each of which
contains a match expression with one or more cases, also called rules. In this simple example there is
only one function, here called eval, since we specify an expression evaluator.

2.1.441 Match Expressions in Meta-Modelica

The following extension to Modelica is essential for specifying semantics of language constructs
represented as abstract syntax trees:

e Match expressions with pattern-matching case rules, local declarations, and local equations.

A match expression is closely related to pattern matching in functional languages, but is also related to
switch statementsin C or Java. It has two important advantages over traditional switch statements:

e A match expression can appear in any of the three Modelica contexts: expressions, statements, or
in equations.

e Theselection in the case branches is based on pattern matching, which reduces to equality testing
in simple cases, but is much more powerful in the general case.

A very simple example of a match-expression is the following code fragment, which returns a number
corresponding to a given input string. The pattern matching is very simple — just compare the string s
with one of the constant strings "one", "two" Or "three".

String s;
Real X;
algorithm
X =
match s
case "one" then 1
case "two" then 2
case "three" then 3
else 0

end match;
Match expressions have the following properties:

e Only agebraic equations are allowed as local equations, no differential equations.

e Only localy declared variables (local unknowns) declared by local declarations within the case
expression are solved for, or may appear as pattern variables.

e Equations are solved in the order they are declared (this restriction may be removed in the
future??).

e There are two variants of these expressions. match-expressions or matchcontinue-expressions.
These have identical syntax apart from the keywords match Of matchcontinue.
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e |f an equation or an expression in a case-branch of a matchcontinue-expression fails, al local
variables become unbound, and matching continues with the next branch. However, in case of a
match-expression, the whole match-expression will fail if one case-branch fails.

In the following we will primarily use match-expressions in the specifications.

21.4.2 Evaluation of the Exp1 Language

The first version of the specification of the calculator for the Expl language is using a rather verbose
style, since we are presenting it in detail, including its explicit dependence on the pre-defined builtin
semantic primitives such as integer arithmetic operations such as int_add, int_sub, int_mul, €tc. In
the following we will show more concise versions of the specification, using the usua arithmetic
operators which are just shorter syntax for the builtin arithmetic primitives.

function eval

input Exp in valuel;
output Integer out_valuel;
algorithm

out_valuel :=
match in valuel
local Integer v1,v2,v3;
Exp el,e2;
case INTconst (vl) then vl; /* evaluation of an integer node */
/* is the integer value itself */

/* Evaluation of an addition node ADDop is v3, if v3 is the result of
* adding the evaluated results of its children el and e2
* Subtraction, multiplication, division operators have similar specs.
*/
case ADDop (el,e2) equation
vl = eval(el); wv2 = eval(e2); v3 = int add(vl,v2); then v3;

case SUBop(el,e2) equation
vl = eval(el); wv2 = eval(e2); v3 = int sub(vl,v2); then v3;

case MULop (el,e2) equation
vl = eval(el); wv2 = eval(e2); v3 = int mul(vl,v2); then v3;

case DIVop(el,e2) equation
vl = eval(el); v2 = eval(e2); v3 = int _div(vl,v2); then v3;

case NEGop (el) equation

vl = eval(el); v2 = int neg(vl); then v2;
end match;
end eval;

In the eval function, which contains six cases or rules, the first case has no constraint equations: it
immediately returns avalue.

case INTconst (vl) then v1; /* eval of an integer nodef */
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This rule states that the evaluation of an integer node containing an integer valued constant ival will
return the integer constant itself. The operational interpretation of the rule is to match the argument to
eval against the special case INTconst (ival) of an expression tree. If there is a match, the match
variable ival will be bound to the corresponding part of the tree. Then the local equations will be
checked (there are actually no local equationsin this case) to seeif they are fulfilled. Findly, if the locd
equations are fulfilled, the integer constant value bound to ival will be returned as the result.

We now turn to the second rule of eval, which is specifying the evaluation of addition nodes labeled
ADDop.

case ADDop(el,e2) equation
vl = eval(el); wv2 = eval(e2); v3 = int add(vl,v2); then v3;

For thisrule to apply, the pattern 2bDop (e1, e2) must match the actual argument to eval, which in this
case is an abstract syntax tree of the expression to be evaluated. If there is a match, the variables e1 and
e2 will be bound the two child nodes of the abpop node, respectively. Then the local equations of the
rule will be checked, in the order left to right. The first local equation states that the result of eval (e1)
will be bound to v1 if successful, the second states that the result of eval (e2) will be bound to v2 if
successful.

If the first two local equations are successfully solved, then the third local equation v3 =
int_add(v1,v2) will be checked. Thislocal equation refers to a pre-defined Meta-Modelica function
caled int add for addition of integer values. For a full set of pre-defined functions, including all
common operations on integers and real numbers, see Appendix B??. This third local eguation means
that the result of adding integer values bound to v1 and v2 will be bound to v3. Findly, if al local
equations are successful, v3 will be returned as the result of the wholerule.

The rules (cases) specifying the semantics of subtraction (suBop), multiplication (MULop) and integer
divison (p1vop) have exactly the same structure, apart from the fact that they map to different
predefined Meta-Modelica operators such as int _sub, int_mul, and int_div.

Thelast rule of the function eval specifies the semantics of a unary operator, unary integer negation,
(example expression: -13):

case NEGop(el) equation
vl = eval(el); v2 = int _neg(vl); then v2;

Here the expression tree NEGop (e) with constructor NEGop has only one subtree denoted by e. There
are two local equations: the expression e should succeed in evaluating to some value v1, and the integer
negation of v1 will be bound to v2. Then the result of NEGop (e) will be the value v2.

It is possible to express the specification of the eval evaluator more concisely by using arithmetic
operators such as +, -, *, etc., which is just different syntax for the builtin operations int add,
int sub, int mul, €fC..

function eval

input Exp in_valuel;
output Integer out valuel;
algorithm

out valuel :=
match in valuel
local Integer vl1,v2;
Exp el,e2;
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case INTconst (vl) then v1;

case ADDop(el,e2) equation
vl = eval(el; v2 = eval(e2; then vl1+v2;

case SUBop(el,e2) equation
vl = eval(el); v2 = eval(e2); then v1-v2;

case MULop (el,e2) equation
vl = eval(el); v2 = eval(e2); then v1i*v2;

case DIVop(el,e2) equation
vl = eval(el); v2 = eval(e2); then vl1/v2;

case NEGop (el) equation

vl = eval(el); then -vi1;
end match;
end eval;

An even shorter specification can be achieved if al the intermediate variablesv1, v2, etc. are completely
eliminated. The temporary variables and the previously shown local equations are internally generated
by the Meta-Modelica compiler, and therefore need not be manually specified:

function eval

input Exp in_valuel;
output Integer out valuel;
algorithm

out valuel :=

match in valuel
local Integer vl; Exp el,e2;
case INTconst (vl) then v1;

)
case ADDop(el,e2) then eval(el) + eval(e2);
case SUBop(el,e2) then eval(el) - eval(e2);
case MULop (el,e2) then eval(el) * eval (e2);
case DIVop(el,e2) then eval(el) / eval(e2);
case NEGop (el) then -eval(el);

end match;
end eval;

In the following we will use verbose or concise specification styles depending on the context.

2.2 Exp2 - Using Parameterized Abstract Syntax

An aternative, more parameterized style of abstract syntax is to collect similar operators in groups:. al
binary operators in one group, unary operators in one group, etc. The operator will then become a child
of a BINARY node rather than being represented as the node type itself. This is actually more
complicated than the previous abstract syntax for our simple language Expl but simplifies the semantic
description of languages with many operators.
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The Exp2 expression language is the same textual language as Expl, but the specification uses the
parameterized abstract syntax style which has consequences for the structure of both the abstract syntax
and the semantic rules of the language specification.

We will continue to use the “simple” abstract representation in severa language definitions, but
switch to the parameterized abstract syntax for certain more complicated languages.

2.2.1 Parameterized Abstract Syntax of Exp1

Below is a parameterized abstract syntax for the previously introduced language Expl, using the two
nodes BINARY and UNARY for grouping. The Exp2 abstract syntax shown in the next section has the
same structure, but with node constructors renamed to shorter names.

uniontype Exp

record INTconst Integer x1; end INTconst;
record BINARY Exp x1; BinOp op; Exp x2; end BINARY;
record UNARY UnOp op; Exp x1; end UNARY;

end Exp;

uniontype BinOp
record ADDop end ADDop;
record SUBop end SUBoOp;
record MULop end MULop;
record DIVop end DIVop;
end BinOp;

uniontype UnOp
record NEGop end NEGop;

end BinOp;
BINARY
INTconst ADDop BINARY
[
12

INTIconst MULop INTfonsx
5 13

Figure2-2. A parameterized abstract syntax tree of 12+5* 13 in the language Expl. Compare to the
abstract syntax treein Figure 2-1.

2.2.2 Parameterized Abstract Syntax of Exp2

Here follows the abstract syntax of the Exp2 language. The two node constructors BINARY and UNARY
have been introduced to represent any binary or unary operator, respectively. Constructor names have
been shortened to INT, ADD, SUB, MUL, DIV and NEG.

uniontype Exp
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record INT Integer x1; end INT;
record BINARY Exp x1; BinOp op; Exp x2; end BINARY;
record UNARY UnOp op; Exp x1; end UNARY;

end Exp;

uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
end BinOp;

uniontype UnOp
record NEG end NEG;
end BinOp;

2.2.3 Semantics of Exp2

As in the previous specification of Expl, we specify the interpretive semantics of Exp2 via a series of
rules expressed as case-branches in match-expressions comprising the bodies of the evaluation functions.
However, first we need to introduce the notion of tuples in Modelica, since this is used in two of the
evaluation functions.

2.2.3.1 Tuples in Meta-Modelica

Tuples are like records, but without field names. They can be used directly, without previous declaration
of a corresponding tuple type.

The syntax of atuple is a comma-separated list of values or variables, eg. (..., ..., ...). The following
isatuple of areal value and a string value, using the tuple data constructor:

(3.14, "this is a string")

Tuples aready exist in a limited way in previous versions of Modelica since functions with multiple
results are called using atuple for receiving results, e.g.:

(a,b,c) := fool(x, 2, 3, 5);

2.2.3.2 The Exp2 Evaluator

Below follows the semantic rules for the expression language Exp2, embedded in the functions eval,
apply binop, and apply unop. As aready mentioned, constructor names have been shortened
compared to the specification of Expl. Two rules have been introduced for the constructors BINARY and
UNARY, Which capture the common characteristics of al binary and unary operators, respectively. In
addition to eval, two new functions apply binop and apply unop have been introduced, which
describe the special properties of each binary and unary operator, respectively.

First we show the function header of the eval function, including the beginning of the match-
expression:

function eval
input Exp in valuel;
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output Integer out valuel;
algorithm
out valuel:=
match in_valuel
local
Integer ival,vl,v2,v3; Exp el,e2,e;
BinOp binop; UnOp unop;

Evauation of an INT node gives the integer constant vaue itself:
case INT(ival) then ival;

Evaluation of a binary operator node BINARY gives v3, if v3 is the result of successfully applying the
binary operator to v1 and v2, which are the evaluated results of its children e1 and e2:

case BINARY (el,binop,e2) equation
vl = eval(el);

v2 = eval (e2) ;
v3 = apply binop(binop, v1, v2);
then v3;

Evaluation of a unary operator node UNARY gives v2, if its child e can be successfully evaluated to a
value v1, and the unary operator can be successfully applied to value vi, giving the result value v2.

case UNARY (unop,e) equation
vl = eval(e);
v2 = apply unop (unop, v1);
then v2;
end match;
end eval;

The Exp2 eval function can be made much more concise if we eliminate some intermediate variables
and corresponding equations:

function eval
input Exp in valuel;
output Integer out valuel;
algorithm
out_valuel:=
match in valuel
local
Integer ival; Exp el,e2,e;
BinOp binop; UnOp unop;
case INT(ival) then ival;
case BINARY (el,binop,e2) then apply binop(binop, eval(el), eval(e2));
case UNARY (unop,e) then apply unop (unop, eval(e));
end match;
end eval;

Next to be presented is the function apply binop which accepts a binary operator and two integer
values.

function apply binop
input BinOp op;
input Integer argl;
input Integer arg2;
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output Integer out valuel;
algorithm
out valuel:=
match (op,argl,arg2)
local Integer vl1,v2;

case (ADD,vl,v2) then v1+v2;
case (SUB,vl,v2) then v1-v2;
case (MUL,vl,v2) then vl1*v2;
case (DIV,vl,v2) then vl1/v2;

end match;
end apply binop;

If the passed binary operator successfully can be applied to the integer argument values an integer result
will be returned. Note that we construct a tuple of three input values (op, argl, arg2) in the match-
expression which is matched against corresponding patterns in the case branches.

(??Note: Y ou might wonder why we do not directly reference the function input arguments arg1 and
arg2 in the case branches, instead of doing a pattern matching to v1 and v2? The reason is a limitation
in the current version (April 2005) of the Meta-Modelica subset compiler which prevents you from
accessing function input arguments except in match-expression headers.

Finally we present the function apply unop which accepts a unary operator and an integer value. If
the operator successfully can be applied to this value an integer result will be returned.

function apply unop
input UnOp op;
input Integer argl;
output Integer out valuel;
algorithm
out valuel:=
match (op,argl)
local Integer v;
case (NEG,v) then -v;
end match;
end apply unop;

For the small language Exp2 the semantic description has become more complicated since we now need
three functions, eval, apply binop and apply unop, instead of just eval. In the following, we will
use the simple abstract syntax style for small specifications. The parameterized abstract syntax style will
only be used for larger specifications where it actualy helps in structuring and simplifying the
specification.

2.3 Recursion and Failure in Meta-Modelica

Before continuing the series of language specifications expressed in Meta-Modélica, it is will be useful
to say a few words about the Meta-Modelica language itself. A more in-depth treatment of these topics
can be found in Chapter 6.
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2.3.1 Short Introduction to Declarative Programming in Meta-Modelica

We have dready stated that Meta-Modelica can be used as a declarative specification language for
writing programming language specifications. Since Modelica is declarative, it can aso be viewed as a
functional programming language. A Meta-Modelica function containing match- or matchcontinue-
expressions maps inputs to outputs, just as an ordinary function, but also has two additional properties:

¢ Functions containing match/matchcontinue-expressions can succeed or fail.
e Loca backtracking between case rules can occur in matchcontinue-expressions. This means that
if acaserulefails because one of its equations or function callsfail, the next rule is tried.

The fac example below shows a function calculating factorials. This is an example of using Meta-
Modelica not for language specification, but to state a small declarative (i.e., functional) program:
function fac
input Integer in valuel;
output Integer out_valuel;
algorithm
out valuel:=
match in valuel
local Integer n;
case 0 then 1;
case n then if n>0 then n*fac(n-1);
end match;
end lookup;

The first three lines specifies the name (fac) and type signature of the function. In this example an
integer factorial function is computed, which means that both the input parameter and the result are of
type Integer.

Next comes the two rules, which make up the body of the match-expression in function. Thefirst rule
in the above example can be interpreted as follows:

o |f the function is caled to compute the factorial of the value O (i.e. matching the “pattern”
fac (0)), then the result is the value 1.

This corresponds to the base case of arecursive function calculating factorials.

Thefirst rule will beinvoked if the argument matches the pattern fac (0) of therule. If thisis not the
case, the next rule will be tried, if this rule does not match, the next one will be tried, and so on. If no
rule matches the argument(s), the call to the function will fail.

The second rule of the fac function handles the general case of a factorial function computation
when the input value n is greater than zero, i.e., n>0. It can be interpreted as follows:

e |f the factoria is computed on a value n, i.e., fac(n), and n>0, then compute n*fac (n-1)
which is returned as the result of therule.
2.3.1.1 Handling Failure

If the fac function is used to compute the factorial of a negative value an important property of Meta-
Modelicais demonstrated, since the £ac function will in this case fail.
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A factorial call with a negative argument does not match the first rule, since al negative values
differs from zero. The second rule matches, but fails, since the condition n>o is not fulfilled for negative
values of n.

Thus the function will fail, meaning it will not return an ordinary value to the calling function. After
afail hasoccurred in arule or in some function called from that rule, backtracking takes place, and the
next rulein the current function is tried instead.

However, functions with built-in failure handling can be useful, asin the following example:

function fac failsafe
input Integer in_valuel;
protected
Integer dummy valuel;
algorithm
dummy valuel :=
matchcontinue in valuel
local 1Integer n,result; String str result;
case n equation

str result = int_string(fac(n));
print ("Res: "); print(str_result); print("\n");
then 0;
case n equation
failure (result = fac(n));
print ("Cannot apply factorial relation to n."); print("\n");
then 1;
end matchcontinue;
end lookup;

The function fac_failsafe has two rules corresponding to the two cases of correct and incorrect
arguments. Since the patterns are overlapping and we need to continue trying the next rule if the first
rule fails, we need to use mat chcont inue instead of match which would return immediately with afail
if the first rule fails. We use the £ailure(...) primitive to check for failure of the first equation in the
second rule.

Thefirst rule handles the case where the fac function computes the value and returns successfully. In
this case the value is converted to a string and printed using the built-in MetaModelicaprint function.

The second rule is tried if the first rule fails, for example if the function fac_failsafe is called
with anegative argument, e.g. fac (-1).

In the second rule a new operator, failure(...), is introduced in the expression
failure(result = fac(n)) which succeeds if the call fac(n) fails. Then an error message is
printed by the second rule.

It isimportant to note that £ail is quite different from returning the logical value false. A function
returning false would still succeed since it returns a value. The builtin operator not Operates on the
logical values true and false, and is quite different from the failure operator. Thereis also abuiltin
function bool success(egarg) which can be used for testing success or failure in a context where a
Boolean value is needed. It returns true if its equation argument egarg succeeds and false if it fails.
See also Section 6.1.1.
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24 The Assignments Language — Introducing Environments

The Assignments language extends our simple evaluator with variables. For example, the assignment:
a := 5 + 3*10

will store the value of the evaluated expression (here 35) into the variable a. The value of this variable
can later be looked up and used for computing other expressions:

b := 100 + a
d := 10 * b

giving the values 135 and 1350 for b and 4, respectively. Expressions may also contain embedded
assignments as in the example below:

e := 50 + (d := a + 100)

2.41 Environments

To handle variables, we need a mechanism for associating values with identifiers. This mapping from
identifiers to values is called an environment, and can be represented as a set of pairs (identifier,value).
A function called 1ookup is introduced for looking up the associated value for a given identifier. An
association of some value or other structure to an identifier is called a binding. An identifier is bound to
avalue within some environment.

There are severa possible choices of data structures for representing environments. The simplest
representation, often used in formal specifications, isto use alinked list of (identifier,value) pairs. This
has the advantage of simplicity, but gives long lookup times due to linear search if there are many
identifiers in the list. Other, more complicated, choices are binary trees (see Section Error! Reference
source not found.) or hash tables. Such representations are commonly used to provide fast lookup in
product quality compilers or interpreters.

Environment

~[2 =

o b 135 o d 1350

Figure 2-3. An environment represented as alinked list, containing name-value pairsfor a, b and d.

Here we will regard the environment as an abstract data structure only accessed through access functions
such as lookup, to avoid exposing specific low level implementation details. This gives us freedom to
change the underlying implementation without changing the language specification. Unfortunately,
many published formal language specifications have exposed such details and made themselves
dependent on a linked list implementation. In the following we will initially use a linked list
implementation of the environment abstract data type, but will later change implementation (??update?) ,
see Section Error! Reference sour ce not found., when generating production quality transators.
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In this simple Assignments language, an integer value is stored in the environment for each variable.
Compilers need other kinds of values such as descriptors, containing various information for example
location, type, length, etc., associated to each name. Compilers also use more complicated structures,
called symbol tables, to store information associated with names. An environment can be regarded as a
simplified abstract view of the symbol table.

2.4.2 Concrete Syntax of the Assignments Language

The concrete syntax of the Assignments language follows below. A couple of new rules have been added
compared to the Exp language: one rule for the assignment statement, two rules for the sequence of
assignments, one rule for allowing assignments as subexpressions, and finaly the program production
has been extended to first take a sequence of assignments, then a separating semicolon, and lastly an
ending expression.

/* Yacc BNF grammar of the expression language called Assignments */

program : assignments T SEMIC expression

assignments :  assignment
| assignments assignment

assignment : ddent T ASSIGN expression

expression : term
| expression weak operator term

term : u_element
| term strong operator u_element

u_element :  element
| unary operator element

element : T _INTCONST
| T LPAREN expression T RPAREN
| T _LPAREN assignment T RPAREN

weak operator : T _ADD | T _SUB
strong operator : T MUL | T DIV
unary operator : T_SUB
The lexical specification for the Assignments language contains three more tokens, ":=", ident, and

;v compared to the Expl language. It is a more complete lexical specification, making extensive use
of regular expressions.

White space represents one or more blanks, tabs or new lines, and is ignored, i.e.,, no token is
returned. A letter isaletter az or A-Z or underscore. An identifier (ident) is aletter followed by zero or
more letters or digits. A digit is a character within the range 0-9. Digits is one or more of digit. An
integer constant (intcon) isthe same as digits. The function 1ex ident returnsthetoken T IDENT
and converts the scanned name to an atom representation stored in the globa variable yylval.voidp
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which is used by the parser to obtain the identifier. The function lex icon returns the token
T INTCONST and storesthe integer constant converted into binary form in the same yyval.voidp.

/* Lex style lexical syntax of tokens in the language Assignments */

whitespace [ \t\nl+

letter [a-zA-Z ]

ident {letter} ({letter} | {digit})=*

digit [0-9]

digits {digit}+

{whitespace} ;

{ident} return lex ident(); /* T_IDENT */
{digits} return lex icon(); /* T _INTCONST */
"=t return T _ASSIGN;

"t return T ADD;

non return T SUB;

nEn return T MUL;

n/m return T DIV;

e return T LPAREN;
nyn return T RPAREN;
", return T SEMIC;

2.4.3 Abstract Syntax of the Assignments Language

We introduce a few additional node types compared to the Expl language: the ASSIGN constructor
representing assignment and the IDENT constructor for identifiers.
uniontype Exp
record INT Integer x1; end INT;
record IDENT Ident id; end IDENT;
record BINARY Exp x1; BinOp op; Exp x2; end BINARY;
record UNARY UnOp op; Exp x1; end UNARY;

record ASSIGN Ident id; Exp x1; end ASSIGN;
end Exp;

Now we have also added a new abstract syntax type program that represents an entire program as a list
of assignments followed by an expression:
uniontype Program

record DPROGRAM ListExp x1; Exp x2; end PROGRAM;
end Program;

type ListExp = list<Exp>;

The first list of expressions contains the initia list of assignments made before the ending expression
will be evaluated.

The new type Ident is exactly the same as the builtin Modelica type string. The Modelica type
declaration just introduces new names for existing types. The type value isthe same as Integer and
represents integer values.

type Ident = String;
type Value Integer;
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The environment type Env is represented as a list of pairs (tuples) of (identifier,value) representing
bindings of type varend of identifiers to values. The Meta-Modelica syntax for tuplesis: (iteml, item2,
... itemN) of which a pair is a specia case with two items. The MetaModelica 1ist type constructor
denotes alist type.

type VarBnd
type Env

tuple<Ident,Values>;
list<VarBnds>;

Below follows all abstract syntax declarations needed for the specification of the Assignments language.

/* Complete abstract syntax for the Assignments language */

uniontype Exp
record INT Integer x1; end INT;
record IDENT Ident id; end IDENT;
record BINARY Exp xl1; BinOp op; Exp x2; end BINARY;
record UNARY UnOp op; Exp x1; end UNARY;
record ASSIGN Ident id; Exp x1; end ASSIGN;
end Exp;
uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
end BinOp;
uniontype UnOp
record NEG end NEG;

end BinOp;

uniontype Program
record PROGRAM
end Program;

ListExp x1; Exp x2; end PROGRAM;

type ListExp
type Ident

/* Values stored i
type Value

= list<Exp>;
String;

n environments */
Integer;

/* Bindings and environments */

type VarBnd

tuple<Ident,Values>;

type Env list<VarBnds>;

2.4.4 Semantics of the Assignments Language

As previously mentioned, the Assignments language introduces the treatment of variables and the
assignment statement to the former Exp2 language. Adding variables means that we need to remember
their values between one expression and the next. This is handled by an environment (also known as
evaluation context), which in our case is represented as list of variable-value pairs.
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A semantic rule will evaluate each descendent expression in one environment, modify the
environment if necessary, and then pass the va ue of the expression and the new environment to the next
evaluation.

24.441 Semantics of Lookup in Environments

To check whether an identifier is already present in an environment, and if so, return its value, we
introduce the function lookup, see aso Section Error! Reference source not found.. If there is no
value associated with the identifier, 1ookup will fail.
function lookup
input Env in env;
input Ident in id;
output Value out_valuel;
algorithm
out valuel:=
match (in_env,in id)
local Ident id2,id; Integer value; Env rest;
case ( (id2,value) :: rest, id)
then if id == id2 then value else lookup (rest,id);
end match;
end lookup;

This version of lookup performs a linear search of an environment represented as a list of pairs
(identifier,value).

The case rule works as follows: Either identifier id is found (id==1idz2) in the first pair of the list,
and value isreturned, or it is not found in the first pair of the list, and 1ookup will recursively search
the rest of thelist. If found, value isreturned, otherwise the function will fail since thereis no match.

In more detail, the pattern (id2,value) :: rest is matched against the environment argument
in env. The :: isthe cons operator for adding a new element at the front of a list; and rest isa
pattern variable the becomes bound to the rest of the list. If there is a match, id2 will become bound to
the identifier of that pair, and value will be bound to its associated value. If the condition id == id2 is
fulfilled, then value will be returned as the result of 1ookup, otherwise a recursive call to 1ookup is
performed.

For example, the environment (env) depicted in Figure 2-3 shown is below:

{(a,35), (b,135), (d,1350)}
Thelist isthe result of several cons operations:
(a,35) :: (b,135) :: (d,1350) :: {}
An example lookup call:
lookup (env, a)
will match the pattern
lookup((id2,value) :: rest, id)

of the first rule, and thereby bind id2 to a, value to 35, id to a, and rest t0 { (b, 135), (d,1350) }
Since the condition 1id==1d2 isfulfilled, the value 35 will be returned.
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Below we also show a dlightly more complicated variant of 1cokup, which does the same job, but is
interesting from a semantic point of view. It has two rules corresponding to the two cases. Since the
patterns are overlapping and we need to continue trying the next rule if the first rule fails, we need to use
matchcontinue instead of match which would return immediately with afail if the first rule fails. We
usethe failure(...) primitive to check for failure of the first equation in the second rule.

function lookup

input Env in env;

input Ident in id;

output Value out valuel;

algorithm
out_valuel:=
matchcontinue (in env,in id)
local Ident id2,id; Integer value; Env rest;
/* Identifier id is found in the first pair of the list, and value
* 1s returned. */
case ( (id2,value)::_ ,id) equation id = id2; then value;
/* Identifier id is not found in the first pair of the list, and lookup will
* recursively search the rest of the list. If found, value is returned. */
case ( (id2, )::rest, id) equation
failure(id = id2); wvalue = lookup (rest, id);
then value;
end matchcontinue;
end lookup;

Thefirst rule, also shown below, deals with the case when the identifier is present in the leftmost (most
recent) pair in the environment.

case ( (id2,value):: ,id) equation id = id2; then value;

It will try to matchthe (id2,value) ::  pattern against the environment argument. The underscore _
isa“wildcard” pattern that matches anything. If thereisamatch, id2 will become bound to the identifier
of that pair, and value will be bound to its associated value. If the local equation id = id2 isfulfilled,
then value will be returned as the result of 1ookup, otherwise the next rule will be applied.

The second rule of 1ookup deas with the case when the identifier might be present in the rest of the
list (i.e., not in the leftmost pair). The pattern (id2, ) :: rest binds id2 to the identifier in the
leftmost pair, and rest to therest of thelist.

For acall such as lookup (env, b), id2 will be bound to a, rest to { (b, 135), (d,1350) }, and
id tob.

Thefirst local equation of the second rule below states that id is not in the leftmost pair ((a, 35) in
the above example call), whereas the second local equation retrieves the value from the rest of the
environment if it succeeds.

case ( (id2, ):: rest, id) equation

failure(id = id2); wvalue = lookup (rest, id);
then value;
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2.4.4.2 Updating and Extending Environments at Lookup

In the Assignments language we have the following two rules for the occurrence of an identifier (i.e., a
variable) in an expression:

o |If thevariableis not yet in the environment, initialize it to zero and return its zero value and the
new environment containing the added variable.
o [f thevariableisaready in the environment, return its value together with the environment.

This is expressed by the function lookupextend below, which is using the builtin primitive
bool success totest for success or failure of the equation value = lookup (env, id):

function lookupextend
input Env in env;
input Ident in id;
output Env out valuel;
output Value out value2;
algorithm
out_valuel:=
match (in_env,in id)

local Env env; Ident id; Integer value;

case (env,id) then
if bool success(value = lookup(env, id)) then (env, value);
else ( (id,0) :: env), 0);

end match;
end lookupextend;

For example, the following call on the above example environment env:

lookupextend (env, x)

will return the following environment together with the value O:

{(x,0), (a,35), (b,135), (d4,1350)}

For the sake of completeness, we also show a version of 1ookupextend with two rules corresponding
to the above two rules concerning the occurrence of an identifier. Both rules are using the same pattern
(env, id). Here we need to use matchcontinue in order to continue matching with the next rules if
the current rule fails — a kind of exception handling for fail exceptions. A match-expression would
immediately return with afail if the current rule fails.

function lookupextend
input Env in valuel;
input Ident in value2;
output Env out valuel;
output Value out value2;
algorithm
out valuel:=
matchcontinue (in_valuel, in_value2)

local Env env; Ident id; Integer value;
case (env,id) equation
failure(value = lookup(env, id)); then ( (id,0) :: env), 0);

case (env,id) equation
value = lookup(env, id); then (env, value);
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end matchcontinue;
end lookupextend;

For the evaluation of an assignment (hode AssIGN) we need to store the variable and its value in an
updated environment, expressed by the following two rules:

e |f the variable on the left hand side of the assignment is not yet in the environment, associate it
with the value obtained from evaluating the expression on the right hand side, store this in the
environment, and return the new value and the updated environment.

e |f the variable on the left hand side is aready in the environment, replace the current variable
value with the value from the right hand side, and return the new value and the updated
environment.

We actually cheat a bit in the function update below. Both 1ookupextend and update add anew pair
(id,value) at the front of the environment represented as alist, even if the variable is aready present.
Since 1ookup Will always search the environment association list from beginning to end, it will always
return the most recent value, which gives the same semantics in terms of computational behavior but
consumes more storage than a solution which would locate the existing pair and replace the vaue. The
function update isasfollows:
function update
input Env in _env;
input Ident in_id;
input Value in value3;
output Env out_valuel;
algorithm
out valuel:=
match (in_env,in id, in value3)
local Env env; Ident id; Integer value;
case (env,id,value) then (id,value) :: env;
end match;
end update;

For example, the following call to update the variable x in the above example environment env:
update (env,x,999)
will give the following environment list:
{(x,999), (a,35), (b,135), (d4,1350)}
One more call update (env, x, 988) on the returned environment will give:
{(x,988), (x,999), (a,35), (b,135), (d,1350)}
A cdl to lookup the variable x in the new environment (here called env3):
lookup (env3, x)

will return the most recent value of x, which is 988.
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2.4.4.3 Evaluation Semantics

The eval function from the earlier Exp2 language has been extended with rules for assignment
(ass1ceN) and variables (1DENT), as well as accepting an environment as an extra argument and
returning an (updated) environment as a result. In the rule to evaluate an IDENT node, 1ocokupextend
returns a possibly updated environment env2 and the value associated with the identifier id in the
current environment env. If there is no such value, identifier id will be bound to zero and the current
environment will be updated to become env2.

function eval
input Env in valuel;
input Exp in value2;
output Env out valuel;
output Integer out_value2;
algorithm
out valuel:=
match (in valuel,in value2)
local
Env env,envl,env2,env3i;
Integer ival, value, v1,v2,v3;
Ident id;
Exp exp,el,e2,e;
BinOp binop; UnOp unop;

/* eval of an integer constant node INT in an environment is the integer
* value together with the unchanged environment.
*/

case (env,INT (ival)) then (env,ival);

/* eval of an identifier node IDENT will lookup the identifier and return a
* value if present; otherwise insert a binding to zero, and return zero.
*
/
case (env,IDENT(id))
equation
(env2,value) = lookupextend(env, id);
then (env2,value);

/* eval of an assignment node returns the updated environment and
* the assigned value.

*
/
case (env,ASSIGN(id,exp))
equation
(env2,value) = eval (env, exp);
env3 = update (env2, id, value);

then (env3,value);

The rules below specify the evaluation of the binary (app, suB, MUL, DIV) and unary (NEG) operators.
Thefirst rule specifies that the evaluation of an binary node BINARY (el1,binop, e2) inan environment
envl is a possibly changed environment env3 and a value v3, provided that function eval succeedsin
evauating e1 to the value v2 and possibly a new environment env2, and e2 successfully evaluates e2
to the value v2 and possibly a new environment env3. Finally, the apply binop function is used to
apply the operator to the two evaluated values. The reason for returning new environments is that
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expressions may contain embedded assignments, for example: e := 35+ (d := a + 100). Therule
for unary operatorsis similar.
/* eval of a binary node BINARY (el,binop,e2), etc. in an environment env */
case (envl,BINARY (el, (binop,e2)))
equation
(env2,vl) eval (envl, el);

(env3,v2) eval (env2, e2);
v3 = apply binop(binop, v1, v2);
then (env3,v3);

/* eval of a unary node UNARY (unop,e), etc. in an environment env */
case (envl,UNARY (unop,e))
equation
(env2,vl) = eval(envl, e);
v2 = apply unop (unop, v1);
then (env2,v2);
end match;
end eval;

The functions apply binop and apply unop are not shown here since they are unchanged from the
Exp2 specification.

In Section 2.6 the Assignments language will be extended into a language called AssignTwoType, that
can handle expressions containing constants and variables of two types: Real and Integer, which has
interesting conseguences for the semantics of the evaluation rules and storing values in the environment.

2.5 PAM - Introducing Control Structures and I/O

PAM is a Pascal-like language that is too small to be useful for serious programming, but big enough to
illustrate several important features of programming languages such as control structures, including
loops (but excluding goto), and simple input/output. However, it does not include procedures/functions
and multiple types. Only integer variables and values are dealt with during computation, although
Boolean Values can occur temporarily in comparisons within if- or while-statements.

The language was originaly presented by Frank Pagan in his book Formal Specification of
Programming Languages [ref??], which gives a very pedagogical introduction to formal specification
using several formalisms such as attribute grammars, two-level grammars, operational semantics,
denotational semantics and axiomatic semantics. The reader who would like a more in-depth description
of PAM and would like to learn about other formalismsis highly recommended to read Pagan’s book.

2.5.1 Examples of PAM Programs

A PAM program consists of a series of statements, as in the example below where the factorial of a
number N is computed. First the number N is read from the input stream. Then the specia case of
factorial of zero is dealt with, giving the value 1. Note that factorial of a negative number is not handled
by this program, not even by an error message since there are no strings in this language.
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The factorial for N>0 is computed by the else-part of the if-statement, which contains a definite loop:
to expression do series-of-statement end

This loop computes series-of-statement a definite number of times given by first evaluating expression.
In the example below, to N do ... end will compute the factorial by iterating n times.
Alternatively, we could have expressed this as an indefinite loop, i.e., awhile statement:

while comparison do series-of-statement end

which will evaluate series-of-statement as long as comparison is true.

/* Computing factorial of the number N, and store in variable Fak */
/* N is read from the input stream; Fak is written to the output */
/* Fak is 1 * 2 * ... (N-1) * N */
read N;
if N=0 then
Fak := 1;
else
if N>0 then
Fak := 1;
I :=0;
to N do
I := I+1;
Fak := Fak*I;
end
endif
endif
write Fak;

Variables are not declared in this language, they are created when they are assigned values. The usual
arithmetic operators “+”, “-" with weak precedence and “*”, “/” with stronger precedence, are included.
Comparisons are expressed by the relational operators “<”, “<=", “=",“>="_“>"_ One small change has
been done to PAM as compared to Pagan’s book: the reserved word r1 has been replaced by the more
readable endif.

2.5.2 Concrete Syntax of PAM

The concrete syntax of the PAM language is given as a BNF grammar below. A program is a
series of statement. A statement is an input_statement (read idi,id2,...); an output_statement
(write idi,id2...); an assignment_statement (id := expression); an if-then conditional _statement
(if expression then series-of-statement endi£), an if-then-else conditional _statement (i £ expression
then series-of-statement else series-of-statement endif), a definite loop for a fixed number of
iterations (to expression do series-of-statement end), or a while_loop for an indefinite number of
iterations (while comparison do series-of-statement end). The usual arithmetic expressions are
included, as well as comparisons using relational operators.

/* Yacc BNF grammar of the PAM language */

program :  series
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series : statement
| statements series

statement :  input statement T SEMIC
output_statement T_ SEMIC
assignment statement T SEMIC
conditional_ statement
definite loop

while loop
input_statement : T_READ variable list
output_ statement : T WRITE variable list
variable list :  variable

| variable variable list
assignment_statement : variable T_ASSIGN expression
conditional_ statement : T_IF comparison T_THEN series T_ENDIF

| T IF comparison T THEN series
T_ELSE series T_ENDIF

definite_ loop | T TO expression T DO series T END
while_loop | T WHILE comparison T DO series T END
expression : term

| expression weak operator term

term : element
| term strong operator element

element :  constant
| wvariable
| T _LPAREN expression T RPAREN

comparison : expression relation expression
variable :  T_IDENT

constant : T _INTCONST

relation : TEQ | TLE | TLT TGT | TGE | T NE
weak_operator : T _ADD | T SUB

strong operator : T MUL | T DIV

The lexical syntax of the PAM language has two extensions compared to the previously presented
Assignments language: tokens for relational operators “<”, “<=", “=" “<>" “>=" “>" and tokens for
reserved words; if, then, else, endif, while, do, end, to, read, write. The function lex ident
checks if a possible identifier is a reserved word, and in that case returns one of the tokens T IF,
T THEN, T_ELSE, T _ENDIF, T ELSE, T WHILE, T DO, T END, T TO, T READ Of T _WRITE.
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/* Lex style lexical syntax of tokens in the PAM language */

whitespace [ \t\n]l+

letter [a-zA-Z]

ident {letter} ({letter} | {digit})=*

digit [0-9]

digits {digit}+

icon {digits}

{whitespace} ;

{ident} return lex_ident(); /* T _IDENT or reserved word tokens */

/* Reserved words: if,then,else,endif,while,do,end, to,read,write */

{digits}

n._mn

return
return
return
return
return
return
return
return
return
return
return
return
return
return

lex icon();
T ASSIGN;
T ADD;

T SUB;

T MUL;

T DIV;

T LPAREN;
T RPAREN;
T LT;

T LE;

T EQ;

T NE;

T GE;

T GT;

/* T _INTCONST */

ll+ll

n_n
Nk n
n/n
n(n
n) n
nen
Ne—n
n_n
Nesn
ne—n

nsn

2.5.3  Abstract Syntax of PAM

Since PAM s dlightly more complicated than previous languages we choose the parameterized style of
abstract syntax, first introduced in Section 2.2 and Section 2.2. This style is better at grouping related
semantic constructs and thus making the semantic specification more concise and better structured.

In comparison to the Assignments language, we have introduced relational operators (Re10p) and the
RELATION constructor which belongs to the set of expression nodes (Exp). There is aso a union type
stmt for different kinds of statements. Note that statements are different from expressions in that they
do not return a value but update the value environment and/or modify the input or output stream.
However, in this simplified semantics the streams are implicit and not part of the semantic model to be
presented. The constructor seQ allows the representation of statement sequences, whereas SKIP

represents the empty statement.

/* Parameterized abstract syntax for the PAM language */
type Ident = String;

uniontype BinOp

record ADD end ADD;
record SUB end SUB;
record MUL end MUL;

record DIV

end DIV;
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end BinOp;

uniontype RelOp
record EQ end EQ;
record GT end GT;
record LT end LT;
record LE end LE;
record GE end GE;
record NE end NE;

end RelOp;

uniontype Exp
record INT Integer x1; end INT;
record IDENT Ident id; end IDENT;
record BINARY Exp x1; BinOp op; Exp x2; end BINARY;
record RELATION Exp x1; RelOp op; Exp x3; end RELATION;
end Exp;

type IdentList = list<Ident>;
uniontype Stmt

record ASSIGN Ident id; Exp x2; end ASSIGN; "Id := Exp"
record IF Exp x1; Stmt x2; Stmt x3; end IF; "if Exp then Stmt.."
record WHILE Exp x1; Stmt x2; end WHILE; " while Exp do Stmt"
record TODO Exp x1; Stmt x2; end TODO; " to Exp do Stmt..."
record READ IdentList x1; end READ; "read idl,id2,..."
record WRITE IdentList x1; end WRITE; "write id1,id2,.."
record SEQ Stmt x1; Stmt x2; end SEQ; "Stmtl; Stmt2"
record SKIP end SKIP; " ; empty stmt"

end Stmt;

The type specifications below are not part of the abstract syntax of the language constructs, but needed
to model the static and dynamic semantics of PAM. As for the Assignments language, the environment
(Env) is a mapping from identifiers to values, used to store and retrieve variable values. Here it is
represented as a list of pairs of variable bindings (Vvarend).

/* Types needed for modeling static and dynamic semantics */

/* Variable binding and environment/state type */
type VarBnd = tuple<Ident,Values>;

type Env list<VarBnds>;

type Stream = list<Integers>;

type State = tuple<Env,Stream,Streams> "Environment, input stream,output stream";

uniontype Value "Value type needed for evaluated results"
record INTval Integer x1; end INTval;
record BOOLval Boolean x1; end BOOLval;

end Value;

We aso introduce a data type value for values obtained during expression evaluation. Even though
only Integer values tagged by the constructor 1NTval are stored in the environment, Boolean values,
represented by BoOLval (Boolean), occur when evaluating comparison functions.
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Since PAM contains input and output statements, we need to model the overall state including both
variable bindings and input and output files. This could have been done (as in Pascal [ref **]) by
introducing two predefined variables in the environment denoting the standard input stream and output
stream, respectively. Since standard input/output streams are not part of the PAM language definition we
choose another solution. The concept of state is introduced, of type state, which is represented as a
triple of environment, input stream and output stream (Env, Stream, Stream). The term configuration
is sometimes used for thiskind of state.

2.5.4 Semantics of PAM

The semantics of PAM is specified by severa functions that contain groups of rules for similar
constructs. Expression evaluation together with binary and relational operators are described first, since
this is very close to previously presented expression languages. Then we present statement evaluation
including simple control structures and input/output. Finally some utility functions (functions) for
lookup of identifiers in environments, repeated evaluation, and 1/0 are defined.

2.5.4.1 Expression Evaluation

The eval function defines the semantics of expression evaluation. The first rule specifies evaluation of
integer constant leaf nodes (INT (v) ) which evaluate independently of the environment (because of the
wildcard _) into the same constant value v tagged by the constructor INTval.

We choose to introduce a specia datatype value with constructors INTval and BooLval for values
generated during the evaluation. Alternatively, we could have used the abstract syntax leaf node INT,
and introduced another node called Boor.. However, we chose the value aternative, in order not to mix
up the type of values produced during evaluation with the node types of the abstract syntax. An
additional benefit of giving the specification a more clear type structure is that the Meta-Modelica
compiler will have better chances of detecting type errors in the specification.

function eval "Evaluation of expressions in the current environment"
input Env in env;
input Exp in exp;
output Value out valuel;
algorithm
out valuel:=
match (in_env,in exp)
local
Integer v,vl,v2,v3;
Env env;
Ident id;
Exp el,e2;
BinOp binop;
RelOp relop;
case (_,INT(v)) then INTval (v); // Integer constant v

The next two rules define the evaluation of identifier leaf nodes (I1DENT (id)). The first rule describe
successful lookup of avariable value in the environment, returning a tagged integer value (INTval (v)).
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The second rule describes what happens if a variable is undefined. An error message is given and the
evaluation will fail.

case (env,IDENT(id)) then lookup(env, id); // Identifier id
case (env,IDENT (id))
equation // If id not declared, give an error
failure(v = lookup(env, id)); // message and fail by calling error ()
then error ("Undefined identifier", id);

Alternatively, the evaluation of identifier nodes can be specified by just one rule containing a conditional

expression:
case (env,IDENT(id)) then // Identifier id
if bool success (v = lookup(env,id)) then v
else error ("Undefined identifier", id); // If id not declared,

// give an error message and fail by calling error ()

The last two rules specify evaluation of binary arithmetic operators and boolean relational operators,
respectively. These rulesfirst take care of argument eval uation, which thus need not be repeated for each
rule in the invoked functions apply binop and apply relop which compute the values to be
returned. Here we see the advantages of parameterized abstract syntax, which alows grouping of
constructs with similar structure. The last rule returns values tagged BooLval, which cannot be stored in
the environment, and are used only for comparisons in while- and if-statements.

case (env,BINARY (el,binop,e2)) // exprl binop expr2
equation
INTval (vl) = eval (env, el);
INTval (v2) = eval (env, e2);
v3 = apply binop(binop, v1, v2); then INTval (v3);
case (env,RELATION (el,relop,e2)) // exprl relop expr2
local Boolean v3;
equation
INTval (vl) = eval (env, el);
INTval (v2) = eval (env, e2);

v3 = apply relop(relop, vl, v2); then BOOLval (v3);
end match;
end eval;

2.5.4.2 Arithmetic and Relational Operators

The functions apply binop and apply relop define the semantics of applying binary arithmetic
operators and binary boolean operators to integer arguments, respectively. Since argument evaluation
has aready been taken care of by the eval function, only one local eguation is needed in each rule to
invoke the appropriate predefined Meta-M odelica operation.

function apply binop
"Apply a binary arithmetic operator to constant integer arguments"
input BinOp op;
input Integer argl;
input Integer arg2;
output Integer out_valuel;
algorithm
out valuel:=
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match (op,argl,arg2)
local Integer x,y;

case (ADD(),x,y) then x + y;

case (SUB(),x,y) then x - y;

case (MUL(),x,y) then x*y;
0.,x,y)

case (DIV
end match;
end apply binop;

then x/y;

function apply relop "Apply a relation operator, returning a boolean value"
input RelOp op;
input Integer argl;
input Integer arg2;
output Boolean out boolean;
algorithm
out boolean :=
match (op,argl,arg2)
local Integer x,y;

case (LT(),x,y) then (x < y);
case (LE(),x,y) then (x <= vy);
case (EQ(),x,y) then (x == y);
case (NE(),x,y) then (x <> vy);
case (GE(),x,y) then (x >= vy);
case (GT(),x,y) then (x > y);

end match;
end apply relop;

2.5.4.3 Statement Evaluation

The eval stmt function defines the semantics of statements in the PAM language. In contrast to
expressions, statements return no vaues. Instead they modify the current state which contains variable
values, the input stream and the output stream. Thetype state is defined as follows:

type State = tuple<Env,Stream,Stream>;

Statements change the current state, returning a new updated state. This is expressed by the type
signature of eval stmt which is (State, Stmt) => State. Below we describe the function
eval stmt by explaining the semantics of each statement type separately.

First we show the function header and the beginning of the match expression

function eval_ stmt
"Statement evaluation: map the current state into a new state"
input State in_state;
input Stmt in stmt;
output State out_state;
algorithm
out_ state :=
match (in_state,in stmt)
local
Value v1;
Env env,env2;
State state,statel,state2,state3;
Stream istream, istream2,ostream,ostream?;
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Ident id; Exp el,comp;
Stmt sl1,s2,stmtl,stmt2;
Integer nl,v2;

The semantics of an assignment statement id : = e1 isto first evaluate the expression e1 in the current
environment env, and then update env by associating identifier id with the value v1, giving a new
environment env2. The returned state contains the updated environment env2 together with unchanged
input stream (is) and output stream (os). (??update text)
case (env,ASSIGN(id,el)) /* Assignment */
equation

vl = eval(env, el);
env2 = update(env, id, v1l); then env2;

The conditional statement occurs in two forms: along form: if comparison then Stmtl else Stmt2
or ashort form if comparison then stmtl. Both forms are represented by the abstract syntax node
(IF (comp, s1, s2) ), where the short form has an empty statement (a skzp node) in the else-part. Both
stmt1 and stmt2 can be a sequence of statements, represented by the seg abstract syntax node.

The pattern statel as (env, , ) means that the state argument that matches (env, , ) will
also be bound to state1. The environment component of the state will be bound to env, whereas the
input and output components always match because of the wildcards ( , ).

The first rule is the case where the comparison evaluates to true. Thus the then-part (statement s1)
will be evaluated, giving a new state state2, which is the result of the if-statement. The second rule
covers the case where the comparison evaluates to false, causing the else-part (statement s2) to be
evaluated, giving anew state state2, which then becomes the result of the if-statement.

case (statel as (env, , ), IF(comp,sl,s2)) /* if true ... */
equation
BOOLval (true) = eval (env, comp) ;
state2 = eval stmt(statel, sl); then state2;
case (statel as (env, , ), IF(comp,sl,s2)) /* if false ... */
equation
BOOLval (false) = eval(env, comp) ;

state2 = eval stmt(statel, s2); then state2;

These two rules can be compacted into one rule, using a conditional expression:

case (state as (env, , ), IF(comp,sl,s2)) /* 1f ... %/
then
if BOOLval (true) == eval(env, comp) then eval stmt(state, sl)
else if BOOLval (true) == eval(env, comp) then eval stmt (state, s2)

else fail();

The next rule defines the semantics of the iterative while-statement. It is fundamentally different from al
rules we have previously encountered in that the while construct recursively refers to itself in the local
equation of the rule. The meaning of while is the following: first evaluate the comparison comp in the
current state. If true, then evaluate the statement (sequence) s1, followed by recursive evaluation of the
while-loop. On the other hand, if the comparison evaluatesto false, no further action takes place.

There are at least two ways to specify the semantics of while. The first version, shown in the rule
immediately below, uses the availability of if-statements and empty statements (sk1p) in the language.
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The if-statement will first evaluate the comparison comp. If the result is true, the then-branch will be
chosen, which consists of a sequence of two statements. The while body (s1) will first be evaluated,
followed by recursive evaluation of the while-loop once more. On the other hand, if the comparison
evaluates to false, the else-branch consisting of the empty statement (sk1p) will be chosen, and no
further action takes place.

Since the recursive invocation of while is tail-recursive (this occurs as the last action, at the end of
the then-branch), the Meta-Modelica compiler can implement this rule efficiently, without consuming
stack space, similar to a conventional implementation that uses a backward jump. Note that thisis only
possibleif there are no other candidate rules in the function.

case (state,WHILE (comp,sl)) // while ...
equation

state2 = eval stmt(state, IF(comp,SEQ(sl,WHILE (comp,sl)),SKIP()));
then state2;

The semantics of the while-statement can alternatively be modeled by the two rules below. Thefirst rule,
when the comparison evaluates to false, returns the current state unchanged. The second rule, in which
the comparison evaluates to true, subsequently evauates the while-body (s1) once, giving a new state
state2, after which the while-statement is recursively evaluated, giving the state state3 to be
returned.

case (state as (env, , ), WHILE (comp,sl)) // while false ...
equation
BOOLval (false) = eval (env,comp); then state;
case (state as (env, , ), WHILE(comp,sl)) // while true ...
equation
BOOLval (true) = eval (env, comp) ;
state2 = eval stmt(state,sl);

state3 eval stmt (state2,WHILE (comp,sl); then state3;

Both versions of the while semantics are OK. Since the previous version is slightly more compact, using
only one rule, we choose that onein our final specification of PAM.

The definite iterative statement: to expression do statement end first evaluates expression e1 to
obtain some number n1, and provided that n1 is positive, repeatedly evaluates statement s1 the definite
number of times given by n1. The repeated evaluation is performed by the function repeat eval.

case (state as (env, , ), TODO(el,sl)) // to el do sl ...
equation
INTval (nl) = eval (env, el);
state2 = repeat eval(state, nl, sl); then state2;

Read and write statements modify the input and output stream components of the state, respectively. The
input stream and output streams can be thought of as infinite sequences of items (for PAM: sequences of
integer constants), which are handled by the operating system. First we describe the read statement.

The read statement: read idl,id2,...idN reads N values into variables idl, id2,... idN, picking them
from the beginning of the input stream which is updated as a result.

The first rule covers the case of reading into an empty list of variables, which has no effect and
returns the current state unchanged. The second rule models actual reading of values from the input
stream. First, one item is extracted from the input stream by calling input item, which returns a
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modified input stream and a value. The input stream should be regarded as part of an abstract
interface that hides the implementation of stream.

case (state,READ({})) then state; // read ()
case (state as (env,istream,ostream, READ(id :: rest)) // read id1l, ..
equation
(istream2,v2) = input item(istream);
env2 = update (env, id, INTval (v2));
state2 = eval stmt((env2,istream2,ostream), READ(rest)); then state2;

Anaogously, the write statement: write idl1,id2,...idN writes N values from variables idl, id2,... idN,
adding them to the end of the current output stream which is modified accordingly. Writing an empty list
of identifiers has no effect.

case (state, WRITE({})) then state; // write ()
case (state as (env,istream,ostream), WRITE(id :: rest)) // write id1, ..
equation
INTval (v2) = lookup (env, id);
ostream2 = output item(ostream,v2);
state2 = eval stmt((env,istream,ostream2), WRITE(rest)); then state2;

The semantics of a sequence stmt1; stmt2 Of two statements is simple. First evaluate stmt1, giving
an updated state state2. Then evaluate stmt2 in state2, giving state3 which isthe resulting state.

case (state,SEQ(stmtl,stmt2)) // stmtl ; stmt2
equation
state2 = eval stmt(state, stmtl);
state3 = eval stmt(state2, stmt2); then state3;

The semantics of the empty statement, represented as sx1Pp, is even simpler. Nothing happens, and the
current state is returned unchanged.

case (state,SKIP()) then state; // ; empty statement
end match;

end eval stmt;

2.5.4.4 Auxiliary Functions

The next few subsections defines auxiliary functions, repeat eval, error, input item,
output_item, lookup, and update, needed by the rest of the PAM specification.

2.5.45 Repeated Statement Evaluation

The function repeat_eval (state,n,stmt) sSimply evaluates the statement stmt n times, starting
with state, which is updated into a new state for each iteration. The then-part specifies that nothing
happens if n <= 0. The else-part evaluates stmt in state and recursively calls repeat eval for the
remaining n-1 iterations, giving state which is returned.
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function repeat eval '"repeatedly evaluate stmt n times"
input State state;
input Integer n;
input Stmt stmt;
output State out_ state;

algorithm
out_state :=
if n <= 0 then state /* n <= 0 */
else repeat eval (eval stmt (state, stmt), n-1, stmt); /* eval n times */

end repeat eval;

2.5.4.6 Error Handling

The error function can be invoked when there is some semantic error, for example when an undefined
identifier is encountered. It simply prints one or two error messages, returns the empty value, and fails,
which will stop evaluation (for an interpreter) or stop semantic analysis (for atranslator).

function error "Print error messages strl and str2, and fail"
input Ident strl;

input Ident str2;

algorithm
print ("Error - ");
print (strl); print(" ");
print (str2); print("\n");
fail();

end error;

2.5.4.7 Stream /O Primitives

The input_item function retrieves an item (here an integer constant) from the input stream, which can
be thought of as an infinite list implemented by the operating system. The item is effectively removed
from the beginning of the stream, giving a new (updated) stream consisting of the rest of the list. Since
Stream in redlity isimplemented by the operating system, the streams passed to and returned from this

implementation of input_item and output_item are not updated, they are just dummy streams which
give the functions the correct type signatures.

function input_item "Read an integer item from the input stream"
input Stream istream;

output Stream istream2;

output Integer 1ij;
algorithm

print ("input: ");

i := Input.read();

print ("\n") ;

istream2 := istream;
end input item;

The output_item function outputs an item by attaching the item to the front of the output stream
(effectively apossibly infinite list of items), giving an updated output stream ostream2.

function output item "Write an integer item on the output stream"
input Stream ostream;
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input Integer i;

output Stream ostream2;
protected

String s;
algorithm

s := int string(i);

print (s) ;

ostream2 := ostream;
end output item;

2.5.4.8 Environment Lookup and Update

The function 1ookup (env, id) returns the value associated with identifier id in the environment env.
If there is no binding for id in the environment, 1ookup will fail. Here the environment is implemented
(asusual) asalinked list of (identifier,value) pairs.

Thefirst rule covers the case where id isfound in the first pair of thelist. The pattern (id2, value)
is concatenated (: :) to the rest of the list (the pattern wildcard: _), whereas the second rule covers the
case where id isnot in the first pair, and therefore recursively searches the rest of thelist.

function lookup "lookup returns the value associated with an identifier.
If no association is present, lookup will fail."
input Env in env;
input Ident in id;
output Value out value;
algorithm
out value :=
match (in_env,in id)
local 1Ident id2,id; Value value; State rest;

case ((id2,value) :: rest, id) then
if id==id2 then value // id first in list
else lookup(rest,id); // 1d in rest of list
end match;
end lookup;

The function update (env, id,value) inserts a new binding between id and value into the
environment. Here the new (id,value) pair is simply put at the beginning of the environment. If an
existing binding of id was already in the environment, it will never be retrieved again because 1ookup
performs a left-to-right search that will always encounter the new binding before the old one.
function update
input Env env;
input Ident id;
input Value value;
output Env out_ env;
algorithm
out_env := (id,value) :: env;
end update;

2.5.4.9 The Complete Interpretive Semantics for PAM

The complete semantics of PAM follows below. The functions have been sorted in a bottom-up fashion,
definition-before-use, even though that is not necessary in Modelica. Auxiliary utility functions and low
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level constructs appear first, whereas statements appear last since they directly or indirectly refer to al

the rest.

encapsulated package Pam

"In this version the State is

However
is done

Input
doing a
as when

call to scanf.
print is used."

input stream,
, the passed I/0 streams are not used and updated,
through operating system calls.

is done through the function read which just calls a C function
This works well if no backtracking occurs,

(environment,

/* Parameterized abstract syntax for the PAM language */

type Iden

t =

String;

uniontype BinOp

record
record
record
record
end BinOp

ADD
SUB
MUL
DIV

’

end ADD;
end SUB;
end MUL;
end DIV;

uniontype RelOp

record
record
record
record
record
record
end RelOp

uniontype

record
record

end Exp;

EQ
GT
LT
LE
GE
NE

7

Exp
INT
IDEN

end
end
end
end
end
end

T

type IdentList =
uniontype Stmt

record
record
record
record
record
record
record
record
end Stmt;

/* Types needed for modeling static and dynamic

ASSIGN Ident id; Exp x2;
Exp x1;
Exp x1;
Exp x1;
IdentList x1;
IdentList x1;
Sstmt x1;

end SKIP;

IF
WHIL
TODO
READ
WRIT
SEQ
SKIP

E

E

EQ;
GT;
LT;
LE;
GE;
NE;

Integer x1;
Ident id;

record BINARY Exp x1; BinOp op;
record RELATION Exp x1;

list<Idents>;

end IDENT;

end ASSIGN;

end WHILE;

end WRITE;

end BINARY;
end RELATION;

"Id := Exp"

"if Exp then Stmt.."
" while Exp do Stmt"
" to Exp do Stmt..."
"read idl,idz,..."
"write id1,id2,.."
"Stmtl; Stmt2"

" ; empty stmt"

semantics */

output stream) .
instead the I/0
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/* Variable binding and environment/state type */

type VarBnd = tuple<Ident,Values>;
type Env = list<VarBnd>;
type Stream = list<Integers;

type State

tuple<Env, Stream, Stream>
"Environment, input stream, output stream";

uniontype Value "Value type needed for evaluated results"
record INTval Integer x1; end INTval;
record BOOLval Boolean x1; end BOOLval;

end Value;

[HRrKkkkkkkkkkkkk* Statement evaluation *x*kkkkkkkkkkk /

function eval stmt
"Statement evaluation: map the current state into a new state"
input State in_state;
input Stmt in_ stmt;
output State out_ state;
algorithm
out_state :=
match (in_state,in_stmt)
local
Value vl;
Env env,env2;
State state,statel,state2,state3;
Stream istream, istream2,ostream,ostream?2;
Ident id; Exp el,comp;
Stmt sl1,s2,stmtl,stmt2;
Integer nl,v2;
IdentList rest;

case (env,ASSIGN(id,el)) // Assignment
equation
vl = eval (env, el);
env2 = update(env, id, v1l); then env2;
case (statel as (env,istream,ostream), IF (comp,sl,s2)) // 1if true
equation
BOOLval (true) = eval (env, comp) ;
state2 = eval stmt(statel, sl); then state2;
case (statel as (env,istream,ostream), IF (comp,sl,s2)) // if false
equation
BOOLval (false) = eval(env, comp) ;
state2 = eval stmt(statel, s2); then state2;
case (state,WHILE (comp,sl)) // while
equation

state2 = eval stmt (state, IF (comp,SEQ(sl,WHILE (comp,sl)),SKIP()));
then state2;

case (state as (env,istream,ostream), TODO(el,sl)) // to el do sl
equation
INTval (nl) = eval(env, el);

state2 = repeat_eval(state, nl, sl); then state2;
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case (state,READ({})) then state; // read ()
case (state as (env,istream,ostream), READ(id :: rest)) // read id1i,..
equation
(istream2,v2) = input item(istream) ;
env2 = update (env, id, INTval (v2));
state2 = eval stmt((env2,istream2,ostream), READ(rest)); then state2;
case (state, WRITE({})) then state; // write {}
case (state as (env,istream,ostream), WRITE(id :: rest)) // write id1l, ..
equation
INTval (v2) = lookup (env, id);
ostream2 = output item(ostream,v2);
state2 = eval stmt((env,istream,ostream2), WRITE(rest)); then state2;
case (state,SEQ(stmtl,stmt2)) // stmtl ; stmt2
equation

state2 = eval stmt(state, stmtl);
state3 = eval stmt(state2, stmt2); then state3;
case (state,SKIP()) then state; // ; empty statement
end match;
end eval stmt;

[*FFkkkk*kkKkKkkkkx* Expression evaluation ***rxxskkkkxxx/

function eval "Evaluation of expressions in the current environment"
input Env in_env;
input Exp in exp;
output Value out_value;
algorithm
out_value :=
match (in_env,in_ exp)
local
Integer v,vl,v2,v3;
Env env;
Ident id;
Exp el,e2;
BinOp binop;
RelOp relop;

case (_,INT(v)) then INTval (v); // Integer constant v
case (env,IDENT(id)) then
if bool success (v = lookup(env,id)) then v // Identifier id
else error ("Undefined identifier", id); // If id not declared,
// give an error message and fail by calling error()
case (env,BINARY (el,binop,e2)) equation // exprl binop expr2
INTval (vl) = eval (env, el);
INTval (v2) = eval (env, e2);
v3 = apply binop(binop, v1, v2); then INTval (v3);
case (env,RELATION (el,relop,e2)) // exprl relop expr2
local Boolean v3; equation
INTval (vl) = eval(env, el);
INTval (v2) = eval (env, e2);

v3 = apply relop(relop, vl, v2); then BOOLval (v3) ;
end match;
end eval;
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[rFxxFk*kxkxkkxkx Arithmetic and relational operators ***x*xkkxkxkkx /

function apply binop
"Apply a binary arithmetic operator to constant integer arguments"
input BinOp op;
input Integer argl;
input Integer arg2;
output Integer out valuel;
algorithm
out_valuel :=
match (op,argl,arg2)
local Integer x,y;

case (ADD(),x,y) then x + y;

case (SUB(),x,y) then x - y;

case (MUL(),x,y) then x*y;
()., x,y)

case (DIV
end match;
end apply binop;

then x/v;

function apply relop "Apply a relation operator, returning a boolean value"
input RelOp op;
input Integer argl;
input Integer arg2;
output Boolean out boolean;
algorithm
out boolean :=
match (op,argl,arg2)
local Integer x,y;

case (LT(),x,y) then (x < vy);
case (LE(),x,y) then (x <= vy);
case (EQ(),x,y) then (x == vy);
case (NE(),x,y) then (x <> y);
case (GE(),x,y) then (x >= vy);
case (GT(),x,y) then (x > y);

end match;
end apply relop;

[HHFkkkkkkKkkkkxkk*x*% Auxiliary utility relations **kxxkkkkkkkkkkkkk /

function lookup "lookup returns the value associated with an identifier.
If no association is present, lookup will fail.™"
input Env env;
input Ident id;
output Value out value;
algorithm
out value :=
match (env,id)
local Ident id2,id; Value value; Env rest;
case ((id2,value) :: rest, id) then
if id==id2 then value // id first in list
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else lookup (rest,id) ; // id is hopefully in rest of list

end match;
end lookup;

function update '"update returns an updated environment with a new

(id,value) association"
input Env env;
input Ident id;
input Value value;
output Env out_env;
algorithm
out_env := (id,value) :: env;
end update;

function repeat eval '"repeatedly evaluate stmt
input State state;
input Integer n;
input Stmt stmt;
output State out_ state;
algorithm
out_state :=
if n <= 0 then state
else repeat eval (eval stmt (state, stmt), n-1,
end repeat eval;

function error "Print error messages strl and str2,

input Ident strl;
input Ident str2;

algorithm
print ("Error - ");
print (strl); print(" ");
print (str2); print("\n");
fail();

end error;

n times"

stmt) ;

/*
/*

n <=0 */
eval n times */

and fail"

function input item "Read an integer item from the input stream"

input Stream istream;

output Stream istream2;

output Integer i;
algorithm

print ("input: ");

i := Input.read();

print ("\n") ;

istream2 := istream;
end input item;

function output item "Write an integer item on the output stream"

input Stream ostream;
input Integer i;
output Stream ostream2;
protected
String s;
algorithm
s := int_string(i);
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print (s) ;
ostream2 := ostream;
end output item;

2.6 AssignTwoType - Introducing Typing

AssignTwoType is an extension of the Assignments language made by introducing Real numbers. Now
we have two types in the language, Integer and Real, which creates a need both to check the typing of

expressions during evaluation, and to be able to store constant values of two different types in the
environment.

2.6.1 Concrete Syntax of AssignTwoType

Real valued constants contain a dot and/or an exponent, asin:

3.14159
5.36E-10
11E+5

Only one additional rule has been added compared to the BNF grammar of the Assignments language.
The non-terminal element can now also expand into arReal constant, as shown below:
element :  T_INTCONST

| T REALCONST
| T _LPAREN expression T_RPAREN

The lexical specification follows below. One new token type, T REALCONST, has been introduced
compared to the Assignments language. The regular expression rconl represents a real constant that
must contain a dot, whereas rcon2 must contain an exponent. Any real constant must contain either a
dot or an exponent. The ? in the regular expressions signify optional occurrence.

/* Lex style lexical syntax of tokens in the language AssignTwoType */

whitespace [ \t\nl+

letter [a-zA-Z ]

ident {letter} ({letter} | {digit})=*
digit [0-9]

digits {digit}+

icon {digits}

pt n . n

sign [+-]

exponent ([eE]l {sign}?{digits})

rconl {digits} ({pt}{digits}?) ? {exponent}
rcon2 {digits}?{pt}{digits}{exponent}?
rcon {rconl}|{rcon2}

{whitespace} ;
{ident} return lex ident(); /* T IDENT */
{icon} return lex icon(); /* T_INTCONST */
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{rcon} return lex _rcon(); /* T REALCONST */
Me=t return T _ASSIGN;

A return T ADD;

non return T SUB;

nEn return T MUL;

n/m return T DIV;

e return T LPAREN;
"y return T RPAREN;

2.6.2  Abstract Syntax

The abstract syntax of AssignTwoType has been extended in two ways compared to the Assignments
language. A REAL node has been inserted into the expression (Exp) union type, and a parameterized
abstract syntax (Section 2.2) has been selected to enable a more compact semantics part of the
specification by grouping rules for similar constructs in the language.

The environment must now be able to store values of two types. Integer or Real. Thisis achieved
by representing values, of type value, aseither INTval or REALval nodes. We could aternatively have
used the INT and REAL constructors of the Exp union type. However, this would have had the
disadvantages of mixing up the evaluation value type value with the abstract syntax (which contain
many other nodes), and making the strong typing of the specification less orthogonal, thus reducing the
probability of the Modelica system catching possible type errors.

An auxiliary union type Ty2 has been introduced to more conveniently be able to encode the
semantics of different combinations of Integer and Real typed values.

The package header of AssignTwoType preceeds the abstract syntax declarations.

package AssignTwoType "Assignment language with two types, integer and real"
/* Parameterized abstract syntax for the Assigntwotype language */

uniontype Program
record PROGRAM ExpList x1; Exp x2; end PROGRAM;
end Program;

uniontype Exp
record INT Integer x1; end INT;
record REAL Real x1; end REAL;
record BINARY Exp x1; BinOp op; Exp x2; end BINARY;
record UNARY UnOp op; Exp x1; end UNARY;
record ASSIGN Ident id; Exp x1; end ASSIGN;
record IDENT Ident id; end IDENT;
end Exp;

type ExpList = list<Exp>;

uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
end BinOp;
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uniontype UnOp
record NEG end NEG;
end UnOp;

type Ident = String;
/* Values, bindings and environments */

uniontype Value "Values stored in environments"
record INTval Integer x1; end INTval;
record REALval Real x1; end REALval;

end Value;

type VarBnd = tuple<Ident,Values;
type Env = list<VarBnds>;

uniontype Ty2 "An auxiliary datatype used to handle types during evaluation"
record INT2 Integer x1; Integer x2; end INT2;
record REAL2 Real x1; Real x2; end REAL2;

end Ty2;

2.6.3 Semantics of AssignTwoType

The semantics of the AssignTwoType language is quite similar to the semantics of the Assignments
language described in Section 2.4.4, except for the introduction of multiple types. Having multiple types
in a language may give rise to a combinatorial explosion in the number of rules needed, because the
semantics of each combination of argument types and operators needs to be described.

In order to somewhat limit this potential “explosion” of rules, we introduce a type lattice (see Section
0), and use the function type 1ub (for least upper bound of types; Section 0) which derives the
resulting type and inserts possibly needed type conversions. This reduces the number of needed rules for
binary operators to two: one for Integer results and one for Real results. The parameterized abstract
syntax makes it possible to place argument evaluation and type handling for binary operators in only
those two rules.

2.6.3.1 Expression Evaluation

Compared to the Assignments language, the eval function is still quite similar. Values are now tagged
by either 1NTval or REALval. We have inserted one additional rule for Real constants, and collected
al binary operators together into two rules, and unary operators into two additional rules. The rules for
assignments and variable identifiers are the same as before.

We show the application of some rulesto asmall example, e.g:

44 + 3.14

The abstract syntax representation will be:
BINARY ( INT (44), ADD, REAL(3.14))
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On calling eval, thiswill match the rule for binary operators and real number results. The first argument
will be evaluated to INTval (44), bound to v1, and the second argument to REALval (3.14) bound to
v2. The call to type 1ub will insert a conversion of the first argument from Integer to areal vaue,
giving the result REAL2 (44.0, 3.14), which aso causes x to be bound to 44 .0 and y to be bound to
3.14. Findly, apply real binop will apply the operator ADD to the two arguments, returning the
result 47.14, which in the form REALval (47.14) together with the unchanged environment is the

result of the call to function eval.

function eval

"Evaluation of an expression in exp in current environment in env, returning

a possibly updated environment out env, and an out value which can be
either an integer- or real-typed constant value, tagged with constructors
INTval or REALval, respectively.
Note: there will be no type error if a real value is assigned to an
existing integer-typed variable, since the variable will change
type when it is updated"
input Env in env;
input Exp in_exp;
output Env out_ env;
output Value out_value;
algorithm
(out_env,out_value) :=
matchcontinue (in env,in exp)
local
Env env,env2,envl;
Integer ival,Xx,y,z;
Real rval;
Value value,vl,v2;
Ident id;
Exp el,e2,e,exp;
BinOp binop; UnOp unop;
case (env,INT(ival)) then (env,INTval (ival)) ;
case (env,REAL(rval)) then (env,REALval (rval)) ;
case (env,IDENT(id)) " wvariable id "
equation
(env2,value) = lookupextend(env, id); then (env2,value);
case (env,BINARY (el,binop,e2)) "integer integer binop integer"
equation
(envl,vl) = eval(env, el);
(env2,v2) = eval(env, e2);
INT2 (x,y) = type lub(vl, v2);
z = apply int binop(binop, x, y); then (env2,INTval(z));

case (env,BINARY (el,binop,e2)) "integer/real real binop integer/real"

local Real x,y,z;
equation

(envl,vl) = eval(env, el);

(env2,v2) eval (env, e2);

REAL2 (x,y) = type lub(vl, v2);

z = apply_real binop(binop, x, y); themn (env2,REALval(z));

case (env,UNARY (unop,e)) "integer unop exp"

equation

(envl, INTval (x)) = eval (env, e);

y = apply int unop(unop, x); then (envl, INTval(y));



Chapter 2 Expression Evaluators and Interpreters in Meta-Modelica 63

case (env,UNARY (unop,e)) "real unop exp"
local Real x,y;
equation
(envl,REALval (x)) = eval (env, e);
y = apply real unop(unop, x); then (envl,REALval(y));
case (env,ASSIGN(id,exp)) "id := exp; eval of an assignment node returns
the updated environment and the assigned value."
equation
(envl,value) = eval (env, exp);
env2 = update(envl, id, value); then (env2,value);
end match;
end eval;

2.6.3.2 Type Lattice and Least Upper Bound

One general way to partially avoid the potential “combinatorial explosion” of semantic rules for different
combinations of operators and types is to introduce a type lattice. The trivial type lattice for real and
integer (i.e., Real and Integer) is shown in Figure 2-4 below, using the partial order that Real is
greater than Integer since integers always can be converted to reals, but not the other way around.

Real «—— Iub

Integer «—— glb

Figure 2-4. Simple type lattice for typesinteger and real. The least upper bound (lub) is real; the greatest
lower bound (glb) isinteger.

We are however more interested in combinations of two argument types for binary operators, for which
the following four rules apply:

® Real OPpReal =>Real

Real Op Integer => Real
Integer OPp Real =>Real
Integer OpP Integer => Integer

These rules are represented by the function type 1ub, introduced below. The function is in fact doing
two jobs simultaneously. It is computing the least upper bound of pairs of types, represented by the
constructors INT2 or REAL2. Additionally, it performs type conversions of the arguments as needed, to
ensure that both arguments become either 1nteger (for INT2) or Real (for REAL2). Thus we will need
only two sets of rules for each operator, covering the cases when both arguments are Integer or both
arguments are Real.
function type lub "Type least upper bound, e.g. real & integer gives real"
input Value in valuel;
input Value in value2;
output Ty2 out_ty2;
algorithm
out_ty2:=
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match (in valuel,in value2)
local
Integer x,y;
Real x2,y2;
case (INTval (x),INTval(y)) then INT2((x,Vy));
case (INTval (x),REALval(y))
local Real y;
equation
X2 = int real(x); then REAL2((x2,y));
case (REALval (x),INTval (y))
local Real x;
equation
y2 = int real(y); then REAL2((x,y2));
case (REALval (x),REALval (y))
local Real x,y; then REAL2((x,Vy));
end match;
end type lub;

2.6.3.3 Binary and Unary Operators

The essential properties of binary arithmetic operators are described below in the functions
apply int binop and apply real binop, respectively. Argument evaluation has been taken care
of by the two rulesfor binary operators in the function eval, and thus need not be repeated for each rule.
The type conversion needed for some combinations of Real and Integer values have aready been
described by the function type 1ub, which reduces the number of cases that need to be handled for
each operator to two: either 1Integer vaues (apply int binop) Or Real values
(apply real binop).
function apply int binop "Apply integer binary operator"
input BinOp in binopl;
input Integer in_integer2;
input Integer in integer3;
output Integer out_integer;
algorithm
out_integer:=
match (in binopl,in integer2,in integer3)
local Integer Xx,y;

case (ADD(),x,y) then x + y;

case (SUB(),x,y) then x - vy;

case (MUL(),x,y) then x*y;
0,x,v)

case (DIV
end match;
end apply int binop;

' X, then x/y;

function apply real binop "Apply real binary operator"
input BinOp in binopl;
input Real in real2;
input Real in real3;
output Real out real;
algorithm
out real:=
match (in _binopl,in real2,in real3)
local Real x,y;
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case (ADD(),x,y) then x +. vy;
case (SUB(),x,y) then x +. vy;
case (MUL(),x,y) then x*.y;
case (DIV(),x,y) then x/.y;

end match;
end apply real binop;

There is only one unary operator, unary minus, in the current language. Thus the functions
apply int unop and apply real unop for operations on integer and real values, respectively,
become rather short.

function apply int unop "Apply integer unary operator"
input UnOp in unop;
input Integer in integer;
output Integer out integer;
algorithm
out integer:=
match (in_unop,in integer)
local Integer x;
case (NEG(),x) then -x;
end match;
end apply int unop;

function apply real unop "Apply real unary operator"
input UnOp in_unop;
input Real in real;
output Real out_real;
algorithm
out_real:=
match (in unop,in real)
local Real Xx;
case (NEG(),x) then -.x;
end match;
end apply real unop;

2.6.34 Functions for Lookup and Environment Update

We give the usua functions for lookup and environment update. Stored values may be either integers,
tagged by 1NTval (), or real numbers tagged by REALval (). However, there is no declaration of types
or static typing of variablesin thislanguage. A variable getsitstype when it is assigned a value.

function lookup "lookup returns the value associated with an identifier.
If no association is present, lookup will fail."
input Env env;
input Ident id;
output Value out_value;
algorithm
out_value :=
match (env, id)
local Ident id2,id; Value value; Env rest;
case ((id2,value) :: rest, id) then
if id==id2 then value // id first in list



66 Peter Fritzson Language Modeling and Symbolic Transformations with Meta-Modelica

else lookup (rest,id) ; // id in rest of list
end match;
end lookup;
function lookupextend "lookupextend returns the value associated with

an identifier and an updated environment.
If no association is present, lookupextend will fail."
input Env in env;
input Ident in ident;
output Env out_ env;
output Value out value;
algorithm
(out_env,out value) :=
matchcontinue (in env,in ident)
local
Value value; Env env; Ident id;
case (env,id) "Return value of id in env.
If id not present, add id and return 0"

equation
failure (v = lookup(env, id));
value = INTval(0); then ((id,value) :: env,value);
case (env,id)
equation
value = lookup(env, id); then (env,value);

end match;
end lookupextend;

function update '"update returns an updated environment with a new
(id,value) association"
input Env env;
input Ident id;
input Value value;
output Env out_ env;
algorithm
out_env := (id,value) :: env;
end update;

end AssignTwoType;

2.7 A Modular Specification of the PAMDECL Language

PAMDECL is PAM extended with declarations of variables and two types. Integer and Real. Thusit
combines the properties of both PAM and AssignTwoType. The specification is modular, including
separate packages for different aspects.

In general, Modelica packages facilitates writing modular specifications, where each package
describes some related aspects of the specified language. Thus, it is common to specify the abstract
syntax in a special module and other aspects such as evaluation, trandlation, or type elaboration in
separate packages.
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We present a modularized version of the complete abstract syntax and semantics for PamDecl below,
using five modules: Main for the main program, Scanparse for scanning and parsing, Absyn for
abstract syntax, Env for variable bindings and environment handling, and val for evaluation.

A package must import definitions from other modules in order to reference items declared in those
modules. References to names defined in other modules must be prefixed by the defining module name
followed by a dot, as in Absyn.ASSIGN () when referencing the assieN constructor from module
Absyn.

2.71 The Main Module (?? update)

The main module implements the prompt-read-eval-print loop as the function evalprog, which accepts
the initial environment initial containing only true and false exported from module Eval, and loops
indefinitely??.
The main module of the PamDecl evaluator calls scanparse to read and parse text from the
standard input, and Eval to evaluate and print the results. (?? update ??)
package Main

import PamDecl.ScanParse;
import PamDecl.Eval;

type StringList = list<Strings;
function mainprogram

input StringList;
output Boolean dummy;

algorithm
ast := ScanParse.scanparse() ;
ast := Eval.evalprog(ast) ;
dummy := true; //?? should really call mainprogram recursively to have a loop

??

end mainprogram;

end Main;

2.7.2 ScanParse
The ScanParse package contains only one function scanparse, which is an external function implemented
in C to scan and parse text written in the PamDecl language.

package ScanParse
import PamDecl.Absyn;

function scanparse
output Absyn.Prog ast;
external "C";

end ScanParse;
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2.7.3 Absyn

Add more explanations??

package Absyn "Package for abstract syntax of PamDecl"

uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
end BinOp;

uniontype UnOp
record NEG end NEG;
end UnOp;

uniontype RelOp
record LT end LT;
record LE end LE;
record GT end GT;
record GE end GE;
record NE end NE;
record EQ end EQ;

end RelOp;

type Ident = String;

uniontype Expr
record INTCONST Integer x1; end INTCONST;
record REALCONST Real x1; end REALCONST;
record BINARY Expr x1; BinOp x2; Expr x3; end BINARY;
record UNARY UnOp x1; Expr x2; end UNARY;
record RELATION Expr x1; RelOp x2; Expr x3; end RELATION;
record VARIABLE Ident x1; end VARIABLE;

end Expr;

type StmtList = list<Stmts>;

uniontype Stmt
record ASSIGN Ident x1; Expr x2; end ASSIGN;
record WRITE Expr x1; end WRITE;
record NOOP end NOOP;
record IF Expr x1; StmtList x2; StmtList x3; end IF;
record WHILE Expr x1; StmtList x2; end WHILE;
end Stmt;

type StmtList = list<Stmts>;
uniontype Decl
record NAMEDECL Ident x1; Ident x2; end NAMEDECL;

end Decl;

type DeclList = list<Decls>;
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uniontype Prog
record PROG DeclList x1; StmtList x2; end PROG;
end Prog;

end Absyn;

274 Env

Add more explanations??

package Env "Package for Environment types and functions of PamDecl"
type Ident = String;

uniontype Value "Three types of values can be handled by the semantics"
record INTVAL Integer x1; end INTVAL;
record REALVAL Real x1; end REALVAL;
record BOOLVAL Boolean x1; end BOOLVAL;

end Value;

uniontype Value2 "Values for real-integer type lattice conversions"
record INTVAL2 Integer x1; Integer x2; end INTVAL2;
record REALVAL2 Real x1; Real x2; end REALVAL2;

end Value2;

uniontype Type "Three kinds of types can be declared"
record INTTYPE end INTTYPE;
record REALTYPE end REALTYPE;
record BOOLTYPE end BOOLTYPE;

end Type;

uniontype Bind "Type for associating identifer, type, and value"
record BIND Ident id; Type ty; Value val; end BIND;
end Bind;

type Env = list<Binds>;

// Initial environment of predefined constants false and true
constant Bind initial = list(

BIND(("false",BOOLTYPE () ,BOOLVAL (false))),
BIND( ("true",BOOLTYPE () ,BOOLVAL (true)))) ;

function lookup "lookup returns the value associated with an identifier.

If no association is present, lookup will fail."
input Env in env;
input Ident in_ident;
output Value out value;
algorithm
out value:=
match (in _env,in ident)
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local
Ident id2,1id;
Value value; Env rest;

case (BIND(id2, ,value) :: rest, id) then
if id==id2 then value // id first in list
else lookup (rest,id) ; // 1d is hopefully in rest of list
end match;
end lookup;
function lookuptype "lookuptype returns the type associated with an identifier.

If no association is present, lookuptype will fail."

input Env in env;
input Ident in ident;
output Type out_ type;
algorithm
out_type:=
match (in_env,in ident)
local
Ident id2,id;
Type ty; Env rest;

case (BIND(id2,ty, ) :: rest, id) then
if id==1id2 then ty // id first in list
else lookuptype (rest,id) ; // id is hopefully in rest of list

end match;
end lookuptype;

function update '"update returns an updated environment containing a
typed variable-type-value association BIND (id, type,value)"
input Env env;
input Ident id;
input Type ty;
input Value value;
output Env out_env;
algorithm
out_env := BIND((id, ty,value) :: env)
end update;

end Env;

2.7.5 Eval

Add more explanations ??

package Eval

import PamDecl.Absyn;
import PamDecl.Env;

function evalprog "Evaluating a program means to evaluate the list of
statements with an initial environment containing just standard definitions."
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input Absyn.Prog in prog;
output Boolean dummy;
algorithm
dummy : =
match (in_ prog)
local
type Env_BindList = list<Env.Bind>;
Env_BindList envl;
case Absyn.PROG (decls, stmts)

equation
envl = Env.initial;
env2 = eval decl list(envl, decls);
env3 = eval stmt list (env2, stmts); then true;

end match;
end evalprog;

/* Evaluation of statements */

function eval stmt "Evaluate a single statement. Pass environment forward."
input Env.Env in_env;
input Absyn.Stmt in stmt;
output Env.Env out_env;
algorithm
out_env:=
matchcontinue (in env,in stmt)
local
type Env_BindList = list<Env.Binds>;
Env.Value v;
Env.Type ty;
Env_BindList env,envl;
String id;
Absyn.Expr e;
case (env,Absyn.ASSIGN(id,e))
equation
v = eval expr(env, e);
ty = Env.lookuptype (env, id);
v2 = promote (v, ty);
envl = Env.update(env, id, ty, v2); then envl;
case (env,Absyn.ASSIGN(id,e))
equation
v = eval expr(env, e);
print ("Error: assignment mismatch or variable missing\n"); then fail();
case (env,Absyn.WRITE (e))
equation
v = eval expr(env, e);
print value(v); then env;

case (env,Absyn.NOOP()) then env;
case (env,Absyn.IF(e,c, ))
equation
Env.BOOLVAL (true) = eval expr(env, e);
envl = eval stmt list(env, c); then envl;

case (env,Absyn.IF(e, ,a))
equation
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Env.BOOLVAL (false) = eval expr(env, e);
envl = eval stmt list(env, a); then envl;
case (env,Absyn.WHILE (e, ss))

equation
Env.BOOLVAL (true) = eval expr(env, e);
envl = eval_stmt_list (env, ss);
env2 = eval stmt (envl, Absyn.WHILE((e,ss))); then env2;
case (env,Absyn.WHILE (e, ss))
equation
Env.BOOLVAL (false) = eval expr(env, e); then env;
case (env,Absyn.IF(e, ,a))
equation
Env.BOOLVAL (false) = eval expr(env, e);
envl = eval stmt list(env, a); then envl;
case (env,Absyn.WHILE (e, ss))
equation
Env.BOOLVAL (true) = eval expr(env, e);
envl = eval stmt list(env, ss);
env2 = eval_ stmt(envl, Absyn.WHILE((e,ss))); then env2;
case (env,Absyn.WHILE (e, ss))
equation
Env.BOOLVAL (false) = eval expr(env, e); then env;

end match;
end eval stmt;

function eval stmt list "Evaluate a list of statements in an environment.
Pass environment forward"
input Env.Env in_env;
input Absyn.StmtList in_stmtlist;
output Env.Env out env;
algorithm
out_env:=
match (in_env,in stmtlist)
local
type Env BindList = list<Env.Bind>;
Env_BindList env;
case (env, {}) then env;

case (env, s :: ss)
equation
envl = eval stmt (env, s);
env2 = eval stmt list(envl, ss); then env2;

end match;
end eval stmt_list;

/* Evaluation of Declarations */

function eval decl "Evaluate a single declaration. Pass environment forward."
input Env.Env in_env;
input Absyn.Decl in decl;
output Env.Env out_env;
algorithm
out_env:=
match (in _env,in decl)
local
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type Env_BindList = list<Env.Bind>;
Env_BindList env2,env;
String var;

case (env,Absyn.NAMEDECL (var, "integer"))

equation
env2 = Env.update (env, var, Env_ INTTYPE, Env.INTVAL(O)); then env2;
case (env,Absyn.NAMEDECL (var, "real"))
equation
env2 = Env.update(env, var, Env_REALTYPE, Env.REALVAL(0.0)); then env2;
case (env,Absyn.NAMEDECL (var, "boolean"))
equation

env2 = Env.update(env, var, Env_BOOLTYPE, Env.BOOLVAL (false)) ;

then env2;
end match;
end eval decl;

function eval decl list
"Evaluate a list of declarations, extending the environent."
input Env.Env in_env;
input Absyn.DeclList in decllist;
output Env.Env out_env;
algorithm
out_env:=
match (in_env,in decllist)
local
type Env_BindList = list<Env.Bind>;
Env_BindList env;
case (env,nil) then env;

case (env,s :: ss)
equation
envl = eval decl(env, s);
env2 = eval decl list(envl, ss); then env2;

end match;
end eval decl list;

function eval expr "Evaluate a single expression in an environment. Return

the new value. Expressions do not change environments. "

input Env.Env in _env;
input Absyn.Expr in_ expr;
output Env.Value out value;
algorithm
out value:=
matchcontinue (in_env,in_expr)
local
type Env_BindList = list<Env.Bind>;
Env_BindList env;
Env.Value vl1,v2;
Real cl,c2,v3;
Absyn.Expr el,e2;
Absyn.BinOp binop;
Absyn.UnOp unop;
Absyn.RelOp relop;
String id;
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case (env,Absyn.INTCONST (v)) then Env.INTVAL (V) ;
case (env,Absyn.REALCONST (v)) then Env.REALVAL (V) ;

case (env,Absyn.BINARY (el,binop,e2)) "Binary operators"
equation
vl = eval expr(env, el);
v2 = eval_expr(env, e2);
Env.INTVAL2 (cl,c2) = binary lub(vl, v2);

v3 = apply int binary(binop, cl, c2); then Env.INTVAL(v3);
case (env,Absyn.BINARY (el,binop,e2))

equation
vl = eval expr(env, el);
v2 = eval expr(env, e2);
Env.REALVAL2 (cl,c2) = binary lub(vl, v2);
v3 = apply real binary(binop, cl, c2); then Env.REALVAL(v3) ;
case (_,Absyn.BINARY( , , ))
equation
print ("Error: binary operator applied to invalid type(s)\n");
then fail();
case (env,Absyn.UNARY (unop,el)) "unary operators"
local Real v1,v2;
equation
Env.INTVAL(v1l) = eval expr(env, el);

v2 = apply int unary(unop, v1l); then Env.INTVAL(v2);
case (env,Absyn.UNARY (unop,el))

equation
Env.REALVAL (vl) = eval expr(env, el);
v2 = apply real unary(unop, vl1); then Env.REALVAL(v2) ;
case (_,Absyn.UNARY( , ))
equation
print ("Error: unary operator applied to invalid type\n"); then fail();
case (env,Absyn.RELATION (el,relop,e2)) "relational operators"
local Boolean Vv3;
equation
vl = eval expr(env, el);
v2 = eval expr(env, e2);
Env.INTVAL2 (cl,c2) = binary lub(vl, v2);

v3 = apply int relation(relop, cl, c2); then Env.BOOLVAL(v3) ;
case (env,Absyn.RELATION (el,relop,e2))

equation
vl = eval expr(env, el);
v2 = eval expr(env, e2);
Env.REALVAL2 (cl,c2) = binary lub(vl, v2);
v3 = apply real relation(relop, cl, c2); then Env.BOOLVAL (v3) ;
case (_,Absyn.RELATION( , , ))
equation
print ("Error: relation operator applied to invalid type(s)\n") ;
then fail();
case (env,Absyn.VARIABLE (id)) "Variable identifier lookup"
equation

v = Env.lookup(env, id); then v;
case (env,Absyn.VARIABLE (id))
equation
failure(v = Env.lookup(env, id));
print ("Error: undefined variable (");
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print (id) ;
print (")\n"); then fail();
end matchcontinue;
end eval expr;

function binary lub "Type lattice; int --> real"
input Env.Value in valuel;
input Env.Value in value2;
output Env.Value2 out value2;
algorithm
out value2:=
match (in valuel,in value2)
local Real v1,v2;
case (Env.INTVAL(vl),Env.INTVAL(v2)) then Env.INTVAL2((vl,v2));
case (Env.REALVAL(vl),Env.REALVAL(v2))
local Integer vl; then Env.REALVAL2 ((vl,v2));
case (Env.INTVAL(vl),Env.REALVAL(v2))
local Integer v2;
equation
cl = int real(vl); then Env.REALVAL2((cl,v2));
case (Env.REALVAL(vl),Env.INTVAL(v2))
equation
c2 = int_real(v2); then Env.REALVAL2((vl,c2));
end match;
end binary lub;

function promote "Promotion and type check "
input Env.Value in value;
input Env.Type in type;
output Env.Value out value;
algorithm
out value:=
match (in value, in_ type)
local Integer v;

case (Env.INTVAL(v),Env.INTTYPE()) then Env.INTVAL (V) ;
case (Env.REALVAL(v),Env.REALTYPE()) then Env.REALVAL (V) ;
case (Env.BOOLVAL(v),Env.BOOLTYPE()) then Env.BOOLVAL (V) ;
case (Env.INTVAL(v),Env.REALTYPE())

equation

v2 = int _real(v); then Env.REALVAL(v2) ;
end match;
end promote;

/* Auxiliary functions for applying the binary operators */

function apply int binary "Apply integer binary operators"
input Absyn.BinOp in binopl;
input Integer in_integer2;
input Integer in integer3;
output Integer out_integer;
algorithm
out_integer:=
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match (in binopl,in integer2,in integer3)
local Integer vl1,v2;
case (Absyn.ADD(),v1l,v2) then vl + v2;
case (Absyn.SUB(),vl,v2) then vl - v2;
case (Absyn.MUL(),v1l,v2) then v1*v2;

case (Absyn.DIV(),vl,v2) then vl1/v2;
end match;

end apply int binary;

function apply real binary "Apply real binary operators"
input Absyn.BinOp in binopl;
input Real in real2;
input Real in real3;
output Real out real;
algorithm
out real:=
match (in binopl,in real2,in real3)
local Real v1,v2;

case (Absyn.ADD(),v1l,v2) then vl +. Vv2;

case (Absyn.SUB(),vl,v2) then vl -. v2;

case (Absyn.MUL(),vl,v2) then vl *. v2;
()

case (Absyn.DIV
end match;
end apply real binary;

,vl,v2) then vl1 /. v2;

/* Auxiliary functions for applying the unary operators */

function apply int unary "Apply integer unary operators"
input Absyn.UnOp in_ unop;
input Integer in_integer;
output Integer out integer;
algorithm
out integer:=
match (in_unop,in integer)
local Real v1;
case (Absyn.NEG(),vl) then -v1;
end match;
end apply int unary;

function apply real unary "Apply unary real operators"
input Absyn.UnOp in_ unop;
input Real in real;
output Real out real;
algorithm
out_real:=
match (in unop,in real)
local Integer vl;
case (Absyn.NEG(),vl) then -. v1;
end match;
end apply real unary;

/* Auxiliary functions for applying the relational operators */



Chapter 2 Expression Evaluators and Interpreters in Meta-Modelica 77

function apply int relation "Apply integer relational operators"
input Absyn.RelOp in relopl;
input Integer in integer2;
input Integer in integer3;
output Boolean out boolean;
algorithm
out boolean:=
match (in relopl,in integer2,in integer3)
local Integer vl1,v2;

case (Absyn.LT(),vl,v2) then (vl < v2);
case (Absyn.LE(),vl,v2) then (vl <= v2);
case (Absyn.GT(),vl,v2) then (vl > v2);
case (Absyn.GE(),vl,v2) then (vl >= v2);
case (Absyn.NE(),vl,v2) then (vl <> v2);
case (Absyn.EQ(),vl,v2) then (vl == v2);
end match;
end apply int relation;
function apply real relation "Apply real relational operators"

input Absyn.RelOp in relopl;

input Real in_real2;

input Real in real3;

output Boolean out boolean;
algorithm

out_boolean:=

match (in relopl,in real2,in real3)

local Real v1,v2;

case (Absyn.LT(),v1l,v2) then (vl <. Vv2);
case (Absyn.LE(),vl,v2) then (vl <=. v2);
case (Absyn.GT(),vl,v2) then (vl >. v2);
case (Absyn.GE(),vl,v2) then (vl >=. v2);
case (Absyn.NE(),vl,v2) then (vl <>. v2);
case (Absyn.EQ(),vl,v2) then (vl ==. v2);
end match;
end apply real relation;
function print value "Evaluate the 'write' statement, i.e., print a value"

input Env.Value in value;
output Boolean dummy;
algorithm
dummy : =
match (in_value)
local
String vstr;
Real v;
case Env.INTVAL(v)
equation
vstr = int_string(v);
print (vstr) ;
print ("\n"); then true;
case Env.REALVAL (V)
equation
vstr = real string(v);
print (vstr) ;
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print ("\n"); then true;
case Env.BOOLVAL (true)
equation
print ("true\n"); then true;
case Env.BOOLVAL(false)
equation
print ("false\n"); then true;
end match;
end print value;

end Eval;

2.8 Summary

In this chapter we present a series of small example languages to introduce M eta-M odelica together with
techniques for programming language specification. We start with the very simple Expl language,
containing simple integer arithmetic and integer constants. Then follows a short section on the
parameterized style of abstract syntax.The Exp2 specification describes the same language as Expl but
shows the consequences of using parameterized abstract syntax. The Assignments language extends
Expl with variables and assignments, thus introducing the concept of environment.

The small Pascal-like PAM language further extends our toy language by introducing control
structures such as if-then-else statements, loops (but not goto), and simple input/input. However, PAM
does not include procedures and multiple variable types. Only integer variables are handled by the
produced evaluator. PAM also introduces relational expressions. Parameterized abstract syntax isused in
the specification.

Our next language, called AssignTwoType, is designed to introduce multiple variable types in the
language. It is the same language as Assignments, but adding real values and variables, and employing
the parameterized style of abstract syntax. The concept of type lattice is also introduced in this section.

Next, we present the concept of Modelica packages, to show how different aspects of a specification
such as abstract syntax, environment handling, evaluation rules, etc. can be separated into different
packages. Such modularization is especially important for large specifications.

Finally, we combine the constructs of the PAM language, the multiple variable types of
AssignTwoType and the usage of Modelica packages, to produce a modular specification of a language
called PAMDECL, which is PAM extended with declarations and multiple (integer and real) variable
types.

The style of all specifications so far have been “evaluative” in nature, aiming at producing
interpreters. In Chapter 3 we will present “trandational” style specifications, from which compilers can
be generated.

(BRK)
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Chapter 3

Translational Semantics

A compiler is atrangator from a source language to atarget language. Thus, it would be rather natural if
the idea of trandation is somehow reflected in the semantic definition of a programming language. In
fact, the meaning of a programming language can be precisely described by defining the meaning
(semantics) of the source language in terms of a trandation to some target (object) language, together
with a definition of the semantics of the object language itself, see Figure 3-1. This is caled a
tranglational semantics of the programming language.

Interpretive semantics Trandational semantics
J ——————————— Source program J ——————————— Source program
Interpretive Trandational
semantics of semantics
source I anguage source—»-object
primitives
,,,,,,, ---. Object program
A 4
Interpretive
semantics of
object language
primitives

Figure 3-1. A comparison between an interpretive semantics and tranglational semantics. In an
interpretive semantics, the computational meaning of source language primitives are directly defined, e.g.
using Meta-Modelica. In atrandational semantics, the meaning is defined as a translation to object
language primitives, which in turn are defined using an interpretive semantics.

However, so far in this text we have primarily focused on how to define the semantics of programming
languages directly in terms of evaluation of MetaModelica primitives. That style of semantics
specification, called interpretive semantics, can be used for automatic generation of interpreters which
interpret abstract syntax representations of source programs. Analogously, a translational semantics can
be used for the generation of a compiler from a source language to a target language, as briefly
mentioned in Section 1.2.
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There are also techniques based on partial evauation [refs??see big book from 92 or 94], for the
generation of compilers from certain styles of interpretive semantics. However, these techniques often
give unpredictable results and performance problems. Therefore, in the rest of this text we will
exclusively use tranglational semantics as a basis for practical compiler generation.

In fact, writing trandational semantics is usually not harder than writing interpretive semantics. One
just has to keep in mind that the semantics is described in two parts. the meaning of source language
primitives in terms of (a trandation to) target language primitives, and the meaning of the target
primitives themselves. A simplified picture of compiler generation from translational semantics is shown
in Figure 3-2.

Formalism Generator tool Compiler phase Program representation

Regular Lex
expressions ' Scanner
| ~~~~~~~ ---. Token sequence
BNF ~
grammar __ Yacc | Parser
,,,,,,, ---- Abstract syntax
. b 4
maltgl\r/lajL semantics . Trans. Semantics
- Tranglation to
object code
,,,,,,,,,,, Machine code
v

Figure 3-2. Simplified version of compiler generation based on trandlational semantics. The semantics of
alanguage is specified directly in terms of object code primitives. In comparison to Figure 1-1, the
optimization and final code generation phases have been excluded.

3.1 Translating PAM to Machine Code

As an introduction trandational semantics, we will specify the trandational semantics of a simple
language, with the goa of generating a compiler from this language to machine code. The simple PAM
language has aready been described, and an interpretive semantics has been given in Section 2.5. This
makes it a natural first choice for a trandational semantics. In Chapter 3 of [ref Pagan], an attribute
grammar style trandational semantics of PAM can be found. It is instructive to compare the attribute
grammar specification to the Meta-Modelica style trandational semantics of PAM described in this
chapter. The target assembly language described in the next section has been chosen to be the same asin
[ref Pagan] to simplify parallel study.
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3.1.1 A Target Assembly Language

In the trandational approach, a target language for the trandation process is needed. Here we choose a
very simple assembly (machine code) language, which is similar to realistic assembly languages, but
very much simplified. For example, this machine has only one register (an accumulator) and much fewer
instructions than commercial microprocessors. Still, it is complete enough to reflect most properties of
realistic assembly languages. There are 17 types of instructions, listed below:

LOAD Load accumulator

STO Store

ADD Add

SUB Subtract

MULT Multiply

DIV Divide

GET Input a value

PUT Output a value

J Jump

JN Jump on negative

JP Jump on positive

JINZ Jump on negative or zero
JPZ Jump on positive or zero
JNP Jump on negative or positive
LAB Label (no operation)
HALT Halt execution

All instructions, except HALT, have one operand. For example, LoaD X, will load the variable at address
x into the accumulator. Conversely, sTo x will store the current value in the accumulator at the address
specified by x. The instructions App, sSUB, MULT, and DIV perform arithmetic operations on two values,
the accumulator value and the operand value. Operands can be integer constants or symbolic addresses
of variables or temporaries (T1,T2,...), or symbolic labels representing code addresses. Instructions
which compute aresult always store it in the accumulator. For example, SuB x means that accumulator-x
is computed, and stored in the accumulator.

The input/output instructions GeT x and puT x will input and output a vaue to variable x,
respectively. There are 5 conditional jump instructions and one unconditional jump. The conditional
jumps are: JN,JP,JNZ,JPZ, and gnp which jump to alabel (address) conditionally on the current valuein
the accumulator. The g 1.1 instruction is an example of an unconditional jump to the label 1. The LaB
pseudo instruction is no instruction, it just declares the position of alabel in the code. Findly, the HALT
instruction stops execution.

3.1.2 A Translated PAM Example Program

Before going into the details of the trandlational semantics, it is instructive to take a look at the
tranglation of asmall PAM example PAM program, shown below:

read x,V;
while x<> 99 do
ans := (x+1) - (y / 2);

write ans;
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read x,Vy;
end

This example program is translated into the following assembly code, presented in its textual
representation:

GET x STO T1
GET y LOAD TO
L2 LAB SUB T1
LOAD x STO ans
SUB 99 PUT ans
JZ L3 GET x
LOAD x GET v
ADD 1 J L2
STO TO L3 LAB
LOAD vy HALT
DIV 2

However, to simplify and structure the tranglational semantics of PAM, the target language will be a
structured representation of the assembly code, called MCode, which is defined in Meta-Modelica. The
M Code representation of the transated program, as shown below, is finaly converted into the textual
representation previously presented.

All MCode operators start with the letter M. Binary arithmetic operators are grouped under the node
MB, and conditional jump operators under mJ. There are four kinds of operands, indicated by the
constructors 1 (Identifier), L (Label), N (Numeric integer), and T (for Temporary).

MGET ( I(x) ) MSTO ( T(2) )
MGET ( I(y) ) MLOAD( T (1) )
MLABEL( L(1) ) MB (MSUB, T (2) )
MLOAD( I(x) ) MSTO ( I(ans) )
MB (MSUB, N (99) ) MPUT ( I(ans) )
MJ (MJZ, L(2) ) MGET ( I(x) )
MLOAD( I (x) ) MGET ( I(y) )
MB (MADD,N (1) ) MJMP ( L(1) )
MSTO ( T(1) ) MLABEL( L(2) )
MLOAD( I(y) ) MHALT

MB (MDIV,N(2) )

3.1.3  Abstract Syntax for Machine Code Intermediate Form

The abstract syntax of the structured machine code representation, called MCode, is defined in Meta-
Modelica below. We group the four arithmetic binary operators MADD, MSUB, MMULT and MDIV in the
union type MBinOp. The six conditional jump instructions MJMP,MJP,MJINMJINZMJIPZMJIZ are
represented by constructors in the union type MConddmp. As usual, this grouping of similar constructs
simplifies the semantic description. There are four kinds of operands: identifiers, numeric constants,
labels, and temporaries. For these we have defined the type aliases MLab, MTemp, MIdent, MidTemp in
order to make the trandational semantics more readable.
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The constructors MB and mMJ are used for binary arithmetic instructions and conditional jumps,
respectively. The first argument to these constructors indicates the specific arithmetic operation or
conditional jump.

package MCode

uniontype MBinOp
record MADD end MADD;
record MSUB end MSUB;
record MMULT end MMULT;
record MDIV end MDIV;
end MBinOp;

uniontype MCondJmp
record MINP end MJNP;
record MJP end MJP;
record MJN end MJN;
record MJINZ end MJNZ;
record MJPZ end MJPZ;
record MJZ end MJZ;

end MCondJmp;

uniontype MOperand
record I Id x1; end I;
record N Integer x1; end N;
record T Integer x1; end T;
end MOperand;

type MLab = MOperand; // Label
type MTemp = MOperand; // Temporary
type MIdent = MOperand; // Identifier

type MIdTemp = MOperand; // Id or Temporary

uniontype Mcode

record MB MBinOp x1; Moperand x2; end MB; /* Binary arith ops */
record MJ MConddmp x1; MLab x2; end MJ; /* Conditional jumps */
record MJMP Mlab x1; end MJMP;

record MLOAD MIdTemp x1; end MLOAD;
record MSTO MIdTemp x1; end MSTO;
record MGET MIdent x1; end MGET;
record MPUT MIdent x1; end MPUT;
record MLABEL MLab x1; end MLABEL;
record MHALT end MHALT;

end MCode;

end Mcode;

3.1.4  Concrete Syntax of PAM
The concrete syntax of PAM has aready been described in Section 2.5.2.
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3.1.5  Abstract Syntax of PAM

The abstract syntax of PAM is identical to that described in Section 2.5.3. It is repeated here for
convenience.

package Absyn "Parameterized abstract syntax for the PAM language"
type Ident = String;

uniontype BinOp
record ADD end ADD;
record SUB end SUB;
record MUL end MUL;
record DIV end DIV;
end BinOp;

uniontype RelOp
record EQ end EQ;
record GT end GT;
record LT end LT;
record LE end LE;
record GE end GE;
record NE end NE;

end RelOp;

uniontype Exp
record INT Integer x1; end INT;
record IDENT Ident id; end IDENT;
record BINARY Exp x1; BinOp op; Exp x2; end BINARY;
record RELATION Exp x1; RelOp op; Exp x3; end RELATION;
end Exp;

type IdentList = list<Ident>;
uniontype Stmt

record ASSIGN Ident id; Exp x2; end ASSIGN; "Id := Exp"
record IF Exp x1; Stmt x2; Stmt x3; end IF; "if Exp then Stmt.."
record WHILE Exp x1; Stmt x2; end WHILE; " while Exp do Stmt"
record TODO Exp x1; Stmt x2; end TODO; " to Exp do Stmt..."
record READ IdentList x1; end READ; "read idl,id2,..."
record WRITE IdentList x1; end WRITE; "write idl,id2,.."
record SEQ Stmt x1; Stmt x2; end SEQ; "Stmtl; Stmt2"
record SKIP end SKIP; " ; empty stmt"

end Stmt;

end Absyn;

3.1.6 Translational Semantics of PAM

The trandational semantics of PAM consists of several separate parts. First we describe the trandation of
arithmetic expressions, which is the simplest case. Then we turn to comparison expressions which occur
in the conditional part of if-statements and while-statements. Such comparisons are translated into
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conditional jump instructions. Next, the translation of all statement typesin PAM are described together
with the trandation of a whole program. Finally, a Meta-Modelica program for emitting assembly text
from the structured M Code representation is presented, although thisis not really part of the trandlational
semantics of PAM.

3.1.6.1 Arithmetic Expression Translation

The trandation of binary arithmetic expressions is specified by the trans expr relation together
with two small help functions trans binop and gentemp. The trans binop function just trandates
the four arithmetic node types in the abstract syntax into corresponding M Code node types. Each call to
the gentemp generator function produces a unique label of type 1.1, 1.2, €tc.

The trans expr function contains essentially all semantics of PAM arithmetic expressions. The
first two axioms handle the simple cases of expressions which are either an integer constant or a
variable. The generated code is in the form of alist of MCode tuples, as is reflected in the signature of
the trans_expr function below:

function trans expr "Arithmetic expression translation"

type MCode MCodeList = list<MCode.Mcode>;

input Absyn.Exp in_exp;

output MCode MCodeList out_ MCode MCodeList;

algorithm
case Absyn.INT(v) then list (MCode.MLOAD (MCode.N(v))); " integer constant "
case Absyn.IDENT(id) then list (MCode.MLOAD (MCode.I(id))); " identifier id "

The semantics of computing a constant or a variable is to load the value into the accumulator, as in the
following instruction where id isthe variable x4:

MLOAD ( I (X4) )

and in assembly text form:
LOAD X4

Thefirst ruleis for simple binary arithmetic expressions such as e1 - e2 where expression e2 only isa
constant or a variable which gives rise to a load instruction (see the second local equation in the rule).
The code for this expression is as follows, where MB denotes a binary operator and MSUB subtraction:

<code for expression els
MB (MSUB () , e2)

and in assembly text form:

<code for expression els
SUB e2

The corresponding rule follows below.

case Absyn.BINARY (el,binop,e2) "Arith binop: simple case, expr2 is just an
identifier or constant: exprl binop expr2"
equation
codl = trans_expr(el);
list (MCode .MLOAD (operand2)) = trans_ expr(e2); "Condition expr2 simple";
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opcode = trans_binop (binop) ;
cod3 = list append(codl, list (MCode.MB (opcode,operand2))); then cod3;

The second rule handles binary arithmetic expressions such as e1-e2, el+e2, €tc., where e2 can be a
complicated expression. The code pattern for e1-e2 in assembly text form becomes:

<code for el>

STO T1
<code for e2>
STO T2
LOAD T1
SUB T2

Theruleis presented below. The generated code for expressions e1 and e2 are bound to cod1 and cod2,
respectively. The binary operation is translated to the MCode version, which is bound to opcode. Then
two temporaries are produced. Finaly a code sequence is produced which closely follows the code
pattern above. The function 1ist_appende appends the elements of six argument lists, whereas the
standard 1ist_append only accepts two list arguments.

case Absyn.BINARY (el,binop,e2) "Arith binop: general case, expr2 is a more

complicated expr: exprl binop expr2"
equation
codl = trans_expr(el);
cod2 = trans_expr(e2);

opcode = trans_binop (binop) ;

tl = gentemp () ;

t2 = gentemp() ;

cod3 = list_appendé(codl, // code for exprl

{MCode .MSTO (t1) }, // store exprl

cod2, // code for expr2

{MCode .MSTO (t2) }, // store expr2

(MCode .MLOAD (t1) }, // load exprl value into Acc

{MCode .MB ( (opcode,t2))} // Do arith operation
)i
then cod3;

As one additional example, we show the following expression:

(x + y*z) + b*c

which istranglated into the code sequence:

LOAD X STO T3
STO T1 LOAD b
LOAD y MULT c
MULT z STO T4
STO T2 LOAD T3
LOAD T1 ADD T4
ADD T2

Note that the two rules for binary arithmetic operations overlap. The first rule covers the simple case
where the second expression is just an identifier or constant, and will give rise to more compact code
than the second rule which covers both the simple and the general case. From a semantic point of view,
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the first rule is not needed since the second rule specifies the same semantics for simple arithmetic
expressions as the second rule, even though the second rule will give rise to more instructions in the
translated code. Still, it is not incorrect to keep the first rule, since the PAM semantics is not changed by
it.

Operationally, Meta-Modelica will evaluate the rules in top-down order, and thus will use the more
specific first rule whenever it matches. Therefore we keep the first rule in order to obtain a compiler that
produces slightly more efficient code than otherwise possible.

The complete trans_expr function follows below, together with some help functions:

function trans_expr "Arithmetic expression translation"
type MCode MCodeList = list<MCode.Mcode>;
input Absyn.Exp in _exp;
output MCode MCodeList out MCode MCodeList;

algorithm

out MCode MCodeList:=
match (in_exp)

local
Integer v;
String id;

MCode MCodeList codl,cod3,cod2;
MCode .MOperand operand2,tl,t2;
MCode .MBinOp opcode;

Absyn.Exp el,e2;

Absyn.BinOp binop;

case Absyn.INT(v) then list (MCode.MLOAD (MCode.N(v))); " integer constant "
case Absyn.IDENT (id) then list (MCode.MLOAD (MCode.I(id))); " identifier id "
case Absyn.BINARY (el,binop,e2) " Arith binop: simple case, expr2 is just an
identifier or constant: exprl binop expr2 "
equation

codl = trans_expr(el);

list (MCode.MLOAD (operand2)) = trans_ expr (e2);

opcode = trans_ binop (binop) " expr2 simple ";

cod3 = list append(codl, list (MCode.MB (opcode,operand2))); then cod3;

case Absyn.BINARY (el,binop,e2) "Arith binop: general case, expr2 is a more
complicated expr: exprl binop expr2"
equation
codl = trans_expr(el);
cod2 = trans_expr(e2);
opcode = trans_binop (binop) ;
tl = gentemp () ;
t2 = gentemp () ;
cod3 = list_appendé (codl, // code for exprl

{MCode .MSTO (t1) }, // store exprl

cod2, // code for expr2

{MCode .MSTO (t2) }, // store expr2

(MCode .MLOAD (t1) }, // load exprl value into Acc

{MCode .MB (opcode, t2) } // Do arith operation
)i
then cod3;
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end match;
end trans_expr;

function trans _binop "Translate binary operator from Absyn to MCode"
input Absyn.BinOp in binop;
output MCode.MBinOp out_mbinop;
algorithm
out _mbinop:=
match (in_binop)
case Absyn.ADD
case Absyn.SUB
case Absyn.MUL
case Absyn.DIV
end match;
end trans binop;

then MCode.MADD () ;
then MCode.MSUB() ;
then MCode.MMULT () ;
then MCode.MDIV () ;

function gentemp "Generate temporary"
output MCode.MOperand out moperand;
protected
Integer no;
algorithm
no = tick();
out_moperand := MCode.T(no) ;
end gentemp;

function list appendé
replaceable type Type a;
type Type alist = list<Type a>;
input Type aList 11;
input Type alist 12;
input Type aList 13;
input Type alList 14;
input Type aList 15;
input Type aList 16;
output Type alList 116;
protected
Type aList 113,146;
algorithm
113 = list_append3 (11, 12, 13);
l46 = list_append3 (14, 15, 16);
116 = list append (113, 146);
end list append6;

3.1.6.2 Translation of Comparison Expressions

Comparison expressions have the form <expression><rel op> <expression>, as for examplein:

X < 5
y >= 2z

In the ssmple PAM language, such comparison expressions only occur as predicates in if-statements and
while-statements. If the predicate is true, then the body of the if-statement should be executed, otherwise
jump over it to some label if the predicate is fase. Thus, a conditional jump to a label occurs if the
predicateisfase.
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This is reflected in the tranglation of relational operators by the function trans relop, where the
selected conditional jump instruction is logically opposite to the relational operator. For example,
regarding the comparison x <=y which is equivalent to x-y <= 0 if we ignore the fact that overflow or
underflow of arithmetic operations can cause errors, a jump should occur if the comparison isfalse, i.e.,
x-y > 0, meaning that the relational operator LE (less or equal) should be translated to map (jump on
positive):

function trans relop "Translate relation operator"
input Absyn.RelOp in_relop;

output MCode.MCondJmp out mcondjmp;

algorithm
out mcondjmp:=
match (in_relop)

case Absyn.EQ() then MCode.MJNP(); " Jump on Negative or Positive "
case Absyn.LE() then MCode.MJP() ; " Jump on Positive "

case Absyn.LT() then MCode.MJPZ(); " Jump on Positive or Zero "
case Absyn.GT() then MCode.MJNZ() ; " Jump on Negative or Zero "
case Absyn.GE() then MCode.MJN () ; " Jump on Negative "

case Absyn.NE() then MCode.MJZ() ; " Jump on Zero "

end match;
end trans_relop;

Trandlation of the actual comparison expression is described by the trans comparison function,
having the following signature:
function trans comparison "Translate comparison relation operator"
type MCode MCodeList = list<MCode.Mcode>;
input Absyn.Comparison in_ comparison;
input MCode.MLab in mlab;
output MCode MCodeList out MCode MCodeList;

The label argument is needed as an argument to the generated conditional jump instruction. The
following code sequence is suitable for all comparison expressions having the structure e1 <relop> e2,
here represented by the examplee1 <= e2, whichisequivaenttoo <= e2-ei:

<code for el>

STO T1

<code for e2>

SUB Tl /* Compute e2-el; comparison false if negative */
JN Lab /* Jump to label Lab if negative */

The second rule in the trans comparison function translates according to this pattern, as shown
below. The first rule applies to the special case when e2 is a variable or a constant, and can then avoid
using atemporary.

case (Absyn.RELATION (el,relop,e2),lab) /* exprl relop expr2 */

equation
codl = trans_expr(el);
list (MCode.MLOAD (operand2)) = trans_expr(e2);

jmpop = trans relop (relop) ;
cod3 = list append3(codl, {MCode.MB (MCode.MSUB (), operand2)},
{MCode .MJ (jmpop, lab) } ); then cod3;
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The functions needed for translation of comparison expressions, including trans comparison, follow
below:

/*************** Comparison eXpreSSiOn translation **************/

function trans comparison "translation of a comparison: exprl relop expr2
Example call: trans comparison (RELATION (INDENT(x), GT, INT(5)), L(10))"
type MCode MCodeList = list<MCode.Mcode>;
input Absyn.Comparison in_ comparison;
input MCode.MLab in mlab;
output MCode MCodeList out_ MCode MCodeList;
algorithm
out_MCode_MCodeList :=
matchcontinue (in comparison,in mlab)
local
MCode MCodeList codl,cod3,cod2;
MCode.MOperand operand2,lab,tl;
MCode .MCondJdmp Jjmpop;
Absyn.Exp el,e2;
Absyn.RelOp relop;

Use a simple code pattern (the first rule), when expr2 is a simple
identifier or constant:

code for exprl

SUB operand2

conditional jump to lab

or a general code pattern (second rule), which is needed when expr2
is more complicated than a simple identifier or constant:

code for exprl

STO templ

code for expr2

SUB templ

conditional jump to lab

L R R R R I . I

*

*
/
case (Absyn.RELATION (el,relop,e2),lab) "Simple case, exprl relop expr2"
equation
codl = trans_ expr(el);
list (MCode.MLOAD (operand2)) = trans expr (e2);
jmpop = trans_relop (relop) ;
cod3 = list append3(codl, {MCode.MB (MCode.MSUB(),operand2)},
{MCode .MJ (jmpop, lab) } ); then cod3;

case (Absyn.RELATION(el,relop,e2),lab) "Complicated, exprl relop expr2 "
equation
codl = trans_expr(el);
cod2 = trans_expr(e2);
jmpop = trans_ relop (relop) ;
tl = gentemp() ;
cod3 = list appends(codl, {MCode.MSTO(tl)}, cod2,
{MCode .MB (MCode .MSUB () ,t1) }, {MCode.MJ (jmpop,lab)} );
then cod3;
end matchcontinue;
end trans_comparison;
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function trans relop "Translate comparison relation operator"
/* Note that for these relational operators, the selected jump
* instruction is logically opposite. For example, if equality to zero
* is true, we should should just continue, otherwise jump (MJNP)
*
/
input Absyn.RelOp in relop;
output MCode.MCondJmp out mcondjmp;
algorithm
out mcondjmp:=
match (in_relop)

case Absyn.EQ then MCode.MJNP(); " Jump on Negative or Positive "
case Absyn.LE then MCode.MJP() ; " Jump on Positive "
case Absyn.LT

then MCode.MJPZ(); " Jump on Positive or Zero "
)

case Absyn.GT then MCode.MJNZ(); " Jump on Negative or Zero "
case Absyn.GE then MCode.MJN () ; " Jump on Negative "
case Absyn.NE then MCode.MJZ() ; " Jump on Zero "

end match;
end trans relop;

3.1.6.3 Statement Translation

We now turn to the trandational semantics of the different statement types of PAM, which is described
by therules of the function trans stmt.

The first rule specifies trandation of an assignment statement id := e1; which is particularly
simple. Just compute the value of e1 and storein variable id, according to the following code pattern:

<code for el>

STO id
and therule:
case Absyn.ASSIGN(id,el) /* Assignment Statement translation:
map the current state into a new state */
equation
codl = trans_expr(el);
cod2 = list append(codl, {MCode.MSTO (MCode.I(id))} ); then cod2;

Trandlation of an empty statement, represented as a skIp node, is very simple since only an empty
instruction sequence is produced as in the axiom below:

case Absyn.SKIP then {}; /* ; empty statement */

Trandation of if-statements is more complicated. There are two rules, the first valid for if-then
statements in the form if comparison then s1 using the code pattern:

<code for comparison with conditional jump to Ll
<code for sl>
LABEL L1

and therule:

case Absyn.IF (comp,sl,Absyn.SKIP) /* if comp then sl */
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equation
slcod = trans_stmt(sl);
11 = genlabel() ;
compcod = trans_comparison(comp, 11);
cod3 = list append3 (compcod, slcod, {MCode.MLABEL(11l)} ); then cod3;

Note that if-then statements are represented as if-then-else statement nodes with an empty statement
(skzp) in the el se-part.

Generd if-then-else statements of the form if comparison then s1 else s2 are using the code
pattern:

<code for comparison with conditional jump to L1l
<code for sl>

J L2

LABEL L1

<code for s2>

LABEL L2

and therule;

case Absyn.IF (comp,sl,s2) /* if comp then sl else s2 */
equation
slcod = trans_stmt(sl);
s2cod = trans_stmt (s2);
11 = genlabel() ;
12 = genlabel() ;
compcod = trans_ comparison(comp, 11);
cod3 = list appendsé (
compcod, slcod,
{MCode.MJMP (12) },
{MCode .MLABEL (11) },
s2cod,
{MCode .MLABEL (12)} ); then cod3;

This second rule also specifies correct semantics for if-then statements, although one unnecessary jump
instruction would be produced. Avoiding this jump is the only reason for keeping the first rule.

We now turn to while-statements of the form while comparison do si. This is an iterative
statement and thus contain a backward jump in its code-pattern below:

LABEL L1

<code for comparison, including conditional jump to L2>
<code for sl>

J L1

LABEL L2

with therule:

case Absyn.WHILE (comp, sl) " while ... "
equation
bodycod = trans_ stmt(sl) ;
11 = genlabel() ;
12 = genlabel() ;
compcod = trans_comparison(comp, 12);
cod3 = list appends5 (
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{MCode .MLABEL (11) },

compcod, bodycod,

{MCode .MJMP (11) },

{MCode .MLABEL (12)} ); then cod3;

The definite loop statement of the form to e1 do s1 isakind of for-statement that found in many other
languages. The statement s1 is executed the number of times specified by evaluating expression e1 once
at the beginning of its execution. The value of e1 initializes a temporary counter variable which is
decremented before each iteration. The loop is exited when the counter becomes negative. The code
pattern follows below:

<code for els>

STO Tl /* Tl is the counter */
LABEL L1
LOAD T1
SUB 1 /* Decrement T1 */
JN L2 /* Exit the loop */
STO T1
<code for sl>
J L1
LABEL L2
and therule:
case Absyn.TODO(el,sl) " toel do sl ... "
equation

tocod = trans_expr(el);

bodycod = trans_ stmt(sl) ;

tl gentemp () ;

11 genlabel () ;

12 genlabel () ;

cod3 = list appendlO (
tocod,
{MCode .MSTO (t1) },
{MCode .MLABEL (11) },
{MCode .MLOAD (t1) },
{MCode .MB (MCode .MSUB () ,MCode .N (1)) },
{
{

MCode .MJ (MCode .MJN, 12) },
MCode.MSTO (t1) },

bodycod,
{MCode .MaMP (11) },
{MCode .MLABEL (12) } ); then cod3;

Next we turn to the input/output statements of PAM. A read-statement of the form read
id1,1id2,id3... will input values to the variables id1, id2, id3 etc. in that order. This is
accomplished by generating code according to the following pattern:

GET idl

GET id2
GET id3
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The trandation is specified by the following axiom and rule, stating that reading an empty list of
variables produces an empty sequence of GET instructions, whereas the rule specifies emission of one
GET instruction for the first identifier in the non-empty list, and then recursively invokes trans stmt
for the rest of the identifiersin the list. The axiom and the rule follows below:

case Absyn.READ({}) then {}; " read {} "
case Absyn.READ(id :: idlist rest) " read id1l,id2,... "
equation
cod2 = trans_stmt (Absyn.READ (idlist_rest)) ;
then MCode.MGET (MCode.I(id) :: cod2);

The trandation of write-statements of form write idi1,id2,id3,... is anaogous to that of read-
statements, but produces puT instructions asiin:

PUT id1l
PUT id2
PUT id3

Thetrandation is specified by the following axiom and rule:

case Absyn.WRITE ({})then {}; " write {} "
case Absyn.WRITE(id :: idlist rest) " write id1l,id2,... "
equation
cod2 = trans_stmt (Absyn.WRITE(idlist rest));
then MCode.MPUT (MCode.I (id) :: cod2) ;

A sequence of two statements, of the form stmt1; stmt2 is represented by the abstract syntax node
SEQ. Since one or both statements can be a statement sequence itself, sequences of arbitrary length can
be represented. The instructions from translating two statements in a sequence are simply concatenated
asin therule below:

case Absyn.SEQ(stmtl,stmt2) " stmtl ; stmt2 "
equation
codl = trans_stmt (stmtl) ;
cod2 = trans_stmt (stmt2) ;
cod3 = list _append(codl, cod2); then cod3;

The semantics of translating a whole PAM program is described by a trandation of the program body,
which is a statement, followed by the HALT instruction. Thisis clear from the function trans program
below:

function trans_program "Translate a whole program"
type MCode MCodelist = list<MCode.Mcode>;
input Absyn.Stmt progbody;
output MCode MCodeList programcode;
protected
MCode MCodeList codl;
algorithm
codl := trans_stmt (progbody) ;
programcode := list append(codl, {MCode.MHALT()});
end trans program;
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Finally, the complete translational semantics of PAM statements is presented below as the rules and

axioms of thefunction trans_stmt.

Jhrkkkkkkxkkkkkk* Statement translation **xxkkkkkkkkk* /

function trans_stmt

type MCode MCodeList = list<MCode.Mcode>;

input Absyn.Stmt in stmt;

output MCode MCodeList out MCode MCodeList;
algorithm

out_MCode MCodeList:=

match (in_stmt)

local
type StringList = list<Strings;

"Statement translation"

MCode MCodeList codl,cod2, slcod, compcod, cod3, s2cod, bodycod, tocod;

String id;

Absyn.Exp el,comp;
MCode.MOperand 11,12,t1;
Absyn.Stmt sl,s2,stmtl,stmt2;
StringList idlist rest;

case Absyn.ASSIGN(id,el)

/* Assignment Statement translation:

map the current state into a new state */

equation
codl = trans_expr(el);
cod2 = list append(codl, {MCode.MSTO (MCode.I(id))} ); then cod2;

case Absyn.SKIP then {};

case Absyn.IF (comp,sl,Absyn.SKIP)
equation
slcod = trans_ stmt(sl);
11 = genlabel() ;
compcod = trans_comparison(comp, 11);

/* ; empty statement */

/* if comp then sl */

cod3 = list append3 (compcod, slcod, {MCode.MLABEL(11l)} ); then cod3;

case Absyn.IF (comp,sl,s2)
equation

slcod = trans stmt(sl);
s2cod = trans_stmt (s2);
11 = genlabel() ;
12 = genlabel() ;
compcod = trans_ comparison(comp, 11);
cod3 = list appendsé (

compcod, slcod,

{MCode.MIMP (12) },

{MCode .MLABEL (11) },

s2cod,

{MCode .MLABEL (12) } ); then cod3;

case Absyn.WHILE (comp, sl) " while
equation

bodycod = trans_stmt (sl);

11 = genlabel() ;

12 = genlabel () ;

/* if comp then sl else s2 */
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compcod = trans_ comparison(comp, 12);
cod3 = list appends5 (

{MCode .MLABEL (11) },

compcod, bodycod,

{MCode .MJMP (11) },

{MCode .MLABEL (12)} ); then cod3;
case Absyn.TODO(el,sl) " toel dosl ... "
equation

tocod = trans_expr(el);
bodycod = trans stmt(sl);
tl gentemp () ;
11 = genlabel () ;
12 = genlabel() ;
cod3 = list appendlO (
tocod,
{MCode .MSTO (t1) },
{MCode .MLABEL (11) },
{MCode .MLOAD (t1) },
{MCode .MB (MCode .MSUB () ,MCode.N (1)) },
{MCode .MJ (MCode .MJN, 12) },
{MCode .MSTO (t1) },
b
{
{

odycod,
MCode .MJMP (11) },
MCode .MLABEL (12)} ); then cod3;

case Absyn.READ({}) then {}; " read {} "

case Absyn.READ(id :: idlist rest) " read idl,id2,... "
equation
cod2 = trans_stmt (Absyn.READ(idlist rest)) ;
then MCode.MGET (MCode.I(id) :: cod2);

case Absyn.WRITE ({})then {}; " write {} "

case Absyn.WRITE(id :: idlist rest) " write idl,id2,... "

equation
cod2 = trans_stmt (Absyn.WRITE(idlist rest));
then MCode.MPUT (MCode.I (id) :: cod2) ;

case Absyn.SEQ(stmtl,stmt2) " gtmtl ; stmt2 "
equation
codl = trans_stmt (stmtl) ;
cod2 = trans_stmt (stmt2) ;
end match;

end trans_ stmt;

3.1.6.4 Emission of Textual Assembly Code

The trandational semantics of PAM is specified as a trandation from abstract syntax to a sequence of
machine instructions in the structured MCode representation. However, we would like to emit the
machine instructions in a textual assembly form. The conversion from the M Code representation to the
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textual assembly form is accomplished by the emit assembly function and associated functions
below. This is not redly part of the trandational semantics. Here, Meta-Modelica is used as a semi-
functiona programming language, to implement the desired conversion. The print primitive has been
included in the standard Meta-Modelicalibrary for such purposes.

package Emit

/* Print out the MCode in textual assembly format
* Note: this is not really part of the specification of PAM semantics
*/

import MCode;

function emit_assembly "Print an MCode instruction"
input MCodeList in mcodelist;
output Boolean dummy;
protected
type MCodeList = list<MCode.Mcodes>;
algorithm
dummy : =
match (in mcodelist)
local
MCode .Mcode instr;
MCodeList rest;
case ({}) then true;
case (instr :: rest)
equation
emit instr(instr);
emit assembly(rest); then true;
end match;
end emit assembly;

function emit_ instr
input MCode.Mcode in MCode;
output Boolean dummy;

algorithm
dummy : =
match (in MCode)
local
String op;

MCode .MBinOp mbinop;
MCode .MOperand mopr,mlab;
MCode .MCondJdmp jmpop;
case (MCode.MB (mbinop,mopr)) " Print an MCode instruction "
equation
op = mbinop to str (mbinop) ;
emit op operand(op, mopr); then true;
case (MCode.MJ (jmpop,mlab))
equation
op = mjmpop to str (jmpop) ;
emit op operand(op, mlab); then true;
case (MCode.MJMP (mlab))
equation
emit op operand("J", mlab); then true;
case (MCode.MLOAD (mopr))
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equation

emit op operand("LOAD", mopr); then true;

case (MCode.MSTO (mopr))
equation
emit op operand("STO",
case (MCode.MGET (mopr) )
equation
emit op operand("GET",
case (MCode.MPUT (mopr))
equation
emit op operand ("PUT",
case (MCode.MLABEL (mlab))
equation
emit moperand (mlab) ;

mopr) ; then true;

mopr) ; then true;

mopr) ; then true;

print ("\tLAB\n"); then true;
case (MCode.MHALT())
equation
print ("\tHALT\n"); then true;

end match;
end emit instr;

function emit op operand
input String opstr;
input MCode.MOperand mopr;
algorithm
print ("\t") ;
print (opstr) ;
print ("\t") ;
emit moperand (mopr) ;
print ("\n") ;
end emit op_ operand;

function emit_int
input Integer i;
protected
String s;
algorithm
s := int string(i);
print (s) ;
end emit int;

function emit moperand

input MCode.MOperand in moperand;

output Boolean dummy;

algorithm
dummy : =
match (in_moperand)
local
String id;

Integer number, labno, tempnr;

case (MCode.I(id))
equation
print (id); then true;
case (MCode.N (number))
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equation
emit_ int (number) ;
case (MCode.L(labno))
equation
print ("L") ;
emit int (labno); then true;
case (MCode.T (tempnr))
equation
print ("T") ;
emit int (tempnr); then true;
end match;
end emit moperand;

then true;

function mbinop_ to_str
input MCode.MBinOp in mbinop;
output String out string;
algorithm
out_string:=
match (in_mbinop)
case (MCode.MADD ()
case (MCode.MSUB()
case (MCode.MMULT (
case (MCode.MDIV()
end match;
end mbinop_to_str;

then "ADD";
then "SUB";

then "DIV";

function mjmpop_ to str
input MCode.MCondJmp in mcondjmp;
output String out_ string;
algorithm
out_string:=
match (in mcondjmp)

case (MCode.MJNP()) then "JNP";
case (MCode.MJP()) then "JP";
case (MCode.MJN()) then "JN";
case (MCode.MJNZ()) then "JNZ";
case (MCode.MJPZ()) then "JPZ";
case (MCode.MJZ()) then "JZ";

end match;
end mjmpop to_ str;

end Emit;

) then "MULT";

3.1.6.5 Translate a PAM Program and Emit Assembly Code

The main function below performs the full process of trandating a PAM program to textual assembly
code, emitted on the standard output file. First, the PAM program is parsed, then translated to MCode,

which subsequently is converted to textual form.

package Main
import Parse;
import Trans;
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import Emit;

function main
"Parse and translate a PAM program into MCode,
then emit it as textual assembly code."
protected
type MCodelList = list<MCode.Mcodes>;
Absyn.Stmt program;
MCodeList mcode;

algorithm
program := Parse.parse();
mcode := Trans.trans_ program(program) ;
Emit.emit assembly (mcode) ;

end main;

end Main;

3.2 The Semantics of MCode

In order to have a complete trandational semantics of PAM, the meaning of each MCode instruction
must also be specified. This can be accomplished by an interpretive semantic definition of MCode in
Meta-Modelica.

However, we abstain from giving semantic definitions of machine code instruction sets for now since
the current focus is the tranglation process, but may return to thistopic later.

(?? agood idea to define such an abstract machine here, in the style of a small steps semantics).

3.3 Building and Running the PAM Translator

3.3.1 Building the PAM Translator

The following files are needed for building the PAM translator: Absyn.mo, Trans.mo, MCode .mo,
Emit.mo, lexer.l, gram.y, Main.mo, Parse.mo, parse.c, yacclib.c, yacclib.h and
makefile.

The files can be copied from (??updat€) /home /pelab/pub/pkg/rml/current /bookexamples/
examples/pamtrans.

The executable is built by typing:

sen20%12 make pamtrans
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3.3.2 Source Files for PAM Translator

3.3.2.1 lexer.l

5

°

#include "gram.h"

#include "yacclib.h"

#include "rml.h"
#include "absyn.h"

typedef void *rml t;
extern rml t yylval;

int absyn integer (char *s);
int absyn ident or keyword(char *s);

o°

}

whitespace
letter
ident
digit
digits
icon

[ \t\nl+
[a-zA-2Z]

{letter} ({letter}|{digit})*

[0-9]

{digit}+

{digits}

/* Lex style lexical syntax of tokens in the PAM language */

o\°

ident}
digits}

t.—n

NN

nyn
n n

"k n
u/u
u(u
nyn
nen
Nt
n_n
NSt

ne—n

whitespace} ;

return absyn ident or keyword (yytext); /* T IDENT */

return
return
return
return
return
return
return
return
return
return
return
return
return
return
return

absyn integer (yytext);
T_ASSIGN;
T _ADD;

T SUB;

T MUL;

T DIV;

T LPAREN;
T RPAREN;
T LT;

T LE;
T_EQ;

T NE;

T GE;

T GT;

T SEMIC;

/* T _INTCONST */

/* Make an Modelica integer from a C string representation (decimal),

box it for our abstract syntax,

int absyn integer (char *s)

{

put in yylval and return constant token. */
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yylval=(rml_t) Absyn INT(mk icon(atoi(s)));
return T_INTCONST;
}

/* Make an Modelica Ident or a keyword token from a C string */
/* Reserved words: if,then,else,endif,while,do,end,to,read,write */

static struct keyword s

{

char *name;
int token;

} kwll =

{
{rdo", T DO},
{relser, T ELSE},
{rendr, T END},
{mifm, T IF},
%"read" T_READ%,

"then" T THEN},

{"while", T WHILE},
{"write", T WRITE},

}i

int absyn ident or keyword(char *s)

{
int low = O;
int high = (sizeof kw) / sizeof (struct keyword s) - 1;

while( low <= high ) {

int mid = (low + high) / 2;
int cmp = strcmp (kw[mid] .name, yytext);
if( cmp == 0 )

return kw[mid] .token;
}
else 1if( cmp < 0 )

low = mid + 1;
else

high = mid - 1;

yylval = (rml t) mk scon(s) ;
return T IDENT;

}

gram.y

%{

#include <stdio.h>

#include "yacclib.h"

#include "rml.h"

#include "absyn.h"

typedef void *rml t;
#define YYSTYPE rml_t

extern rml_t absyntree;
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o\°

}

$token T READ
stoken T WRITE
$token T ASSIGN
stoken T _IF
$token T THEN
stoken T ENDIF
$token T ELSE
stoken T TO
$token T DO
stoken T_END
$token T WHILE
stoken T LPAREN
$token T RPAREN
%$token T IDENT
$token T INTCONST
stoken T _EQ
$token T LE
stoken T LT
$token T GT
stoken T_GE
$token T NE
%token T_ADD
$token T SUB
stoken T_MUL
$token T DIV
$token T SEMIC

o\°
o\°

/* Yacc BNF grammar of the PAM language */

program : series
{ absyntree = $1; }
series :  statement
{ $$ = Absyn SEQ($1, Absyn SKIP); }
| statement series
{ $$ = Absyn_ SEQ($1, $2); }

statement :  input_statement T SEMIC

{ $$ = s1; }

| output statement T SEMIC
{ $s = s1; }

| assignment statement T SEMIC
{ $s = s1; }

| conditional statement
{ $s = s1; }

| definite loop
{ $s = s1; }

| while loop

{ ss $1; }
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input statement : T READ variable list
{ $$ = Absyn READ($2); }

output_ statement : T WRITE variable list
{ $$ = Absyn WRITE($2); }

variable list :  variable
{ $$ = mk_cons($1, mk nil()); }
| variable variable list
{ $$ = mk_cons (%1, $2); }

assignment statement : variable T ASSIGN expression
{ $$ = Rbsyn ASSIGN(S1, $3); }

conditional statement : T IF comparison T THEN series T ENDIF
{ $$ = RAbsyn IF($2, $4, Absyn SKIP); }
| T IF comparison T THEN series
T ELSE series T_ENDIF
{ $% = nbsyn IF($2, $4, $6); }

definite loop : T TO expression T DO series T END
{ $$ = Absyn TODO($2, $4); }

while_loop : T_WHILE comparison T DO series T_ END
{ $5 = Absyn WHILE($2, %$4); }

expression : term
{ $8 = 81; }
| expression weak operator term
{ $$ = Absyn BINARY($1, $2, $3); }

term : element
{ $8 = 81; }
| term strong operator element
{ $$ = Absyn BINARY(S1, $2, $3); }

element :  constant
{ $5 = 51; }
| wvariable
{ $$ = Rbsyn IDENT($1); }
| T _LPAREN expression T RPAREN
{ $5 = s$2; }

comparison : expression relation expression
{ $$ = Absyn RELATION(S1, $2, $3); }

variable : T_IDENT
{$$=$l,}
constant : T_INTCONST
{$$=$l,}
relation : T EQ { $$ = Absyn EQ;}
| T LE { $$ = Absyn LE;}
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weak operator

strong operator

o°
o\

| T LT { $$ = Absyn LT;}

| T 6T { $$ = Absyn_ GT;}

| T GE { $$ = Absyn GE;}

| T NE { $$ = Absyn NE;}
T ADD { $$ = Absyn ADD;}

| T SUB { $3 = Absyn SUB;}
T MUL { $$ = Absyn MUL;}

| T DIV { $3 = Absyn DIV;}

void yyerror (char *str)

}

3.3.2.2

Absyn.mo

package Absyn

type Ident =

"Parameterized abstract syntax for the PAM language"

Str

uniontype BinOp

record
record
record
record

ADD
SUB
MUL
DIV

end BinOp;

en
en
en
en

uniontype RelOp

record
record
record
record
record
record

EQ
GT
LT
LE
GE
NE

end RelOp;

uniontype Exp

record

INT

end
end
end
end
end
end

record IDENT
record BINARY Exp x1; BinOp op; Exp x2;

end Exp;

type IdentList =
uniontype Stmt
ASSIGN Ident id; Exp x2; end ASSIGN;

record
record
record
record
record
record

IF

WHIL
TODO
READ
WRIT

E

E

ing;

d ADD;
d SUB;
d MUL;
d DIV;

EQ;
GT;
LT;
LE;
GE;
NE;

Integer x1; end INT;
Ident id; end IDENT;

list<Idents>;

Exp x1; Stmt x2; Stmt x3; end
Exp x1; Stmt x2; end WHILE;
Exp x1; Stmt x2; end TODO;
IdentList x1; end READ;
IdentList x1; end WRITE;

end BINARY;
record RELATION Exp x1; RelOp op; Exp x3;

end RELATION;

IF;

"Id := Exp"

"if Exp then Stmt.."
" while Exp do Stmt"
" to Exp do Stmt..."
"read id1l,id2,..."
"write id1,id2,.."
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record SEQ Stmt x1; Stmt x2; end SEQ; "Stmtl; Stmt2"
record SKIP end SKIP; " ; empty stmt"
end Stmt;
end Absyn;

3.3.2.3 Trans.mo

package Trans

import Absyn;
import MCode;

function trans program "Translate a whole program"
type MCode MCodeList = list<MCode.Mcode>;
input Absyn.Stmt progbody;
output MCode MCodeList programcode;
protected
MCode_MCodeList codl;
algorithm
codl := trans_stmt (progbody) ;
programcode := list append(codl, {MCode.MHALT()}) ;
end trans program;

Jxrkkkkkkxkkkkkk* Statement translation **xxxkxkkkkkkx* /

function trans_ stmt "Statement translation"
type MCode MCodelist = list<MCode.Mcode>;
input Absyn.Stmt in stmt;
output MCode MCodeList out_ MCode MCodeList;
algorithm
out_MCode_MCodeList:=
match (in_stmt)
local
type StringList = list<Strings>;
MCode MCodeList codl, cod2, slcod, compcod, cod3, s2cod, bodycod, tocod;
String id;
Absyn.Exp el,comp;
MCode .MOperand 11,12,t1;
Absyn.Stmt sl,s2,stmtl,stmt2;
StringList idlist_ rest;

case Absyn.ASSIGN(id,el) /* Assignment Statement translation:
map the current state into a new state */
equation
codl = trans_expr(el) ;
cod2 = list append(codl, {MCode.MSTO (MCode.I(id))} ); then cod2;
case Absyn.SKIP then {}; /* ; empty statement */
case Absyn.IF (comp,sl,Absyn.SKIP) /* 1f comp then sl */
equation

slcod = trans_stmt (sl);
11 = genlabel() ;
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compcod = trans_ comparison(comp, 11);

cod3 = list_append3 (compcod, slcod, {MCode.MLABEL(11l)} ); then cod3;
case Absyn.IF (comp,sl,s2) /* if comp then sl else s2 */
equation

slcod = trans_stmt(sl);
s2cod = trans_stmt(s2);
11 = genlabel() ;
12 = genlabel () ;
compcod = trans_ comparison(comp, 11);
cod3 = list append6 (
compcod, slcod,
{MCode .MJMP (12) },
{MCode .MLABEL (11) },

s2cod,
{MCode .MLABEL (12)} ); then cod3;
case Absyn.WHILE (comp, sl) " while ... "
equation

bodycod = trans_ stmt(sl) ;
11 = genlabel() ;
12 = genlabel() ;
compcod = trans_comparison(comp, 12);
cod3 = list appends5 (
{MCode .MLABEL (11) },
compcod, bodycod,
{MCode .MJMP (11) },

{MCode .MLABEL (12) } ); then cod3;
case Absyn.TODO(el,sl) " toel dosl ... "
equation

tocod = trans_expr(el) ;
bodycod = trans_stmt (sl) ;
tl = gentemp() ;
11 = genlabel();
12 = genlabel () ;
cod3 = list appendlO (

tocod,

{MCode .MSTO (t1) },
{MCode .MLABEL (11) },
{MCode .MLOAD (t1) },
{MCode .MB (MCode .MSUB () ,MCode .N (1)) },
{MCode .MJ (MCode .MJN, 12) },
{MCode .MSTO (t1) },
b
{
{

odycod,
MCode .MJMP (11) },
MCode .MLABEL (12)} ); then cod3;
case Absyn.READ({}) then {}; " read {} "
case Absyn.READ(id :: idlist_rest) " read idil,id2,... "
equation

cod2 = trans_stmt (Absyn.READ (idlist_rest)) ;
then MCode.MGET (MCode.I(id) :: cod2) ;
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case Absyn.WRITE ({})then {}; " write {} "
case Absyn.WRITE(id :: idlist rest) " write id1l,id2,... "
equation
cod2 = trans_stmt (Absyn.WRITE (idlist_rest)) ;
then MCode.MPUT (MCode.I (id) :: cod2);
case Absyn.SEQ(stmtl,stmt2) " stmtl ; stmt2 "
equation

codl = trans_stmt (stmtl) ;
cod2 = trans_stmt (stmt2) ;
end match;

end trans_stmt;

function trans expr "Arithmetic expression translation"
type MCode MCodeList = list<MCode.Mcode>;
input Absyn.Exp in _exp;
output MCode MCodeList out MCode MCodeList;
algorithm
out_MCode MCodeList:=
match (in_exp)

local
Integer v;
String id;

MCode MCodeList codl,cod3,cod2;
MCode .MOperand operand2,tl,t2;
MCode .MBinOp opcode;

Absyn.Exp el,e2;

Absyn.BinOp binop;

case Absyn.INT(v) then list (MCode.MLOAD (MCode.N(v))); " integer constant "
case Absyn.IDENT (id) then list (MCode.MLOAD (MCode.I(id))); " identifier id "
case Absyn.BINARY (el,binop,e2) " Arith binop: simple case, expr2 is just an
identifier or constant: exprl binop expr2 "
equation
codl = trans_expr(el);
list (MCode.MLOAD (operand2)) = trans_ expr (e2);
opcode = trans_ binop (binop) " expr2 simple ";
cod3 = list append(codl, list (MCode.MB (opcode,operand2))); then cod3;
case Absyn.BINARY (el,binop,e2) "Arith binop: general case, expr2 is a more
complicated expr: exprl binop expr2"
equation
codl = trans_expr(el);
cod2 = trans_expr(e2);
opcode = trans_binop (binop) ;

tl = gentemp() ;

t2 = gentemp () ;

cod3 = list_appendé (codl, // code for exprl
{MCode .MSTO (t1) }, // store exprl
cod2, // code for expr2
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{MCode .MSTO (t2) }, // store expr2
(MCode .MLOAD (t1) }, // load exprl value into Acc
{MCode .MB (opcode, t2) } // Do arith operation
)i
then cod3;
end match;
end trans_expr;

function trans binop "Translate binary operator from Absyn to MCode"
input Absyn.BinOp in binop;
output MCode.MBinOp out mbinop;
algorithm
out mbinop:=
match (in binop)
case Absyn.ADD() then MCode.MADD() ;
case Absyn.SUB() then MCode.MSUB() ;
case Absyn.MUL () then MCode.MMULT (
case Absyn.DIV () then MCode.MDIV() ;
end match;
end trans binop;

7

function gentemp '"Generate temporary"
output MCode.MOperand out moperand;
protected
Integer no;
algorithm
no = tick();
out_moperand := MCode.T(no) ;
end gentemp;

function list append3
replaceable type Type a;
type Type alist = list<Type a>;
input Type aList 11;
input Type alist 12;
input Type aList 13;
output Type alList 113;

protected
Type aList 112;

algorithm
112 := list append(1ll, 12);
113 := list_append(112, 13);

end list append3;

function list append5
replaceable type Type a;
type Type alist = list<Type a>;
input Type aList 11;
input Type alList 12;
input Type aList 13;
input Type alist 14;
input Type aList 15;
output Type alList 115;
protected
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Type aList 113;

algorithm
113 := list append3 (11, 12, 13);
115 := list_append3 (113, 14, 15);

end list append5;

function list appendé
output Boolean dummy;
algorithm
dummy : =
match (true)
local
replaceable type Type a;
type Type alist = list<Type a>;
Type aList 113,146,116,11,12,13,14,15,16;
case (11,12,13,14,15,16)
equation
113 = list_append3 (11, 12, 13);
l46 = list_append3 (14, 15, 16);
116 = list append (113, 146); then 1l16;
end match;
end list appendé;

function list appendlO
replaceable type Type a;
type Type alist = list<Type a>;
input Type aList 11;
input Type alList 12;
input Type aList 13;
input Type alList 14;
input Type aList 15;
input Type alist 16;
input Type aList 17;
input Type aList 18;
input Type alList 19;
input Type aList 110;
output Type aList 1110;
protected
Type aList 115;
algorithm
115 := list append5 (11, 12, 13, 14, 15);
1110 := list append6 (115, 16, 17, 18, 19, 110);
end list appendlO0;

relation trans binop: Absyn.BinOp => MCode.MBinOp =
axiom trans binop (Absyn.ADD) => MCode.MADD

axiom trans_binop (Absyn.SUB) => MCode.MSUB

axiom trans binop (Absyn.MUL) => MCode.MMULT

axiom trans_binop (Absyn.DIV) => MCode.MDIV
end

/*************** Comparison eXpreSSiOn translation **************/
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function trans comparison "translation of a comparison: exprl relop expr2
Example call: trans_comparison (RELATION (INDENT (x), GT, INT(5)), L(10))"
type MCode MCodelist = list<MCode.Mcode>;
input Absyn.Comparison in_ comparison;
input MCode.MLab in mlab;
output MCode MCodeList out_ MCode MCodeList;
algorithm
out_MCode_MCodeList :=
matchcontinue (in comparison,in mlab)
local
MCode MCodeList codl,cod3,cod2;
MCode .MOperand operand2,lab,tl;
MCode .MCondJdmp jmpop;
Absyn.Exp el,e2;
Absyn.RelOp relop;

Use a simple code pattern (the first rule), when expr2 is a simple
identifier or constant:

code for exprl

SUB operand2

conditional jump to lab

or a general code pattern (second rule), which is needed when expr2
is more complicated than a simple identifier or constant:

code for exprl

STO templ

code for expr2

SUB templ

conditional jump to lab

L I R R I I I

*

*
/
case (Absyn.RELATION (el,relop,e2),lab) "Simple case, exprl relop expr2"
equation
codl = trans_expr(el);
list (MCode.MLOAD (operand2)) = trans_ expr (e2);
jmpop = trans_relop (relop) ;
cod3 = list append3(codl, {MCode.MB (MCode.MSUB(),operand2)},
{MCode .MJ (jmpop, lab) } ); then cod3;

case (Absyn.RELATION(el,relop,e2),lab) "Complicated, exprl relop expr2 "
equation
codl = trans_ expr(el);
cod2 = trans_expr(e2);
jmpop = trans_ relop (relop) ;
tl = gentemp () ;
cod3 = list appends(codl, {MCode.MSTO(tl)}, cod2,
{MCode .MB (MCode .MSUB () ,t1) }, {MCode.MJ (jmpop,lab)} );
then cod3;
end matchcontinue;
end trans comparison;

function trans relop "Translate comparison relation operator"
/* Note that for these relational operators, the selected jump
* instruction is logically opposite. For example, if equality to zero
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* is true, we should should just continue, otherwise jump (MJNP)

*

/

input Absyn.RelOp in relop;

output MCode.MCondJmp out_mcondjmp;

algorithm

out_mcondjmp:=

match (in_relop)
case Absyn.EQ
case Absyn.LE
case Absyn.LT
case Absyn.GT
case Absyn.GE
case Absyn.NE

end match;

then MCode.MJNP () ; " Jump on Negative or Positive "
then MCode.MJP () ; " Jump on Positive "

then MCode.MJPZ() ; " Jump on Positive or Zero "
then MCode.MJNZ(); " Jump on Negative or Zero "
then MCode.MJN() ; " Jump on Negative "

then MCode.MJZ() ; " Jump on Zero "

end trans_relop;

3.3.2.4 MCode.mo
package MCode

uniontype MBinOp
record MADD end MADD;
record MSUB end MSUB;
record MMULT end MMULT;
record MDIV end MDIV;
end MBinOp;

uniontype MCondJmp
record MINP end MJNP;
record MJP end MJP;
record MJN end MJN;
record MUNZ end MJNZ;
record MJPZ end MJPZ;
record MJZ end MJZ;

end MCondJmp;

uniontype MOperand
record I Id x1; end I;
record N Integer x1; end N;
record T Integer x1; end T
end MOperand;

type MLab = MOperand; // Label
type MTemp = MOperand; // Temporary
type MIdent = MOperand; // Identifier

type MIdTemp = MOperand; // Id or Temporary

uniontype MCode

record MB MBinOp x1; Moperand x2; end MB; /* Binary arith ops */
record MJ MConddmp x1; MLab x2; end MJ; /* Conditional jumps */
record MJMP Mlab x1; end MJMP;

record MLOAD MIdTemp x1; end MLOAD;
record MSTO MIdTemp x1; end MSTO;
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record MGET MIdent x1; end MGET;
record MPUT MIdent x1; end MPUT;
record MLABEL MLab x1; end MLABEL;
record MHALT end MHALT;

end MCode;

end MCode;

3.3.25 Emit.mo

package Emit

/* Print out the MCode in textual assembly format
* Note: this is not really part of the specification of PAM semantics,
* rather it is low-level code generation.
*/

import MCode;

function emit assembly "Print an MCode instruction"
input MCodeList in_mcodelist;
output Boolean dummy;
type MCodelList = list<MCode.Mcode>;
algorithm
dummy : =
match (in mcodelist)
local
MCode .Mcode instr;
MCodeList rest;
case ({}) then true;
case (instr :: rest)
equation
emit instr(instr);
emit assembly(rest); then true;
end match;
end emit_ assembly;

function emit_ instr
input MCode.Mcode in MCode;
output Boolean dummy;

algorithm
dummy : =
match (in_ MCode)
local
String op;

MCode .MBinOp mbinop;
MCode .MOperand mopr,mlab;
MCode .MCondJmp jmpop;
case (MCode.MB (mbinop,mopr)) " Print an MCode instruction "
equation
op = mbinop to str(mbinop) ;
emit op operand(op, mopr); then true;
case (MCode.MJ (jmpop,mlab))
equation
op = mjmpop to str (jmpop) ;
emit op operand(op, mlab); then true;
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case (MCode.MJMP (mlab))

equation
emit op operand("J", mlab); then true;
case (MCode.MLOAD (mopr))
equation

emit op operand("LOAD", mopr); then true;
case (MCode.MSTO (mopr))
equation
emit op operand("STO", mopr); then true;
case (MCode.MGET (mopr))
equation
emit op operand("GET", mopr); then true;
case (MCode.MPUT (mopr))
equation
emit op operand("PUT", mopr); then true;
case (MCode.MLABEL (mlab))
equation
emit moperand (mlab) ;
print ("\tLAB\n"); then true;
case (MCode.MHALT())
equation
print ("\tHALT\n"); then true;
end match;
end emit instr;

function emit op operand
input String opstr;
input MCode.MOperand mopr;
algorithm
print ("\t") ;
print (opstr) ;
print ("\t");
emit moperand (mopr) ;
print ("\n") ;
end emit op operand;

function emit int
input Integer i;
protected
String s;
algorithm
s := int string(i);
print (s) ;
end emit int;

function emit_ moperand
input MCode.MOperand in_moperand;
output Boolean dummy;

algorithm
dummy : =
match (in_moperand)
local
String id;

Integer number, labno, tempnr;
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case (MCode.I(id))
equation
print (id); then true;
case (MCode.N (number))
equation
emit int (number) ;
case (MCode.L(labno))
equation
print ("L") ;
emit int (labno); then true;
case (MCode.T (tempnr))
equation
print ("T") ;
emit int (tempnr); then true;
end match;
end emit moperand;

then true;

function mbinop to str
input MCode.MBinOp in_mbinop;
output String out string;
algorithm
out_string:=
match (in_mbinop)

case (MCode.MADD()) then "ADD";
case (MCode.MSUB()) then "SUB";
case (MCode.MMULT()) then "MULT";
case (MCode.MDIV()) then "DIV";

end match;
end mbinop to_str;

function mjmpop to str
input MCode.MCondJmp in_ mcondjmp;
output String out_ string;
algorithm
out_string:=
match (in mcondjmp)

case (MCode.MJNP()) then "JNP";
case (MCode.MJP()) then "JP";
case (MCode.MJN()) then "JN";
case (MCode.MJNZ()) then "JNZ";
case (MCode.MJPZ()) then "JPZ";
case (MCode.MJZ()) then "JZ";

end match;
end mjmpop_ to_str;

end Emit;

3.3.2.6 Main.mo

package Main
import Parse;
import Trans;
import Emit;
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function main
"Parse and translate a PAM program into MCode,
then emit it as textual assembly code."
protected
type MCodelist = list<MCode.Mcodes>;
Absyn.Stmt program;
MCodeList mcode;

algorithm
program := Parse.parse();
mcode := Trans.trans_ program(program) ;
Emit.emit assembly (mcode) ;

end main;

end Main;

3.3.2.7 Parse.mo

package Parse
import Absyn;

function parse
output Absyn.Stmt out stmt;

external "C"
end parse;

end Parse;

3.3.2.8 parse.c

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include "rml.h"

#ifndef RML_ INSPECTBOX
#define RML_ INSPECTBOX

(d,h,p)
(RML_ISIMM ( (d)=(p))?0: (( =

}h; (void*/RML_GETHDR ((p))),0))

#define rml prim deref imm(x) x
#endif

void Parse 5finit (void) {}
void *absyntree;
RML_BEGIN LABEL (Parse parse) {

void *a0, *aOhdr;
RML_INSPECTBOX(aO, a0Ohdr, rmlAO0) ;

if ( aOhdr == RML_IMMEDIATE(RML_UNBOUNDHDR) )
RML_ TAILCALLK (rmlFC) ;
else {

if (yyparse () ==0) {
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rmlA0 = absyntree;
RML_TAILCALLK (rmlSC) ;

}

else RML TAILCALLK(rmlFC) ;
}
}
makefile
# Makefile for building translational version of PAM

#
# ??Note: LDFLAGS, CFLAGS are non-portable for some Unix systems

# VARIABLES

SHELL = /bin/sh

LDLIBS = -lrml -11 # Order is essential; we want librml main, not libll!
LDFLAGS = -L$ (RMLRUNTIME) /lib/plain/

CC = gcc

CFLAGS = -I$(RMLRUNTIME)/include/plain/ -g -I..

MOMC = $ (RMLRUNTIME) /bin/momc

# EVERYTHING
all: pamtrans

# EXECUTABLE

COMMONOBJS=yacclib.o
VSLOBJS=main.o lexer.o gram.o parse.o absyn.o mcode.o trans.o emit.o

pamtrans: $(VSLOBJS) $ (COMMONOBJS)
$(CC) $(LDFLAGS) $(VSLOBJS) $ (COMMONOBJS) $(LDLIBS) -o pamtrans

# MAIN ROUTINE WRITTEN IN Modelica NOW
main.o: main.c
main.c main.h: main.rml

$(MOMC) -c¢ main.rml

# YACCLIB

yacclib.o: vyacclib.c
$(CC) $(CFLAGS) -c -o yacclib.o yacclib.c

# LEXER
lexer.o: 1lexer.c gram.h absyn.h
lexer.c: lexer.l

lex -t lexer.l >lexer.c
# PARSER
gram.o: gJgram.c gram.h

gram.c gram.h: gram.y
yacc -d gram.y
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mv y.tab.c gram.c
mv y.tab.h gram.h

# INTERFACE TO SCANNER/PARSER (Modelica CALLING C)
parse.o: parse.c absyn.h
# ABSTRACT SYNTAX

absyn.o: absyn.c
absyn.c absyn.h: absyn.rml
$ (MOMC) -c absyn.rml

# TRANSLATION

trans.o: trans.c
trans.c trans.h: trans.rml absyn.h
$(MOMC) -c¢ trans.rml

# EMISSION

emit.o: emit.c
emit.c emit.h: emit.rml
$(MOMC) -c¢ emit.rml

# INTERMEDIATE FORM

mcode.o: mcode.c
mcode.c mcode.h: mcode.rml
$ (MOMC) -c¢ mcode.rml

# AUX

clean:
$ (RM) pamtrans $(COMMONOBJS) $(VSLOBJS) main.c main.h lexer.c parser.c
parser.h absyn.c absyn.h env.c env.h eval.c eval.h *~#include <stdlib.h>

3.4 Translational Semantics for Symbolic Differentiation

Symbolic differentiation of expressions is a translational mapping that transforms expressions into
differentiated expressions.

uniontype Exp
record RCONST Real x1; end RCONST;
record PLUS Exp x1; Exp x2; end PLUS;
record SUB Exp x1; Exp x2; end SUB;
record MUL Exp x1; Exp x2; end MUL;
record DIV Exp x1; Exp x2; end DIV;
record NEG Exp x1; end NEG;
record IDENT String name; end IDENT;
record CALL Exp id; list<Exp> args; end CALL;
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record AND Exp x1; Exp x2; end AND;

record OR Exp x1; Exp x2; end OR;

record LESS Exp x1; Exp x2; end LESS;

record GREATER Exp x1; Exp x2; end GREATER;
end Exp;

An example function difft performs symbolic differentiation of the expression expr with respect to
the variable t ime, returning a differentiated expression. In the patterns, _ underscore is a reserved word
that can be used as a placeholder instead of a pattern variable when the particular value in that place is
not needed later as a variable value. The as-construct: id as IDENT( ) inthe third of-branch is used
to bind the additional identifier 14 to the relevant expression.

We can recognize the following well-known derivative rules represented in the match-expression
code:

e Thetime-derivative of aconstant (RCONST () ) is zero.

e Thetime-derivative of the time variableis one.

e The time-derivative of a time dependent variable id is der (id), but is zero if the variable is not
time dependent, i.e., not inthelist tvars/timevars.

e The time-derivative of the sum (add (e1,e2)) of two expressions is the sum of the expression
derivatives.

e Thetime-derivative of sin (x) iScos (x) *x' if x isafunction of time, and x' itstime derivative.

e €lc...

We have excluded some operatorsin the di ££t example.

function difft "Symbolic differentiation of expression with respect to time"
input Exp expr;
input 1ist<IDENT> timevars;
output Exp diffexpr;
algorithm
diffexpr :=
match (expr, timevars)
local Exp elprim,e2prim,tvars;
Exp el,e2,id;

case (RCONST( ), ) then RCONST(0.0); // der of constant
case (IDENT ("time"), ) then RCONST(1.0); // der of time variable
case difft(id as IDENT( ), tvars) then // der of any variable id

if list member (id, tvars) then
CALL (IDENT ("der"),list (id))

else
RCONST (0.0) ;

case (ADD(el,e2),tvars) // (el+e2)’ => el'+e2’
equation

elprim = difft(el,tvars);

e2prim = difft (e2,tvars); then ADD(elprim,el2prim);
case (SUB(el,e2),tvars)

equation

elprim = difft (el,tvars);
e2prim = difft (e2,tvars);
then SUB (elprim,e2prim) ;
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case (MUL(el,e2),tvars) // (el*e2)’ => el'*e2 + el*e2'
equation
elprim = difft (el,tvars);
e2prim = difft(e2,tvars);
then PLUS (MUL (elprim,e2) ,MUL(el,e2prim)) ;
case (DIV(el,e2),tvars) // (el/e2)’ => (el'*e2 - el*el2')/e2*e2
equation
elprim = difft (el,tvars)
e2prim = difft (e2,tvars)
2

7

) ,MUL (el,e2prim)), MUL(e2,e2)) ;

then DIV (SUB (MUL(elprim,e
case (NEG(el),tvars) // (-el)' => -el'
equation
elprim = difft(el,tvars); then NEG(elprim);
case CALL(IDENT ("sin"),list(el)), tvars) // sin(el)' => cos(el)*el’
equation

elprim = difft (el,tvars);
then MUL (CALL (IDENT ("cos"),list(el)),elprim) ;
case (AND(el,e2),tvars) // (el and e2)’ => el'and e2'
equation
elprim = difft (el,tvars);
e2prim = difft(e2,tvars);
then AND (elprim,e2prim) ;
case (OR(el,e2),tvars) // (el or e2)’ => el' or e2'
equation
elprim = difft(el,tvars);
e2prim = difft (e2,tvars);
then OR(elprim, e2prim) ;
case (LESS(el,e2),tvars) // (el<e2)’ => el'<e2'
equation
elprim = difft (el,tvars);
e2prim = difft(e2,tvars);
then LESS (elprim,e2prim) ;
case (GREATER(el,e2),tvars) // (else2)’ => el'se2’'
equation
elprim = difft (el,tvars);
e2prim = difft (e2,tvars);
then GREATER (elprim,e2prim) ;
// etc...
end match;

end difft;

3.5 Summary

This chapter introduced the concept of translational semantics, which was applied to the small PAM
language. A trandational semantics for translating PAM to a simple machine language was developed.
The machine has only one register, and includes arithmetic instructions and conditional and
unconditional jump instructions. A structured representation of the instruction set, called MCode, was
defined. Much of the trandation is expressed through parameterized code templates within some of the
Meta-Modelicarules.
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The reader may have noted that we used many append instructions in the semantics, since the
sequence of output code instructions is represented as a linked list. This can be avoided by an aternative
way of representing the output code as an ordered sequence of instructions. For example, we can use a
binary tree built by a binary sequencing operator (e.g. MSEQ), which can be obtained by for example
adding an MSEQ of MCode * MCode operator declaration to the MCode union type.

We have also shown a small set of trandation rules for symbolic differentiation of mathematical
expressions.

(BRK)
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Chapter 4

Getting Started — Practical Details
(Needs Update)

This chapter provides information about a number of technical details that the reader will need to know
in order to get started using the Meta-Modelica momc generator system. This includes information about
where the momc system resides, how to invoke the momc program generator, how to compile and link
generated code, how to run the Meta-Modelica debugger, etc.

In order to keep the presentation concise, we return to the simplest of al language examples
described so far—the expression language Expl presented at the beginning of Chapter 2. We will show
how to build and run aworking calculator that can evaluate constant arithmetic expressions expressed in
the Expl language. We will also describe how to build an interpreter for a larger language—the
PAMDECL language described in Section 2.7.

4.1 Path and Locations of Needed Files

Before one can use the Meta-Modelica system a few changes in the environment need to be done. Note
that these changes are non portable and will only work at the Department of Computer and Information
Science at Linkdping University, Sweden.

In order to get the correct settings for the Meta-Modelica environment one need to add some
modules.

module initadd labs/pelab pelab-before pelab-pub-before rml (?? Sun Solaris
only)

The module labs/pelab sets up the module path. In order to run an emacs that supports the Modelica-
mode ??? is added. The module momc??? sets up the Modelica environment. Two environment variables
are set by the rml module: the variable ???rRMLHOME, Which is set to the directory where the complete
system of Meta-Modelica resides and RMLRUNTIME which is set to the directory of the Meta-Modelica
runtime files (bin, lib and include) for sparc solaris2 is located.
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To set import the Meta-Modelica emacs mode rml-mode write the following as the first thing in your
.emacsfile: (?? Sun Solaris??)

(setqg load-path (cons
(expand-file-name (concat (getenv "RMLHOME") "/elisp"))
load-path))

The tools lex and yacc can be found in /user/ccs/bin, but if the paths have been set up correctly one
need not worry about this.

The reader may copy the example files from the /home/pelab/pub/pkg/rml/current/
bookexamples directory or type them in from the examples in this chapter. Preferrably copy the whole
directory with the command:

cp -r /home/pelab/pub/pkg/rml/current/bookexamples/ ./myrmlexamples

4.2 The Exp1 Calculator Again

4.2.1 Running the Exp1 Calculator

Before building the Expl calculator it is instructive to show how it can be used. The executable has been
named calc, and isinvoked by just typing calc at the Unix command prompt (sen20%10). Input typed by
the user is shown in boldface.

First type calc to invoke the calculator, which responds with some trace printout to show that it has
initialized and has started parsing text read from the command line.

Then type the expression to be evaluated (here: -5+10-2), followed by pushing the Enter key and
typing ctrl-D (*D). The ctrl-D is needed to close the input file (which here is a “terminal”), since
the Yacc-generated parser currently expects to read a whole input file before completing the parsing.
Finally atrace printout ([calc]) from the evaluator is printed, together with the result (3) of evaluating
the expression. (?? this description is only valid for aUnix or Linux shell??)

sen20%10 calc
[Init]

[Parse]
-5+10-2
“D[Evall

Result: 3

The following example shows how the calculator reacts when it is fed an expression which does not
belong to the Expl expression language. Remember that this language only alows simple arithmetic
expressions not including variables or symbolic constants.

sen20%11 calc

[Init]

[Parse]

hej+5

Syntax error at or near line 1.
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Parsing failed!

4.2.2 Building the Exp1 Calculator

Before building the Expl calculator, we need to locate the Meta-Modelica, Lex and Yacc tools. It is
useful for the reader who wishes to test building and running the calculator to create his’her own work
directory (e.g. called myexpl).

4.2.21 Source Files to be Provided

Three files are needed to specify all properties (syntax and semantics) of the Expl language. One
additional file defines the main program.

e The file expl.rml contains an interpretive style Meta-Modelica specification and abstract
syntax of the Expl language in Meta-Modelica form, here within the single Meta-Modelica
package Expl.

o Thefile parser.y contains the grammar of the Expl language in Y acc-style BNF form.

e Thefile lexer.l specifies the lexical syntax of tokens in the Expl language in Lex-style regular
expression form.

e In addition, a file main.c defines the C main program that calls initiaization routines, the
generated scanner, parser and evaluator, and prints the evaluated resullt.

4.2.2.2 Generated Source Files

The following five files are generated by the MetaModelica system and the Yacc and Lex toals,
respectively:

o Thefilesexpl.c and expl.h are generated by the momc translator. The generated C code that
performs evaluation of Expl expressions can be found in expl.c, whereas expi.h contains
tree-building macros to be called by the parser to build abstract syntax trees of input expressions
that are passed to the evaluator.

e Thefilesparser.c and parser.h are generated by Yacc, and contain a parser for Expl and
token definitions, respectively.

o Thefilelexer.c isgenerated by Lex, and contains a scanner for Expl.

4.2.2.3 Library File(s)
The following system specific library files and header files are also needed. (?? Unix only??)

e The files yacclib.c and yacclib.h contain some basic primitive routines needed in the
course of building abstract syntax tree nodes during parsing. Most of these routines are not called
directly by the user. Instead they are typically invoked via the tree building macros defined in
expl.h. Some routines (e.g. mk_icon, mk rcon, mk_scon, mk_nil) for building Modelica
typeinteger, real and string constants (and nil), are also defined in yacclib.c.
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e Thefile rml.h contains definitions and macros for calling the Meta-Modelica runtime system
and predefined functions (located in $SRMLRUNTIME/include/plain).

e Thefile 1ibrml.a isalibrary of all Meta-Modelica runtime system routines and predefined
functions (located in $RMLRUNTIME/1ib/plain).

4.2.24 Makefile for Building the Exp1 Calculator

Building the Expl calculator from the needed components is conveniently described by a Makefile,
such as the one below. The gnu C compiler (gcc) is used here. Library files and header files are found in
$RMLRUNTIME/{include, 1ib} if not available in the current directory. The usual make dependencies
are specified. The command:

make calc
will build the binary executable of the calculator (called calc) whereas the command:

make clean

will remove all generated files, object files and the binary executable file.

# Makefile for building the Expl calculator

#

# ??Note: LDFLAGS, CFLAGS are non-portable for some Unix systems
# VARIABLES

SHELL = /bin/sh

LDLIBS = -11 -lrml

LDFLAGS = -L$ (RMLRUNTIME) /lib/plain/

CC = gcc

CFLAGS = -I$(RMLRUNTIME)/include/plain/ -g

# EVERYTHING
all: calc

# MAIN PROGRAM

CALCOBJS= main.o lexer.o parser.o yacclib.o expl.o
calc: $(CALCOBJS)
$(CC) s (LDFLAGS) $(CALCOBJS) $(LDLIBS) -o calc

main.o: main.c expl.h

# LEXER

lexer.o: 1lexer.c parser.h expl.h
lexer.c: lexer.l

lex -t lexer.l >lexer.c

# PARSER
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parser.o: parser.c expl.h
parser.c parser.h: parser.y
yacc -d parser.y
mv y.tab.c parser.c
mv y.tab.h parser.h

# ABSTRACT SYNTAX and EVALUATION

expl.o: expl.c
expl.c expl.h: expl.rml
momc -c¢ expl.rml

# AUX

clean:
-rm calc $(CALCOBJS) lexer.c parser.c parser.h expl.c expl.h

4.2.3 Source Files for the Exp1 Calculator

Below we present the three source files 1exer.1, parser.y, and expl.rml, needed to specify the
syntax and semantics of the Expl language, as well as the main program filemain. c.

4.2.3.1 Lexical Syntax: lexer.l

The file 1exer.1 defines the lexical syntax of the Expl language, identical to what was presented in
Section 2.1.1, but augmented by mentioning necessary include files.

The global variable yylval isused to transmit the values of tokens that have values—such as integer
constants (T INTCONST)—to the parser.

Character sequences including new line (\n) which cannot give rise to legal tokensin Expl are taken
care of by junk, which isjust skipped.

Theroutine expl  INTconst in expl.h builds abstract syntax integer leaf nodes and is generated
by momc when processing the abstract syntax definitionsin expi . rml.

The routine mk_icon (from yacclib.h) builds Meta-Modelica compatible integer constants that
can be passed to MetaModelica constructors such as expl.INTconst, here calable as
expl INTconst.

/* file lexer.l */
%{

#include "parser.h"
#include "yacclib.h"
#include "rml.h"
#include "expl.h"

typedef void *rml_t;
extern rml_t yylval;

rml t absyn integer(char *s);
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digit (mon | nqmn | nomn | n3n | ngmn | ngn | ngn | ngn | ngn | n"gm)

digits {digit}+

junk -\n

{digits} { yylval-absyn_ integer(yytext); return T_INTCONST;)}
] return T_ADD;

n_n return T SUB;

" return T MUL;

n/m return T DIV;

m(m return T LPAREN;
" return T RPAREN;
{junk}+ ;

rml_t absyn_ integer (char *s)

{

return (rml_t) expl INTconst (mk_icon(atoi(s)));

}

4.2.3.2 Grammar: parser.y

The grammar file parser.y follows below. The grammar rules are identical to those presented in
Section 2.1.1. However, some include files are mentioned here and tree-building calls have been inserted
at the parser rulesin order to build the abstract syntax tree during parsing.

The tree building routines expl ADDop, expl SUBop, expl MULop, expl DIVop,
expl NEGop, and expl INTconst are generated by momc from the definition of the Expl abstract
syntax in the module exp1 that can be found in the file exp1.rml. The definition of these can be found
in exp1.h. Leaf nodes such as INTconst are returned by the scanner.

/* file parser.y */

%{
#include <stdio.h>
#include "yacclib.h"
#include "rml.h"
#include "expl.h"

typedef void *rml t;

#define YYSTYPE rml_t
extern rml_t absyntree;

}

$token T INTCONST

o°

%token T LPAREN T RPAREN
%token T_ADD
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$token T _SUB
$token T_MUL
$token T DIV
stoken T_GARBAGE

o°
o\°

/* Yacc BNF Syntax of the expression language Expl */

program

expression

term

u_element

element

expression
{ absyntree = $1; }

term

expression T_ADD term

{ $$ = expl_ ADDop($1,$3);}
expression T_SUB term

{ $$ = expl_ SUBop($1,$3);}

u element

term T_MUL u_element

{ 8 = expl MULop($1,53);}
term T DIV u_element

{ $8 = expl DIVop($1,$3);}

element
T_SUB element
{ $¢ = expl NEGop($2);}

T INTCONST
T LPAREN expression T RPAREN

{(Tss = $2;)

4.2.3.3 Semantics: exp1.rmi

The abstract syntax and semantics of the small expression language Expl appears below, identical to the
definitions in Section 2.1.2 and Section 2.1.4. Both have been placed in the Meta-Modelica package
Exp1. For larger specificationsit is customary to place the definition of abstract syntax in amodule of its
own. Note that the abstract syntax specification has been placed in the interface sections since the

constructors need to be exported to be callable by the parser.

/* file Expl.mo */

package Expl

/* Abstract syntax of the language Expl as defined using Modelica */

uniontype Exp

record INTconst Integer x1; end INTconst;
record ADDop Exp x1; Exp x2; end ADDop;
record SUBop Exp x1; Exp x2; end SUBop;
record MULop Exp x1; Exp x2; end MULop;
record DIVop Exp x1; Exp x2; end DIVop;
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record NEGop Exp x1; end NEGop;
end Exp;

/* Evaluation semantics of Expl */

function eval

input Exp in valuel;
output Integer out_valuel;
algorithm

out valuel :=
match in valuel
local Integer vl1,v2;
Exp el,e2;
case INTconst (vl) then vl;

case ADDop (el,e2) equation
vl = eval(el; v2 = eval(e2; then v1+v2;

case SUBop(el,e2) equation
vl = eval(el); v2 = eval(e2); then v1-v2;

case MULop (el,e2) equation
vl = eval(el); v2 = eval(e2); then vl1*v2;

case DIVop(el,e2) equation
vl = eval(el); v2 = eval(e2); then vl1/v2;

case NEGop (el) equation
vl = eval(el); then -vi1;
end match;

end eval;

4.2.3.4 main.c
See Section 4.2.4 for more information.

4.24 Calling Meta-Modelica from C — main.c (?? To be updated)

The main program in a Meta-M odelica-based application can be written either in C or in Meta-Modelica
itself. Here we present an example where the main programisin C.

The main program ties the different modules together and initializes the Meta-Modelica runtime
system. It may also take care of possible command line arguments if the generated application needs
those.

In this particular program, the procedure exp1 s5finit is first called to in order to initialize the
Meta-Modelica runtime system. In fact, for each module m written in Meta-Modelica, the C main
program must call M s5finit(); for initidization. Then the printouts [Init] and [Parse] are
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produced, after which the user is expected to type in an expression, which is parsed and scanned by
yyparse. The abstract syntax tree is built by the parser and placed into the global variable absyntree.

The parameter passing facilities between C code and Meta-Modelica functions are still a bit
primitive. The abstract syntax tree need to be passed to the Modelica function Expil.eval for
evauation, which is the main functionality in our calculator. To do this, the tree is placed into the global
location rml_state ARGS[0] which transfers the first argument to Exp1l.eval through the call
rml prim once (RML_LABPTR (expl eval)) which returns a non-zero value if the evaluation is
successful. The integer result of the evaluation is placed in the global variable rm1 _state ARGS[0].
Note that the result must be converted from the Meta-Modelica tagged integer representation to the
ordinary C integer representation before being printed. This conversion is handled by
RML_UNTAGFIXNUM.

The special MetaModelica runtime system procedures and locations referred to, such as
rml prim once, rml state ARGS, RML_LABPTR, €iC., are al declared in the include file rm1 . h. The
filemain. c follows below.

/* file main.c */
/* Main program for the small expl evaluator */

#include <stdio.h>
#include <rml.h>
#include "expl.h"

typedef void * rml t;
rml_t absyntree;

yyerror (char *s)

{

extern int yylineno;
fprintf (stderr, "Syntax error at or near line %d.\n",yylineno) ;

}

main ()

{
int res;

/* Initialize the Modelica modules */

printf (" [Init]\n");
expl 5finit () ;

/* Parse the input into an abstract syntax tree (in Modelica form)
using yacc and lex */

printf (" [Parse]\n") ;
if (yyparse() !=0)

fprintf (stderr, "Parsing failed!\n");
exit (1) ;

}

/* Evalute it using the Modelica relation "eval" */
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printf (" [Evall\n") ;
rml state ARGS[0]= absyntree;
if (!rml prim once (RML LABPTR(expl eval)) )

fprintf (stderr, "Evaluation failed!\n") ;
exit (2) ;

}

/* Present result */

res=RML UNTAGFIXNUM (rml state ARGS[O0]);
printf ("Result: %d\n", res);

4.2.5 Generated Files and Library Files

We have aready mentioned the five generated files scanner.c, parser.h, parser.c, expl.h, and
expl.c in Section 4.2.2.2. The Meta-Modelica system generates expi1.h and exp1.c. Here we will
present the header file exp1 .h in more detail. Thefile exp1 . ¢ contains optimized C implementations of
the Exp1 Meta-Modelica functions, which is rather unreadable C code that is not so interesting to look
at.

Additionally, we describe the header file yacclib.h of thelibrary file yacclib.c, which contains
low level routines necessary for building and printing abstract syntax trees.

4251 Expil.h

The header file exp1.h contains declarations that makes it possible to call entities declared in the
interface section of the Exp1 Modeica module. These include the Exp1.eval function referred to
through the label exp1  eval, and abstract syntax tree constructors Exp1l .NEGop, expl.DIVop, €tC.
which can be called through the macros expl NEGop, expl DIVop, €tC. respectively.

/* interface expl */

extern void expl 5finit();

extern RML FORWARD LABEL(expl eval);
#define expl NEGop 3dBOX1 5

#define expl NEGop (X1) (mk_boxl (5, (X1)))
#define expl DIVop 3dBOX2
#define expl DIVop (X1,X2)
#define expl MULop 3dBOX2
#define expl MULop (X1,X2)
#define expl SUBop 3dBOX2
#define expl SUBop (X1,X2)
#define expl ADDop 3dBOX2
#define expl ADDop (X1,X2) (mk_box2 (1, (X1), (X2)))
#define expl INTconst 3dBOX1 0

#define expl INTconst (X1) (mk_boxl (0, (X1)))

mk_box2 (4, (X1), (X2)))
mk_box2 (3, (X1), (X2)))

mk_box2 (2, (X1), (X2)))

P ~DN ~ W~
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4.25.2

The header file yacclib.h declares a number of primitive routines which are primarily used in the

Yacclib.h

course of building abstract syntax trees during parsing.

The routines mk_icon, mk_rcon, mk_scon create Meta-Modelica representations for integers, real
numbers and strings, respectively, whereas print_icon, print rcon, and print scon can print

Modelicaintegers, real numbers and strings.

List construction is provided by mk cons which creates a list cell and mk_nil which creates a nil
pointer to represent the end of alist. The mk_none and mk_some constructors are used for the builtin
Meta-Modelica opt ion type which is convenient for representing optional syntactic constructs.

Finally, the routinesmk_box0 to mk_box5 construct abstract syntax tree nodes of arity 0 to 5. These
should not be called directly, however. Instead use the abstract syntax building routines, one for each

node type, which are declared in thefile exp1 . h.

/* yacclib.h */

extern int yylineno; /*

extern

/
extern

extern
extern

extern
extern
extern

extern

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

char

void

void
void

void
void
void

void

void
void
void
void
void
void
void
void
void
void
void
void

*yytok2str (int token) ; /*

error (const char *fmt, ...);

*alloc_ bytes (unsigned nbytes) ;
*alloc_words (unsigned nwords) ;

print icon (FILE*, void*/;
print rcon(FILE*, void*/;
print scon (FILE*, void*/;

*mk icon(int);

*mk_rcon (double) ;

*mk scon (char*/;

*mk nil (void) ;

*mk_cons (void*, void*/;

*mk none (void) ;

*mk some (void*/;

*mk box0 (unsigned ctor) ;
*mk_boxl (unsigned ctor, void*/;
*mk box2 (unsigned ctor, voidk,
*mk_box3 (unsigned ctor, void*,
*mk_box4 (unsigned ctor, void*,
*mk_box5 (unsigned ctor, void*,

generated by lex */

uses yytoks[] from yacc + -DYYDEBUG *

voidx/;

void*, void*/;

void*, void*, void*/;

void*, void*, void*, void*/;
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4.3 An Evaluator for PAMDECL

4.3.1 Running the PAMDECL Evaluator

The executable is named pamdec1, and isinvoked by typing pamdec1 at the Unix prompt (sen20%10).
Input typed by the user is shown in boldface.

5en20%10 cat|pamdecl

program
a: integer;
foo: real;
body
a:=17;
foo:=a*2+8;
write foo;
end program
“D42.0

Supplied with PAMDECL are a number of test programs located in subdirectory prg/. TO run prgs
type the following: (??only for Unix)

sen20%11 pamdecl > prg/prg5

.01

.0201

.04060401
.08285670562808
.1725786449237
.3749406785311
.89046186947955
3.57384607995613
12.7723758032178
163.133583658624
26612.5661173053
708228675.347948

PR R RR PR

4.3.2 Building the PAMDECL Evaluator
The following files are needed for building PAMDECL: absyn.rml (page 55), env.rml (page 55),

eval.rml(page56L lexer.l,parser.y,main.rml, scanparse.rml, scanparse.c, yacclib.c,
yvacclib.h and makefile.

The files can be copied from /home/pelab/pub/pkg/rml/current/bookexamples/
examples/pamdecl (??update location) or typed from the above pages and Section 4.3.3 below.

The executable is built by typing:

sen20%12 make pamdecl
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4.3.3 Source Files for PAMDECL Evaluator

For Absyn.mo, Env.mo, and Eval .mo see Section 2.7.

4.3.3.1 lexer.l
%{

#include <stdlib.hs>
#include "parser.h"
#include "rml.h"

#include "yacclib.h"

#include "absyn.h"

typedef void *rml t;
extern rml_t yylval;

int absyn integer(char *s);
int absyn ident or keyword(char *s);

}

o°

digit [0-9]

digits {digit}+

letter [A-Za-z ]

intcon {digits}

dot n . n

sign [+-1]

exponent ([eE]l {sign}?{digits})

realcondot {digits}{dot}{digits}{exponent}?
realconexp {digits} ({dot}{digits}) ? {exponent}
realcon {realcondot} | {realconexp}

ident {letter} ({letter}|{digit})*

ws [ \t\n]

junk .| \n

m(n return T LPAREN;
myn return T RPAREN;

"t return T PLUS;

n_m return T MINUS;
"k n return T TIMES;
n/m return T DIVIDE;

"= return T ASSIGN;
nym return T SEMICOLON;
et return T COLON;

et return T_LT;
"e=" return T LE;
> return T_GT;

">=" return T GE;
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">t return T NE;
=" return T EQ;

{intcon} { return absyn integer (yytext) ;}

{realcon} { return absyn real (yytext) ;}

{ident} { return absyn ident or keyword (yytext); }
{ws}+ i

{junk}+ return T GARBAGE;

o°
o\

/* Make an Modelica integer from a C string representation (decimal),
box it for our abstract syntax, put in yylval and return constant token. */

int absyn integer (char *s)

yylval=(rml_t) Absyn INTCONST (mk_icon(atoi(s)));
return T CONST INT;

}

/* Make an Modelica real from a C string representation,
box it for our abstract syntax, put in yylval and return constant token. */

int absyn real (char *s)

yylval=(rml t) Absyn REALCONST (mk rcon(atof(s)));
return T CONST_REAL;

}

/* Make an Modelica Ident or a keyword token from a C string */

static struct keyword s

{

char *name;
int token;

} o kwll =

{
{"boay", T BODY},
{rdo", T DO},
{relser, T ELSE},
{"end" T END},
{mifm, T IF},
{'program" T PROGRAM},
{"then", T THEN},
{"whilen", T WHILE},
{"write", T WRITE},

}i

int absyn ident or keyword(char *s)

{
int low = O0;
int high = (sizeof kw) / sizeof (struct keyword s) - 1;
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while( low <= high ) {
int mid = (low + high) / 2;
int cmp strcmp (kw [mid] .name, yytext);
if( cmp == 0 )
{
return kw[mid] .token;
}
else 1f( cmp < 0 )
low = mid + 1;
else
high = mid - 1;

}

yylval = (rml t) mk scon(s) ;
return T IDENT;

}

4.3.3.2 parser.y
5

#include <stdio.h>
#include "yacclib.h"
#include "absyn.h"

typedef void *rml t;
#define YYSTYPE rml_t
extern rml_t absyntree;

o°

}

stoken T_PROGRAM
%token T BODY
stoken T_END
$token T IF
stoken T THEN
$token T ELSE
$token T WHILE
$token T DO

$token T WRITE
stoken T _ASSIGN
%token T SEMICOLON
stoken T_COLON

$token T CONST_ INT
$token T CONST_ REAL
$token T CONST_ BOOL
stoken T IDENT

%token T LPAREN T RPAREN

$nonassoc T LT T LE T GT T GE T NE T EQ
$left T _PLUS T MINUS
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%left T TIMES T DIVIDE
$left T UMINUS

$token T GARBAGE

o°
o

program
T PROGRAM decl list T BODY stmt list T END T PROGRAM
{ absyntree = Absyn PROG($2,54); }
decl list
{ $8$ = mk_nil();}
| decl decl list
{ $$ = mk_cons(51,%2); }
decl
: T_IDENT T _COLON T_IDENT T_SEMICOLON
{ $$ = Absyn NAMEDECL($1,$3);}
stmt_list
{ $% = mk_nil();}
| stmt stmt_list
{ $$ = mk_cons(51,%2); }
stmt

: simple stmt T SEMICOLON
| combined stmt

simple stmt
assign stmt
| write stmt
| noop stmt

combined stmt
if stmt
| while stmt

assign_stmt
T IDENT T ASSIGN expr
{ $$ = Absyn ASSIGN(SL1,$3);}
write stmt
T WRITE expr
{ $$ = Absyn WRITE(S2);}
noop_stmt

{ $$ = Absyn NOOP;}

if_stmt
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T IF expr T THEN stmt list T ELSE stmt list T END T IF
{ $$ = Rbsyn__IF($2,$4,%6); }
| T IF expr T THEN stmt list T END T IF
{ $$ = Absyn IF($2,34,mk_cons (Absyn NOOP,mk nil())); }

while stmt
T WHILE expr T DO stmt list T END T WHILE
{ $$ = Absyn WHILE($2,54); }

expr
T CONST_INT
| T _CONST REAL
| T CONST BOOL
| T LPAREN expr T RPAREN
{ ss = s2;}
| T IDENT
{ $$ = RAbsyn VARIABLE ($1);}
| expr bin
| expr un
| expr rel
expr bin
expr T_PLUS expr
{ $$ = Absyn BINARY($1, Absyn ADD,$3);}
| expr T MINUS expr
{ $$ = Absyn BINARY($1, Absyn SUB,$3);)}
| expr T TIMES expr
{ $$ = Absyn BINARY($1, Absyn MUL,$3);}
| expr T DIVIDE expr
{ $$ = Absyn BINARY($1, Absyn DIV, $3);}
expr_un
T MINUS expr %prec T UMINUS
{ $$ = Absyn UNARY (Absyn ADD,$2);}
expr rel

expr T_LT expr
{ $8 = Absyn RELATION($1,Absyn LT, $3);}

| expr T LE expr
{ $8 = Absyn RELATION($1,Absyn LE,$3);}

| expr T GT expr
{ $8 = Absyn RELATION($1,Absyn GT,$3);}

| expr T GE expr

{ $$ = Rbsyn RELATION($1,Absyn GE,S$3);}
| expr T NE expr

{ $$ = Absyn RELATION($1,Absyn NE,$3);}
| expr T _EQ expr

{ $$ = Absyn RELATION($1,Absyn EQ,$3);}

o°
o\°
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4.3.3.3 Main

package Main
import PamDecl.ScanParse;
import PamDecl.Eval;

type StringList = list<Strings>;
function mainprogram

input StringList;
output Boolean dummy;

algorithm
ast := ScanParse.scanparse() ;
ast := Eval.evalprog(ast) ;
dummy := true; //?? should really call mainprogram recursively to have a loop

end mainprogram;
end Main;

4.3.3.4 ScanParse

package ScanParse
import PamDecl.Absyn;

function scanparse
output Absyn.Prog ast;

external "C";

end ScanParse;

4.3.3.5 scanparse.c

/* Glue to call parser (and thus scanner) from Modelica */

#include <stdio.h>
#include "rml.h"

/* Provide error reporting function for yacc */
yyerror (char *s)

{

extern int yylineno;
fprintf (stderr, "Error: bad syntax on line %d.\n",yylineno) ;

}

/* The yacc parser will deposit the syntax tree here */
void *absyntree;
/* No init for this module */

void ScanParse 5finit (void) {}
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/* The glue function */

RML_ BEGIN LABEL (ScanParse scanparse)

{

if (yyparse() !=0)

{

fprintf (stderr, "Fatal: parsing failed!\n");
RML_TAILCALLK (rmlFC) ;

}

rmlAO=absyntree;
RML_TAILCALLK (rmlSC) ;

}

RML_END LABEL

4.3.3.6 makefile

# Makefile for building PAMDECL

#

# ??Note: LDFLAGS, CFLAGS are non-portable for some Unix systems
# VARIABLES

SHELL = /bin/sh

LDLIBS = -lrml -11 # Order is essential; we want librml main, not libll!
LDFLAGS = -L$ (RMLRUNTIME) /lib/plain/

CC = gcc

CFLAGS = -I$(RMLRUNTIME)/include/plain/ -g -I..

# EVERYTHING
all: pamdecl

# EXECUTABLE

COMMONOBJS=yacclib.o
VSLOBJS=main.o lexer.o parser.o scanparse.o absyn.o env.o eval.o

pamdecl: $(VSLOBJS) $ (COMMONOBJS)
$(CC) $(LDFLAGS) $(VSLOBJS) $(COMMONOBJS) $(LDLIBS) -o pamdecl

# MAIN ROUTINE WRITTEN IN Modelica NOW
main.o: main.c
main.c main.h: main.rml

momc -c¢ main.rml

# YACCLIB

yacclib.o: vyacclib.c
$(CC) $(CFLAGS) -c -o yacclib.o yacclib.c

# LEXER
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lexer.o: 1lexer.c parser.h absyn.h
lexer.c: 1lexer.l
lex -t lexer.l >lexer.c

# PARSER

parser.o: parser.c absyn.h
parser.c parser.h: parser.y
yacc -d parser.y
mv y.tab.c parser.c
mv y.tab.h parser.h

# INTERFACE TO SCANNER/PARSER (Modelica CALLING C)

scanparse.o: scanparse.c absyn.h
# ABSTRACT SYNTAX

absyn.o: absyn.c
absyn.c absyn.h: absyn.rml
momc -c absyn.rml

# ENVIRONMENTS

env.o: env.c
env.c env.h: env.rml
momc -c env.rml

# EVALUATION

eval.o: eval.c
eval.c eval.h: eval.rml absyn.h env.h
momc -c eval.rml

# AUX

clean:
S (RM) pamdecl $(COMMONOBJS) $(VSLOBJS) main.c main.h lexer.c parser.c pa
rser.h absyn.c absyn.h env.c env.h eval.c eval.h *~

4.3.4 Calling C from Meta-Modelica

The file scanparse.rml looks somewhat weird. It does not contain the usual module implementation
section. In the makefile one also notices that it is not compiled using mome. Instead we supply the body
for scanparse.rml through the file scanparse. c, which in turn is compiled in aregular way. Thisis
the trick to use when wanting to call C from Meta-Modelica.

Thisishow you doitin PAMDECL.:

e In scanParse.mo specify the functions (C functions) that are to be implemented in C. In this
case it isafunction (function) that takes no arguments and returns an Absyn . prog.
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e In scanparse.c we need to implement the functions (functions) specified in scanParse.mo.
This is done by typing the code for the function between RML BEGIN LABEL (
ScanpParse relationname) and RML_END LABEL.

e One aso needs to add the constructor ScanParse 5finit (void) for scanparse.rml,
which in this case does nothing.

If one want the function to fail call RML_TATILCALLK (rmlFC) oOr call RML TAILCALLK (rmlSC) if one
want it to succeed.

Values are returned through the variable rm1a0. Values submitted to the function (function) can be
retrieved from rm1a0 through rm1a9. Before the values can be retrieved or returned they have to be
untagged or tagged, e.g. get a string parameter.

char *first param = RML_STRINGDATA (rmlA0) ;

or return a string constant

rmlA0 = (void */ mk scon("Hello, world!");

4.4 Debugging Modelica Specifications

Even though Meta-Modelica is a specification language, it is common that specifications are erronous
and therefore need to be debugged.

This section presents the interactive Meta-Modelica debugger functionality by showing a debugging
session on a short Meta-Modelica example, together with a short overview of the debugger commands.
The functionality of the debugger isillustrated using pictures from the Emacs debugging mode for Meta-
Modelica (Modelicadebug-mode).

4.41 The Debugger Commands

The Emacs Modelica debug mode is implemented as a specialization of the Grand Unified Debugger
(GUD) interface (gud-mode) from Emacs [??ref]. Because the Modelica debug mode is based on the
GUD interface, some of the commands have the same familiar key bindings.

The actual commands sent to the debugger are also presented together with GUD commands
preceded by the Modelica debugger prompt: mdbes.

If the debugger commands have several alternatives these are presented using the notation:
alternativel|alternative2|....

The optional command components are shown within square brackets. [optionall.

In the Emacs interface: M-x stands for holding down the Meta key (mapped to 21t in general) and
pressing the key after the dash, here x, ¢-x stands for holding down the control (ctrl) key and
pressing x, <RET> isequivaent with pressing the Enter key and <spc> with pressing space key.

4411 Starting the Modelica Debugging Subprocess

The command for starting the Modelica debugger under Emacs is the following:
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M-x Modelicadebug <RET> executable <RET>

4.41.2 Setting/Deleting Breakpoints

A part of a session using this type of commands is shown in Figure 4-1. The presentation of the
commands follows later.

emacs@HP57411421523. carafe.ida.inse o ] 4|

File Edit Options Buffers Tools Complete In/Out Signals Help

@ x ©Qd P ?

function eval
input Exp  ewxp_1:
output Real rwal_1;
algorithm
rval_1 :=
casze exp_1
local Integer wl.u2:
Exp el.e2:
of ECOMST{wl) then wi:
of PLUS{el,.e2} then
evalielr = vlr evalis2) = w23
in vi+w2:
of SUE{el.e2) then
efdaliely = vl: evalie2) = u2:
in wi-w2:
of MUL{el,.e2} then
evalielr = vly evalis2) = v2:
in wl=yw2:
of DIV{el,e2} then
evalielr = vl: evalie2) = v2:
in wil/we2:
of MEGLEld then
--¢005)-- ewal.no (Modelical--L14--C¥--Top------ 4
Current directory iz Jocygdeivedc/homedadrposdoc/projectss @
EodelicafﬂodelicaCDnFerenceEOOSHtestSH
Init

mob@> - Modelica debugzer

mob@> - 2002, 2003, 2004, LIUATDAAPELAE, adrpo@ids, liu,se
mobE> - debugging process 2552

mobE> - on thty!sdev/ttyd

Breakpoint on: [eval.mo13] added to breskpoints list,
Breakpoint on: [eval.moill] added to breakpoints list,
Breakpoint on: [eval,mo:ld] added to breakpoints list,
nobErshow

—————————— CURREMT BREAKPOINTS ---------

#0 -» eval,moi9

#1 -» eval,moyll

#2 -» eval,mo:ld

nch@rc lear
Breskpoints list cleared
nicl@
l-i_-li** *gudx {Debugzerirunl--L18--C5--A11------ |

Figure 4-1. Using breakpoints.
To set abreakpoint on the line the cursor (point) is at:

C-x <SPC>
mdb@> break on file:lineno|string <RET>

To delete a breakpoint placed on the current source code line (gud - remove):
C-c C-d
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C-x C-a C-d
mdb@> break off file:lineno|string <RET»>

Instead of writing break one can use alternatives. br |break |breakpoint.
Alternatively one can delete all breakpoints using:

mdb@> cl|clear <RET>

Showing all breakpoints:

mdb@> sh|show <RET>

4.41.3 Stepping and Running

To perform one step (gud-step) in the Modelica code:

C-c C-s
C-x C-a C-s
mdb@> st|step <RET>

To continue after a step or a breakpoint (gud-cont) in the Modelica code:

C-c C-r
C-x C-a C-r
mdb@> ru|run <RET>

Examples of using these commands are shown in Figure 4-2. The example is the Expl calculator briefly
described in Section 2.1.
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macs@HP57411421523 carafe.ida liu.se =loixi

File Edit Options Buffers Tools Complete In/Out Signals Help

O® X @ @@ ?

function eval
input. Exp ewp_l:
output. Real rval_1:
algorithn
rval_1 ;=
caze exp_l
local Integer wil.w2:
Exp el,e2:
of BEOMST(wL) then viz
of FLUS(el.e2} then
evaliely = vl: evalieZ) = v2:
in vl+wz:
of SUElel.e2) then
evaliely = vl: evalieZ) = v2:
in vl-wz:
of MULtel.e2} then
evaliely = vl: evalieZ) = v2:
in wl=w:
of I1Viel.e2} then
--(D05:-- ewval.no {Modelica¥=-1 9=-C7--Tpp==============-=c== 1
Current directory is fougdrivesc/hones/adrpos/doc/projecte/modelicasHod @
?liCaCUﬂFEFEHDEEOOS/LESLS/
Init

mobE> - Modelica debugger

noh@> - 2002, 2003, 2004, LIU/IDA/PELAB, adrpofida,liu.se
mobE> - debugging process 2936

mobE> - on ttyildev/tityd

Ereskpoint on: [eval.mo:9] added to breakpoints list,
BEreskpoint on: [ewval.mo:11] added to breskpoints list,
[FParze

4-16/2%3+10

Evall

Breskpoint [1]. on eval,.moill reached

eval ,moill,7Revalicallievaliely => (vl
nchoE > run

Breskpoint. [0]. on eval,.mo:d reached

ewval ,moi9, BevalBaxion RCONST (vl =3 (vl
mcl@ >

——ixx  wguds {Debuggerirunt=-1 20--C5--A1]-~-----------o-- 1
Figure 4-2. Stepping and running in the debugger.

441.4 Examining Data

There are no GUD keybindings for these commands but they are inspired from the GNU Project
debugger (GDB) [ref?7].

To print the contents/size of a variable one can write:

mdb@> pr|print variable name <RET>
mdb@> sz|sizeof variable name <RET>

at the debugger prompt. The sizeis displayed in bytes.
Variable values to be printed can be of a complex type and very large. One can restrict the depth of
printing using:

mdb@> [set] de|depth integer <RET>

Moreover, we have implemented an external viewer written in Java called pataviewer to browse the
contents of such alarge variable. To send the contents of a variable to the external viewer for inspection
one can use the command:

mdb@> bw|browse|gr|graph var name <RET>
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at the debugger prompt. The debugger will try to connect to the pataviewer and send the contents of
the variable. The externa data browser has to be started a priori. If the debugger cannot connect to the
external viewer within a specified timeout a warning message will be displayed. A picture with the
external bataviewer tool is presented in Figure 4-3:

1=

;l Modelica Data Viewer
) Modsfica Variables
B ) et:Exp
EH) SUB record
| RCONST:record
L% 2Real
;| MUL:record
;| D% record
| RCONST:record
L—# 15Real
| RCONST:record
L 2Real
| RCONST:record
% 3Real

=1 eZExp
=] RCOMST:recard
L& 10Real

Modelica Data Viewer (Browser) Help

Quick crash-course on Modelica variable exploring

# Start the wiewer before starting the debugger

O (this could be rectified in the future so that the
viewer 15 started by the debugger)

# Click on variable name inside the tree to explore a variable =
# [MWore could be added here in the future] hd|

Figure 4-3. External browser/viewer for complicated data structures.

If the variable which one tries to print does not exist in the current scope (not alive variable) a notifying
warning message will be displayed.
Automatic printing of variables at every step or breakpoint can be specified by adding a variable to a

display list:

mdb@> di|display variable name <RET>
To print the entire display list:

mdbe> di|display <RET>
Removing a display variable from the display list:

mdb@> un|undisplay variable name <RET>
Removing all variables from the display list:

mdb@> undisplay <RET>
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Printing the current live variables:
mdbe@> 1li|live|livevars <RET>

Instructing the debugger to print or to disable the print of the live variable names at each step/breapoint:
mdbe> [set] li|live|livevars [on|off]<RET>

Figure 4-4 shows examples of some of these data examination commands within a debugging session:

macs@HP57411421523.carafe.idaiu.se =10l x|

File Edit Options Buffers Tools Complete In/Out Signals Help

D ®x o ydE?

function sval
irmput. Exp  exp_1z
output Real rwal_ 1z
alzgorithm
rval_1 3=
caze exp_l
local Integer vl.wE:
Exp el e2;:
of RCOMST(vl) then wl:
of FLUS{el.s2) then
Bualiel) = wl: evalie2) = v2:
in wl+y2r
—-{00S5:-- eval.no e e e e 1
Current. directory iz scugdrive/c/home/adrpos/docdero jects/modelica/Mode @
licaConference2005/testss
[Init]

mob@> - Modelica debugger

ncdb@> - 2002, 2003, 2004, LIU/IDR/PELAE. adrpolida,liu.se

molb@> - debugging process 244

b - on tty;ldevsttyd

ncbE>step

[Parse]

4-16/2%3+10

[Evall

eval ,moill, 7Revallcallievaliel) =» {ull}

ncdbE>print el

Rezultsiel=SLUB (RCOMST {4} .MUL{DIVIRCONST {16} .RCONST {23 [RCONST3: 22
Farameters ;e1=SUB{RCONST {4} MUL {DIV{RCOMST{16) RCOMST23 3 .RCOMSTE3) 3>
ncbE>print e2

Result=1e2=RCONST (10}

Parameters:[not in current contest]

ndbE>display e

Resultsel=SUE (RCOMST (4} MUL {DIV{RCOMST (16 RCOMST (23} (RCONST(Z) 2 )
Parameters te1=5UB(RCONST {4} MUL{DI¥{RCONST (15  RCONST {233 .RCONSTE3 ) b >
Variahle: [21] added to display warishile list,

ndb@>display

****** LIST OF DISPLAY VARIABLES ------

#) > el

ndbE>undisplay

List of display varishles cleared,

il

——i%x  kgudx (Debugger srun ) —-L29--C5--A1]-—————--———————————— 4

Figure 4-4. Examining data in the debugger command window.

4.41.5 Additional commands

The stack contents (backtrace) can be displayed using:
mdb@> bt |backtrace <RET>

Because the contents of the stack can be quite large, one can print afiltered view of it:
mdb@> fbt|fbacktrace filter_string <RET»>

Also, one can restrict the numbers of entries the debugger is storing using:

mdb@> maxbt |maxbacktrace integer <RET>
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For displaying the status of the Modelica runtime:
mdb@> sts|stat|status <RET>
The status of the Meta-Modelica runtime comprises information regarding the garbage collector,

allocated memory, stack usage, etc.
The current debugging settings can be displayed using:

mdb@> stg|settings <RET>
The settings printed are: the maximum remembered backtrace entries, the depth of variable printing, the
current breakpoints, the live variables, the list of the display variables and the status of the runtime
system.

One can invoke the debugging help by issuing:

mdb@> he|help <RET>
For leaving the debugger one can use the command:

mdb@> qu|quit|ex|exit|by|bye <RET>

A session using these commands is presented in Figure 4-5 below:

macs@HP57411421523.carafe.idalivse =10l =|

File Edit Options Buffers Tools Complete In/Out Signals Help

@ X O e &2

P el =2
of RCOMST(wl} then viz
of PLUS(el.e2y then
evaliel) = vlp ewalie2) = v2:
in wl+v2y
of SlBiel,e2) then
evaliel) = w1z Hualie2) = vwa:
in wl-v2y
of MUL{el.e2) then
——({005)-- ewal.mo Modelical--L 14-—C22--20%--—————=——-————-— |
eval, motll FBevalboallievaliely => (vl
nodb@Exprint el
Resultsel=SUB(RCONST (43 MUL (DIV(RCOMST(16) RCOMST(Z2) ) RCONST (2302
Parameters :el=SUB (RCOMST (4 ) . MUL (OIV (RCOMST (163 RCOMST(2) ) .RCONST (323 )
nodb@>print e2
Resultse2=RCONST (107
Parameters :[hot in current context]
nob@Erdisplay el
RFesultsiel=SUB(RCONST (d) MUL (DIV(RCOMST¢16) RCOMST(Z) )  RCONST (S 02
FParameters 1el=SUB (RCOMST (4) . MUL ¢DIV(RCOMST (163 RCOMST(2) )  RCONST(Z23)
Variable: [el] added to display varishile list,
nob@rdisplay
------ LIST OF DISPLAY VARIABLES ------
#) -> el
nodbE>undisp lay
List of display variables cleared,

eval, notld, 7Eevalfoallievaliely => (ull
eval, not9, BEevallacionRCONST (vl => (vl

eval moild,23RevalBcallieval (822 => (u2)
nolb@ bt

STACK
#0 -reval,noi11,7,11,20 relation[evall.goallcallievaliel) =» {(ul}]
#1 -reval,noil1d,7,14,20 relation[evall.goallcallievaliel) =» {(ul}]
#2 -reval,mo:9,8,9,17 relationfevall.goallaxionsRCONST (vl =» (1))
#3 -reval.mo3;1d,23,14.36 relationlevall.goallcallievalieZ) => (2]

nobErprint e2

Results:[not in current context]
Paramﬁters:eZ=HUL(DIV(RCDNST(16).RCDNST(2)),RCDHST(3))
ikl >

——1xx  xgudk (Debugzer jrun) == 45=-CF--Bot,============c-oc-mc |
Figure 4-5. Additional debugger commands.
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Chapter 5

Comprehensive Overview of the Current Meta-
Modelica Subset

This chapter describes al the basic building blocks of Meta-Modelica such as characters and lexical
units including identifiers, literals, and operators. Without question, the smallest building blocks in
Meta-Modelica are single characters belonging to a character set. Characters are combined to form
lexical units, also called tokens. These tokens are detected by the lexical analysis part of the Meta-
Modelica translator. Examples of tokens are literal constants, identifiers, and operators. Comments are
not really lexical units since they are eventually discarded. On the other hand, comments are detected by
the lexical analyzer before being thrown away.

The lexical units are combined to form even larger building blocks such as expressions according to
the rules given by the expression part of the Meta-Modelica grammar.

5.1 Meta-Modelica Constructs to be Depreciated

The current Meta-Modelica subset contains several constructs which will eventually be depreciated, i.e.
removed, from the Meta-Modelica language. They are needed right now, before compiler support for
better alternatives has been implemented. The constructs to be depreciated are the following:

e matchcontinue-expressions will be replaced by match-expressions with guards.

e Real number arithmetic operators containing adot (+., -., *., /., etc.) will be replaced by ordinary
overloaded arithmetic operators (+, - ,* , /, efc.)

e Theequality(...) operator will be removed.

e efc...

5.2 Meta-Modelica Constructs not yet Fully Supported

The following constructs are not yet fully implemented:

match-expressions currently work the same way as matchconti nue-expressions.

Guards with the guard keyword are not yet supported in match/matchcontinue-expresions.
Named argument to functions and constructors are not yet supported.

Named arguments in constructor-calls in patterns are not yet supported.
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e ¢fc...

5.3 Character Set

The character set of the Modelica language is not yet completely specified. However, in practice the
currently available Modelica tools work well for code written in the 8-bit Latin-1 character set, which
corresponds to the first 256 characters of the 16-bit Unicode character set. Most of the first 128
characters of Latin-1 are equivalent to the 7-bit ASCII character set.

5.4 Comments

There are three kinds of comments in Modelica which are not lexical unitsin the language and therefore
are ignored by a Modelica trandator. The comment syntax is identical to that of Java. The following
comment variants are available:

// comment Charactersfrom // to the end of the line are ignored.

/* comment */ Characters between /* and */ areignored, including line terminators.

/** comment */ Characters between /+* and */ are ignored, including line terminators.
These are documentation comments that come immediately before
declarations and can be included in automatically generated
documentation. However, currently available Modelica tools primarily
support another mechanism for documentation, so-called documentation
strings described bel ow, which can be attached after each declaration.

Modelica comments do not nest, i.e., /* */ cannot be embedded within /= /. The following is
invalid:
/* Commented out - erroneous comment, invalid nesting of comments!
/* This is a interesting model */
function interesting
éﬁ& interesting;
*/
There is aso a kind of “documentation comment,” really a documentation string, that is part of the
Modelica language and therefore not ignored by the Modelica trandator. Such “comments’ may occur at
the ends of declarations, at the beginnings of function definitions, or immediately after any equation. For
example:

funtion foo "This is a function comment"
Real x "the variable x is used for ...";

oo
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5.5 Identifiers, Names, and Keywords

Identifiers are sequences of letters, digits, and other characters such as underscore, which are used for
naming various items in the language. Certain combinations of letters are keywords represented as
reserved words in the Modelica grammar and are therefore not available as identifiers.

5.5.1 Identifiers

Modelica identifiers, used for naming classes, variables, constants, and other items, are of two forms.
The first form aways start with a letter or underscore (), followed by any number of letters, digits, or
underscores. Case is significant, i.e., the names Inductor and inductor are different. The following
BNF-like rules define Meta-Modédlica identifiers, where curly brackets {} indicate repetition zero or
more times, and vertical bar | indicates alternatives.

IDENT = NONDIGIT { DIGIT | NONDIGIT } | Q-IDENT
NONDIGIT = " " | letters "a" to "z" | letters "a" to "z
DIGIT =0 | 1|2]|3|4]|]5]|6]7]|8]?¢9°
S-ESCAPE = n\rn | n\nn | n\?n | n\\n |

ll\all | Il\bll | ll\fll | Il\nll | ll\rll | Il\tll | ll\vll

5.5.2 Names

A name is an identifier with a certain interpretation or meaning. For example, a name may denote an
Integer variable, a Real variable, a function, a type, etc. A name may have different meanings in
different parts of the code, i.e., different scopes. Package names are described in more detail in ?2?.

5.5.3 Meta-Modelica Keywords

The following Meta-Modelica keywor ds are reserved words and may not be used as identifiers:

_ and annotation block
case constant
else end
equality equation external false
failure function if
input list local match matchcontinue
not or output package
protected public record
then true

tuple type uniontype
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5.6 Predefined Types

The predefined built-in based types of MetaModelicaare Real, Integer, Boolean, and string. The
machine representations of the values of these predefined types have the following properties:

Real IEC 60559:1989 (ANSI/IEEE 754-1985) double format, at least 64-bit precision.
Integer typically two's-complement 32-bit integer. (But here 31 bit integer)

Boolean true Or false.

String string of 8-bit characters.

list<eltype> list of element type

Note that for argument passing of values when calling external functions in C from Meta-Modélica,
Real correspondsto double and Integer correspondsto int.

5.6.1 Literal Constants

Literal constants are unnamed constants that have different forms depending on their type. Each of the
predefined types in Meta-Modelica has a way of expressing unnamed constants of the corresponding
type, which is presented in the ensuing subsections. Additionally, array literals and record literals can be
expressed.

5.6.2 Floating Point Numbers

A floating point number is expressed as a decimal number in the form of an optiona sign (+ or -), a
sequence of decimal digits optionally followed by a decimal point, optionally followed by an exponent.
At least one digit must be present. The exponent is indicated by an E or e, followed by an optional sign
(+ or =) and one or more decimal digits. The range is that of |IEEE double precision floating point
numbers, for which the largest representable positive number is 1.7976931348623157E+308 and the
smallest positive number is 2.2250738585072014E-308. For example, the following are floating point
number literal constants:

22.5, 3.141592653589793, 1.2E-35, -56.08

The same floating point number can be represented by different literals. For example, al of the
following literals denote the same number:

13., 13E0, 1.3el, .13E2

5.6.3 Integers

Literals of type Integer are sequences of decimal digits, e.g. as in the integer numbers 33, 0, 100,
30030044, Or negative numbers such as -998. The range depends on the C compiler implementation of
integers (Modelica compiles to C), but typically is from —2,147,483,648 to +2,147,483,647 for atwo's-
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complement 32-bit integer implementation. Currently only 31-bit integers are supported as the Integer
typein Meta-Modelica. However, the Long builtin type supports 64-bit 2-complement integers.

5.6.4 Booleans

Thetwo Boolean literal vauesare true and false.

5.6.5  Strings

String literals appear between double quotes as in "between". Any character in the Meta-Moddlica
language character set apart from double quote (") and backdash (\), but including nonprintable
characters like new-line, backspace, null, etc., can be directly included in a string without using an
escape code. Certain characters in string literals are represented using escape codes, i.e., the character is
preceded by a backslash (\) within the string. Those characters are:

\! single quote—may al so appear without backslash in string constants.
\ " double quote

\? guestion-mark—may also appear without backslash in string constants.
\\ backslash itself

\a alert (bell, code 7, ctrl-G)

\b backspace (code 8, ctrl-H)

\f form feed (code 12, ctrl-L)

\n new-line (code 10, ctrl-J)

\r return (code 13, ctrl-M)

\t horizontal tab (code 9, ctrl-1)

\v vertical tab (code 11, ctrl-K)

For example, a string literal containing a tab, the words: This is, double quote, space, the word:
between, double quote, space, the word: us, and new-line, would appear as follows:

"\tThis is\" between\" us\n"
Concatenation of string literals in certain situations (see the Modelica grammar) is denoted by the +

operator in Modelica, e.g. "a" + "b" becomes "ab". This is useful for expressing long string literals
that need to be written on several lines.

5.6.6  Array Literals

Array literals can be expressed using the array constructor { } or array (...) . For example, the following
are one-dimensional array constants, i.e., vector literals:

{1,2,3}, {3.14, 58E-6}
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Two-dimensional array constants, i.e., matrix literals, may occur as arrays of arrays.

{{1,2},{3,4}}

5.6.7 List Literals
List literals can be expressed using the list or array constructor { }, or by 1ist (...). For example, the
following are one-dimensional list constants:

{1,2,3}, {3.14, 58E-6}
The { } constructor can be used construct either arrays or lists. The type context determines which

interpretation is chosen. It is possible to unambigously specifiy the creating of a list value by using the
list (...) builtinfunction:

list(1,2,3), list (3.14, 58E-6)

5.6.8 Record Literals

Record literals can be expressed using the record constructor functions automatically defined as a
consequence of record declarations. Below is an example record literal of a complex number based on
the record Complex:

Complex (1.3, 4.56)

5.7  Operator Precedence and Associativity

Operator precedence determines the order of evaluation of operators in an expression. An operator with
higher precedence is evaluated before an operator with lower precedence in the same expression. For
example, relational operators have higher precedence than logical operators, e.g.:

Xwithin := x>35.3 and x<=999.6;

Assuming x has the value 55.0, then both relational terms are first evaluated to true, eventually giving
the value true to be assigned to the variable xwithin. The multiplication operator * has higher
precedence than the subtraction operator, causing the following expression to have the value 45, not
zero:

10 * 5 - 5
Parentheses can be used to override precedence, e.g. causing the expression below to evaluate to zero:
10 * (5 - 5)

The associativity determines what happens when operators with the same precedence appear next to each
other. Left-associative operators evaluate the leftmost part first, e.g. the expression:

X+ Yy + W
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isequivalent to

(x +vy) + w
The following table presents all the operators in order of precedence from highest to lowest. All
operators are binary except the postfix operators and those shown as unary together with expr, the

conditional operator, the array construction operator {} and . Operators with the same precedence occur
at the same line of the table:

Table 5-1. Operators.

Operator Group Operator Syntax Examples
postfix index operator [] arr [index]
name dot notation . a.b
postfix function call (function-arguments) sin(4.36)
array or list construction {expressions} array(expressions) | {2,3}
list(expressions)
integer or real o/ k. /. 2%¥3  2/3 2.1 *. 3.2
multiplicative
integer or real additive + - +expr -expr a+b, a-b, +a, -a
+. -. +. eXxpr -. expr a+.b, a-.b, +.a, -.a
integer or real relational < <= > >= == <> a<b, a<=b, a>b,
<. <=. >, >=. ==. <>, a<.b, a<=.b, a>.b,
unary negation not expr not bl
logica and and bl and b2
logical or or bl or b2
conditional expression if expr then expr else expr if b then 3 else x
list element concatenation | "a"::{"b", "c"} =>| ngt::{"p", "c"} =>
{ram, "bn, mer} {ran, "o, mer}
named argument ident = expr X = 2.26

Equality = and assignment : = are not expression operators since they are alowed only in equations and
in assignment statements respectively. All binary expression operators are |eft associative. There is also
a generic equality operator, equality(exprl = expr2), which can be applied to values of primitive data
types as well as to values of structured types such as arrays, lists, and trees.

The above operators correspond to and can be called using the following function names, which are
mentioned below together with afew additional builtin functions:

The following are built-in common mathematical functions:

sin(u) sine

cos(u) cosine

tan(u) tangent (ushal notbe: ..., —x/2, /2, 3x/2,...)
asin(u) inversesine (-1<u<1l)
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acos(u) inverse cosine (—1<u<l)
atan(u) inverse tangent
atan2(ul,u2)|four quadrant inverse tangent
sinh(u) hyperbolic sine

cosh(u) hyperbolic cosine

tanh(U) hyperbolic tangent

exp(U) exponential, base e

log(u) natural (base €) logarithm (u > 0)
log1o(u) base 10 logarithm (u > 0)

Boolean operations:

bool and, bool or, bool not

Integer operations:
int_add, int_sub, int mul, int_ div
int mod, int abs, int neg, int max, int min
int_1t, int le, int_eq, int _ne, int _ge, int_gt, int real, int_ string
Real number operations:
real add, real sub, real mul, real div
real mod, real abs, real neg, real max, real min
real 1t, real le, real eq, real ne, real ge, real gt, real int, real string
real cos, real sin, real atan, real exp, real_ln, real floor, real int, real pow
String operations:
string length, string nth, string append

string_int, string list, list_string

5.8 Arithmetic Operators

Meta-Modelica supports five binary arithmetic operators in both integer and real variants. The rea
number operators currently contain a dot.

~. Exponentiation
. Multiplication
/. Division
Addition

- -. Subtraction
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Some of these operators can also be applied to a combination of a scalar type and an array type, which
means an operation between the scalar and each element of the array..
Unary versions of the addition and subtraction operators are available, e.g. asin —35 and +84.

5.8.1 Integer Arithmetic

Integer arithmetic in Modelica is the same as in the ISO C language standard, since Moddlica is
compiled into C. The most common representation of integers is 32-bit two’s complement (e.g. see a
definition in C—A Reference Manual, Section 5.1.1 (Harbison and Steele 1991)). This representation is
used on widespread modern microprocessors such as Pentium, Sparc, etc., with a minimum
representable value of —2,147,483,648 and a maximum value of 2,147,483,647. Note, however, that
other representations are also alowed according to the ISO C standard. Note that currently, only 31-bit
integer arithemtic is supported by the Meta-M odelica compilers.

For certain arithmetic operations, regarding both integer and floating point numbers, it can be the
case that the true mathematical result of the operation cannot be represented as a value of the expected
result type. This condition is called overflow, or in some cases underflow.

In general, neither the Meta-Modelica language nor the C language specify the consequences of
overflow of an arithmetic operation. One possibility is that an incorrect value (of the correct type) is
produced. Another possibility is that program execution is terminated. A third possibility is that some
kind of exception or trap is generated that could be detected by the program in some implementation-
dependent way.

For the common case of two's complement representation, integer arithmetic is modula—meaning
that integer operations are performed using a two’s-complement integer representation, but if the result
exceeds the range of the type it is reduced modulo the range. Thus, such integer arithmetic never
overflows or underflows but only wraps around.

Integer division, i.e., division of two integer values, truncates toward zero with any fractional part
discarded (e.g. div (5,2) becomes 2, div(-5,2) becomes -2). Thisis the same as in the C language
according to the C99 standard. According to the earlier C89 standard, integer division for negative
numbers was implementation dependent.

Division by zero in Modelica causes unpredictable effects, i.e., the behavior is undefined.

5.8.1.1 Long Integers

??fill in

5.8.2 Floating Point Arithmetic

Analogous to the case for integer arithmetic, floating point arithmetic in Modelicais specified as floating
point arithmetic in the ISO C language. Values of the Modelica Real type are represented as values of
the double type in ISO C, and floating point operations in Modelica are compiled into corresponding
doubleprecision floating point operations in C. Even if not strictly required by the 1ISO C standard, most
C implementations have adopted the |IEEE standard for binary floating point arithmetic (1SO/IEEE Std
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754-1985), which completely dominates the scene regarding C implementations as well as floating point
instructions provided by modern microprocessors. Thus, we can for practical purposes assume that
Modelica follows ISO/IEEE Std 754-1985. Real values are then represented as 64-bit IEEE floating
point numbers. The largest representable positive number in  that representation is
1.7976931348623157E+308 whereas the smallest positive number is 2.2250738585072014E-308.

The effects of arithmetic overflow, underflow, or division by zero in Modelica are implementation
dependent, depending on the C compiler and the Modelica tool in use. Either some value is produced
and execution continues, or some kind of trap or exception is generated which can terminate execution if
it is not handled by the application or the Modelica run-time system.

5.9 Equality, Relational, and Logical Operators

Meta-Modelica supports the standard set of relational and logical operators, al of which produce the
standard boolean values true or false.

> greater than

>= greater than or equal
< less than

<= less than or equal to

== equality within expressions

<> Inequality
The equality and relational operators apply only to scalar arguments. Relationa operators are typically
used within if-expressions, or to compute the value of aBoolean variable, e.g.:

x = if vl<v2 then ...
boolvar2 := v3 >= v35;

A single equals sign = is never used in relationa expressions, only in equations and in function calls
using named parameter passing.

= equaity within equations

= assignment of named arguments at function call
The following logical operators are defined:

not  hegation, unary operator

and logica and
or logical or

Standard Modelica is free to use any order in evaluation of expression parts as long as the evaluation
rules for the operators in the expression are fulfilled.
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Concerning the logical operators and, or in boolean expressions, one possibility is short-circuit
evauation, i.e., the expression is evaluated from left to right and the evaluation is stopped if evaluation
of further arguments is not necessary to determine the result of the boolean expression. Thus, if the
variable b1 in the expression below has the value true, then evaluation of b2 and b3 would not be
necessary since the result will be true independent of their values. On the other hand, we cannot rely on
this orde—evaluation might start with b3 and involve al three variables. However, this does not really
matter for the user since Modelica is a declarative language, and the result of evaluation is the same in
all these cases. See also Section Error! Reference source not found., page Error! Bookmark not
defined., for guarding evaluation.

boolvar = true and false;
boolvar2 = mnot boolvar;
boolvar3 = bl or b2 or b3;

5.9.1 String Concatenation

The + operator is also a built-in string concatenation operator in Standard Modelica, both for string
variables and literal string constants. For example, long comment strings can be constructed using the +
operator for concatenation of string constants, e.g.:

Real longval = 1.35E+300 "This is" + " a " + "rather " + " long comment";

Another example using string variables and string literals in expressions returning string values.

String vall = "This is";

String val2 = " a ";

String concatvalue = vall + val2 +"rather " + " long string";
// The value becomes: "This is a rather long string"

5.9.2 The Conditional Operator—if-expressions

The conditional operator in Meta-Modelica provides a single expression that computes one out of two
expressions dependent on the value of the condition. The general syntactic form is shown below:

if condition then expressionl else expression2

Both the then-part and the else-part of the conditional expression must be present. Conditional
expressions can be nested, i.e., expression2 can itself be an if-expression.
A conditional expression is evaluated as follows:

e First the condition is evaluated, which must be a boolean expression. If condition is true, then
expressionl is evaluated and becomes the value of the if-expression. Otherwise expression2 is
evaluated and becomes the value of the if-expression.

e The result expressions, i.e.,, expressionl and expression2, must have assignment-compatible
types. This means that the type of one result expression must be assignable to the type of the
other result expression, which defines the type of the conditional expression.
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The following equation contains a conditional expression with a conditional operator on the right-hand
side:
value = (if a+b<5 then firstvalue else secondvalue) ;

if (a+b<5) then

value = firstvalue;
else

value = gecondvalue;
end if;

5.10 Built-in Special Operators and Functions

The following built-in specia operators in Modelica have the same syntax as a function call. However,
they do not behave as mathematical functions since the result depends not only on the input arguments
but also on the status of the simulation. The following operators are supported:

failure(...) Fill in
equality(...) Fill in??
bool success(...) Fill in
list() Fill in
array(...) 2Fill in

5.11 Order of Evaluation
Evaluation order is currently left-to-right, but will become unspecified in the future when the Meta-
Modelica compiler is upgraded to also support full Modelica.

5.12 Expression Type and Conversions

All expressions have a type. The expression type is obtained from the types of its constituent parts, e.g.
variables, constants, operators, and function callsin an expression.
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5.12.1 Type Conversions

Meta-Modelica is a strongly typed language. This means that type compatibility is checked at compile
time in aimost all cases, and at run-time in the remaining cases. Meta-Modelica prevents incompatible
left-hand and right-hand sides in equations as well as incompatible assignments by not allowing anything
guestionable.

The language also provides a few checking and type conversion operations for cases when the
compatibility of a type can be determined only at run-time, e.g. to check the size of a variable-length
array, or when we want to explicitly convert a type, for example, when assigning a Real vaue to an
Integer variable. We discuss these conversions in terms of assignment, sometimes called assignment
conversion, but what is said here is also applicable to conversions between |eft-hand sides and right-hand
sides of equations, and conversions when passing actual arguments to formal parameters at function
cals.

5.12.1.1 Implicit Type Conversions

Sometimes a type can be converted without any explicit action from the Modelica programmer. The only
case in full Modelica when this happens is implicit conversion of integer operands when used together
with floating point operands in an expression. However, in the current Meta-Modelica, al type
conversions must by explicit..

5.12.1.2 Explicit Type Conversions

Explicit type conversions are needed when implicit conversions are not enough or are not available, for
example, when converting from areal to an Integer. (?? add stuff)

5.13 Global Constant Variables

Global constants can be declared in Meta-Modelica through the constant keyword, e.g. as below
wherethe init_env variableis set to the empty list:

constant init env = {}

5.14 Types

The Meta-Modelica language supports a builtin set of primitive data types as well as means of declaring
more complex types and structures such as tuples and tree structures. First we will take a look at the
primitive data types.
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5.14.1 Primitive Data Types

The Meta-Modelica language provides a basic set of primitive types found in most programming
languages:
e Boolean—booleans, eg. true/false
e Integer—integers, eg. -123. (?? 31-bit integers in the current Meta-Modelica version; Long
integers are also available ?)
e Real—double-precision |EEE floating point numbers, e.g. 3. 2E5.
e string—strings of characters, e.g. "Linkdping".

5.14.2 Type Name Declarations

Alternate names for types in Meta-Modelica can be introduced through the type declaration, e.g.:

type Identifier = String;
type IntConstant = Integer;
type MyValue = Real;

5.14.3 Tuples
Tuples are represented by parenthesized, comma-separated sequences of items each of which may have a
different type, e.g.:

e (55,66)— a2-tupleof integers.
e (55,"Hello",INTconst (77))— a3-tuple of integer, string, and Exp.

Named tuple types can be declared explicitly through the type declaration using the tuple type
constructor:

type TwolInt
type Threetuple

tuple<Integer, Integers;
tuple<Integer, String, Exp>;

5.14.4 Tagged Union Types for Records, Trees, and Graphs

The uniontype declaration in Meta-Modelica is used to introduce union types, for example the type
Number below, which can be used to represent several kinds of number types such as integers, rational
numbers, real, and complex within the same type:

uniontype Number

record INT Integer x1; end INT;
record RATIONAL Integer x1; Integer x2; end RATIONAL;
record REAL Real x1; end REAL;

record COMPLEX Real x1; Real x2; end COMPLEX;
end Number;
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The different names, INT, RATIONAL, REAL and COMPLEX, are called constructors, as they are used to
construct tagged instances of the type. For example, we can construct a Number instance REAL (3.14)
to hold areal number or another instance coMPLEX (2.1, 3.5) to hold a complex number.

Each variant of such aunion typeis actually arecord type with one or more fields that (currently) can
only be referred to by their position in the record. The type Number can be viewed as the union of the
record types INT, RATIONAL, REAL and COMPLEX.

The most frequent use of union types in MetaModelica is to specify abstract syntax tree
representations used in language specifications as we have seen many examples of in earlier chapters of
thistext, e.g. Exp below, first presented in Section 2.1.2:

uniontype Exp

record INTconst Integer x1; end INTconst;

record ADDop Exp x1; Exp x2; end ADDop;

record SUBop Exp x1; Exp x2; end SUBop;

record MULop Exp x1; Exp x2; end MULop;

record DIVop Exp x1; Exp x2; end DIVop;

record NEGop Exp x1; end NEGop;
end Exp;

The constructors INTconst, ADDop, SUBop, €tC. are can be used to construct nodes in abstract syntax
trees such as INTconst (55) and ADDop (INTconst (6) , INTconst (44) ), €tC.

Representing DAG (Directed Acyclic Graph) structures is no problem. Just pass the same argument
twice or more and the child node will be shared, e.g. when building an addition node using the AbDop
constructor below:

ADDop (x, x)

However, building circular structures is not possible because of the declarative side-effect free nature of
Meta-Modelica. Once a node has been constructed it cannot be modified to point to itself. Recursive
dependencies such as recursive types have to be represented with the aid of some intermediate node.

5.14.5 Parameterized Data Types

A parameterized data type in Meta-Modelica is a type that may have another type as a parameter. A
parameterized type available in most programming languages is the array type which is usually
parameterized in terms of its array element type. For example, we can have integer arrays, string arrays,
or real arrays, etc. depending on the type of the array elements. The size of an array may also be
regarded as a parameter of the array.

The Meta-Modelica language provides three kinds of parameterized types:

o Lists—the 1ist identifier, parameterized in terms of the list el ement type.

e Vectors—the array identifier, parameterized in terms of the vector element type.

e Option types — the option builtin predefined type constructor, parameterized in terms of the
type of the optional value.
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Note that all parameterized types in Meta-Modelica are monomorphic: al elements have to have the
same type, i.e., you cannot mix elements of type rReal and type String within the same array or list.
Certain languages provide polymorphic arrays, i.e., array elements may have different types.

However, arrays of elements of “different” types in Meta-Modelica can be represented by arrays of
elements of tagged union types, where each “type” in the union typeis denoted by a different tag.

5.14.5.1 Lists

Lists are common data structures in declarative languages since they conveniently allow representation
and manipulation of sequences of elements. Elements can be efficiently (in constant time) added to
beginning of listsin a declarative way. The following basic list construction operators are available:

e The list constructor: {el1,el2,el3,...} and list (ell,el2,el3,...) create a list of
elements el1, el2, ... of identica type. Examples:{} and 1ist () denote the empty list;
{2,3,4}and1ist (2,3,4) arealist of integers, etc.

e Theempty listisdenoted by {}.

e The list element concatenation operation cons (element, 1st) Or using the equivalent : :
operator syntax asin element :: 1st, addsan element in front of thelist 1st and returns the
resulting list. For example:
cons ("a", {"b"}) => {ra", "b"};
cons ("a", {}) = {nagn
"a::"p"::"c": {} => {"a" , ", e };
nan::{"pn,ncr} => {nan,vpn, ven}

Additional builtin Meta-Modelica list operations are briefly described by the following examples; see
Appendix ??B for type signatures of these functions:

e list append({2,3},{4,5}) => {2,3,4,5}

e list reverse({2,3,4,5}) => {5,4,3,2}

e list length({2,3,4,5}) => 4

e list member(3, {2,3,4,5}) => true

e list get({2,3,4,5}, 4) => 5 // First list element is numbered 1
e list delete({2,3,4,5},2) => {2,4,5}

The most readable and convenient way of accessing elements in an existing list or constructing new lists
is through pattern matching operations, see Section 6.1.1.

The types of lists often need to be specified. Named list types can be declared using Meta-Modelica
type declarations:

type IntegerList = list<Integer>;

An example of alist typefor lists of real elements:

type Reallist = list<Real>;
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The following is a parameterized MetaModelica list type with an unspecified element type
TYpe elemtype Which is a type parameter (type variable) of the list. Type variable names in Meta-
Modelica are declared as replaceable types.

replaceable type Type elemtype;
type ElemList = list<Type elemtypes>;
Lists in the Meta-Modelica language are monomorphic, i.e., al elements must have the same type. Lists

of elements with “different” types can be represented by lists of elements of tagged union types, where
each typein the union type has a different tag.

5.14.5.2 Arrays and Vectors

An Meta-Modelica vector is a sequence of elements, all of the same type. The main advantage of a
vector compared to alist is that an arbitrary element of a vector can be accessed in constant time by a
vector indexing operation on a vector and an integer denoting the ordinal position of the element.

Constructing vectors is rather clumsy in Meta-Modelica. First alist has to be constructed which then
is converted to avector, e.g.: (?? update)

list vector({2,4,6,8}) => vec

Accessing the third element of the vector vec using the vector indexing operation vector get, where
thefirst element hasindex 1:

vector_get (vec,3) => 6

It is also possible to use the more concise square bracket indexing notation:
vec([3] => 6

Getting the length of vector vec:

vector length(vec) => 4

Named array types can of course be declared using the type construct, e.g. as in the declaration of a
one-dimensional vector of boolean values:

type OneDimBooleanVector = Boolean[:];
Multi-dimensiona arrays are represented by arrays of arrays, e.g. as in the following declaration of a
two-dimensional matrix of real elements.

type OneDimRealVector = Reall:];

type TwoDimRealMatrix = OneDimRealVector([:];
Parameterized vector types can be expressed using a type parameter declared as a replaceable type, such
as Type_ ElemType in the following example:

replaceable type Type ElemType;

type Type ElemVector = Type ElemTypel:];
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Below we give the type signatures, i.e., the types, of input parameters and output results, for a few
builtin vector operations, also presented in Appendix B??. The following are the length and indexing
signatures:

function vector length "Compute the length of a vector"

input Type al:] 1in vec;
output Integer out_length;
protected

replaceable type Type a;
end vector length;

function vector get "Extract (indexed access) a vector element from the vector"

input Type al[:] 1in vec;
output Type a out element;
protected

replaceable type Type a;
end vector get;

The following are signatures of the conversion operations between vectors and lists:

function vector_list ‘"convert from vector to list"
input Type al:] in vec;
output list<Type a> out_lst;

protected

replaceable type Type a;
end vector list;

function list vector "Convert from list to vector"
input list<Type a> in lst;
output Type al:] out_vec;

protected
replaceable type Type a;

end list vector;

5.14.5.3 Option Types

Option types have been introduced in Meta-Modelica to provide a type-safe way of representing the
common situation where a data item is optionally present in a data structure — which in language
specification applications typically is an abstract syntax tree.

The option typeis a predefined parameterized Meta-Modelica union type with the two constructors
NONE () and SOME () :

uniontype Option
replaceable type Type a;
record NONE end NONE;

record SOME Type a x1; end SOME;
end Option;

The constant NONE () with no arguments automatically belongs to any option type. A constructor call
such as SOME (x1) where x1 hasthetype Type_a, hasthetype option<Type as.

The constructor NONE () is used to represent the case where the optional dataitem (of type Type a in
the above example) is not present, whereas the constructor soME () is used when the dataitem is present
in the data structure. One example is the optiona return value in return statements, represented as
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abstract syntax trees, where the NONE () constructor is used for the return; variant without value, and
SOME (...) for the return(valueexpression); variant.

5.15 Meta-Modelica Functions

We have already used Meta-Modelica functions extensively to express the semantics of a number of
small languages, as well as small declarative programs. This section gives a more complete presentation
of the Meta-Modelica function construct, its properties, and its usage.

Modelica functions are declarative mathematical functions, i.e., a Modelica function always returns
the same results given the same argument values. Thus a function call is referentially transparent, which
means that it keeps the same semantics or meaning independently of from where the function is
referenced or called.

The declarative behavior of function calls implies that functions have no memory (not being able to
store values that can be retrieved in subsequent calls) and no side effects (e.g. no update of global
variables and no input/output operations). However, it is possible that external functions could have side
effects or input/output operations. Moreover, there are built-in functions such as print and tick with side-
effects. See Section ??7? for adiscussion of these functions.

5.15.1 Function Declaration

The body of a MetaModelica function is a kind of agorithm section that contains procedural
algorithmic code to be executed when the function is called. Formal parameters are specified using the
input keyword, whereas results are denoted using the output keyword. This makes the syntax of
function definitions quite close to Modelica class definitions.

The structure of a typica function declaration is sketched by the following schematic function
example:

function <functionname-

input TypeIl inl;

input TypeI2 in2;

input TypeI3 in3 := <default expr> "Comment" annotation(...);

output TypeOl outl;
output TypeO2 out2 := <default exprs;

protected
<local variables>
algorithm
<Statements>

end <functionnames ;
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Optional explicit default values can be associated with any input or output formal parameter through
declaration assignments. Such defaults are shown for the third input parameter and the second output

parameter in our example. Comment strings and annotations can be given for any formal parameter
declaration, as usua in Meta-Modelica declarations.

All internal parts of afunction are optiond; i.e., the following is also alegal function:

function <functionname-
end <functionnames ;

5.15.2 Current Restrictions of Meta-Modelica Functions

Only two supported forms of functions are supported by the current version of the Meta-Modelica
compiler:

e A function with a body consisting of an assignment statement with output variable(s) on the left
hand side and a match- or matchcontinue-expression on the right hand side.
e A function with abody consisting of simple assignment statements.

An example of the first kind:

function eval stmt_list "Evaluate a list of statements in an environment.

Pass environment forward"
input Env.Env in_env;

input Absyn.StmtList in stmtlist;
output Env.Env out env;
algorithm
out_env :=
match (in_env,in stmtlist)
local
type Env_BindList = list<Env.Bind>;
Env_BindList env;
case (env,{}) then env;

case (env, s :: ss)
equation
envl = eval stmt (env, s);
env2 = eval _stmt_list(envl, ss); then env2;

end match;
end eval_stmt_list;

An example of the second kind:

function input item "Read an integer item from the input stream"
input Stream istream;

output Stream istream2;

output Integer 1i;
algorithm

print ("input: ");

i := Input.read();

print ("\n") ;

istream2 := istream;
end input item;
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There are also additional restrictions:

e Function formal input and output parameter default values and corresponding assignments are
not supported.

e Inafunction body consisting of a match- or match-continue expression, formal input parameters
may only be referenced directly after the match/matchcontinue keyword, eg. match
(in %, in y)... Ormatch in z ..., and then only in the order declared in the function
header. Formal output parameters may only be referenced on the left hand side of the assignment
comprising the function body.

5.15.3 Returning Single or Multiple Function Results

A function with one output formal parameter always returns a single result. Our previously presented
example functions polynomialEvaluator and realToString are single result functions.

However, afunction with more than one output formal parameter has multiple results. An example is
the function pointoncircle below, which computes the cartesian coordinates of a point located at a
certain angle on a circle with a specific radius. The Cartesian coordinates are returned via the two result
variablesx and y.

function pointOnCircle "Computes cartesian coordinates of a point"

input Real angle '"angle in radians";

input Real radius;

output Real x; // 1l:st result formal parameter

output Real y; // 2:nd result formal parameter

algorithm

x := radius*cos (phi) ;

y := radius*sin(phi) ;

end pointOnCircle;

If we call afunction with just one result we can put the call anywhere within an expression. Thisis aso
the case when calling a function with multiple resultsif we only want to accessits first result.

On the other hand, if we wish to call a Modelica function with multiple results and want to obtain
more than the first result, there are just two syntactic forms to choose from depending on whether the
function call should occur in an equation section or in an algorithm section: one equation form and one
statement form, as specified below:

(outl,out2,out3,...) = function name(inl, in2, in3, in4, ...); // Equation
(outl,out2,out3,...) := function name(inl, in2, in3, in4, ...); // Statement

The left-hand side of both the equation and the assignment statement contains a parenthesized, comma-
separated list of variables receiving the results from the function call. A called function with n results
can have at most n receiving variables on the left-hand side. Fewer than n receiving variables means that
some function results are discarded.

For example, when calling our example function pointoncircle with two receiving variables px
and py on the left-hand side, such calls can appear as follows:

(px,py) = pointOnCircle(l.2, 2); // Equation form
(px,py) := pointOnCircle(l.2, 2); // Statement form
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Any kind of variable of compatible type is allowed in the list on the left-hand side, e.g. array elements:

(arr[1l] ,arr[2]) := pointOnCircle(1l.2, 2);
To summarize, the following rules apply when returning results from a multiple-result function:

e Thevariablesin thelist on the left-hand side of the equation or assignment containing the call are
associated with the returned function results according to the order of the variablesin the list and
the corresponding declaration order of the output result variables in the function.

e Asin any standard equation or assignment, the type of each variable on the left-hand side must
be compatible with the type of the corresponding function result on the right-hand side, with or
without type coercion.

5.15.4 Builtin Functions

A number of “standard” builtin primitives are provided by the Modelica standard library—in a module
caled 272?. Examplesare int_add, int_sub, string append, list append, etc. A complete list of
these primitives can be found in ??Appendix B.

5.15.5 Special Properties of Modelica Match Expressions

Two important properties of Meta-Modelica functions are however absent for ordinary functions:

e Functionsin Meta-Modelica can fail or succeed.
e Retry is supported between rules in a matchcontinue expression.

A call to afunction can fail instead of aways returning a result which is the case for functions. Thisis
convenient for the specification writer when expressing semantics, since other possibly matching rulesin
the function will be applied without needing “try-again” mechanisms to be directly encoded into
specifications. The failure handling mechanism can also be used in genera declarative programming,
e.g. the factorial example previousdly presented in Section 2.3.1.1.

This brings us into the topic of rule retry. If there is a failure in rule, or in one of the functions
directly or indirectly called via the local equations of the rule, and a matchcontinue-expression is used,
Meta-Modelica will backtrack (i.e., undo) the part of the “execution” which started from this rule, and
automatically continue with the next rule (if there is one) in top-down, left-to-right order. If no rule in
the function matches and succeeds, then the call to this function will fail. Correct back-tracking is
however dependent on avoidance of side-effectsin the rules of the specification.

5.15.6 Argument Passing and Result Values

Any kind of data structure, as well as functions, can be passed as actual argumentsin a cal to an Meta-
Modelica function. One or more results can be returned from such a cal. The issues are discussed in
some detail in the following sections.
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5.15.6.1 Multiple Arguments and Results

A Meta-Modelica function may be specified with multiple arguments, multiple results, or both. The
syntax is simple, the argument and result formal parameters are just listed, preceded by the input and
output keywords respectively.

5.15.6.2 Tuple Arguments and Results from Relations

We just noted that a Meta-Modelica function can have multiple arguments and results. This should not
be confused with the case where a Modelica tuple type (see Section 5.14.3) consisting of severa
congtituent types is part of the signature of a function. For example, the function incrementpair
below accepts a single tuple of two integers and returns a tuple where both integers have been
incremented by one..

function incrementpair
input tuple<Integer, Integer> in val;
output tuple<Integer, Integer> out val;
algorithm
out val :=
match in val
local Integer x1,x2;
case (x1,x2) then (x1+1,x2+1);
end match;
end incrementpair;

For example, the call:

incrementpair ((2,3))

givesthe result:
(3,4)

5.15.6.3 Passing Functions as Arguments

Functions can be passed as parameters, i.e., as akind of function parameters. In the example below, the
function adda is passed as a parameter to the function map, which applies its formal parameter func to
each element of the parameter list.

For example, applying the function add1 to each element in the list {0,1,2}, eg. map (add1,
{0,1,2}), will givetheresult list {1,2,3}.

function addl "Add 1 to integer input argument"
input Integer x;
output Integer y;

algorithm
Yy = X+1;

end addil;

function list map /*

** Takes a list and a function over the elements of the lists, which is applied
** for each element, producing a new list.

** For example list map({1,2,3}, int string) => { "i", "2", "3"}
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*

/
input list<Type a> in_alList;
input FuncType in func;
output list<Type b> out_ bList;

protected

replaceable type Type a;
replaceable type Type b;
function FuncType
replaceable type Type b;
input Type a in a;
output Type b out b;
end FuncType;
algorithm
out_bList:=
match (in_alList,in_ func)
local
Type b first 1;
list<Type_b> rest 1;
Type a first;
list<Type a> rest;
FuncType fn;

case ({}, ) then {};
case (first :: rest,fn)
equation
first_1 = fn(first);
rest 1 = list map(rest, fn); then first 1 :: rest 1;

end match;
end list map;

function main

res := list map({0,1,2}, addl); /* Pass addl as a parameter to map */
/* In this example res will be {1,2,3} */

end main;

5.16 Variables and Types in Functions

Except for global constants, Meta-Modelica variables only occur in functions. Types, including
parameterized types, can be explicitly declared in Meta-Modelica function type signatures.

5.16.1.1 Type Variables and Parameterized Types in Relations

We have aready presented the notion of parameterized list, vector, and option types in Section 5.14.5.
Type variablesin Meta-Modelica can only appear in function signatures.

For example, the tuple2 get fieldi function takes atuple of two values having arbitrary types
specified by the type variables Type a and Type b, which in the example below will be bound to the
types string and Integer, and returns the first value, e.g.:

tuple2 get fieldl(("x",33)) => "x"



Chapter 6 Declarative Programming 175

The function is parameterized in terms of the types of the first and second fields in the argument tuple,
which is apparent from the type signature in its definition:

function tuple2 get fieldl "
** Takes a tuple of two values and returns the first wvalue.
** For example,
** tuple get fieldl((true,1l)) => true
* 1
input tuple<Type a,Type b> in tuple;
output Type a out_ Type a;
protected
replaceable type Type a;
replaceable type Type b;
algorithm
out Type a :=
match (in_tuple)
local Type a a;
case (a,_) then a;
end match;
end tuple2 get fieldl;

5.16.1.2 Local Variables in Match-Expressions in Functions

Variables in Meta-Modelica functions consisting of match-expressions are normally introduced at the
beginning of a match-expression or in math-expression rules and have a scope throughout the rule. The
only exception are global constants. There are three kinds of local variables for values, as well as type
variables which are introduced through replaceabl e type declarations:

e Patternlocal variables, which are given values in patterns to be matched.

e Ordnary local variables, which occur on the left hand side of equality signs, e.g.: variable =
expression. Result variables can be regarded as a specia case of pattern variables, for the trivial
pattern consisting of the variable itself.

e Type variables, which are declared using replaceable type and introduced in the function
protected section.

For example, in thefunction 1ist thread below, Type a isatype variable for the type of elementsin
the list, fa, rest _a, fb, rest b are pattern variables in the pattern 1ist thread(fa::rest a,
fb::rest _b):

function list_ thread
"Takes two lists of the same type and threads them together.
For example, list thread({1,2,3},{4,5,6}) => {4,1,5,2,6,3}
n
input list<Type a> in Listl;
input list<Type a> in List2;
output list<Type a> out List;
protected
replaceable type Type a;
algorithm
out_List:=
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match (in Listl,in List2)
local
list<Type a> rest a,rest b; Type a fa,fb;
case ({},{}) then {};
case (fa :: rest a, fb :: rest b)
then fa :: fb :: list thread(rest_a, rest b);
end match;
end list_ thread;

5.16.2 Function Failure Versus Boolean Negation

We have previoudy mentioned that Meta-Modelica functions can fail or succeed, whereas conventional
functions always succeed in returning some value. The most common cause for an Modelica function to
fail is the absence of a rule that matches and/or have local equations that succeed. Another cause of
failure is the use of the builtin Modelica command f£ail, which causes a rule in a match-expression to
fail immediately. (?? A better semantics would be to cause the whole match-expression to fail
immediately).

It isimportant to note that £ai1 is quite different from the logical value false. A function returning
false would still succeed since it returns a value. The builtin operator not operates on the logical
values true and false according to the following definition:

function bool not

input Boolean in bool;

output Boolean out_bool;
algorithm

out_bool := if in bool == true then false else true;
end bool not;

However, failure can in alogical sense be regarded as a kind of negation—similar to negation by failure
in the Prolog programming language. A local equation that fails will certainly cause the containing rule
to fail. The Modelica failure () operator can however invert the logical sense of a proposition. The
following local equation is logically successful since it succeeds (but it does not return the predefined
valuetrue):

failure (function that fails(x))

The two operators not and failure () thus represent different forms of “negation”’—negating the
boolean value true, or negating the failure of a call to afunction.

5.16.3 Forms of Equations in Rules

The local equations in a Meta-Modelica rule are currently restricted to having the following forms,
where func_name is the name of a function; see also the Meta-Modelica grammar in ??Appendix ??,
and expr may contain constants, variables, constructor calls, and operators, but currently not functions:

e expr = func name(...)
e func name(...)
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® var = expr

e equality(exprl = expr2)

. failure (var = expr)

e failure(func name(...))

e failure(expr = func name(...))

e failure(equality(exprl = expr2))

The failure () operator succeeds if the local equation it operates on fails. The equality operator (=)
succeeds if the data values are identical. Each of these forms can also be parenthesized.

5.17 Pattern-Matching

Pattern-matching on instances of structured data types is one of the central facilities provided by Meta-
Modelica, which significantly contributes to the elegance and ease with which many language aspects
may be specified. The pattern matching in Meta-Modelica is very close to similar facilities in many
functiona languages.

Patterns can occur after the case keyword, and on the left- and right-hand side of the equality signin
equations, in matching or constructive contexts, with somewhat different meanings.

5.17.1 Patterns in Matching Context

The most common usage of patterns isin a matching context after the case keyword, or at the left hand
side of =inalocal equation, sometimes on the right-hand side.
For example, regard the pattern INT (x) on the left-hand side of a conclusion in the rule below:
match argument

local Integer x;
case INT(x)

This means that argument is matched using the pattern INT (x) . If there is a match, the rule is invoked
and the local variable x is bound to the argument of 1NT, e.g. x will be bound to 55 if argument is
INT (55).

For cases where the value of the pattern variable is not referenced in the rest of the rule, an
anonymous pattern can be used instead. The pattern variable x is then replaced by an underscore in the
pattern, asin INT (_), to indicate matching of an anonymous value.

Patterns can be nested to arbitrarily complexity and may contain several pattern variables, e.g.
ADD (INT (x), ADD(y,NEG(INT(77)))). Patterns may aso be pure constants, e.g. 55, false,
INT (55).

Patterns in matching context may also occur on right-hand sides of local equations. For example:

match ...
local Integer u; String w;
case ...
equation

(u,w) = ...;
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If the right-hand side of the local equation produces the tuple (55, "Test), and u and w are unbound,
then the match to the pattern (u, w) will succeed by binding u to 55 and wto "Test".

5.17.2 Patterns in Constructive Context

The pattern examples presented so far have been in a matching context, where an existing data item is
matched against a pattern possibly containing unbound pattern variables. Patterns can also be used in a
congtructive context, where a pattern that contains bound pattern variables indicates the construction of a
structured data item. For example, regard the pattern in the rule below after the then keyword:

case ... then (x, {5,y}, INT(z))
If the rule matches and succeeds and x is aready bound to 44, y to "Hello" and z to 77, respectively,

then the following tuple term is constructed and returned as the value of the function to which the rule
belongs:

(44, {5,"Hello"}, INT(77))
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Chapter 6

Declarative Programming Hints

The focus of this chapter is to present a few specia issues and give examples of declarative
programming style.

6.1.1 Last Call Optimization — Tail Recursion Removal

A typica problem in declarative programming is the cost of recursion instead of iteration, caused by
recursive function calls, where the implementation of each call typically needs a separate allocation of an
activation record for local variables, etc. This is costly both in terms of execution time and memory
usage.

There is however a special form of declarative recursive formulation called tail-recursion. This form
allows the compiler to avoid this performance problem by automatically transforming the recursion to an
iterative loop that does not need any stack allocation and thereby be as efficient as iteration in imperative
programs. This is called the last call optimization or tail-recursion removal, and is dependent on the
following:

e A tail-recursive formulation of a function (or function) calls itself as its last action before
returning.

In the following we give several recursive formulations of the summation function sum, both with and
without tail-recursion. This function sums integers from i to n according to the following definition:
sum(i,n) = i + (i+1) + ... + (n-1) + n
This can be stated as a recursive function:
sum(i,n) = if i>n then 0 else i+sum(i+1,n)
A recursive Meta-Modelica function for computing the sum of integers can be expressed as follows:

function sum
input Integer in_ i;
input Integer in n;
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output Integer out res;
algorithm
out res :=
matchcontinue (in_i,in n)
local Integer i,n,il,resl;
case (i,n)

equation
true = (i>n); then true;
case (i,n)
equation
false = (i>n);
11 = 1i+1;
resl = sum(il,n); then i+resl;
end matchcontinue;
end sum;

The above function sum is recursive but not tail-recursive since its last action is adding the result res1
of the sum cdl to i, i.e., the recursive call to sum is not the last action that occurs before returning from
the function.
Fortunately, it is possible to reformulate the function into tail-recursive form using the method of
accumulating parameters, which we will show in the next section.
Note that when the full Meta-Modelica language is available, the above sum function can be
expressed more concisely:
function sum
input Integer i;
input Integer n;
output Integer out res;
algorithm
out res := if i>n then 0 else i+sum(i+1,n)
end sum;

6.1.1.1 The Method of Accumulating Parameters for Collecting Results

The method of accumulating parameters is a general method for expressing declarative recursive
computations in a way that allows collecting intermediate results during the computation and makes it
easier to achieve an efficient tail-recursive formulation.

We reformulate the sum function by adding an accumulating input parameter sumSoFar to a help
function sumTail, keeping the counter i. When the terminating condition i >n occurs the accumulated
sum sumSoFar is returned. The function sumTai1 is tail-recursive since the call to sumTail is the last
action that occurs before returning from the function body, i.e.:

sum(i,n) = sumTail(i,j,0)

sumTail (i,n, sumSoFar) = if i>n then sumSoFar else sumTail (i+1,n, i+sumSoFar)

The functions sum and sumTail expressed as Meta-Modelica functions:

function sum
input Integer i;
input Integer n;



Chapter 6 Declarative Programming 181

output Integer out res;
algorithm

out_res := sumTail(i,n,0);
end sum;

function sumTail
input Integer in i;
input Integer in n;
input Integer in sumSoFar;
output Integer out res;
algorithm
out _res :=
matchcontinue (in_i, in n, in sumSoFar)
local Integer i,n,il,resl;
case (i,n, )
equation
true = (i>n); then sumSoFar;
case (i,n,sumSoFar)
equation
false = (i>n);
i1 = i+1;
resl = i+sumSoFar; then sumTail (il,n,resl);
end matchcontinue;
end sumTail;

It is easy to see that the function sumTail is tail-recursive since the cal to sumTail is the last
computation in the last local equation of the second rule.
A more concise formulation of the above sumTail function using if-then-else expressions:

function sumTail

input Integer i;

input Integer n;

input Integer sumSoFar;

output Integer out_res;
algorithm

out_res := if i>n then sumSoFar else sumTail (i+1,n,i+sumSoFar) ;
end sumTail;

Another example of a tail-recursive formulation is a revised version of the previous 1ist thread
function from Section 5.16.1.2, called 1ist thread tail:

list thread(a,b) = list thread tail(a,b,{})

We have introduced an accumulating parameter asthe third argument of 1ist thread tail, eg.
list thread tail({1,2,3},{4,5,6},{}) => {4,1,5,2,6,3}

Its definition follows below:

function list thread tail
"Takes two lists of the same type and threads them togheter.
For example, list thread({1,2,3},{4,5,6}) => {4,1,5,2,6,3}
n
input list<Type a> in Listl;
input list<Type a> in List2;
input list<Type a> in accumlst;
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output list<Type a> out List;
protected
replaceable type Type a;
algorithm
out List:=
match (in Listl,in List2,in_ accumlst)
local
list<Type a> rest a,rest b,accumlst; Type a fa,fb;
case ({},{},{}) then {};
case (fa :: rest_a, fb :: rest_b, accumlst)
then list thread tail(rest a, rest b, fa :: fb :: accumlst);
end match;
end list thread tail;

6.1.2 Using Side Effects

Can side effects such as updating of global data or input/output be used in specifications? Consider the
following contrived example:

function foo
input Real in x;
output Real out y;
algorithm
out_y :=
matchcontinue in x
local Real x,y;
case x equation
print "A"; y = condition A(x); then y;
case x equation
print "A"; y = condition A(x); then y;
end matchcontinue;
end foo;

The builtin function print is called in both rules, giving rise to the side effect of updating the output
stream. The intent is that if condition_a isfulfilled, "a" should be printed and a value returned. On
the other hand, if condition B isfulfilled, "B" should be printed and some other value returned. The
problem occurs if condition A fails. Then backtracking will occur, and the next rule (which has the
same matching pattern) will be tried. However, the printing of "a" has already occurred and cannot be
undone.

Such problems can be avoided if the code is completely determinate—at most one rule in a function
matches and backtracking never occurs. Thus we may formulate the following usage rule:

e Only use side-effects in completely deterministic functions for which at most one rule matches
and backtracking may never occur.

The problem can be avoided by separating the print side effect from the locally non-determinate
choice, which is put into a side-effect free function choose foo.
function choose foo
input Real in_x;
output Real out y;
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algorithm
out_y :=
matchcontinue x
local Real x,y;
case X equation
y = condition A(x); then ("A",y);
case X equation
y = condition B(x); then ("B",y);
end matchcontinue
end choose_ foo;

function foo
input Real in x;
output Real out y;
protected
Real x,v,z;
algorithm
(z,y) := choose foo(x);
print (z) ;
end foo;

In the above contrived example, the problem can aso be avoided in an even simpler way by just putting
print after the condition using the fact that the evaluation of the local equations stops after the first
local equation that fails:

function foo2
input Real in_x;
output Real out y;
algorithm
out y :=
matchcontinue in_x
local Real x,y;
case X equation
y = condition A(x); print "A"; then y;
case x equation
y = condition B(x); print "B"; then y;
end matchcontinue;
end foo2;

A natural question concerns the circumstances when side effects may occur, since Meta-Modelica is
basically a side-effect free specification language. The following two cases can however give rise to side
effects:

e Theprint primitive causes side effects by updating the output stream.
e External C functions which may contain side effects can be called from Meta-Modelica.

There is also a builtin function tick, that generates a new unique (integer) “identifier” at each call—
anal ogous to a random number generator. In order to ensure that each new integer is unique, some global
state (e.g. a counter) has to be updated, which is a side effect. However, from the point of view of a
semantics specification the actual value from tick is irrelevant—only the uniqueness is important. It
does not matter if tick is called a few extra times and some values are thrown away during
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backtracking. Thus, from a practical semantics point of view tick may be treated as a side effect free
primitive if used in an appropriate way.

6.2 More on the Semantics and Usage of Meta-Modelica Rules

Below we present a number of issues regarding the semantics and usage of Meta-Modelicarules.

6.2.1 Logically Overlapping Rules

A programming language specification in Meta-Modelica are often written in such a way that the local
equations of different rulesin a function are logically overlapping. For example, the predicates x<5 and
3 x<10 are logically overlapping since there are values of x, in the interval [3,5) that satisfy both
predicates.

Below we specify a function func, which is specified to return x+10 when x<5, and x+20 for
3<x<10. Thisislogically ambiguousin the interval 3< x <5 where both dternatives are valid.

function func
input Real in x;
output Real out y;
algorithm
out y :=
matchcontinue in_x
local Real x,y;

case x // X < 5
equation
true = x<5; then x+10;
case X
equation // x>=3 and x<10
true = (x>=3);
true = (x<10); then x+20;
end matchcontinue;
end func;

The determinate search rule of match-expressions in Meta-Modelica will resolve such ambiguities since
the first matching rule will always return in the interval 3< x < 5. Thus, the first rule giving the value
x+10 will be selected.

There is one rather common case where logically overlapping rules together with Meta-Modelica's
search rule of rule matching top-down, left-to-right, can be used to advantage, to allow more concise
and easily readable specifications. The rules can be ordered such that rules with more specific conditions
appear first, and more general rules which may logically overlap some previous rules appear later.

However, from a strictly logical point of view, from classical Natura Semantics style, ambiguous
rules in specifications are inconsistent and should be avoided..

Anyway, the style of specification with more specific conditions first and more general rules later
makes sense from a logical point of view when interpreted together with Meta-Modelica’ s top-down left-
to-right search rule— but is regarded as logically incorrect by purists because of the overlap. It also has
the disadvantage that local referential transparency is destroyed, i.e., the semantics of the function is
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changed if the ordering of the rules is changed. Such a set of rules can be converted to a semantically
equivalent set of clumsier non-overlapping rules. Negated conjunctions must then be added to
overlapping rules.

6.2.2 Using else Default Rule in Match-Expressions

There is a common situation in specifications where a large number of cases are handled similarly,
except a few special cases which need to be treated specialy. For example in the function isunfold
below, where only the uNrFoLD node returns true. All other nodes—which here are mentioned explicitly
as separate rules—return false.

function isunfold

input Ty in node;
output Boolean out_res;
algorithm
out_res :=
match in node

case UNFOLD( ) then true;
case ARITH(_ ) then false;
case PTR(_ ) then false;
case ARR(_, ) then false;
case REC( ) then false;

end match;
end function;

A more concise specification of this function can be obtained by adding a default rule at the end of the
match-expression with a general pattern that matches al cases returning the same default result. The top-
down, left-to-right search rule in match-expressions ensures that the special cases will match if they
occur—before the default case which always matches. The logical specification purist will unfortunately
regard such a specification as logically incorrect because of the overlap. Meta-Modelica solves this
problem by providing an explicit default else-rule in match-expressions, as in the example below:

function isunfold

input Ty in node;
output Boolean out_res;
algorithm
out_res :=
match in node
case UNFOLD( ) then true;

else then false;
end match;
end function;



186 Peter Fritzson Language Modeling and Symbolic Transformations with Meta-Modelica

6.3 Examples of Higher-Order Programming with Functions

The idea of higher-order functions in declarative/functional programming languages is that functions
should be treated as any data object: passed as arguments, assigned to variables, returned as function
values, etc.

Meta-Modelica supports a limited form of higher-order programming: functions can be passed as
arguments to other functions, but cannot be returned as values or directly assigned as values.

We give three examples of higher-order Meta-Modelica functions that take another function as a
parameter, and a function that can be used as a conditional expression (if) construct within a single
Meta-Modelicarule. The functions are the following:

e if

e list reduce
e list map

e 1list fold

The if  function makes it possible in many cases to avoid having the then-part and the else-part as
separate rules.

The function takes a boolean and two values. Returns the first value (second argument) if the
Boolean value is true, otherwise the second value (third argument) is returned.

if (true, ngn , nbn) => "g"

function if
input Boolean in booleanl;
input Type a in type a2;
input Type a in type a3;
output Type a out type a;
protected
replaceable type Type a;
algorithm
out_type a:=
match (in booleanl,in type a2,in type a3)
local Type a r;
case (true,r, ) then r;
case (false, ,r) then r;
end match;
end if ;

The 1ist reduce function takes a list and a function argument operating on two elements of the list.
The function performs areduction of the list to a single value using the function passed as an argument.

list reduce({1,2,3},int add) => 6

function list_ reduce
input VType alList in vtype alist;
input FuncType in func;
output Type a out type a;
protected
replaceable type Type a;
type VType alList = list<Type a>;
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function FuncTyp
input Type a in type al;
input Type a in type a2;
output Type a out type a;
end FuncType;
algorithm
out_type a:=
match (in_vtype alist,in_ func)
local
Type a e,res,a,b,resl,res2;
FuncType r;
VType alist xs;
case (list(e),r) then e;
case (list(a,b),r)

equation
res = r(a, b); then res;
case (a :: b :: (xs = _ :: _),r)
equation
resl = r(a, b);
res2 = list reduce(xs, r);

res = r(resl, res2); then res;
end match;
end list reduce;

The list map function takes alist and afunction over the elements of the lists, which is applied to each
element, producing anew list. For example, int _string hasthe signature: (int => string)

list map({1,2,3}, int_string) => { m"1", 2", "3n}

function list map
input VType alList in vtype alist;
input FuncType in func;
output VType bList out vtype blist;
protected
replaceable type Type a;
type VType alist = list<Type a>;
function FuncType
input Type a in type a;
output Type b out_ type b;
protected
replaceable type Type b;
end FuncType;
replaceable type Type b;
type VType bList = list<Type b>;
algorithm
out_vtype blist:=
match (in_vtype alist,in func)
local
Type_b £ 1;
VType bList r 1;
Type a f;
VType alist r;
FuncType fn;
case ({}, ) then {};
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case (f :: r,fn)
equation
£ 1 = fn(f);
r 1 = list_map(r, fn); then £ 1 :: r 1;

end match;
end list map;

The 1ist fold function takes a list and a function operating on pairs of a list element and an
accumulated value, together with an extra accumulating parameter which is eventually returned as the
result value. The third argument is the start value for the accumulating parameter. 1ist_fold will call
the passed function for each element in a sequence, adding to the accumulating parameter value.

list fold({1,2,3},int _add,2) => 8
int add(1,2) => 3, int add(2,3) => 5, int add(3,5) => 8

function list fold
input VType alList in vtype alist;
input FuncType in_ func;
input Type b in type b;
output Type b out_ type b;
protected
replaceable type Type a;
type VType aList = list<Type a>;
function FuncType
input Type a in type a;
input Type b in type b;
output Type b out type b;
protected
replaceable type Type b;
end FuncType;
replaceable type Type b;
algorithm
out type b:=
match (in vtype alist,in func,in type b)
local
FuncType r;
Type b b,b 1,b 2;
Type a 1;
VType_alist 1lst;
case ({},r,b) then b;
case (1 :: 1lst,r,b)
equation
b1=r(1l, b);
b 2 = 1list _fold(lst, r, b 1); then b 2;
end match;
end list fold;

(BRK)
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