
Contributions to Meta-Modeling
Tools and Methods

Adrian Pop
Programming Environments Laboratory

2

Outline

Product Design Environments

Meta-Modeling
Modelica Meta-Model
Invasive Composition of Modelica
Model-driven Product Design using Modelica

Meta-Programming
Debugging of Natural Semantics Specifications

Conclusions and Future Work

3

Domain Specific Environments

Complex
physical
products

planetary1=110/50

C4=0.12 C5=0.12

planetary2=110/50

C6
=0

.1
2

bearing2

C8=0.12

dem
ultiplex

shaftS=2e-3
S

planetary3=120/44

C11=0.12

shaftS1=2e-3
S

C1
2=

0.
12

bearing1bearing4
Design

environments

Gearbox

Model editors

Compilers

Debuggers

Simulators

Difficult
manual
process

4

Research Objectives

Context
Model-driven product design environments

Modeling and simulation
Modelica Framework

Objective
Efficient development of such environments

Meta-modeling and meta-programming
tools and methods

5

Modelica

planetary1=110/50

C4=0.12 C5=0.12

planetary2=110/50

C6
=0

.1
2

bearing2

C8=0.12

dem
ultiplex

shaftS=2e-3
S

planetary3=120/44

C11=0.12

shaftS1=2e-3
S

C1
2=

0.
12

bearing1bearing4

Modelica
Declarative language
Multi-domain modeling
Everything is a class
Visual component
programming

Modelica Association
http://www.modelica.org

6

Meta-Modeling

Physical system

Model

Meta Model

Meta-Meta Model

W
or

ld
Th

e
M

od
el

in
g

Sp
ac

e

7

Meta-Programming

Model1 Model2 Model3...

Meta-Model1 Meta-Model2

Meta- Meta Model

Modelica
models

Modelica
language

specifications

MetaModelica and
Natural Semantics

Specification
formalisms

Meta-programming:
transformation

A
bs

tr
ac

ti
on

8

Outline

Product Design Environments

Meta-Modeling
Modelica Meta-Model

Purpose
Definition and Applications
Problems

Invasive Composition of Modelica
Model-driven Product Design using Modelica

Meta-Programming
Debugging of Natural Semantics Specifications

Conclusions and Future Work

9

Modelica Community

Fast growing model base

Needs flexible stand-alone tools for:
analysis of models (checkers and validators)
pretty printing (un-parsing)
interchange with other modeling languages
query and transformation of models
imposing code style guidelines
documentation generation (Html, SVG, MathML, etc)

Need of better support:
easy access to the language structure

interoperability, flexibility

10

Modelica Meta-Model

Store the structure (Abstract Syntax) of the
Modelica language using an alternative
representation
Create tools that use this alternative
representation
The alternative representation should

be easy accessible from any programming language
be easy to transform, query and manipulate

Support validation through a meta-model

XML has all these properties

11

ModelicaXML Representation

Modelica
code

Modelica
XML

Modelica Parser

class Test "comment"

Real x;

Real xdot;

equation

xdot = der(x);

end Test;

<modelicaxml>

<definition ident= "Test"

comment="comment">

<component ident="x" type="Real"

visibility="public" />

<component ident="xdot" type="Real"

visibility="public" />

<equation>...</equation>

</definition>

</modelicaxml>

modelicaxml

definition

component

component

equation

12

Validation using Modelica Meta-Model

provides a vocabulary for
creating models
imposes constraints over
the model structure
is used to validate models

modelicaxml

definition

equation

equation

component

13

ModelicaXML Representation - Applications

Applications of ModelicaXML Representation
Interoperability and transformation
Easy access from any programming language
Query facilities
Documentation generation
Validation of models using the meta-model

14

Outline

Product Design Environments

Meta-Modeling
Modelica Meta-Model
Invasive Composition of Modelica

Invasive Software Composition
Modelica Composition
Applications

Model-driven Product Design using Modelica

Meta-Programming
Debugging of Natural Semantics Specifications

Conclusions and Future Work

15

Composition of black
box components

Hard to adapt
components to context
Generates possibly
inefficient systems

Invasive Software Composition
Composition system can see inside the components
Components are hidden behind a composition interface
Components are composed using a composition language
Components can be configured by changing their actual
code at variation points (boxes and hooks) defined by the
component model

Invasive Software Composition

16

Invasive Composition for Modelica

The benefit of Invasive Modelica Composition
Generation of different version of models from product specifications
Automatic configuration of models using external sources
Fine grain support for library developers
Refactoring, reverse engineering, etc

Modelica Models

ModelicaXML

ModelicaComponent Model

The Compost System Composition
Programs

Composed
System

Template ComponentsDefines
ModelicaBoxes
ModelicaHooks

17

Modelica Component Model – Boxes

XMLBox

ModelicaXMLBox

ModelicaContainer ModelicaElement

ModelicaClass

ModelicaModel

ModelicaConnector

ModelicaBlock

ModelicaRecord

ModelicaType

ModelicaPackage

ModelicaFunction

ModelicaComponent

ModelicaEquationSection

ModelicaAlgorithmSection

0..*

Defines a set of templates
for each language structure

18

Example Box Hierarchy
<definition ident="Engine" restriction="class">

<component visibility="public” variability="parameter"
type="Integer" ident="cylinders">

<modification_equals>
<integer_literal value="4"/>

</modification_equals>
</component>
<component visibility="public" type="Cylinder" ident="c">

<array_subscripts>
<component_reference ident="cylinders"/>

</array_subscripts>
</component>

</definition> class Engine
parameter Integer

cylinders = 4;
Cylinder c[cylinders];

end Engine;

ModelicaClass

ModelicaComponent

ModelicaComponent

19

Modelica Component Model – Hooks

Hook

DeclaredHook ImplicitHook

XMLDeclaredHook

ModelicaModifierHook

XMLImplicitHook

ModelicaParameterHook

ModelicaRealHook

ModelicaIntegerHook

ModelicaStringHook

Other Modelica Hooks

20

Example: Hooks
<component visibility="public” variability="parameter"

type="Integer" ident="cylinders">
<modification_equals>

<integer_literal value="4"/>
</modification_equals>

</component>

parameter Integer
cylinders = 4;

ModelicaParameterHook
name
value

<definition ident=”NewEngine" restriction="class">
<extends type=”Engine”>
....

</definition>

class NewEngine
extends Engine;
....

end NewEngine;

<definition ident=”Engine” restriction="class">
<extract>
<component>..</component> ...

</extract>
</definition>

21

Composition Programs: Mixin

ModelicaCompositionSystem cs =

new ModelicaCompositionSystem();

ModelicaClass resultBox =

cs.createModelicaClass(”Result.mo.xml”);

ModelicaClass firstMixin =

cs.createModelicaClass(”Class1.mo.xml”);

ModelicaClass secondBox =

cs.createModelicaClass(”Class2.mo.xml”);

resultBox.mixin(firstMixin);

resultBox.mixin(secondMixin);

resultBox.print();

22

Outline

Product Design Environments

Meta-Modeling
Modelica Meta-Model
Invasive Composition of Modelica
Model-driven Product Design using Modelica

Product Design based on Function-Means decomposition
Integration with Modelica for Early Design Validation

Meta-Programming
Debugging of Natural Semantics Specifications

Conclusions and Future Work

23

Model-Driven Product Design

Product design
product concept modeling and evaluation
physical modeling and simulation

Need for integration of
conceptual modeling tools and
modeling and simulation tools

24

Example: design phases of an Aircraft Product

Aircraft conceptual model in FMDesign
decomposition of the aircraft into functions and
means
mapping between means and Modelica
simulation components
simulation of various design choices
choosing the best design choice using the
simulation results

25

FMDesign – Conceptual Product Design

Courtesy of Olof Johansson. Developed in cooperation with Peter Krus, IKP

26

Simulation Components for an Aircraft Product

27

A Framework for Product Design

28

Framework Integration Tools

ModelicaDB – Modelica Model Database
is populated with simulation models by importing their
ModelicaXML representation
is a simulation models repository
provides search and organizational features
flexibility, scalability and collaborative development

29

Framework Integration Tools (cont)

The Selection and Configuration Tool
searches ModelicaDB for simulation models
calls modeling tools for creating/editing simulation
models
configuration dialogs for selected simulation models
for specific means implementation

The Automatic Model Generator Tool
generates Modelica models of the product
calls external simulation tools for simulation
feeds the simulation results back to the designer to
help him/her choose the best design choice

30

Architecture Overview

Engineering
Design

System X

Product Concept
Design Tool

(FMDESIGN)

Requirements
Database

F1

M1a M1b M1c

F1a.1 F1a.2 F1a.3

ModelicaXML
Generated

Models

Simulation
Evaluation

Optimisation

Modelica
Simulation

Source code

Means
Evaluations

Operation
Cases

Product Concept Design
Database

Reference Links

F = Function
M = Means

Modelica Model
Database

Selection and Configuration
Tool

Automatic
Model

Generator
Tool

31

Outline

Product Design Environments

Meta-Modeling
Modelica Meta-Model
Invasive Composition of Modelica
Model-driven Product Design using Modelica

Meta-Programming
Debugging of Natural Semantics Specifications

Natural Semantics and Relational Meta-Language
Debugging framework

Conclusions and Future Work

32

ModelicaXML Representation - Problems

Problems
XML can only express syntax
No easy way to automatically handle semantics

Possible solutions when expressing semantics
use markup languages developed by Semantic Web to
express some of the Modelica semantics
use other formalisms like Natural Semantics

33

Meta-Programming

Meta-Programs
programs that manipulate other programs

Natural Semantics, a formalism widely used for
specification of programming language aspects

type systems
static, dynamic and translational semantics
few implementations in real systems

Relational Meta-Language (RML)
a system for generating efficient executable code from
Natural Semantics specifications
fast learning curve, used in teaching and specification
of languages such as: Java, Modelica, MiniML, etc.
previously no support for debugging

34

Natural Semantics vs. Relational Meta-Language

Natural Semantics formalism Relational Meta-Language

module exp1:
(* Abstract syntax of language Exp1 *)
datatype Exp = INTconst of int

| ADDop of Exp * Exp
| SUBop of Exp * Exp
| MULop of Exp * Exp
| DIVop of Exp * Exp
| NEGop of Exp

relation eval: Exp => int
end

relation eval: Exp => int =

axiom eval(INTconst(ival)) => ival

rule eval(e1) => v1 & eval(e2) => v2 & v1 + v2 => v3

eval(ADDop(e1, e2)) => v3

rule eval(e1) => v1 & eval(e2) => v2 & v1 - v2 => v3

eval(SUBop(e1, e2)) => v3

...
end (* eval *)

1 1 2 2 v1+v2 v3
1 2 3

(1)

(2) e v e v
e e v

v v

⇒ ⇒ ⇒

+ ⇒

⇒

integers:

expressions (abstract syntax):

 ::

 | 1 2

 | 1 2

 | 1* 2

 | 1 / 2

 |

v Int

e Exp v

e e

e e

e e

e e

e

∈

∈ =

+

−

−

35

The Need for RML Debugging

Facilitate language learning
run, stop and inspect features

Large specifications are hard to debug
Example: OpenModelica compiler

43 packages
57083 lines of code and counting
4054 functions
132 data structures

36

Debugger Implementation - Overview

module Dump
with “absyn.rml”
relation dump: Absyn.Program => ()
...

RML
Compiler

External
Program
Database

Linking with the
RML

debugging runtime

ANSI-C

Executable
with

Debugging

RML Data Browser

RML Debugging
Emacs Mode

37

Debugger Implementation - Instrumentation

(* Evaluation semantics of Exp1 *)

relation eval: Exp => int =

axiom eval(INTconst(ival)) => ival

rule eval(e1) => v1 &

eval(e2) => v2 &

v1 + v2 => v3

eval(ADDop(e1, e2)) => v3

...

end (* eval *)

(* Evaluation semantics of Exp1 *)

relation eval: Exp => int =

axiom eval(INTconst(ival)) => ival

rule RML.debug_push_in01("e1",e1) &
RML.debug(...) &

eval(e1) => (v1) &
RML.debug_push_out01("v1",v1) &
RML.debug_push_in01("e2",e2) &
RML.debug(...) => () &
eval(e2) => (v2) &
RML.debug_push_out01("v2",v2) &
RML.debug_push_in02("v1",v1,"v2",v2

) & RML.debug(...) &
RML.int_add(v1,v2) => (v3)

eval(ADDop(e1,e2)) => (v3)

...

end (* eval *)

38

Debugger Functionality (1)

Breakpoints

Stepping and Running

39

Debugger Functionality (2)

Additional functionality
viewing status information
printing backtrace
information (stack trace)
printing call chain
setting debugger defaults
getting help

Examining data
printing variables
sending variables to an
external browser

40

Browser for RML Data Structures (1)

Current Execution
Point

Variable value
inspection

41

Browser for RML Data Structures (2)

Data structure
browsing

Data structure
definition

42

Conclusions

Meta-Modeling
Alternative Modelica Representation (ModelicaXML)

Conform to a Meta-Model for Modelica
Invasive Composition of Modelica

Model configuration and adaptation
Based on ModelicaXML and a Component Model for Modelica

Model-driven Product Design using Modelica
Integration of conceptual product modeling with modeling and
simulation tools
Flexibility, scalability
Uses ModelicaXML as a middleware

Meta-Programming
Debugging of Natural Semantics Specifications

large specification debugging (OpenModelica Compiler)
Debugging of MetaModelica models

43

Future Work
Meta-Modelica Compiler

Unified equation-based meta-modeling and meta-programming
specification language for both:

language models and physical system models

Work in progress, first version based on RML
Compilation of a Modelica extended with features such as:

pattern matching, tree structures, lists, tuples, etc.

More Meta-Modeling capabilities (constraints on models, etc)

Improvement of the debugging framework
Experimenting with an Eclipse-IDE that integrates these tools

Add new features to the Relational Meta-Language system

44

End

Thank you!
Questions?

45

Resources

ModelicaXML and ModelicaOWL
http://www.ida.liu.se/~adrpo/modelica/xml
http://www.ida.liu.se/~adrpo/modelica/owl

The Invasive Composition System Compost
http://www.the-compost-system.org/

Relational Meta-Language (RML)
http://www.ida.liu.se/~pelab/rml

MetaModelica Compiler (MMC)
http://www.ida.liu.se/~adrpo/mmc

Licentiate Thesis
http://www.ida.liu.se/~adrpo/lic

46

Thesis Structure

Modelica

ModelicaXML

RML
System

RML Specification of Modelica

Modelica
Parser

C
Compiler

C Code

Open
Modelica
Compiler

Meta-Modeling

Meta-Programming

C
Compiler

C Code

Modelica
Simulation

XML
Tools

Modelica Database

Debugging

Product
Design
Tools

Modeling
and

Simulation
Tools

Product Concept

Virtual Product

COMPOST

Composition
Program

Chapter 6

Chapter 2

Chapter 3

Chapter 4

Thesis Structure
Chapter 1 – Introduction
Chapter 2 – ModelicaXML, the Meta-Model of Modelica
Chapter 3 – Invasive Composition of Modelica using COMPOST and ModelicaXML
Chapter 4 – Integration of Product Design Tools with Modeling and Simulation Tools
Chapter 5 – Comparison between Modelica Libraries and Ontologies
Chapter 6 – Debugging framework for RML
Chapter 7 – Related research contributions

