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ABSTRACT 

Highly integrated domain-specific environments are essential for the efficient design of complex 
physical products. However, developing such design environments is today a resource-consuming 
error-prone process that is largely manual. Meta-modeling and meta-programming are the key to 
the efficient development of such environments.  

The ultimate goal of our research is the development of a meta-modeling approach and its 
associated meta-programming methods for the synthesis of model-driven product design 
environments that support modeling and simulation. Such environments include model-editors, 
compilers, debuggers and simulators. This thesis presents several contributions towards this 
vision, in the context of the Modelica framework.  

Thus, we have first designed a meta-model for the object-oriented declarative modeling 
language Modelica, which facilitates the development of tools for analysis, checking, querying, 
documentation, transformation and management of Modelica models. We have used XML 
Schema for the representation of the meta-model, namely, ModelicaXML. Next, we have focused 
on the automatic composition, refactoring and transformation of Modelica models. We have 
extended the invasive composition environment COMPOST to handle Modelica models described 
using ModelicaXML. 

The Modelica language semantics has already been specified in the Relational Meta-Language 
(RML), which is an executable meta-programming system based on the Natural Semantics 
formalism. Using such a meta-programming approach to manipulate ModelicaXML, it is possible 
to automatically synthesize a Modelica compiler. However, such a task is difficult without the 
support for debugging. To address this issue we have developed a debugging framework for RML, 
based on abstract syntax tree instrumentation in the RML compiler and support of efficient tools 
for complex data structures and proof-trees visualization. 

Our contributions have been implemented within OpenModelica, an open-source Modelica 
framework. The evaluations performed using several case studies show the efficiency of our meta-
modeling tools and methods. 

This work has been supported by the National Computer Science Graduate School (CUGS), the 
ProViking Graduate School, the SSF financed Research on Integrational Software Engineering 
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Chapter 1  
 
 
Introduction 

Motto:  
Models..., models everywhere.  

Meta-models model models 
Meta-MetaModels models Meta-Models. 

Attempt at a Definition of the Term "meta-model" (www.metamodel.com):  
A meta-model is a precise definition of the constructs  

and rules needed for creating semantic models. 

 

Highly integrated domain-specific environments are essential for the efficient 
design of complex physical products. However, developing such design 
environments is today a resource-consuming error-prone process that is largely 
manual. Meta-modeling and meta-programming are the key to the efficient 
development of such environments.  

The ultimate goal of our research is the development of a meta-modeling 
approach and its associated meta-programming methods for the synthesis of model-
driven product design environments that support modeling and simulation. Such 
environments include model-editors, compilers, debuggers and simulators. This 
thesis presents several contributions towards this vision, in the context of the 
Modelica (Fritzson 2004 [39]) framework. 

This chapter introduces the concepts of meta-models and meta-programming, 
and presents the object-oriented declarative modeling language Modelica, used for 
the modeling of complex physical systems. We also present the research issues 
addressed, the related research work, and outline the contributions of the thesis.  

 

http://www.metamodel.com/
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1.1 Background and Related Work 

The research work in this thesis is cross-cutting several research fields, which we 
introduce in this section. Here we give a more detailed presentation of the specific 
background and related work of the several areas in which we address problems. 
After setting the scene, in the next section we present the thesis motivation and 
formulate the research topics we are addressing.  

1.1.1 Systems, Models, Meta-Models and Meta-Programs 

Understanding existing systems or building new ones is a complex process. When 
dealing with this complexity people try to break the large systems into manageable 
pieces.  In order to experiment with systems people create models that can answer 
questions about specific system properties. As a simple example of a system we can 
take a fish; our mental model of a fish is our internal mind representation, 
experiences and beliefs about this system.  In other words, a model is an abstraction 
of a system which mirrors parts or all its characteristics we are interested in. Models 
are created for various reasons from proving that a particular system can be built to 
understanding complex existing systems. Modeling – the process of model creation 
– is often followed by simulation performed on the created models. A simulation 
can be regarded as an experiment applied on a model. 

Meta-modeling is still a modeling activity but its aim is to create meta-models. 
A meta-model is one level of abstraction higher than its described model.  

• If a model MM is used to describe a model M, then MM is called the meta-
model of M.  

• Alternatively one can consider a meta-model as the description of the 
meaning (semantics) of concepts that are used in the underlying level to 
construct models (model families). 

The usefulness of meta-models highly depends on the purpose for which they were 
created and what they attempt to describe. In general, a meta-model can be regarded 
as:  

• A schema for data (here data can mean anything from information to 
programs, models, meta-models, etc) that needs to be exchanged, stored, or 
transformed. 

• A language that is used to describe a specific process or methodology. 
• A language for expressing (additional) meaning (semantics) of existing 

information, e.g. information present on the World Wide Web (WWW). 

Thus, meta-models are ways to express and share some kind of knowledge that help 
in the design and management of models.  
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When the models are programs, the programs that manipulate them are called meta-
programs and the process of their creation is denoted as meta-programming. As 
examples of meta-programming we can include program generators, interpreters, 
compilers, static analyzers, and type checkers. In general the meta-programs do not 
act on the source code directly but on a representation (model) of the source code, 
such as abstract syntax trees. The abstract syntax trees together with the meta-
program that manipulates them can be regarded as a meta-model.  

One can make a distinction between general purpose modeling and domain 
specific modeling for example physical modeling. General purpose modeling is 
concerned with expressing and representing any kind of knowledge, while domain 
specific modeling is targeted to specific domains. Lately, approaches that use 
general purpose modeling languages (meta-metamodels) to define domain specific 
modeling languages (meta-models) together with their environments have started to 
emerge. The meta-metamodeling methodology is used to specify such approaches. 

Combining different models that use different formalisms and different levels of 
abstraction to represent aspects of the same system is highly desirable. Computer 
aided multi-paradigm modeling is a new emerging field that is trying to define a 
domain independent framework along several dimensions such as multiple levels of 
abstraction, multi-formalism modeling, meta-modeling, etc. 

1.1.2 Meta-Modeling and Meta-Programming Approaches 

Hardly anyone can speak of general purpose modeling without mentioning the 
Unified Modeling Language (UML) (OMG [81]). UML is by far the most used 
specification language used for modeling. UML together with the Meta-Object 
Facility (MOF) (OMG [84]) forms the bases for Model-Driven Architecture (MDA) 
(OMG [83]) which aims at unifying the design, development, and integration of 
system modeling. As an example of this modeling paradigm we can consider the 
Model Driven Architecture (MDA) (OMG [83]) proposed by Object Management 
Group. The architecture has four layers, called M0 to M3 presented in Figure 1-1 
and below:  

• M3 is the meta-metamodel which is an instance of itself. 
• M2 is the level where the UML meta-model is defined. The concepts used 

by the designer, such as Class, Attribute, etc., are defined at this level. 
• M1 is the level where the UML models reside. 
• M0 is the level where the actual user objects reside (the world). 

An instance at a certain level is always an instance of something defined at one 
level higher. An actual object at M0 is an instance of a class defined at M1. The 
classes defined in UML models at M1 are instances of the Class concept defined at 
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M2. The UML meta-model itself is an instance of M3. Other meta-models that 
define other modeling languages are also instances of M3. 

 
Figure 1-1. The Object Management Group (OMG) 4-Layered 

Model Driven Architecture (MDA). 

Within the MDA framework, UML Profiles are used to tailor the general UML 
language to specific areas (domain specific modeling).  

Modeling environment configuration approaches similar to the UML Profiles, 
are present within the Generic Modeling Environment (GME) (Ledeczi et al. 2001 
[63], Ledeczi et al. 2001 [64]) which is a configurable toolkit for creating domain-
specific modeling and program synthesis environments. Here, the configuration is 
accomplished through meta-models specifying the modeling paradigm (modeling 
language) of the application domain.  

Computer-aided Multi-paradigm Modeling and Simulation (CaMpaM) (Lacoste-
Julien et al. 2004 [60], Lara et al. 2003 [61]) supported by tools such as the ATOM3 
environment (A Tool for Multi-formalism and Meta-Modeling) (Vangheluwe and 
Lara 2004 [124]) is aiming at combining several dimensions of modeling (levels of 
abstractions, multi-formalisms and meta-modeling) in order to configure 
environments tailored for specific domains. 

We have already described what meta-modeling and meta-programming are. 
From another point of view meta-modeling and meta-programming are orthogonal 
solutions to system modeling (Figure 1-2) that can be combined to achieve model 
definition and transformation at several abstraction levels  

By using meta-programming is possible to achieve transformation between 
models or meta-models. The meta-models one level up can be used to enforce the 
correctness of the transformation. Translation and transformation between models 
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are highly desired as new models appear and solutions to system modeling require 
different modeling languages and formalisms together with their environments. 

Meta-Modeling 

MetaMeta-Model2

 
Figure 1-2. Meta-Modeling and Meta-Programming dimensions. 

1.1.3 Component Models for Invasive Software Composition 

The idea that software should be built from existing components appeared in the 
software community at the end of the 60s, first formulated by Douglas McIlroy 
(McIlroy 1968 [73]) and had a considerable influence in the software industry.  

The most important result of dividing software into relatively independent and 
adaptable parts is the increased reusability in software development. "Reuse is the 
use of existing software components in a new context, either elsewhere in the same 
system or in another system" (Marciniak 1994 [68]). Programmers want a 
methodology that defines how to reintegrate previously created software into a new 
context of development, to create software systems from existing software rather 
than building them from scratch. 

Software components are the basic units for software composition. They are 
designed to be composed; that is, their structure and behavior shall follow specific 
rules. "A software component is a software element that conforms to a component 
model and can be independently deployed and composed without modification 
according to a composition standard." (Heineman and Councill 2001 [50]). 

Model1 Model2 ModelN...

Meta-Model1 Meta-Model2
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Transformation Meta-Programming 
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A component model defines the external appearance of components that build a 
system. The component model defines the functionality of the components to be 
used in composition by explicitly describing component interfaces. A well-designed 
component model provides support for several important properties of its 
components, such as: 

• Substitution: one component can be replaced by another that fulfills at least 
the same syntactic or semantic conditions.  

• Adaptation: the ability to customize and configure components for different 
reuse contexts. 

• Extension: when new system requirements appear, the extension of existing 
components should be possible. 

A component model is the core of a component system. In a typical component 
system, the component model describes components as black boxes, i.e., 
encapsulated binary code components with completely hidden implementations. 
The black-box composition method includes various transformations, like 
adaptation and glue code generation, which essentially compose black boxes 
without changing their actual content. 

 

 
Figure 1-3. Black-box vs. Gray-box (invasive) composition. Instead of  

generating glue code, composers invasively change the components. 

However, in Chapter 3 of this thesis we consider components containing fragments, 
i.e., pieces of code. As in black-box systems, the contents of the components are 
hidden under a composition interface. This method is different from black-box 
composition because the composition operators can invasively change the 
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component fragments at predefined points of variability. This reuse abstraction is 
called grey-box composition and the composition of grey-box components is 
denoted as invasive software composition (see Figure 1-3). 

Invasive software composition is a composition technology based on 
parameterization and extension of grey-box components (Aßmann 2003 [8]). For a 
terminological distinction, we call invasive components fragment boxes; the 
variability points hooks, and the invasive composition operators composers. A 
typical fragment box consists of a set of fragments and an invasive composition 
interface, defined by hooks. Hooks can be of two types: declared hooks, defined by 
the programmer using some kind of markup and implicit hooks defined by the 
language structure. 

 
Figure 1-4. Invasive composition applied to hooks result  
in transformation of the underlying abstract syntax tree. 

Since the composers of an invasive composition program manipulate fragment 
components, i.e., some other programs, an invasive composition implies meta-
programming. The changes resulting from composition on fragment boxes apply 
directly to the corresponding abstract syntax tree by attaching and removing 
fragments as presented in Figure 1-4.  

The COMPOST system (Aßmann and Ludwig 2005 [9]) provides invasive 
software composition of Java (Aßmann 2003 [8]) and ModelicaXML components 
(Chapter 3), (Pop and Fritzson 2003 [92]). The composition library supports 
generics (Musser and Stepanov 1988 [78]), mixin-ins (Bracha and Cook 1990 [22]), 
connectors (Aßmann et al. 2000 [7]), aspects (Kiczales et al. 1997 [59]) and views 
(Aßmann 2003 [8]) by invasively transforming language components. 

Automatic derivation of a component model from language specification in 
Natural Semantics is presented shortly Chapter 7, and in more detail in (Savga et al. 
2004 [105]). 
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Using the Extensible Markup Language (XML) (W3C [113]), and the XML 
Schema (W3C [115]) to model abstract syntax trees (Attali et al. 2001 [10], Attali et 
al. 2001 [11], Badros 2000 [13], Schonger et al. 2002 [106]) of programming 
languages is becoming an interesting alternative for having easy access to the 
structure of programs (in our case models) without the need for a specific parser. 
We used this approach when designing and defining the meta-model for the 
Modelica language presented in this thesis. In order to compose and transform 
models defined by our meta-model we employ invasive software composition 
(Aßmann 2003 [8]), which is a grey-box component composition. To drive the 
composition we have designed a component model for our meta-model within the 
COMPOST system. 

1.1.4 The Modelica Language 

Modelica (Elmqvist et al. 1999 [33], Fritzson 2004 [39], Modelica-Association 
1996-2005 [75], Tiller 2001 [109]) is an object-oriented language for declarative 
mathematical modeling of large and heterogeneous physical systems. For modeling 
with Modelica, commercial software products such as MathModelica (MathCore 
[69]) (Figure 1-5) or Dymola (Dynasim 2005 [30]) have been developed. Also 
open-source implementations like the OpenModelica system (Fritzson et al. 2002 
[37], PELAB 2002-2005 [87]) are available.  

 
Figure 1-5. MathModelica modeling and simulation environment. 
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The Modelica language has been designed to allow tools to generate efficient 
simulation code automatically, with the main objective of facilitating exchange of 
models, model libraries and simulation specifications. The definition of simulation 
models is expressed in a declarative manner, modularly and hierarchically. Various 
formalisms can be combined in the more general Modelica formalism. In this 
respect, Modelica has a multi-domain modeling capability which gives the user the 
possibility to combine electrical, mechanical, hydraulic, thermodynamic, etc., 
model components within the same application model. Compared with most other 
modeling languages available today, Modelica offers several important advantages 
from the simulation practitioner's point of view: 

• Acausal modeling based on ordinary differential equations (ODE) and 
differential algebraic equations and discrete equations (DAE). There is also 
ongoing research to include partial differential equations (PDE) in the 
language syntax and semantics (Saldamli 2002 [102], Saldamli et al. 2005 
[104], Saldamli et al. 2002 [103]). 

• Multi-domain modeling capability, which gives the user the possibility to 
combine electrical, mechanical, thermodynamic, hydraulic etc., model 
components within the same application model. 

• A general type system that unifies object-orientation, multiple inheritance, 
and generics templates within a single class construct. This facilitates reuse 
of components and evolution of models. 

• A strong software component model, with constructs for creating and 
connecting components. Thus the language is ideally suited as an 
architectural description language for complex physical systems, and to 
some extent for software systems. 

The language is strongly typed and there are no side effects of function calls. 
However, local assignments are allowed in the algorithmic part of the language. 
The reader of the thesis is referred to any of (Fritzson 2004 [39], Modelica-
Association 1996-2005 [75], 2005 [76], Tiller 2001 [109]) for a complete 
description of the language and its functionality from the perspective of the 
motivations and design goals of the researchers who developed it. Those interested 
in shorter overviews of the language may wish to consult (Elmqvist et al. 1999 [33], 
Fritzson and Bunus 2002 [38], Fritzson and Engelson 1998 [36]). 

In this thesis we develop tools for the management of the Modelica models 
based on meta-modeling and meta-programming approaches.  We present a meta-
model for the Modelica language structure, invasive composition of Modelica 
models and integration of Modelica-based modeling and simulation tools with 
product design tools. Ongoing research (Fritzson et al. 2005 [40]) plans to extend 
Modelica with meta-modeling and meta-programming features.  

 



10   Chapter 1   Introduction 

 

1.1.5 Integrated Product Design and Development 

In the area of model-driven product design using modeling and simulation we focus 
on the integration of Modelica language with conceptual modeling tools based on 
Function-Means tree decomposition (Andreasen 1980 [3]). 

Designing products is a complex process. Highly integrated tools are essential to 
help a designer to work efficiently. Designing a product includes early design phase 
product concept modeling and evaluation, physical modeling and simulation and 
finally the physical product realization (Figure 1-6). For physical modeling and 
simulation available tools provide advanced functionality. However, the integration 
of such tools with conceptual modeling tools is a resource consuming process that 
today requires large amounts of manual, and error prone work. Also, the number of 
physical models available to the designer in the product concept design phase is 
typically quite large. This has an impact on the selection of the best set of 
component choices for detailed product concept simulation.  

To address these issues we have developed a framework (Chapter 4) for product 
development based on an XML meta-model (Chapter 2), (Pop and Fritzson 2003 
[92]) of Modelica and its representation in a Modelica Database (Chapter 4 and 7), 
(Johansson et al. 2005 [56], Pop et al. 2004 [94]). The product concept design of the 
product development process is based on Function-Means tree decomposition and is 
implemented in the FMDesign component (Figure 1-6). 

To provide flexibility of the product design framework we have addressed the 
composition and transformation of Modelica models in the COMPOST framework 
(Chapter 3), (Pop et al. 2004 [95]).  

 
Figure 1-6. Integrated model-driven product design and development framework. 
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Our framework for model-driven product design and development has similarities 
with Schemebuilder (Bracewell and D.A.Bradley 1993 [21]). The Modelith 
framework (Johansson et al. 2002 [54], Larsson et al. 2002 [62]) also employs an 
XML-based model representation for transformation and exchange in physical 
system modeling. 

However, our work is more oriented towards the design of advanced complex 
products that require systems engineering, and targeted to the simulation modeling 
language Modelica. The Modelica language has a more expressive power in 
modeling dynamic systems and system architectures, than many of the tools for 
systems engineering that are currently used. Also, meta-modeling and invasive 
software composition methods are considered for automatic model composition and 
configuration. Tight integration of conceptual modeling tools with modeling and 
simulation tools is proposed. For details on Systems Engineering, the reader is 
referred to the International Council on Systems Engineering Website (INCOSE 
1990-2005 [53]).  

1.1.6 Compiler Construction and Natural Semantics 

Writing compilers (Aho et al. 1986 [1], Appel 1997 [4], 2002 [5], Muchnick 1997 
[77]) for programming languages is an extremely complex process. One will have 
to consult the semantics of the language and then implement the compiler in some 
language of choice. This is a time consuming and error-prone activity. Another 
approach is to generate parts or the entire compiler from a formal specification 
(Clément et al. 1986 [26], Despeyroux 1984 [28]). Such approach is highly 
welcomed and is in the spirit of lexer and parser generators like Lex (Flex) (GNU 
2005 [46]) and Yacc (Bison) (GNU 2005 [47]). 

From this area we consider the compiler-compiler approach, which generates 
compilers from formal specifications of programming languages. In particular the 
work on Natural Semantics (Kahn 1988 [57]), which is a formalism for specifying 
many aspects of programming languages i.e. type systems, dynamic semantics, 
translational semantics, static semantics (Despeyroux 1984 [28], Glesner and 
Zimmermann 2004 [43]), etc. Natural Semantics is an operational semantics 
derived from the Plotkin (Plotkin 1981 [91]) structural operational semantics 
combined with the sequent calculus for natural deduction.  

One can observe that meta-modeling and meta-programming are also used when 
constructing compilers: 

• A program is a model. 
• A programming language is a meta-model. 
• Natural Semantics is a meta-programming formalism used to define the 

semantics of meta-models. 
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The Relational Meta-Language (RML) (PELAB 1994-2005 [86], Pettersson 1995 
[88], 1999 [90]) is a practical language for writing executable Natural Semantics 
specifications. The RML language is compiled to highly efficient C code by the 
rml2c compiler. In this way, large parts of a compiler can be automatically 
generated from their Natural Semantics specifications. RML has been successfully 
used at our department in teaching and for specifying and generating compilers 
from Natural Semantics for Java, Modelica (Fritzson et al. 2002 [37]), MiniML 
(Clément et al. 1986 [25]) and other languages. 

There are few systems implemented that compile or interpret Natural Semantics. 
One of these systems is Centaur (Borras et al. 1988 [19]) with its implementation of 
Natural Semantics called Typol (Despeyroux 1984 [28], 1988 [29]). This system is 
translating the inference rules to Prolog. The RML system is a more efficient 
implementation of Natural Semantics, with a performance of the generated code 
that is several orders of magnitude better than Typol.  

The RML system had no debugging facilities which made understanding and 
debugging of the large specifications a challenge. In this context we have developed 
a debugging framework for RML (Chapter 6), (Pop and Fritzson 2005 [97]) based 
on abstract syntax tree instrumentation in the RML compiler and support of 
efficient tools for complex data structures and proof-trees visualization. 

A similar approach to debugging is used in debugging Standard ML (Tolmach 
and Appel 1995 [110]). The idea of having a proof explanation of the reasoning 
inference has its root in the debugging of deductive databases (Mallet and Ducassé 
1999 [67]) and Description Logics reasoning algorithms explanation (McGuinness 
1996 [71], McGuinness and Borgida 1995 [70], McGuinness and Silva 2003 [72]). 
A debugging framework for Natural Semantics can benefit from this work as it 
must be able to handle large proof-trees and complex data structures. 

As a crash course in Natural Semantics and the Relational Meta-Language 
(RML) we give an example of a small expression (Exp) language and its realization 
in Natural Semantics and RML. A specification in Natural Semantics has two parts:  

• Declarations of syntactic and semantic objects involved.  
• Groups of inference rules which can be grouped together into relations.  

In our example language we have expressions built from numbers. The abstract 
syntax of this language is declared in the following way: 

integers: 

   

expressions (abstract syntax): 

   :: | 1 2 | 1 2 | 1* 2 | 1 / 2 |

v Int

e Exp v e e e e e e e e e

∈

∈ = + − −
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The inference rules for our language are bundled together in a judgment  in 
the following way (we do not present here the similar rules for the other operators.): 

e => v

1 1 2 2  v1+v2 v3
1 2 3

(1)  

(2)  e v e v
e e v

v v

⇒ ⇒ ⇒

+ ⇒

⇒

 

The RML modules have two parts, an interface comprising datatype declarations 
(abstract syntax) and the relation signatures that operate on such datatypes, 
followed by the declarations of the actual relations which group together rules and 
axioms. In RML, the Natural Semantics specification presented above is 
represented as follows: 

module exp1: 
 
  (* Abstract syntax of language Exp1 *) 
  datatype Exp =  INTconst of int 
               |  ADDop    of Exp * Exp 
               |  SUBop    of Exp * Exp 
               |  MULop    of Exp * Exp 
               |  DIVop    of Exp * Exp 
               |  NEGop    of Exp       
 
  relation eval: Exp => int 
 
end 

 
(* Evaluation semantics of Exp1 *) 
relation eval: Exp => int  = 
 
 (* Evaluation of an integer node is the integer itself *)  
 axiom eval(INTconst(ival)) => ival  
  
 (*  
 Evaluation of an addition node ADDop is v3, if v3 is  
 the result of adding the evaluated results of its  
 children e1 and e2. 
 Subtraction, multiplication, etc, operators have  
 very similar specifications.  
 *) 
 rule  eval(e1) => v1 & eval(e2) => v2 & v1 + v2 => v3 
       ----------------------------------------------- 
       eval( ADDop(e1, e2) ) => v3 
 
 rule  eval(e1) => v1 & eval(e2) => v2 & v1 - v2 => v3 
       ----------------------------------------------- 
       eval( SUBop(e1, e2) ) => v3 
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 rule  eval(e1) => v1 & eval(e2) => v2 & v1 * v2 => v3 
       ----------------------------------------------- 
       eval( MULop(e1, e2) ) => v3 
 
 rule  eval(e1) => v1 & eval(e2) => v2 & v1 / v2 => v3 
       ----------------------------------------------- 
       eval( DIVop(e1, e2) ) => v3 
 
 rule  eval(e) => v & -v => vneg 
       ------------------------- 
       eval( NEGop(e) ) => vneg 
 
end (* eval *) 

 

A proof-theoretic interpretation can be assigned to this specification. We interpret 
inference rules as recipes for constructing proofs. We wish to prove that there is a 
value  such that 1 2  holds for this specification. To prove this proposition 
we need an inference rule that has a conclusion, which can be instantiated 
(matched) to the proposition. The only proposition that matches is the second 
proposition, which is instantiated as follows:  

v v+ ⇒

1 1 2 2 1 2

1 2

v v v v

v

⇒ ⇒ + ⇒

+ ⇒

v
 

To prove further, we need to apply the first proposition (axiom) several times, and 
we reach the conclusion. One can observe that debugging of Natural Semantics 
comprise proof-tree understanding and complex data type inspection.  

1.1.7 Semantic Web and Description Logics 

Recently, in the emerging Semantic Web area (Berners-Lee et al. 2001 [16], 
SemanticWebCommunity [107], W3C [121], [114]), languages to model ontologies 
(conceptualization of specific domains) are proposed as a way to add more semantic 
information (as meta-data) to the existing web data in order to render it usable to 
machine processing. Until now, the huge amount of information on the web has 
been designed only for human understanding and had no meaning (semantics) for 
machines.  

The Semantic Web approach is to use meta-languages that markup the existing 
data on the web with a well-defined meaning in order to allow both machines and 
humans to process it. There is a vivid debate if ontologies are meta-models or not 
(Gaševic et al. 2004 [42]). At least from the point of view of knowledge 
representation and sharing, ontologies and meta-models are trying to tackle the 
same issues. The Semantic Web provides a common framework that allows data to 
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be shared and reused between applications. In order to achieve such a goal the 
Semantic Web has a layered architecture as in Figure 1-7 cf. (Berners-Lee 2000 
[15]), which is similar to the MDA architecture proposed by OMG (Figure 1-1). 
However, the Semantic Web languages are based on formal logic and the OMG 
languages are more visual and less formal.  

 
Figure 1-7. The Semantic Web layered architecture. 

In the Semantic Web architecture at the bottom are Unicode and Uniform Resource 
Identifiers (URI) followed by the Extensible Markup Language (XML) (W3C 
[113]), namespaces (NS) and XML-Schema at the next level. XML specifies a term 
list with no relations. On top of XML comes the Resource Description Framework 
(RDF) (W3C [118]) language to define a simple data-model for objects and the 
relations between them. The RDF Vocabulary Description Language (RDFS or 
RDF schema) (W3C [119]) is a vocabulary for describing properties and classes of 
RDF resources. The Ontology layer uses languages like the Web Ontology 
Language (OWL) (W3C [120], [122]) to add more vocabulary for describing 
properties and classes, typing of properties, relations between classes, cardinality 
constraints, etc. 

The Web Ontology Language (OWL) consists of three sublanguages that 
provide increasingly expressiveness with different computational properties (W3C 
[122]): 

• OWL Lite provides classification hierarchies and very simple constraints.  
• OWL DL provides the maximum possible expressiveness that still has 

computational completeness and decidability. OWL DL has a 
correspondence with Description Logics (DL).  

• OWL Full offers maximum expressiveness with no computational 
guarantees. 
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On top of these ontology languages rules and logic are available to add application 
behavior. 

Description Logics (DL) (Baader et al. 2003 [12], DescriptionLogicsWebsite 
[27]) is a family of formalisms for representing and reasoning with knowledge. DL 
is used to represent data and knowledge of the relations between individual objects 
and their grouping into classes. The DL reasoners (Haarslev et al. 2004 [49], 
Horrocks [51], W3C [123]) make deductions from a knowledge base of such 
description of classes and individuals. These deductions are targeted to detect 
inconsistencies, to classify (organize) the classes into sub-class hierarchies, and to 
classify individuals under appropriate concepts. DL has also been used to formalize 
UML models or check their consistency (Berardi et al. 2001 [14]). 

In this thesis we discuss the benefits of using Semantics Web languages to 
construct a better Modelica meta-model in Chapter 2 (Pop and Fritzson 2003 [92]) 
and present a comparison between meta-models and ontologies in Chapter 5 (Pop 
and Fritzson 2004 [93]). 

1.2 Research topics  

Having introduced the related research areas, we present next our thesis goal and 
motivation, then formulate the two main problems we are addressing. 

The ultimate goal of our research is the development of a meta-modeling 
approach and its associated meta-programming methods for the synthesis of model-
driven design environments that support modeling and simulation. Such 
environments include model-editors, compilers, debuggers and simulators. This 
thesis presents several contributions towards this vision, in the context of the 
Modelica framework. To manage this bold vision we have divided it into sub-goals 
as follows: 

• Flexible tool support for management of Modelica models, based on meta-
modeling. 

• Analysis, composition, refactoring and transformation of Modelica models. 
• Integration of product design tools with modeling and simulation tools. 
• Debugging at different levels of abstraction: models, meta-models and 

meta-programs (Natural Semantics specifications). 
• The integration of Natural Semantics (RML) features into a unified 

extended Modelica language. 

The research work presented in this thesis addresses all these sub-goals of our 
vision at various depths.  
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1.2.1 Design and Application of Meta-Modeling Methods 

In this thesis we are interested in the design and application of meta-modeling 
methods for flexible integration of product design tools with modeling and 
simulation tools for the Modelica language. 

The existing tools for mathematical modeling and simulation of physical 
systems for the Modelica language are only a small part of a wider picture. 
Modeling full systems requires integration of different modeling languages, model 
interoperability, and flexibility. Also, because the Modelica community provides a 
growing model-base, scalability issues within current tools will create problems of 
model management. Another issue is that these tools currently provide very little 
support for integration of their functionality in other modeling frameworks.  

A solution for these issues would be a framework based on meta-modeling for 
Modelica models management with the following requirements: 

• Easy and flexible access to model structure and information that would 
facilitate the creation of tools targeted to different needs than modeling and 
simulation, e.g. configuration, documentation, enforcing of company 
guidelines for modeling, etc. 

• Means to configure models: composition, refactoring, and transformation 
(to Modelica or other modeling languages). 

• Scalable model-repository search and querying facilities. 

In this thesis we present the design and development of a framework that meets 
these requirements (Chapter 2 to Chapter 4). 

1.2.2 Methods and Tools for Debugging of Meta-Programs 

Another research topic of our thesis is the design and implementation of methods 
for debugging of meta-programs expressed as executable Natural Semantics 
specifications  

Writing compilers for programming languages is an extremely complex process. 
One will have to consult the semantics of the language and then implement the 
compiler in some language of choice. This is a time consuming and error-prone 
activity. Another approach is to generate parts or the entire compiler from a formal 
specification. Such approach is highly welcomed and is in the spirit of lexer and 
parser generators. 

The Relational Meta-Language (RML) system is used to implement the 
OpenModelica (Fritzson et al. 2002 [37], PELAB 2002-2005 [87]) compiler, a very 
large specification with: 43 modules, 57083 lines of code, 4054 relations and 132 
data structures. Managing this complexity without tool support creates problems of 
understanding and has made bug fixing in the specification a challenge.  
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To address this problem we have designed and developed a debugging framework 
for the Relational Meta-Language (Chapter 6). While the debugger framework is far 
from being optimized, its first users gave us very positive feedback. The debugging 
approach is mature enough to handle large specification (~57000+ lines of code is 
our largest specification at the moment). 

1.3 Thesis Contributions 

In short, the main contributions of this thesis towards the ultimate goal of a general 
meta-modeling and meta-programming approach for the construction of integrated 
design environments are the following: 

• The design of a meta-model for Modelica language that facilitates 
development of tools for analysis, checking, querying, documentation, 
transformation of Modelica models. 

• Composition, refactoring and transformation of Modelica models based on a 
component model for invasive composition of Modelica language and a 
Modelica meta-model. 

• Integration of model-driven product design and development tools with 
modeling and simulation tools. 

• Debugging of meta-programs for programming language semantics 
specifications written in the Relational Meta-Language dialect of Natural 
Semantics. 

In other words we contribute to the area of meta-modeling and meta-programming 
with methods and tools that efficiently address the design and usage of meta-
models and the debugging of meta-programs. 

This thesis is primarily based on the following articles and reports: 

2003  

1. Adrian Pop, Peter Fritzson: ModelicaXML:A Modelica XML Representation 
with Applications, In Proceedings of the 3rd International Modelica 
Conference (Modelica2003), November 3-4, 2003, Linköping, Sweden. (In 
Chapter 2) 

2004  

2. Adrian Pop, Ilie Savga, Uwe Aßmann, Peter Fritzson: Composition of XML 
dialects: A ModelicaXML case study, In Proceedings of the Software 
Composition Workshop (SC2004), affiliated with European Joint 
Conferences on Theory and Practice of Software (ETAPS'04), March 27 - 
April 4, 2004, Barcelona, Spain, Electronic Notes in Theoretical Computer 
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Science Volume 114, 17 January 2005, Pages 137-152, 
http://www.elsevier.com/locate/issn/15710661. (In Chapter 3) 

3. Olof Johansson, Adrian Pop, Peter Fritzson: A functionality coverage 
analysis of industrially used ontology languages, In Proceedings of the 
Model Driven Architecture: Foundations and Applications (MDAFA2004), 
June 10-11, 2004, Linköping, Sweden. (In Chapter 7) 

4. Adrian Pop, Olof Johansson, Peter Fritzson: An integrated framework for 
model-driven design and development using Modelica, In Proceedings of 
SIMS 2004, the 45th Conference on Simulation and Modeling, September 
23-24, 2004, Copenhagen, Denmark. (In Chapter 4) 

5. Adrian Pop, Peter Fritzson: The Modelica Standard Library as an Ontology 
for Modeling and Simulation of physical systems, Technical Report, 2004, 
http://www.ida.liu.se/~adrpo/reports. (In Chapter 5) 

6. Ilie Savga, Adrian Pop, Peter Fritzson: Deriving a Component Model from a 
Language Specification:An Example Using Natural Semantics, Technical 
Report, 2004, http://www.ida.liu.se/~adrpo/reports. (In Chapter 7) 

2005  

7. Adrian Pop, Peter Fritzson: A Portable Debugger for Algorithmic Modelica 
Code, In Proceedings of the 4th International Modelica Conference 
(Modelica2005), March 7-9 , 2005, Hamburg-Harburg, Germany. (In 
Chapter 7) 

8. Olof Johansson, Adrian Pop, Peter Fritzson: ModelicaDB - A Tool for 
Searching, Analyzing, Crossreferencing and Checking of Modelica 
Libraries, In Proceedings of the 4th International Modelica Conference 
(Modelica2005), March 7-9, 2005, Hamburg-Harburg, Germany. (In 
Chapter 7) 

9. Peter Fritzson, Adrian Pop, Peter Aronsson: Towards Comprehensive Meta-
Modeling and Meta-Programming Capabilities in Modelica, In Proceedings 
of the 4th International Modelica Conference (Modelica2005), March 7-9, 
2005, Hamburg-Harburg, Germany. (In Chapter 7) 

10. Adrian Pop, Peter Fritzson: Debugging Natural Semantics Specifications, 
submitted to The Sixth International Symposium on Automated and 
Analysis-Driven Debugging (AADEBUG 2005), March 2005. (In Chapter 
6) 

1.4 Thesis Structure 

This thesis is structured as a collection of publications, preceded by an introductory 
chapter. In this section we give a short overview of each of the chapters in the thesis 

 

http://www.elsevier.com/locate/issn/15710661
http://www.ida.liu.se/~adrpo/reports
http://www.ida.liu.se/~adrpo/reports
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and specify their origin. At the end of this section we also present visually in Figure 
1-8 the overview of the structure of this thesis. 

Chapters 2 to 6 are faithful reproductions of articles published in conferences 
and workshops. (We changed the formatting, the cross-references and the literature 
references were grouped together at the end of the thesis for easy lookup).  

Chapter 7 presents short overviews of additional published research that is 
associated to this thesis work.  

Chapter 1 presents a short introduction into the area of modeling, meta-modeling, 
and meta-programming. Related work and the background for our research work 
are also introduced here. The chapter presents the research topics we are addressing 
and our contributions. The conclusions of the thesis, highlights of our contributions 
and future work directions are presented in the last part of this chapter. 

Chapter 2 introduces ModelicaXML, a meta-model for syntactic properties of the 
Modelica language. This meta-model is an alternative representation of the 
Modelica language structure in XML format. We show how this meta-model can 
facilitate the development of tools for querying, transformation, documentation, and 
analyses of Modelica models. The shortcomings of the proposed Modelica syntactic 
meta-model are investigated and we discuss how some of the Modelica semantics 
could be represented using languages and ontologies developed in the Semantic 
Web. 

The ModelicaXML representation provides more functionality than a typical 
C++ class library implementing an AST representation of Modelica: 

• Declarative query languages for XML can be used to query the XML 
representation. 

• The XML representation can be accessed via standard interfaces like 
Document Object Model (DOM) (W3C [112]) from practically any 
programming language.  

The uses of the ModelicaXML representation for Modelica models, combined with 
the power of general XML tools, ease the implementation of tasks such as: 

• Analysis of Modelica programs (model checkers and validators). 
• Pretty printing (un-parsing). 
• Translation between Modelica and other modeling languages (interchange). 
• Query and transformation of Modelica models. 
• Documentation generation for models. 

Although ModelicaXML captures the structured representation of Modelica source 
code, the semantics of the Modelica language cannot be expressed without 
implementing specific XML-based tools. To address this issue we have investigated 
the benefits of using languages developed in the Semantic Web community. We 
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believe that using such technology for Modelica models would enable several 
applications in the future: 

• Models could be automatically translated between modeling tools. 
• Models could become autonomous (active documents) if they are packaged 

together with the operational semantics from the compiler, and therefore, 
they could be simulated in a normal browser. 

• Software information systems (SIS) could be more easily constructed for 
Modelica, facilitating model understanding and information finding. We 
consider adapting the approach described in (Welty 1995 [125]) to construct 
such a SIS for Modelica. 

• Model consistency could be checked similar to (Berardi et al. 2001 [14]) 
using already implemented Description Logic (DL) reasoners i.e. Fact or 
Fact++ (Horrocks [51]), Racer (Haarslev et al. 2004 [49], W3C [123]), or 
our implementation. Using our implementation will give us the freedom to 
experiment with more language constructs and constraints. 

• Certain models could be translated to and from the Unified Modeling 
Language (UML) (OMG [81]). 

Chapter 3 presents how invasive composition, refactoring, and transformations can 
be performed on Modelica models by using the Modelica meta-model and a 
component model developed for the COMPOST composition framework. The 
design of the component model for the Modelica meta-model is presented and 
examples of composition and composition programs are given. This chapter also 
presents the invasive composition framework COMPOST and investigates how 
software composition and transformation can be applied to domain specific 
languages used today in modeling and simulation of physical systems. By extending 
the COMPOST concrete composition layer with a component model for Modelica, 
we provide composition and transformation of Modelica models.  

Transformation and composition of Modelica models allows easy automatic 
change of models to fit context. Also, entire systems can be automatically 
generated, configured, and simulated using a composition language. Such a result 
gives the framework for product design presented in Chapter 4 a high flexibility and 
scalability. 

Chapter 4 proposes an integrated framework for model-driven product design and 
development tools (using conceptual design based on Function-Means tree 
decomposition) with modeling and simulation tools. The Modelica Database 
component provides scalable querying and analysis facilities for Modelica models. 
The product concept design of the product development process is based on 
Function-Means tree decomposition and is implemented in the FMDesign 
component. The Modelica models are first translated to XML documents 
conforming to the ModelicaXML meta-model. Then these documents are used to 
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populate the Modelica Database. The goal of this framework is to provide automatic 
generation of models from product design specifications using a highly integrated 
set of tools. Another goal is to provide the designer with the possibility of selecting 
the best design choice, verified through (automatic) simulation of different 
implementation alternatives of the same product model. To have a flexible 
interaction among various tools of the framework the ModelicaXML representation 
of the Modelica language is used as middleware. For efficient searching in large 
repositories of simulation models the Modelica Database was designed.  

As future work we want to explore the use of ontologies for product concept 
design and for the classification of the available component libraries. For this 
purpose the languages developed by the Semantic Web community will be used.  

This framework is our test-bed for experimenting with novel techniques and 
methodologies in conceptual design. 

Chapter 5 makes a comparison between Modelica Standard Library and ontologies. 
We discuss on how the features of the declarative Modelica language are 
contributing to the sharing and reuse of knowledge stored in domain specific 
libraries and compare this approach with the concept definition approach from 
ontologies. As an example we present the Modelica Standard Library that defines 
models in domains such as mechanical, electrical, etc.  

Chapter 6 changes the focus of the thesis towards debugging of executable meta-
programs used in the specification of programming language semantics. The 
chapter presents a debugging framework for debugging of Natural Semantics 
specifications written in the Relational Meta-Language (RML). The debugging 
strategy and the components of this framework are described in detail together with 
some usage experience of the debugger on large scale specifications. 

Chapter 7 shortly presents additional articles published in cooperation with several 
authors that are associated with the research work of this thesis. The publications 
cover: 

• Comparisons between industrially used ontology languages as Modelica, 
UML, and the RosettaNet technical dictionary (RosettaNet [100]). 

• Automatic derivation of component models for programming languages that 
have a Natural Semantics meta-metamodel specified in RML. 

• Debugging of Modelica algorithmic code extended with meta-modeling and 
meta-programming facilities. 

• The design and usage of the Modelica Database (ModelicaDB) for storage 
and management of Modelica model repositories. The detailed UML meta-
model for the Modelica Database is presented and use cases of the Modelica 
Database are discussed. 

• The design of Meta-Modeling and Meta-Programming extensions proposed 
for the Modelica language. 
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Figure 1-8. Thesis Structure 
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1.5 Conclusions and Future Work 

This last section of the introductory chapter presents our conclusions and our future 
work directions.  

1.5.1 Conclusions 

We have designed the ModelicaXML meta-model for Modelica language, which 
facilitates the development of efficient tools for analysis, checking, querying, 
documentation, transformation and management of Modelica models. We addressed 
the automatic composition, refactoring and transformation of Modelica models by 
extending the invasive composition environment COMPOST with a ModelicaXML 
component model.  

We have integrated Modelica-based modeling and simulation tools with model-
driven product design tools within a flexible framework that supports scalable 
model selection and configuration. 

The Modelica language semantics has already been specified in the Relational 
Meta-Language (RML), which is an executable meta-programming system based 
on the Natural Semantics formalism. Using such a meta-programming approach to 
manipulate ModelicaXML, it is possible to automatically synthesize a Modelica 
compiler. However, such a task is difficult without the support for debugging. To 
address this issue we have developed a debugging framework for RML, based on 
abstract syntax tree instrumentation in the RML compiler and support of efficient 
tools for complex data structures and proof-trees visualization. 

Our contributions have been implemented within OpenModelica, an open-
source Modelica framework. The evaluations performed using several case studies 
show the efficiency of our meta-modeling tools and methods. As an overview, in 
the quest of our research goal, we have touched modeling, meta-modeling, 
component models for invasive software composition, integration of model-driven 
product design tool with modeling and simulation tools, debugging of meta-
programs expressed in Natural Semantics (Relational Meta-Language). This thesis 
enters into the details of all these issues and presents several viable solutions.  

1.5.2 Future work directions 

With the research work presented in this thesis we have made important steps on 
the way to our research goal. However, our research work will continue along 
several directions we wish to point out in the following. 

We have already started work on extending the Modelica language with Meta-
modeling and Meta-programming features (Fritzson et al. 2005 [40]). Such features 
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will enable the development of a Modelica compiler written in Modelica and 
expand the scope of the Modelica language to become a meta-modeling and meta-
programming language. The automatic translation of the RML specification of the 
OpenModelica compiler to the extended Modelica has already been started and we 
hope that in the near future the Modelica community will contribute to the new 
compiler. 

The debugging framework presented in this thesis has already been adapted to 
handle Modelica algorithmic code with the new meta-modeling extensions (Pop and 
Fritzson 2005 [96]). Debugging of the Modelica equation sections is already 
covered (Bunus 2002 [23], 2004 [24]), and we plan to integrate it with our 
algorithmic debugging to have a complete debugging framework for Modelica.  

Building Natural Semantics and extended Modelica based tools for the Semantic 
Web with application to model-driven product design will certainly be another 
future direction of our research. As a starting point we wish to adapt RML to the 
Natural Semantics specifications of Description Logics (Borgida 1992 [18]).  
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ModelicaXML: A ModelicaXML  
Representation with Applications 

Adrian Pop, Peter Fritzson: ModelicaXML:A Modelica XML Representation with 
Applications, In Proceedings of the 3rd International Modelica Conference 
(Modelica2003), November 3-4, 2003, Linköping, Sweden 

2.1 Abstract 

This paper presents the Modelica XML representation with some applications. 
ModelicaXML provides an Extensible Markup Language (XML) alternative 
representation of Modelica source code. The language was designed as a standard 
format for storage, analysis and exchange of models. ModelicaXML represents the 
structure of the Modelica language as XML trees, similar to Abstract Syntax Trees 
(AST) generated by a compiler when parsing Modelica source code. The 
ModelicaXML (DTD/XML-Schema) grammar that validates ModelicaXML 
documents is introduced. We reflect on the software-engineering analyses one can 
perform over ModelicaXML documents using standard and general XML tools and 
techniques. Furthermore we investigate how we can use more powerful markup 
languages, like the Resource Description Framework (RDF) and the Web Ontology 
Language (OWL), to express some of the Modelica language semantics. 

2.2 Introduction 

The structure of a Modelica model can be derived from the source code 
representation, by using a Modelica compiler front-end (the lexical analyzer and the 
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parser).  
The compiler front-end takes the source code representation and transforms it to 

abstract syntax trees (AST), which are easier to handle by the rest of the compiler. 
As pointed out in (Badros 2000 [13]), a clear disadvantage of this procedure is the 
need of embedding a compiler front-end in every tool that needs access to the 
structure of the program. Writing such a front-end for an evolving and advanced 
language like Modelica is not trivial, even with the support of automated tools like 
Flex (GNU 2005 [46])/Bison (GNU 2005 [47]) or ANTLR (Parr 2005 [85]).  

To overcome these problems, a standard, easily used, structured representation 
is needed. ModelicaXML is such a representation that defines a structure similar to 
abstract syntax trees using the XML markup language.  

This representation provides more functionality than a typical C++ class library 
implementing an AST representation of Modelica: 

• Declarative query languages for XML can be used to query the XML 
representation. 

• The XML representation can be accessed via standard interfaces like 
Document Object Model (DOM) (W3C [112]) from practically any 
programming language.  

The usages of the ModelicaXML representation for Modelica models, combined 
with the power of general XML tools, will ease the implementation of tasks like: 

• Analysis of Modelica programs (model checkers and validators). 
• Pretty printing (un-parsing). 
• Translation between Modelica and other modeling languages (interchange). 
• Query and transformation of Modelica models. 

Although ModelicaXML captures the structured representation of Modelica source 
code, the semantics of the Modelica language cannot be expressed without 
implementing specific XML-based tools. To address this issue we have investigated 
the benefits of using other markup languages like the Resource Description 
Framework (RDF) and the Web Ontology Language (OWL).  These languages, 
developed in the Semantic Web Community (Berners-Lee et al. 2001 [16], 
SemanticWebCommunity [107], W3C [121]), are used to express semantics of data 
in order to be automatically processed by machines. We believe that using such 
technology for Modelica models would enable several applications in the future: 

• Models could be automatically translated between modeling tools. 
• Models could become autonomous (active documents) if they are packaged 

together with the operational semantics from the compiler, and therefore, 
they could be simulated in a normal browser. 

• Software information systems (SIS) could more easily be constructed for 
Modelica, facilitating model understanding and information finding. 
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• Model consistency could be checked using Description Logic (DL) (Baader 
et al. 2003 [12], DescriptionLogicsWebsite [27]). 

• Certain models could be translated to and from the Unified Modeling 
Language (UML) (OMG [81]). 

The paper is structured as follows: Related work is presented in Section 2.3. 
Modelica, XML and the ModelicaXML Document Type Definition (DTD) are 
discussed in Section 2.4. In Section 2.5 we present the software-engineering tasks 
one can perform on the ModelicaXML representation using XML tools and 
technologies. Section 2.6 investigates the use of RDF and OWL for representing 
semantics of Modelica models. Conclusions, future research directions and 
summary of the work are presented in Section 2.7. 

2.3 Related Work 

In the field of general programming languages, JavaML (Badros 2000 [13]) has 
been developed as structured representation of Java source code. JavaML 
emphasizes the power of such structured representation when leveraging XML 
tools. When it comes to domain specific modeling languages, there are several 
(Björn et al. 2002 [17], Freiseisen et al. 2002 [34], Larsson et al. 2002 [62]) 
approaches to specifying models in XML. These approaches deal with model 
transformation, exchange and management (regarding adaptation to already existing 
simulation tools) or with code generation from the intermediate XML 
representation to C++.  Our interest focuses more on providing flexible and general 
software-engineering tooling support for the Modelica programmer. For this 
purpose the ModelicaXML is covering the full Modelica language (Fritzson 2004 
[39], Modelica-Association 1996-2005 [75]), including algorithm sections and 
expression operators. Furthermore, we consider more powerful markup languages 
for defining some of the Modelica static semantics and we discuss future use of 
such Semantic Web technologies. 

2.4 Modelica XML Representation 

Modelica (Fritzson 2004 [39], Modelica-Association 1996-2005 [75]) is an object-
oriented language used for modeling of large and heterogeneous physical systems. 
For modeling with Modelica, commercial software products such as MathModelica 
(MathCore [69]) or Dymola (Dynasim 2005 [30]) have been developed. However, 
there are also open-source projects like the OpenModelica Project (Fritzson et al. 
2002 [37], PELAB 2002-2005 [87]). Our research is part of the OpenModelica 
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Project and aims at providing a more flexible framework with the use of XML 
technologies. 

In sub-section 3.1 we briefly introduce the concepts of XML and DTD and give 
an example of a Modelica model with its ModelicaXML representation. 

2.4.1 The eXtensible Markup Language (XML) 

The Extensible Markup Language (XML) (W3C [113]) is a standard recommended 
by the World Wide Web Consortium (W3C). XML is a simple and flexible text 
format derived from Standardized Generalized Markup Language (SGML) (W3C 
[114]). The XML language is widely used for information exchange over the 
Internet. The tools one can use for parsing, querying, transforming or validating 
XML documents have reached a mature state. Such tools exist both as open-source 
projects and commercial software products.   

A small example of an XML document is shown below: 
<?xml version="1.0"?> 
<!DOCTYPE persons SYSTEM "persons.dtd"> 
<persons> 

<person job="programmer"> 
  <name>John Doe</name> 
  <email> 
    grigore@none.ro
  </email> 
</person> 
 ... 
<person job="manager"> 
  <comment>Classified</comment> 
</person>    

</persons> 

An XML document is simply a text in which the information is marked up using 
tags. The tags are the names enclosed in angle brackets. For easy identification we 
show elements in bold face and attribute names in italics throughout the XML 
example. The information delimited by <persons> and </persons> tags is an 
XML element. As we can see, it can contain other elements called <person> that 
nests additional elements within itself.  

The attributes are specified after the tag as an unordered name/value list of 
name="value" items. In our example, the attribute job with the value 
"programmer". 

The first line states that this is an XML document. The second line express that 
an XML parser must validate the contents of the elements against the Document 
Type Definition (DTD) (W3C [113]) file, here named "persons.dtd". The DTD 
provides constraints for the contents much like grammars used for programming 

mailto:grigore@none.ro
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languages.  
There are two criteria to be met in order for an XML document to be valid. First, 

all the elements have to be properly nested and must have a start/end tag. Second, 
all the contents of all elements must obey their DTD grammar specifications. 

We will define a DTD for the above example: 
<!-- the person.dtd file  -->  
<!ENTITY % person-job-attribute  
           "job(programmer|manager) #REQUIRED"> 
<!ELEMENT persons (person*)> 
<!ELEMENT person  ((name+, email*) | comment+)> 
<!ATTLIST person 
      project CDATA #IMPLIED  
      &person-job-attribute;> 
<!ELEMENT name (#PCDATA)> 
<!ELEMENT email (#PCDATA)> 
<!ELEMENT comment (#PCDATA)> 

The above DTD defines one entity, four elements, and one attribute list containing 
two attributes. The entities are underlined, bold is used for elements, and attributes 
are specified in italics. 

The entity (ENTITY) declaration defines person-job-attribute as a text 
value that can be used anywhere inside the DTD and the XML document. The XML 
parser will replace the entity with its defined text where it is used. The principal 
element (ELEMENT) declared in DTD is persons and has zero or more elements 
person nested inside. The special characters inside the element definitions are "*" 
meaning: zero or more, "|" meaning: selection – either left side or right side, "+" 
meaning: one or more. 

The attribute (ATTLIST) list defines two attributes for the person element: 
project and job. 

The project attribute can contain character data (CDATA) and is optional 
(#IMPLIED). The job attribute can only have one of the two values, either 
"programmer" or "manager".  

There is another XML document structure standard, called XML-Schema (W3C 
[115]), which is similar to DTD but is encoded in XML. This standard reconstructs 
all the capabilities of the DTD and extends them with: namespaces, context 
sensitivity, the possibility to define several root elements in the same schema, 
integrity constraints, regular expressions, sub-typing, etc. Tools for transforming 
XML-Schema representations from/to a DTD representation are available. We use 
the DTD variant in this example only because it is clearer than the too verbose 
XML-Schema. 

One can consult the World Wide Web Consortium website (W3C [113], [115]) 
for more information regarding XML, DTD and XML-Schema. 
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2.4.2 ModelicaXML Example 

To introduce the Modelica XML representation, we give a Modelica example and 
show its corresponding representation as ModelicaXML. 

Elements are in bold, attributes are in italic and entities are using underline 
throughout this section, except from Modelica keywords.  

class SecondOrderSystem 
  parameter Real a=1; 
  Real x(start=0); Real xdot(start=0); 
 equation 
  xdot=der(x); der(xdot)+a*der(x)+x=1; 
end SecondOrderSystem; 

For ease of presentation, a ModelicaXML document is split into several parts, each 
representing a more nested level. The ellipses from one level are detailed in the next 
level: 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE program SYSTEM  
          "ModelicaXML.dtd"> 
<program within="..."> 
 <definition ident="SecondOrderSystem"  
             restriction="class"> 
   ... 
 </definition> 
</program> 

The root element is a Modelica program. The child elements of program are a 
sequence of definition elements and an optional within attribute (see Figure 
2-1, sub-section 2.4.3 for schemata). 

<definition ident="SecondOrderSystem"  
            restriction="class"> 
  <component>...</component> 
  ... 
  <equation>...</equation> 
  ... 
</definition> 

The definition element can have import, extends, elements, equation, or 
algorithm as sub-elements. In our case we only have component (i.e., variable) 
and equation sub-elements inside definition (see Figure 2-2, sub-section 2.4.3 
for schemata).  

<component ident="a" type="Real" 
           variability="parameter" 
           visibility="public"> 
  <modification_equals> 
    <real_literal value="1"/> 
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  </modification_equals> 
</component> 
... 
<component ident="x"  
           type="Real"  
           visibility="public"> 
  <modification_arguments> 
   <element_modification> 
    <component_reference ident="start"/> 
       <modification_equals> 
         <real_literal value="0"/> 
       </modification_equals> 
   </element_modification> 
  </modification_arguments> 
 </component> 

The first component (i.e., variable, see Figure 2-3, sub-section 2.4.3 for schemata) 
has the variability attribute set to "parameter" as in "parameter Real 
a=1;". The second component declaration (i.e., variable) in the example 
represents the "Real x(start=0);" line from our Modelica class.  All 
components have the visibility attribute set to "public". The last component 
is similar to the second component and is not presented.   

<equation> 
 <equ_equal> 
  <component_reference ident="xdot"/> 
  <call> 
     <component_reference ident="der"/> 
      <function_arguments> 
        <component_reference ident="x"/> 
      </function_arguments> 
  </call> 
 </equ_equal> 
</equation> 

Equations are enclosed in the equation element (see Figure 2-4, sub-section 2.4.3 
for schemata) 

The equation section of the SecondOrderSystem model describes two 
equations. The first equation is quite straightforward. Equality is represented by an 
equ_equal element with two elements inside. The right-hand side is a function call 
(using the call element) to a derivative and the left hand side is a component 
reference represented with the element with the same name.  The second equation 
below is more complex. It has function calls represented using the call element, 
binary operations (see Figure 2-6, sub-section 2.4.3 for schemata) such as add, mul 
for addition (+) and multiplication (*). The component_reference elements 
denote variable references. For the function calls, the arguments are specified using 
the element function_arguments that can contain expressions, named arguments 
or for indices.  
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<equation> 
 <eq_equal> 
  <add> 
   <call> 
    <component_reference ident="der"/> 
    <function_arguments> 
     <component_reference ident="xdot" /> 
    </function_arguments> 
   </call> 
   <add> 
    <component_reference ident="x"/> 
    <mul> 
     <component_reference ident="a"/> 
     <call> 
      <component_reference ident="der"/> 
      <function_arguments> 
         <component_reference ident="x" /> 
      </function_arguments> 
     </call> 
    </mul> 
   </add> 
  </add> 
  <integer_literal value="1"/> 
 </equ_equal> 
</equation> 

ModelicaXML Schemata are explained in the next sub-section.  

2.4.3 ModelicaXML Schema (DTD/XML-Schema) 

When designing the ModelicaXML representation we started from the Modelica 
grammar. We simplified the common cases to compact the XML representation 
without loss of information or structure. The Modelica DTD/XML-Schema has a 
rather close correspondence to the Modelica grammar with the following 
exceptions: attributes are used to make the XML representation more concise and 
the DTD/XML-Schema jumps over some non-terminals from the Modelica 
grammar to make the XML representation more compact. 

The OpenModelica Project parser for Modelica source code, written in ANTLR 
(Parr 2005 [85]), was changed to output the ModelicaXML representation. There 
are many components in the OpenModelica Project that use the ANTLR Modelica 
parser.  Using our ModelicaXML language such tools can be decoupled from this 
parser. One clear advantage of this approach is that only one parser is maintained 
and future Modelica language extensions or modifications could be easily 
integrated. 

For presentation purposes we translated our first DTD implementation to XML-
Schema using XML Spy (Altova 2005 [2]). The purpose of this translation was to 
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generate pictures from the XML-Schema. Also, another reason was to have 
schemata files in both formats for future use. Perhaps, the DTD variant will be 
discontinued in the future because the XML-Schema is more widely used now. 

All elements from our schema have the optional attributes from the location 
entity (which are sline, scolumn, eline and ecolumn) and the info 
attribute, which can be used to store additional information. These location 
attributes are used to generate a mapping between key elements in our schema and 
the Modelica source code representation. In the following we present some of the 
important elements from the DTD/XML-Schema. 

The content of our ModelicaXML root element, namely program is depicted in 
Figure 2-1.  Inside the root element we can have none or several definition 
elements. The optional attribute within can be used inside a program element. 
The rounded corner boxes on the line connecting two elements can be sequence 
(like in Figure1) or choice (like in the bottom part of Figure 2). 

 
Figure 2-1. The program (root) element of the ModelicaXML Schema. 

The required attributes for definition are ident and restriction (which can 
have one of the "class", "model", "record", "block", "connector", 
"type", "package", or "function" values). Optional attributes are final, 
partial, encapsulated, replaceable, innerouter, visibility (one of 
"public", "protected" values) and string_comment. 

The definition element is detailed in Figure 2-2.  Presented in the picture at 
the bottom are the derived element (that handles constructs of the type "class X 
= Y;") and the enumeration element used to declare enumeration types. The 
upper part of Figure 2-2 shows the other allowed elements that can appear inside 
the definition element. All the elements in the upper part have the visibility 
attribute, taking one of the "public" or "protected" values. The visibility 
attribute values are stating the "public" or "protected" part from the Modelica 
source code. We can see that the definition element is recursive, which allows 
the declaration of classes inside classes. 

The definition element can contain import, extends, external, 
equation, algorithm, annotation and component elements. The latter can 
use constrain element for handling statements like "type X=Y extends Z;". 
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Figure 2-2. The definition element from the ModelicaXML Schema. 

Component elements, with schemata presented in Figure 2-3, have attributes 
representing the Modelica type prefix (flow, variability and direction), and 
type name (type).  

The name of the component is stored in the ident attribute. These attributes are 
important because one can query the ModelicaXML representation for a specific 
component having desired type and ident. How XML query languages can be used 
is explained in section 2.5.   

The type_array_subscripts element and the array_subscripts element 
are expressing the fact that Modelica array subscripts can be declared either at the 
type level or at the component level.  
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Figure 2-3. The component element from the ModelicaXML Schema. 

One can use the element modification_arguments to further modify the 
component. Comments for a component can be specified with the comment 
element. The elements modification_equals and modification_assign are 
used to modify the component; as sub-elements they can have Modelica 
expressions. 

 
Figure 2-4. The equation element from the ModelicaXML Schema. 

 



38   Chapter 2   ModelicaXML: A ModelicaXML Representation with Applications 

 

An equation element, presented in Figure 2-4, can have initial as an attribute 
to state if it represents a Modelica initial equation. 

The content and the structure of the equation element are closely following the 
definition from the Modelica Language Specification (Modelica-Association 1996-
2005 [75]). The equ_connect element takes component references as arguments 
here, instead of connect references, as in the version 2.0 of the Modelica Language 
Specification.  

The collapsed parts from the equ_if and equ_when elements are the Modelica 
expressions, detailed in Figure 2-6. The Modelica expressions are present in the 
collapsed parts of the algorithm elements alg_if and alg_when and alg_while. 

 
Figure 2-5. The algorithm element from the ModelicaXML Schema. 

The algorithm element is presented in Figure 2-5.  We point out that the elements 
alg_break and alg_return are recently added statements of the algorithm 
section in the latest version (2.1) Modelica Language Specification. 

The elements that can appear in ModelicaXML expressions can be found in 
Figure 2-6. These are binary operations, literals, component references, array 
constructions, array operators and logical operations. 

The constructs from the ModelicaXML schemata not covered here, along with 
the full "modelicaXML.xsd" (the XML-Schema version) and "modelica-
XML.dtd" (the DTD version), can be found at the OpenModelica Project website. 
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Figure 2-6. The expressions from ModelicaXML schema. 

2.5 ModelicaXML and XML tools 

This section introduces various XML tools and explains their usage in conjunction 
with ModelicaXML. In the following, in different sub-sections we cover: the 
stylesheet language for transformation (XSLT) (W3C [116]), the query language for 
XML documents (XQuery) (W3C [117]) and the Document Object Model (DOM) 
(W3C [112]). 

2.5.1 The Stylesheet Language for Transformation (XSLT) 

XSL is a stylesheet language for XML. XSLT is the part of XSL that deals with 
transformation of XML documents.  
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Using XSLT one can implement pretty printers (un-parsers) that can transform 
ModelicaXML back into Modelica source code. Alternative transformations could 
transform ModelicaXML into other general, modeling or markup languages 
(HTML, XHTML, etc). Transformers that translate other modeling languages 
(provided that they have an XML representation) into ModelicaXML can also be 
implemented with XSLT. Using XSLT and ModelicaXML, implementation of 
HTML documentation generators, similar with what the commercial software 
Dymola provides, becomes trivial. We cannot provide the HTML documentation 
generator here because of space reasons, but it will be included in the 
OpenModelica Project.  

We illustrate the usage of XSLT with an example that transforms Modelica 
code. For this example we assume that Modelica code was already translated to 
ModelicaXML. After the transformation, one can output the Modelica code from 
the changed ModelicaXML representation using our "modelicaxml-

2modelica.xslt" stylesheet from the OpenModelica Project.  
Example of changing a component name, both in the declaration of the 

component and in the component references: 
<xsl:stylesheet version="1.0 ..."> 
<!-- example of component rename --> 
<xsl:param name="comp_old_name"/>  
<xsl:param name="comp_new_name"/> 
<!-- we echo everything that is not a component or a 
component reference --> 
<xsl:template match="*|@*|text()"> 
   <xsl:copy> 
       <xsl:apply-templates select="*|@*|text()"/> 
   </xsl:copy> 
</xsl:template> 
<!-- we match the old component and we output the new name 
--> 
<xsl:template match="component  
        [@ident=$comp_old_name]"> 
   <component ident="{$comp_new_name}"> 
      <xsl:apply-templates/> 
   </component> 
<!-- we match the old component reference and we output the 
new component name --> 
</xsl:template> 
<xsl:template match="component_reference 
        [@ident=$comp_old_name]"> 
   <component_reference 
           ident="{$comp_new_name}"> 
        <xsl:apply-templates/> 
   </component_reference> 
</xsl:template> 
</xsl:stylesheet> 
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The XSLT engine is using templates that match on the XML tree structure. The 
matching is performed by the XPath expression appearing as the value of the match 
attributes. By using xsl:apply-templates element we instruct the XSLT engine 
to apply the rest of the templates on the sub-tree that we already matched. When 
this stylesheet is applied on our SecondOrderSystem example from section 2.4.2 
with the parameters "xdot" and "xdot_new" it will change the component name 
and all the component references of xdot to xdot_new.  

XSLT can distinguish between components with the same name defined in 
different classes by the use of XPath expressions. To rename such occurrences we 
first match the class in which is defined and then the actual component. This applies 
for both declarations and component references.  

A search-and-replace tool could perform this transformation, but such a tool has 
no knowledge about the context and it will replace even the occurrences appearing 
inside comments. 

2.5.2 The Query Language for XML (XQuery) 

XQuery is a query language similar with what SQL is for relational databases. 
Using XQuery, one can easily retrieve information from XML documents. The 
XQuery and XSLT are overlapping in some features, and our example could be 
implemented in XSLT also.  

We give a short example of a query over our “SecondOrderSystem.xml” 
example from section 2.4.2. In words, “find all parameter components with type 
Real and show the initialization value”: 

<table border="1"> 
{ 
 for $b in  
 (document("SecondOrderSystem.xml")/*/ 
  definition/component) 
 where $b/@type = "Real" and  
       $b/@variability="parameter" 
 return <tr><td>  
     { $b/@* } 
     { $b/modification_equals } 
        </td></tr> 
} 
</table> 

We executed this query in the Qexo (GNU 2005 [44]) implementation of XQuery 
and the result in HTML is as follows: 

<table border="1"> 
 <tr><td> 
   ident="a" type="Real" 
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   variability="parameter" 
   visibility="public" 
   <modification_equals> 
     <real_literal value="1" /> 
   </modification_equals> 
  </td></tr> 
</table> 

As expected, the attributes and the set value of the element corresponding to 
"parameter Real a=1;" from our Modelica example was returned as the 
answer.  

Using XQuery, any types of queries can be asked about the Modelica model. 
This opens-up the possibility of easily debugging very large models. User interfaces 
can be implemented to hide the query building from the user. Static type checking 
can also be implemented as a series of queries on the model, but is not trivial, 
because the class hierarchy is not explicitly defined in XML. 

XQuery uses XPath as sub-language to select the part of tree that matches the 
XPath expression. In our XML representation one can match an entire component 
having a specified ident attribute. The XPath language can be used to handle 
scooping. 

2.5.3 Document Object Model (DOM) 

The Document Object Model (DOM) (W3C [112]) is a standard interface that 
allows programs to access/update the content, structure and style of XML 
documents. DOM is similar with a general tree-management library.  

There are open-source implementations for DOM APIs in Java, C, C++, Perl, 
Python and other programming languages.   

Any Modelica tool written in various programming languages can use the DOM 
API to directly access/modify the ModelicaXML representation.  

2.6 Towards an Ontology for the Modelica Language 

This section investigates the possibility of using the markup languages Resource 
Description Framework (RDF) (W3C [118]), RDF Vocabulary Description 
Language (RDFS) (W3C [119]) and OWL (W3C [120], [122]) developed in the 
Semantic Web (Berners-Lee et al. 2001 [16], SemanticWebCommunity [107], W3C 
[121]) for development of a Modelica ontology.  

An ontology is a description (like a formal specification of a program) of both 
the objects in a certain domain and the relationships between them. In the context of 
the Semantic Web there is a layered approach for specifying increasingly richer 
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semantics for the upper layers as in Figure 2-7. 

 
Figure 2-7. The Semantic Web Layers. 

At the bottom, in top of Unicode and Uniform Resource Identifiers (URI) is XML, 
namespaces (NS) and XML-Schema. XML specifies a term list with no relations. 
On top of XML comes RDF to define a vocabulary and some relations. RDFS (RDF 
schema) defines a vocabulary for constructing RDF vocabularies.  

The Ontology layer uses languages like OWL to define description logic 
relationships. 

With ModelicaXML we are now only at the XML level! Using RDF we can 
express graphs and we can model inheritance relationships and place queries over 
this relation. This can be achieved easily with a smart parser. Using OWL we can 
place restrictions over relations and concepts and we can reason with inference 
using Description Logics.  

2.6.1 The Semantic Web Languages  

This sub-section briefly introduces the Semantic Web Languages: Resource 
Description Framework (RDF/RDFS) and Web Ontology Language (OWL). 

We illustrate the use of Semantic Web Languages by taking a Modelica model 
and its representation in OWL.  

class Body  "Generic body" 
  Real mass; 
  String name; 
end Body; 
class CelestialBody "Celestial body" 
  extends Body; 
  constant Real g = 6.672e-11; 
  parameter Real radius; 
end CelestialBody; 
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CelestialBody moon(name = "moon",  
     mass = 7.382e22, radius = 1.738e6); 
 
Body body_instance(name = "some body",  
     mass = 7.382e22); 

Our Modelica model has two classes (concepts) Body and CelestialBody the 
latter being a subclass of the former (by using "extends" statement). 

The encoding in OWL is as follows: 
<?xml version="1.0" ?> 
<rdf:RDF 
  
  <!-- namespaces declaration --> 
  xmlns=".../inheritance.owl#" 
  xmlns:modelica=".../inheritance.owl#" 
  xml:base=".../inheritance.owl"> 
 <owl:Ontology rdf:about= 
      ".../inheritance.owl" />  
  
 <!-- define Body --> 
 <owl:Class rdf:ID="Body"> 
   <rdfs:label>Generic Body</rdfs:label> 

    </owl:Class> 
    <!-- define mass --> 

  <owl:DatatypeProperty rdf:ID="mass"> 
 <rdfs:domain rdf:resource="#Body"/> 
 <rdfs:range  
      rdf:resource="XMLSchema#float"/> 
  </owl:DatatypeProperty> 
  <!-- define name --> 
  <owl:DatatypeProperty rdf:ID="name"> 
 <rdfs:domain rdf:resource="#Body"/> 
 <rdfs:range  
      rdf:resource="XMLSchema#string"/> 
  </owl:DatatypeProperty> 
   
  <!-- define CelestialBody --> 
  <owl:Class rdf:ID="CelestialBody"> 
 <rdfs:label> 
       Celestial Body 
    </rdfs:label>  
 <rdfs:subClassOf  
       rdf:resource="#Body" /> 
    <!-- cardinality restriction on the  
         g constant: one and only one in  
         CelestialBody --> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
       <owl:onProperty  
          rdf:resource="#g"/> 
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       <owl:cardinality rdf:datatype 
        ="XMLSchema#nonNegativeInteger"> 
         1 
       </owl:cardinality> 
      </owl:Restriction> 
    </rdfs:subClassOf>   
  </owl:Class> 
  <!-- define g --> 
  <owl:DatatypeProperty rdf:ID="g"> 
    <rdfs:domain  
      rdf:resource="#CelestialBody"/> 
    <rdfs:range ´ 
      rdf:resource=" XMLSchema#float"/> 
  </owl:DatatypeProperty> 
  <!-- define radius --> 
  <owl:DatatypeProperty 
    rdf:ID="radius"> 
 <rdfs:domain  
       rdf:resource="#CelestialBody"/> 
 <rdfs:range  
       rdf:resource=" XMLSchema#float"/> 
  </owl:DatatypeProperty> 

      <!-- 
 instance declaration of CelestialBody 
--> 
<CelestialBody rdf:ID="moon"> 
 <name rdf:datatype="XMLSchema#string"> 
    moon 
 </name> 
 <mass rdf:datatype="XMLSchema#float"> 
    7.382e22 
 </mass> 
 <radius rdf:datatype="XMLSchema#float"> 
    1.738e6 
 </radius> 
 <g rdf:datatype="XMLSchema#float"> 
    6.672e-11 
 </g> 
 <g rdf:datatype="XMLSchema#float"> 
    intentional error  
    (string is not float) 
 </g> 
</CelestialBody> 

 
<!--   
 instance declaration of Body 
--> 
<Body rdf:ID="body_instance"> 
 <name rdf:datatype="XMLSchema#string"> 
   some body 
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 </name> 
 <mass rdf:datatype="XMLSchema#float"> 
   7.382e22 
 </mass>  
 <--  
  intentional error  
  (Body does not have a radius)  
 --> 
 <radius rdf:datatype="XMLSchema#float"> 
   1.738e6 
 </radius> 
</Body> 

  </rdf:RDF> 

In the OWL representation of the Modelica model we first define Body as being an 
owl:Class with "Generic body" as label. The attributes of Body, namely: mass 
and name are represented as owl:DatatypeProperty. The datatype is a binary 
relation having a range (type) and a domain (in our case the Body concept). As 
range we use the datatypes from XML-Schema, in our case, for mass we use 
"float" and for name we use "string". 

The class CelestialBody is defined as owl:subclassOf the Body class 
according to the "extends" statement from our Modelica model. As an OWL 
feature in the definition of CelestialBody we show a local cardinality restriction 
placed on the g relation. This means that in the instances of CelestialBody, the g 
component has to appear exactly once. The representation of g or radius 
components is similar to the representation of mass or name. 

The moon instance of the CelestialBody class sets the values of the 
components. We intentionally added the g component twice and with a wrong type. 
We also declare an instance of the Body class that has a radius component (which 
is an error). 

To verify the model, our file: "inheritance.owl" was fed into an OWL 
Validator (Rager 2003 [99]).  

The validator, as expected, reports the following errors: 

• For the g component that has a string as value: “Range Type Mismatch. Use 
of this property implies that object is of type XMLSchema#float”. 

• For the radius component in the body_instance declaration: ”Domain Type 
Mismatch. Use of this property implies that subject is of type 
#CelestialBody. Subject is declared type [Body]” 

• For the moon instance: “Cardinality Violation.  Resource #moon violates 
the cardinality restriction on class #CelestialBody for property #g. Resource 
has 2 statements with this property. Maximum cardinality is 1”.       

The OWL language has more constructs than our example has covered. One can 
consult the OWL website (W3C [120], [122]) for more details. 
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2.6.2 The roadmap to a Modelica representation using 
Semantic Web Languages 

In the example above we have presented a small ontology that models our Modelica 
model, consisting of both classes and instances. With a clever parser, such 
ontologies could be generated from Modelica libraries and then used for composing 
Modelica models. 

The roadmap to a Modelica representation in OWL has the following steps: 

• Define an RDFS vocabulary for Modelica source code constructs. Such a 
vocabulary should include concepts like class, model, record, block, etc. 

• Transform the Modelica libraries in their OWL representation using the 
above vocabulary.  

• An OWL validator can then check the correctness of both the concepts and 
the instances of these concepts. 

At the end of this roadmap we would have Modelica represented in OWL. The 
future benefits of such a representation were underlined in the Introduction section. 
Here, we briefly explain how they could be achieved.  

2.6.2.1 The Autonomous Models 

In the OpenModelica Project, the Modelica compiler is built from the formal 
specification (expressed in Natural Semantics (Kahn 1988 [57])) of the Modelica 
Language. This specification can be compiled to executable form using the 
Relational Meta-Language (RML) system (PELAB 1994-2005 [86], Pettersson 
1995 [88], 1999 [90]). The rules from Natural Semantics could be translated to 
OWL or RuleML (RuleML [101]) and shipped together with the model. Using the 
rules from the model a normal browser could compile and simulate the Modelica 
model. We assume that the platform should have a C compiler.  

2.6.2.2 The Software Information System (SIS) 

Having the Modelica ontologies that model the source code one could use the 
approach detailed in (Welty 1995 [125]) and build the domain model of the 
problem. Merging them together would result in a Software Information System.  

Using such a Software Information System, users can ask queries about the 
Modelica source code concepts (components, classes, etc) that are classified 
according to the domain model concepts of the problem.  

2.6.2.3 Model consistency could be checked using Description Logic 

Modelica models represented in OWL (Description Logics) can be fed into a 
reasoning tool like FaCT (Horrocks [51]) or Racer (Haarslev et al. 2004 [49]) for 
consistency checking. 

 



48   Chapter 2   ModelicaXML: A ModelicaXML Representation with Applications 

 

Moreover, such support would be of great help to the Modelica library designers 
that could formally check relevant properties of the class hierarchies. 

The checks one can do using Description Logics on the Modelica OWL 
representation are the following: 

• Ensure that the classes and the class hierarchy are consistent (ensure that a 
class can have instances and is not over-constrained). 

• Find the explicit relations between classes, regarding for example sub-
typing or equivalence. 

2.6.2.4 Translation of Models to/from Unified Modeling Language 
(UML) 

The UML language has its XML representation called XMI (OMG [82]). 
Translation from Modelica models conforming to a Modelica ontology to XMI 
could be possible using XSLT.  

2.7 Conclusion and Future work 

We have presented the ModelicaXML language and some applications of XML 
technologies. We have shown that there are some missing capabilities with such 
XML representation and we addressed some of them. We have presented a roadmap 
to an alternative representation of Modelica in OWL and the use of representation 
together with the Semantic Web technology.  

As future work, we consider completing the ModelicaXML with the definition 
of all the intermediate steps representations from Modelica to flat Modelica and 
further to the code generation. This complete representation would allow various 
open-source tools to act at these formally defined levels, independent of each other. 
More information could be added in the future to such XML representation, like: 
model configuration, simulation parameters, etc. 

Further insights in the direction of Semantic Web Languages and their use to 
express Modelica semantics are necessary. Compilation in both directions between 
OWL and the Relational Meta-Language (RML) is worth considering.   
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Composition of XML dialects: A 
ModelicaXML case study 
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3.1 Abstract  

This paper investigates how software composition and transformation can be ap-
plied to domain specific languages used today in modeling and simulation of 
physical systems. More specifically, we address the composition and transformation 
of the Modelica language. The composition targets the ModelicaXML dialect which 
is the XML representation of the Modelica language. By extending the COMPOST 
concrete composition layer with a component model for Modelica, we provide com-
position and transformation of Modelica. The design of our COMPOST extension is 
presented together with examples of composition programs for Modelica.  

 

Keywords: Composition of XML dialects, XML, Domain Specific Languages, 
Modelica, ModelicaXML, COMPOST  
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3.2 Introduction  

Modelica (Elmqvist et al. 1999 [33], Fritzson 2004 [39], Modelica-Association 
1996-2005 [75], Tiller 2001 [109]) is an object-oriented modeling language used 
for modeling of multi-domain (i.e. mechanical, electrical, electronic, hydraulic, etc) 
complex physical systems. Modeling with Modelica has a component-oriented 
approach where components can be connected together to form a complex system. 
To have access to the structure of a model, ModelicaXML (Pop and Fritzson 2003 
[92]) has been developed as an XML representation (serialization) of Modelica 
language.  

Commercial software products as MathModelica (MathCore [69]) and Dymola 
(Dynasim 2005 [30]) as well as open-source as OpenModelica System (Fritzson et 
al. 2002 [37], PELAB 2002-2005 [87]) can be used for modeling with the Modelica 
language. While all these tools have high capabilities for compilation and 
simulation of Modelica models, they:  

• Provide little support for configuration and generation of components and 
models from external data sources (databases, XML, etc). 

• Provide little support for security, i.e. protection of “intellectual property” 
through obfuscation of components and models. 

• Do not provide automatic composition of models using a composition lan-
guage. This would be very useful for automatic generation of models from 
various CAD products.  

• Provide little support for library designers (no automatic renaming of com-
ponents in models, no support for comparison of two version of the same 
component at the structure level, etc)  

We address these issues by extending the COMPOST framework with a Modelica 
component model that acts on the ModelicaXML representation.  

The use of XML technology for software engineering purposes is highly present 
in the literature today. The SmartTools system (Attali et al. 2001 [10], Attali et al. 
2001 [11]) uses XML technologies to automatically generate programming 
environments specially tailored to a specific XML dialect that represents the 
abstract syntax of some desired language. The use of Abstract Syntax Trees 
represented as XML for aspect-oriented programming and component weaving is 
presented in (Schonger et al. 2002 [106]). The OpenModelica System (Fritzson et 
al. 2002 [37]) project investigates some transformations on Modelica code like 
meta-programming (Aronsson et al. 2003 [6]). The bases of uniform composition 
for XML, XHTML dialect and the Java language were developed in the European 
project Easycomp (EasyComp 2004 [31]). However, the possibilities of this 
framework can be further extended and tested by supporting composition for an 
advanced domain specific language like Modelica.  
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The paper is structured as follows. The next section introduces Modelica, 
ModelicaXML, and COMPOST. Section 3.4 presents our COMPOST extension 
and its usage through various examples of composition and transformation 
programs for Modelica. Conclusion and future work can be found in Section 3.5. 
Section 3.6, the appendix, gives the ModelicaXML representation for some of the 
examples. 

3.3 Background  

In this section we briefly introduce the Modelica language and its XML repre-
sentation: ModelicaXML, followed by a short description of the COMPOST 
framework.  

3.3.1 Modelica and ModelicaXML  

Modelica has a structure similar to the Java language, but with equation and 
algorithm sections for specifying behavior instead of methods. Also, in contrast to 
Java, where one would use assignment statements, Modelica is primary an 
equation-based language. Equations are more powerful than assignments because 
they do not specify a certain control and data flow direction. Since the flow 
direction is not explicitly specified, the Modelica classes are more reusable than the 
classes from traditional programming languages, which use assignment statements 
for which the data flow direction is always from the right to the left-hand side. We 
introduce Modelica by an example:  

class HelloWorld "HelloWorld comment" 
  Real x(start = 1); 
  parameter Real a = 1; 
 equation  
   der(x) = -a*x;  
end HelloWorld; 

In the example we have defined a class called HelloWorld,which has two 
components and one equation. The first component declaration (second line) creates 
a component x, with type Real. All Modelica variables have a start attribute, 
which can be initialized using a modification equation like (start = 1).  

The second declaration declares a so called parameter named a, of type Real 
and set equal to an integer with value 1. The parameters are constant during 
simulation; they can be changed only during the set-up phase, before the actual 
simulation.  

The software composition is not performed directly on the Modelica code, but 
instead, on an alternative representation of it: ModelicaXML (Pop and Fritzson 
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2003 [92]). As an example, the HelloWorld class translated to ModelicaXML 
would have the following representation:  

<?xml version="1.0" encoding="UTF-8" standalone="no" ?> 
<!DOCTYPE modelica SYSTEM "modelica.dtd"> 
<program> 
 
 <definition ident="HelloWorld" restriction="class" 
             string_comment="HelloWorld comment"> 
   <component visibility="public" type="Real"ident="x"> 
    <modification_arguments> 
     <element_modification>  
      <component_reference ident="start"/> 
       <modification_equals>  
         <integer_literal value="1"/> 
       </modification_equals> 
     </element_modification> 
    </modification_arguments> 
   </component> 
    
   <component visibility="public" variability="parameter" 
              type="Real" ident="a"> 
    <modification_equals> 
     <integer_literal value="1"/> 
    </modification_equals> 
   </component> 
    
   <equation> 
    <equ_equal> 
     <call> 
      <component_reference ident="der"/> 
      <function_arguments>  
        <component_reference ident="x"/>  
      </function_arguments> 
     </call> 
     <sub operation="unary"> 
      <mul>  
       <component_reference ident="a"/>  
       <component_reference ident="x"/>  
      </mul> 
     </sub> 
    </equ_equal> 
   </equation> 
 </definition> 
 
</program> 

The translation of the Modelica into ModelicaXML is straightforward. The abstract 
syntax tree (AST) of the Modelica code is serialized as XML using the 
ModelicaXML format. ModelicaXML is validated against the modelica.dtd 
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Document Type Definition (DTD) (W3C [113]). Using the XML representation for 
Modelica, generation of documentation, translation to/from other modeling 
languages can be simplified.  

3.3.2 Compost 

COMPOST is a composition framework for components such as code or document 
fragments, with special regard to construction time. Its interface layer called 
UNICOMP for universal composition provides a generic model for fragment 
components in different languages and different concrete component models. 1

Components are composed by COMPOST as follows. First, the components, 
i.e., templates containing declared and implicit hooks, are read from file. Then, a 
composition program in Java applies composition operations to the templates, and 
transforms them towards their final form. (The transformations rely on standard 
program transformation techniques.) After all hooks have been filled, the 
components can be pretty-printed to textual form in a file again. They should no 
longer contain declared hooks so that they can be compiled to binary form.  

3.3.2.1 The notions of components and composition  

Fragment-based composition with COMPOST (Aßmann and Ludwig 2005 [9]) is 
based on the observation that the features of a component can be classified in 
several dimensions. These dimensions are the language of the component, the 
model of the component, and abstract component features. The dimensions depend 
on each other and can be ordered into a layer structure of 5 layers (Figure 3-1):  

1. Transformation Engine Layer. The most basic layer encapsulates knowl-
edge about the contents of the components, i.e., about the concrete language 
of the component. Fragment-based component composition needs a 
transformation engine that transforms the representation of components 
(Aßmann 2003 [8]). For such transformation engines, COMPOST reuses 
external tools, such as the Java refactoring engine RECODER (Ludwig 
[66]). This transformation engine layer contains adapters between 
COMPOST and the external tools.  

2. Concrete Composition Layer. On top of the pure fragment layer, this layer 
adds information for a concrete component model, e.g., Java fragment 
components, or ModelicaXML fragment components. Concrete 
composition constraints are incorporated that describe valid compositions, 
which can refer to the contents of the components. For instance, a constraint 

                                                      
1 COMPOST and its interface layer UNICOMP can also model runtime and other types 
of component models, which are not the subject of this paper. 
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could be defined that disallows to encapsulating a Java method component 
into another Java method component.  

3. Time Specific Composition Layer. On this layer the time of the com-
position is taken into account: static or runtime composition.  

4. Abstract Composition Layer. In this layer, knowledge is modeled that 
does not depend on the concrete component language, or on the concrete 
component model. General constraints are modeled, for instance, that each 
component has a list of subcomponents, the component hierarchy is a tree, 
or composition expressions employ the same type of component, 
independently of the concrete type.  

5. UNICOMP Interface Layer. The interfaces of the abstract composition 
layer have been collected into a separate interface layer, UNICOMP. This 
set of interfaces provides a generic fragment component model, from which 
different concrete component models can be instantiated.  

 
Figure 3-1. The layers of COMPOST. 

For COMPOST applications, UNICOMP hides underlying concrete information 
about the component model to a large extent. An application uses COMPOST in a 
similar way as a component framework with an Abstract Factory (Gamma et al. 
1994 [41]). When a component is created, its concrete type is given to the 
COMPOST factory. However, after creation, the application only uses the 
UNICOMP generic interfaces. Hence, generic applications can be developed that 
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work for different component models, but use generic composition operations. 
Already on the Abstract Composition Level, the following uniform operations for 
fragment components are available:  

• Other uniform basic operations. COMPOST composition operators can 
address hooks and adapt them during composition for a context. As a basic 
set of abstract composition operators, copy, extend, and rename are 
available.  

• Uniform parameterizations. Template processing works for completely 
different types of component models. After a semantics for composition 
points and bind operations has been defined, generic parameterization 
programs can be executed for template processing.  

• Uniform extensions. The extension operator works on all types of com-
ponents.  

• Uniform inheritance. On the abstract composition layer COMPOST defined 
several inheritance operators that can be employed to share components, be 
it Java, or XML-based components. Inheritance is explained as a copy-and-
extend operation, and both copy and extend operations are available in the 
most abstract layer.  

• Uniform connection. COMPOST allows for uniform connection operations, 
as well for topologic as well as concrete connections (Aßmann 2003 [8]).  

• Uniform aspect weaving. Based on these basic uniform operations, uniform 
aspect weaving operations (Karlsson 2003 [58]), can be defined.  

The great advantage of the layer structure is that new component models, e.g., for 
XML languages, can be added easily as we show in this paper. In fact, COMPOST 
is built for extension: adding a new component model is easy, it consists of adding 
appropriate classes in the concrete composition levels, subclassing from the abstract 
composition level as we show in Section 3.4.   

3.3.2.2 Composition Constraints  

Each COMPOST layer contains constraints for composition. These constraints 
consist of code that validates components and compositions.  

• Composite component constraints. A component must be composite, i.e., 
the composed system is a hierarchy of subsystems. A component is the 
result of a composite composition expression or a composition program.  

• Composition typing constraints. Composition operations must fit to com-
ponents and their composition points. For instance, a composer may only 
bind appropriate values to composition points (fragments to fragments, 
runtime values to runtime values), or use a specific extension semantics.  

• Constraints on the content of components. For instance, for a Java com-
position system, this requires that the static semantics of Java is modeled, 
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and that this semantics controls the composition. For an XML dialect, 
semantic constraints can be modeled, for instance, that all links in a doc-
ument must be valid, i.e., point to a reasonable target. Our extended 
framework presented in this paper provides parts of the Modelica semantics 
in top of the ModelicaXML format.  

With these constraints, it should be possible to type-check composition expressions 
and programs in the UNICOMP framework. Many of these constraints can be 
specified in a logic language, such as first order logic (Datalog) or OWL (W3C 
[122]), and can be generated to check objects on every layer. 

3.3.2.3 Support for staged composition  

COMPOST supports staged composition as follows. Firstly, the UNICOMP layer 
has been connected to the Component Workbench, the visual component editor of 
the VCF (Oberleitner and Gschwind 2002 [80]). Composition programs for 
fragment component models can be edited from the Component Workbench, and 
executed via COMPOST.  

So far, a case study has been build for a web-based conference reviewing system 
that requires Java and XHTML composition. This paper shows how to compose 
Modelica components by using its alternative XML representation: ModelicaXML.  

Secondly, COMPOST can be used to prepare components such that they fit into 
component models of stage 2 and 3. For instance, COMPOST connectors can 
prepare a Java class for use in CORBA context (Aßmann et al. 2000 [7]). They can 
also be used to insert event-emitting code, to prepare a class for Aspect-Oriented 
Programming.   

3.4 COMPOST extension for Modelica  

This section describes the Modelica component model. The architecture of our 
system is presented. Modelica Box and Hook hierarchies are explained. Finally, 
various composition programs are given as examples.  

3.4.1 Overview  

The architecture of the composition system is given in Figure 3-2. A Modelica 
parser is employed to generate the ModelicaXML representation. ModelicaXML is 
fed into the COMPOST framework where it can be composed and transformed. The 
result is transformed back into Modelica code by the use of a ModelicaXML 
unparser. 
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Figure 3-2. The XML composition. System Architecture Overview. 

3.4.2 Modelica Box Hierarchy  

Besides general classes, Modelica uses so called restricted class constructs to 
structure information and behavior: models, packages, records, types, functions, 
connectors and blocks. Restricted classes have most properties in common with 
general classes, but have some restrictions, e.g. there are no equations in records.  

Modelica classes are composed of elements of different kinds, e.g.:  

• Import or extends declarations.  
• Public or protected variable declarations.  
•  Equation and algorithm sections. 

Each of the Modelica restricted classes and each of the element types have their 
corresponding box class in the Modelica Box hierarchy (Figure 3-3).  

In our case, the boxes (templates) are mapped to their specific element types in 
the ModelicaXML representation. For example, the ModelicaClass box is 
mapped to a <define ident="ClassName">..</define> element. The 
ModelicaClass box can contain several ModelicaElement boxes and can con-
tain itself in the case that one Modelica class is declared inside another class.  

The boxes that inherit from ModelicaContainer represent the usual con-
structs of the Modelica language. The boxes that inherit from ModelicaElement 
are defining the contents of the boxes that inherit from ModelicaContainer.  
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The boxes incorporate constraints derived from Modelica static semantics. For 
example, constraints specify that inside a ModelicaRecord is not allowed to have 
ModelicaEquationSections.  

 
Figure 3-3. The Modelica Box Hierarchy defines  

a set of templates for each language structure. 

While these constraints in our case were specified in the Java code, a future 
extension will automatically generate these constraints from external specifications 
expressed in formalisms such as Document Type Definition (DTD) (W3C [113]), 
Web Ontology Language (OWL) (W3C [120], [122]) or Relational Meta-Language 
(RML) (PELAB 1994-2005 [86], Pettersson 1995 [88], 1999 [90]).  

3.4.3 Modelica Hook Hierarchy 

Implicit Hooks are fragments of Modelica classes that have specific meaning 
according to Modelica code structure and semantics. By using Hooks one can easily 
change/extract parts of the code. In the Modelica Hook Hierarchy presented in 
(Figure 3-4) only Implicit Hooks are defined for the Modelica code.  

There is no need to define Declared Hooks especially for Modelica, because the 
XMLDeclaredHook already performs this operation. One can have an XML de-
clared hook that extracts from the XML document the contents of an element with a 
specified tag, i.e., <extract ...>.  

Hooks are used to configure parts of boxes. The XMLImplicitHook is 
specialized as ModelicaParameterHook or ModelicaModificationHook.  
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ModelicaParameterHook binds variable components in ModelicaXML that have 
variability attribute set to "parameter". To provide typing constraints, specific 
hooks for real_literal, integer_literal, string_literal types have 
been declared. These constraints the binding of the parameters to values of proper 
type.  

 
Figure 3-4. The Modelica Hook Hierarchy. 

ModelicaModificationHook targets component declarations that have their 
elements changed by modifiers. In the HelloWorld example in Section 3.3.1, the 
modifier is imposing on component x to change its start value. At the Model-
icaXML level the ModelicaModificationHook is searching for XML elements 
of the form:  

<component ident="ComponentName"> 
 <modification_arguments> 
  <element_modification> 
   <component_reference ident="element"/> 
   <modification_equals>value initialization e.g. 
    <integer_literal>1</integer_literal> 
   </modification_equals> 
  </element_modification> 
 </modification_arguments> 
</component> 

This hook will bind proper values to the modified elements.  
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Also, other types of implicit hooks can be specified like hooks for the left hand side 
or the right hand side of an equation hooks that change types of components, hooks 
that change the documentation part of a class declaration, etc.  

3.4.4 Examples of composition and transformation programs  

This subsection gives concrete examples on the usages of our framework. The 
examples are written in Java, but they could easily be performed using a tool that 
has visual abstractions for the composition operators. For presentation issues only 
the Modelica code is given in the examples below and their corresponding 
ModelicaXML representation is presented in Section 3.6.  

3.4.4.1 Generic parameterization with type checking  

To be able to reuse components into different contexts they should be highly 
configurable. Configuration of parameters in Modelica is specified in class 
definitions and can be modified in parameter declaration. The values can be read 
from external sources using external functions implemented in C or Fortran. In the 
example below we show how the parameters of a Modelica component can be 
configured using implicit hooks. Because we use Java, the parameter/value list can 
be read from any data source (XML, SQL, files, etc). The example is based on the 
following Modelica class:  

class Engine  
 parameter Integer cylinders = 4;  
 Cylinder c[cylinders];  
 /* additional parameters, variables and equations */  
end Engine;  

Different versions of the Engine class can be automatically generated using a 
composition script. Also, the parameter values are type checked before they are 
bound to ensure their compatibility. The composition script is given below partially 
in Java, partially in pseudo-code:  

ModelicaCompositionSystem cs = new 
                          ModelicaCompositionSystem(); 
ModelicaClass templateBox = 
              cs.createModelicaClass("Engine.mo.xml");  
 
/* read parameters from configuration file, XML or SQL */  
foreach engine entry X  
{  
 ModelicaClass engineX = 
               templateBox.cloneBox().rename("Engine_"+X);  
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 foreach engine parameter  
 {  
   engineX.findHook("parameterName").bind(parameterValue);  
   /* typed parameterization */  
 }  
 engineX.print(); 
} 

Using a similar program, the modification of parameters can be performed in 
parameter declarations.  

3.4.4.2 Class Hierarchy Refinement using Declared Hooks  

When designing libraries one would like to split specific classes into a more general 
part and a more specific part. As an example, one could split the class defined 
below into two classes that inherit from each other, one more generic and one more 
specific, in order to exploit reuse. Also if one wants to add a third class, e.g. 
RectangularBody, to the created hierarchy the transformation above would be 
beneficial. The specific class that should be modified is given below:  

class CelestialBody "Celestial Body" 
 Real mass;  
 String name;  
 constant Real g = 6.672e-11;  
 parameter Real radius; 
end CelestialBody;  

The desired result, the two split classes where one inherits from the other, is shown 
below:  

class Body "Generic Body" 
 Real mass;  
 String name; 
end Body;  

class CelestialBody "Celestial Body"  
 extends Body; 
 constant Real g = 6.672e-11;  
 parameter Real radius; 
end CelestialBody;  

One can see that this transformation extracts parts of classes and inserts them into a 
new created class. Also, the old class is modified to inherit from the newly created 
class.  

This transformation is performed with the help of one declared hook (for the 
extraction part) and an implicit hook for the superclass, with its value bound to the 
newly created class. The user will guide this operation by specifying, with a 
declared hook or visually, which parts should be moved in the new class. The 
composition program that performs these transformations is as follows:  

 



62   Chapter 3   Composition of XML dialects: A ModelicaXML case study 

 

ModelicaCompositionSystem cs = new  
                          ModelicaCompositionSystem(); 
ModelicaClass bodyBox = cs.createClass("Body.mo.xml");  
ModelicaClass celestialBodyBox = 
              cs.createModelicaClass("Celestial.mo.xml"); 
ModelicaElement extractedPart = 
              celestialBody.findHook("extract").getValue(); 
 
/* empty the hook contents */  
celestialBody.findHook("extract").bind(null); 
 
bodyBox.append(extractedPart) 
bodyBox.print(); 
celestialBody.findHook("superclass").bind("Body"); 
/* or findSuperclass().bind("Body"); */  
 
celestialBody.print(); 

Similar transformations can be used to compose Modelica models based on the 
interpretation of other modeling languages. During such composition some classes 
need to be wrapped to provide a different interface. For example, when there is only 
a force specified for moving a robot arm, but the available library of components 
only provides electrical motors that generate a force proportional to a voltage input. 

3.4.4.3 Composition of classes or model flattening  

Mixin composition of the entire contents of two or more classes into one another is 
performed when the models are flattened i.e. as the first operation in model 
obfuscation or at compilation time. The content of the classes composed below is 
not relevant for this particular operation. The composition program that 
encapsulates this behavior is as follows:  

ModelicaCompositionSystem cs = new 
ModelicaCompositionSystem(); 
ModelicaClass resultBox = 
cs.createModelicaClass("Class1.mo.xml");  
ModelicaClass firstMixin = 
cs.createModelicaClass("Class2.mo.xml"); 
ModelicaClass secondBox = 
cs.createModelicaClass("Result.mo.xml");  
 
resultBox.mixin(firstMixin); 
resultBox.mixin(secondMixin); 
resultBox.print(); 

It first reads the two classes from files, creates a new result class and pastes the 
contents of the first classes inside the new class.  
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3.5 Conclusion and Future work  

We have shown how composition on Modelica, using its alternative the Model-
icaXML representation, can be achieved with a small extension of the COMPOST 
framework. While this is a good start, we would like to extend our work in the 
future with some additional features like:  

• More composition operators and more transformations, i.e., obfuscation, 
symbolic transformation of equations, aspect oriented debugging of compo-
nent behavior by weaving assert statements in equations, etc.  

• Implementation of full Modelica semantics to guide the composition, based 
on the already existing Modelica compiler implemented in the 
OpenModelica System.  

• Validation of the composed or transformed components with the 
OpenModelica compiler.  

• Automatic composition of Modelica models based on interpretation of other 
modeling languages.  

Modelica should provide additional constraints on composition, based on the 
domain knowledge. These constraints are specifying, for example, that specific 
components should not be connected even if their connectors allow it. We would 
like to further investigate how these constraints could be specified by library 
developers.  

3.6 Appendix  

CelestialBody in ModelicaXML format before transformation:  
<definition ident="CelestialBody" restriction="class"  
            string_comment="Celestial Body"/>  
  <component visibility="public"  
             ident="mass" type="Real"/> 
  <component visibility="public"  
             ident="name" type="String"/> 
  <component visibility="public"  
             variability="constant" ident="g" 
             type="Real"> 
    <modification_equals>  
      <real_literal value="6.672e-11"/> 
    </modification_equals>  
  </component>  
  <component visibility="public"  
             variability="parameter" ident="radius"  
             type="Real"/> 
</definition> 
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CelestialBody and Body in ModelicaXML format after transformation:  
<definition ident="Body" restriction="class"   
            string_comment="Generic Body"/>  
 <component visibility="public" ident="mass" type="Real"/>  
 <component visibility="public"  
            ident="name" type="String"/>  
</definition>  

<definition ident="CelestialBody" restriction="class"  
            string_comment="Celestial Body"/>  
  <extends type="Body"/>  
  <component visibility="public"  
             variability="constant" ident="g" 
             type="Real"> 
    <modification_equals> 
      <real_literal value="6.672e-11"/> 
    </modification_equals>  
  </component>  
  <component visibility="public" variability="parameter" 
             ident="radius" type="Real"/> 
</definition> 

The Engine class representation in ModelicaXML: 
<definition ident="Engine" restriction="class">  
 <component visibility="public" variability="parameter"  
            type="Integer" ident="cylinders">  
   <modification_equals> 
       <integer_literal value="4"/> 
   </modification_equals>  
 </component>  
 <component visibility="public" type="Cylinder" ident="c">  
  <array_subscripts>  
   <component_reference ident="cylinders"/> 
  </array_subscripts> 
 </component> 
</definition> 
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driven Product Design and 
Development Using Modelica 

Adrian Pop, Olof Johansson, Peter Fritzson: An integrated framework for model-
driven design and development using Modelica, the 45th Conference on Simulation 
and Modeling (SIMS 2004), September 23-24, 2004, Copenhagen, Denmark. 

4.1 Abstract 

This paper presents recent work in the area of model-driven product development 
processes. The focus is on the integration of product design tools with modeling and 
simulation tools. The goal is to provide automatic generation of models from 
product specifications using a highly integrated set of tools. Also, we provide the 
designer with the possibility of selecting the best design choice, verified through 
(automatic) simulation of different implementation alternatives of the same product 
model. To have a flexible interaction among various tools of the framework an 
XML representation of the Modelica modeling language called ModelicaXML is 
used. For efficient search in a large base of simulation models the Modelica 
Database was designed. 

4.2 Introduction and Related Work 

Designing products is a complex process. Highly integrated tools are essential to 
help a designer to work efficiently. Designing a product includes early design phase 
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product concept modeling and evaluation, physical modeling and simulation and 
finally the physical product realization. For conceptual modeling and physical 
modeling and simulation available tools provide advanced functionality. However, 
the integration of such tools is a resource consuming process that today requires 
large amounts of manual, and error prone work. Also, the number of physical 
models available to the designer in the product concept design phase is typically 
quite large. This has an impact on the selection of the best set of component choices 
for detailed product concept simulation.  

To address these issues we have integrated new product concept design tools 
with physical modeling and simulation tools in a framework for product design. In 
our proposed framework, the product concept design phase of the product 
development process is based on Function-Means tree decomposition (Andreasen 
1980 [3]). This phase is implemented in a first version of a prototype tool called 
FMDesign, developed in cooperation with the Machine Design Group led by Petter 
Krus, IKP, Linköping University.  

As an example of Function-Means tree decomposition we give a landing 
function in an airplane. This function can be represented by two different means: 
hydraulic landing gear or electric landing gear. Each of the two alternatives can be 
selected and configured to simulate its properties. 

Starting from FMDesign tool, our integration work extends the framework in 
two ways:  

• Providing a Selection and Configuration Tool that helps the designer to 
choose a specific implementation for the means in the function-means tree 
from a Modelica model/ component database. This tool also provides 
component configuration and has links to a Modelica standard based 
simulation environment for component editing. 

• Providing an Automatic Model Generation Tool that helps the designer to 
choose the best implementation from different design choices by evaluation 
through simulation of automatically generated models of candidate product 
concepts. If the designer is not pleased with the results, he/she can either 
implement new models for the components that did not perform in the 
desired way or reiterate in the design process and choose other alternatives 
for implementing different functions in the product, or change the 
configuration parameters for models at deeper levels of detail. 

The paper is structured as follows: The next section (section 4.3) presents an 
overview of our proposed framework. Section 4.4 enters in the details of the 
framework components and their interaction. Section 4.5 presents our conclusion 
and future work.  

The presented system has similarities with the Schemebuilder tool (Bracewell 
and D.A.Bradley 1993 [21]) and Modelith framework (Johansson et al. 2002 [54], 
Larsson et al. 2002 [62]). However our work is more oriented towards the design of 
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advanced complex products that require systems engineering, and targeted to the 
simulation modeling language Modelica, which to our knowledge has more 
expressive power in the areas of our research, than many tools for systems 
engineering that are currently widely used. For details on Systems Engineering, see 
(INCOSE 1990-2005 [53]). 

4.3 Architecture overview 

The architecture of our extended framework is presented in Figure 4-1. The entire 
product concept design process is iterative. 
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Figure 4-1. Design framework for product development. 

Starting from requirements for a product the designer will use the FMDesign 
prototype for modeling alternative product concepts. The knowledge base for 
designing a product is organized into function-means trees. A function in the 
product can be realized by alternative means. A product concept is a set of means 
that document selected solution alternatives for implementing the functions in a 
product concept. Example of a function is "Actuator Power Supply", with 
means "Hydraulic Power Supply" or "Electrical Power Supply". 

 



68   Chapter 4   An Integrated Framework for Model-driven Product Design 

Means must be implemented by (physical) components arranged in a bill-of-
material like tree of implementation objects.  

One can roughly say that a means and its implementation are the same, but at 
different levels of detail. Implementation objects (not shown in the figure) may 
represent existing component products on the market or manufactured components. 
Implementation objects carry data that is important for the product concept design, 
and references to more detailed design information like CAD-drawings, simulation 
models etc. Some (physical components) may implement several means, like an 
aircraft wing that creates lift and stores fuel.   

To map suitable simulation model implementations to a means, the designer 
would use the Modelica Database query facility provided by the Selection and 
Configuration Tool. This tool also provides configuration of the simulation 
components and uses the desired Modelica environment for component editing. 

When the product concept design phase of the product is sufficiently complete, 
the designer can generate code for simulation from the implementation tree using 
the Automatic Model Generator Tool. The generator will output models (different 
versions for different product concepts) in ModelicaXML. From Modelica-XML 
the models are translated to Modelica to be simulated. The designer can review the 
simulation results in tools like MathModelica (MathCore [69]), Dymola (Dynasim 
2005 [30]) or OpenModelica (Fritzson et al. 2002 [37], PELAB 2002-2005 [87]) 
and then selects (in FMDesign) the desired model alternative for the 
implementation.  If the designer sees that some means do not perform in the desired 
way, a customized simulation model can be built, or a search conducted for more 
alternatives for that specific means. 

4.4 Detailed framework description 

In this section we present the tools from our proposed framework. Also, we briefly 
explain in each section how they interact. 

4.4.1 ModelicaXML 

Modelica (Fritzson 2004 [39], Modelica-Association 1996-2005 [75]) is an object-
oriented language used for modeling of large and heterogeneous physical systems. 
For modeling with Modelica, commercial software products such as MathModelica 
(MathCore [69]) or Dymola (Dynasim 2005 [30]) have been developed. However, 
there are also open-source projects like the OpenModelica Project (Fritzson et al. 
2002 [37], PELAB 2002-2005 [87]). 

Modelica is translated to ModelicaXML (Pop and Fritzson 2003 [92]) using a 
Modelica parser (Figure 4-2). 
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class Test "comment"

Real x;

Real xdot;

equation

xdot = der(x);

end Test;

<modelicaxml>

<definition ident= "Test" 

comment="comment">

<component ident="x" type="Real"

visibility="public" />

<component ident="xdot" type="Real"

visibility="public" />

<equation>...</equation>

</definition>

</modelicaxml>

modelicaxml

definition 

component

component 

equation 

 
Figure 4-2. Modelica and the corresponding ModelicaXML representation. 

ModelicaXML represents an XML serialization of the Abstract Syntax Tree of the 
Modelica language obtained after the parsing. In our framework, ModelicaXML is 
used as an interchange format between the different design tools. 

The advantages of having an alternative representation for Modelica in XML 
are: 

• Flexible interaction and translation between different types of physical 
modeling languages and modeling tools. Also, easy generation of model 
documentation. 

• Basic search and query functionalities over models. 
• Easy transformation and composition of models (Pop et al. 2004 [95]). 

For more information on ModelicaXML the reader is referred to (Pop and Fritzson 
2003 [92]) and (Fritzson 2004 [39]).  

4.4.2 Modelica Database (ModelicaDB) 

The features of the Modelica language and Modelica tools has made easy for 
designers to create models. Also, the Modelica community has a growing code-
base. In order to cope with interoperability between Modelica and other modeling 
languages we first developed ModelicaXML. However, scalability and efficient 
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search features for XML require extensive skills in vendor specific products. To 
quickly get such features without taking on that huge learning effort, we have 
designed the Modelica Database (ModelicaDB). 

The Modelica Database is populated with Modelica models and libraries by 
importing their ModelicaXML representation. The UML model of this database is 
presented in the appendix (section 4.7). For paper space reasons we use a somewhat 
customized compressed graphical representation of UML class diagrams, where 
inheritance is represented with a box between the class name and attributes box, 
where inherited super classes are preceded with a "->". For details on UML see 
(OMG [81]).  

Here we briefly explain the most important structures. They are tightly coupled 
with the Modelica structure (Fritzson 2004 [39], Pop and Fritzson 2003 [92]): 

• Modelica Repository: contains several Modelica Models. 
• Class: A class represents the fundamental model element from the Modelica 

language. It can include several Component clauses, Equation and 
Algorithm statements. The component sections can be declared as public or 
protected in order to provide only the desired interface to the outer world. 
Specifying that the equation or algorithm sections are only active at the 
initialization phase they can be declared as initial. 

• Component: used to define parameters, variables, constants, etc to be used 
inside a class. 

• Equations and Algorithms are used to specify the desired behavior for a 
class. 

In the product design framework the role of ModelicaDB is to provide searching 
and organization features of a large base of simulation models. This base grows 
with every product model developed or with the import of additional simulation 
models from other sources (i.e. the Modelica community). For example, if we want 
to obtain all the models that have certain parameter names we have to search in the 
database for all classes that have a component with the attribute 
variabilityPrefix set to "parameter" and have the specified name. These 
searches will be integrated in FMDesign using dialogs and completely transparent 
for the user.  

4.4.3 FMDesign 

The FMDesign (Figure 4-3) prototype tool helps the designer in creating product 
specifications using function-means trees. 

The created product model is stored in a product design library for later reuse. 
Throughout the product concept design process the designer can use the existing 
concepts stored in the product design library in order to model the desired product. 
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A somewhat simplified meta-model of the information structure edited in 
FMDesign is presented as an UML class diagram in the appendix (section 4.7). 

In the framework, FMDesign is the central front-end to specific components. 
FMDesign delegates searches in the ModelicaDB using the Selection and 
Configuration Tool and it uses the Automatic Model Generation Tool to generate 
the models for simulation. 

 
Figure 4-3. FMDesign – a tool for conceptual design of products. 

As we can see in Figure 4-3, the work area is divided into several parts: 

• Products: Here products are created, deleted and selected. When a product 
is selected, the trees owned by it and described below, are displayed. 

• Requirements Tree: in this view the requirements for a product can be 
specified. 

• Function-Means Tree: in this view the designer can define the operation 
states, functions, their alternative means etc, of the selected product. 

• Product Concepts: Allows creating, deleting and selecting product concepts. 
• Product Concept Tree: displays the currently selected Product Concept 

Tree, and allows the user to select which means that will implement 
different functions in the product, using drag-drop. Selected means can be 
customized for the current product concept by overriding the default values 
for its design variables owned by a selected means. 

• Implementation Tree: displays and provides functionality for editing one of 
many configurable Implementation Trees for the currently selected product 
concept. These implementation trees organize the implementation objects 

 



72   Chapter 4   An Integrated Framework for Model-driven Product Design 

that represent and refer to more detailed models of physical objects, 
functional models, simulation models, geometrical layout models etc, and 
organize them into trees that are useful for interfacing with tools later in the 
product development process. 

We only use the Implementation Tree of type simulation to generate the Modelica 
simulation model for a product. The Implementation Tree of type geometrical can 
be used in the visualization of the product. 

4.4.4 The Selection and Configuration Tool 

The Selection and Configuration Tool extends the framework by adding integrated 
search capabilities in FMDesign. The tool is coupled with the Implementation Tree 
for a Product Concept. The designer uses the selection tool to search (query) the 
Modelica Database for desirable simulation components to implement a certain 
means. An implementation object in the simulation implementation tree represents 
the selected simulation component. Simulation component to means mapping 
reflects the various design choices made by the designer. In this way, the designer 
can experiment with different simulation component implementations at various 
level of detail for a specific means. When choosing alternatives for a specific means 
the designer has two possibilities: to browse the repository of simulation models 
classified according to physical concepts or to use the search dialog. The search 
dialog provides the following functionality: 

• Textual/pattern search of components, search for a component in a specific 
physical domain, search for a component with specific parameters. 

• Adding/deleting a product concept specific means to simulation component 
mapping where the simulation component is referred from an 
implementation object. 

After building the means-component mappings the designer can choose to edit or 
configure components by using the configuration dialog that provides the following 
functionality: 

• Set implementation component parameters or parameters ranges. 
• Edit the simulation component in the desired Modelica environment and use 

the edited component, which is also automatically added to the Modelica 
Database. 
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4.4.5 The Automatic Model Generator Tool 

The Automatic Model Generator Tool provides the second extension of the 
framework. 

The model generator tool has as input the Implementation Tree (Figure 4-3, 
lower right) of a product and as output the complete simulation model with the 
alternative design choices. 

The automatic model generator traverses the Implementation Tree of a Product 
Concept and outputs ModelicaXML models by choosing the combination of 
selected components for means. The generated models are then translated to 
Modelica for means evaluation through simulation. To simulate the models, 
commercial tools like Dymola and MathModelica or the open-source 
OpenModelica (Fritzson et al. 2002 [37], PELAB 2002-2005 [87]) compiler can be 
used.   

After the simulation of the generated models, the results are used as feedback for 
the designer. Using this feedback the designer can then choose the best-suited 
model, based on the simulation results.   

4.5 Conclusions and Future Work 

As future work we want to explore the use of ontologies for product concept design 
and for the classification of the available component libraries.  

The languages developed by the Semantic Web (Berners-Lee et al. 2001 [16], 
SemanticWebCommunity [107], W3C [121], [120], [122]) community will be used. 
Research efforts based on this standard are integrating experience of many 
promising research areas, for instance declarative rules, which still lack a vendor 
neutral exchange formats for industrial applications. The semantic web standard 
lacks important functionality for quality assurance and other necessary 
functionality, which today is implemented in commercial products, but will open up 
for sharing of important research results with industry in collaborative 
environments. Also we would like to improve the Automatic Model Generator Tool 
by using parts of the composition and transformation framework described in (Pop 
et al. 2004 [95]). 

In the future we want to provide automatic evaluation through simulation of the 
generated models based on the constraints collected from the Product's Requirement 
Tree.  
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4.7 Appendix 

 
Figure 4-4. FMDesign information model. 
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Figure 4-5. ModelicaDB meta-model. 
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The Modelica Standard Library as an 
Ontology for Modeling and Simulation 
of Physical Systems 

Adrian Pop, Peter Fritzson: The Modelica Standard Library as an Ontology for 
Modeling and Simulation of physical systems, Technical Report, 2004, 
http://www.ida.liu.se/~adrpo/reports. 

 

5.1 Abstract 

This paper presents the Modelica Standard Library, an ontology used in modeling 
and simulation of physical systems. The Modelica Standard Library is continuously 
developed in the Modelica community.  We present parts of the Modelica Standard 
Library and show an example of its usage. Also, in this paper we focus on the 
comparison of Modelica, the language used to specify the Modelica Standard 
Library with other ontology languages developed in the Semantic Web community.  

5.2 Introduction and Related Work 

The Modelica Standard Library provides concepts (classes) from various physical 
domains that can be easily used to create models (new classes). Also, these new 
created models can be further re-used.  

As related work we can mention the PhySys ontology and OLMECO library 
(Borst et al. 1997 [20]) for dynamic physical systems. The PhySys ontology 
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consists of three engineering ontologies formalizing conceptual viewpoints on 
physical systems: system layout, physical processes and descriptive mathematical 
relations. The PhySys ontology and the OLMECO library provide a similar 
framework as our work presented in (Pop et al. 2004 [94]) which is based on 
function-means decomposition of systems and Modelica components are associated 
with different means. 

The paper is structured as follows: The next section shortly presents the 
Modelica language. Also, in this part we compare the Modelica language and the 
Web Ontology Language (OWL) (W3C [120], [122])  developed in the Semantic 
Web community (Berners-Lee et al. 2001 [16], SemanticWebCommunity [107], 
W3C [121]). Section 5.4 enters into the details of some parts of the Modelica 
Standard Library and shows an example of its usage. Section 5.5 presents 
conclusions and future work.  

5.3 Modelica  

Modelica (Elmqvist et al. 1999 [33], Fritzson 2004 [39], Modelica-Association 
1996-2005 [75], Tiller 2001 [109]) is an object-oriented declarative language used 
for modeling of large and heterogeneous physical systems. The Modelica language 
is a new, revolutionizing approach to physical modeling area because is component-
based and equation-based, which provide strong reuse (equations are more powerful 
than assignments because they do not specify control flow). Modelica has a general 
class concept in which documentation, attributes (components) and the class 
behavior can be stated. Modelica libraries (Hubertus 2002 [52], Modelica-
Association 1996-2005 [75]) have detailed formal semantics based on algebraic, 
differential and difference equations. Modelica language provides constructs for 
building class documentation (both textual and icons), which can be used by tools 
to provide visual modeling. Also, in Modelica the connections between components 
are clearly specified with the use of connectors. 

For modeling with Modelica, commercial software products such as 
MathModelica (MathCore [69]) or Dymola (Dynasim 2005 [30]) have been 
developed. However, there are also open-source projects like the OpenModelica 
Project (Fritzson et al. 2002 [37], PELAB 2002-2005 [87]). We briefly introduce 
the Modelica language by a short example: 

class HelloWorld "Hello World Model" 
 Real x(start = 1); 
 parameter Real a = 1; 
equation 
 der(x) = -a*x; 
end HelloWorld; 
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The example defines a simple class with two attributes and one equation section. 
This simple model can be configured when used again in other models i.e. 
HelloWorld(a=3);  

Comparison of provided functionality between Modelica, Unified Modeling 
Language (UML) (OMG [82], [81]) and RosettaNet (RosettaNet [100]) technical 
dictionary is discussed in (Johansson et al. 2004 [55]). The conclusion is that 
sharing and reuse of static engineering ontologies among these languages can be 
fully automated.  

When comparing Modelica and the Web Ontology Language (OWL) developed 
in the Semantic Web we can outline the following: 

• Classes are template-based in Modelica vs. classes are constructed from 
several primitives using logical connectors in OWL. 

• In OWL relations between classes can be specified and additional 
constraints can be stated. Also reasoner tools provide the possibility of 
inferring new knowledge from existing facts.  

• Both languages have multiple inheritance, subtyping and XML serialization 
(ModelicaXML (Pop and Fritzson 2003 [92]) for Modelica). 

Modelica users and library developers would benefit from Semantic Web 
technologies and research work is in progress to adapt these to Modelica.  

5.4 Modelica Standard Library (MSL) 

In this section we shortly introduce the Modelica Standard Library (MSL) 
(Modelica-Association 1996-2005 [75]) and give a usage example.  For space 
reasons we prompt the interested reader to the detailed description of the MSL, 
available at: http://www.modelica.org/libraries.shtml

5.4.1 Overview of the ontology 

The ontology is structured into several sub-ontologies (packages): 
 
Modelica.Blocks - Input/Output blocks 

This package provides input/ output blocks for building up block 
diagrams.  
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Modelica.Constants – Mathematical and physical constants 
 

This package defines often needed constants from mathematics, 
machine dependent constants and constants from nature. 
 
 
 

Modelica.Electrical – Electric and electronic components 

This package contains electrical components to build up analog 
circuits.  
 
 
 

 
Modelica.Icons – Icon definitions of general interest 

 

This package contains icon definition used to document 
components (for visual modeling). 
 
 
 

Modelica.Math – Mathematical functions 

This package defines highly used mathematical functions (sin, cos, 
tan, etc). 
 
 
 
 

 
Modelica.Mechanics – Mechanical components (one dimensional rotational and 
translational) 

 

This package defines components to model mechanical systems. 
 
 
 

Modelica.Thermal – Thermal components 
 

This package defines components to model one dimensional heat 
transfer with lumped elements. 
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Modelica.Siunits – SI-unit type definitions (according to ISO 31-1992) 

This package provides predefined types such as Mass, Length, 
Time, etc, based on the international standards on units. 
 

5.4.2 Discussion on the Modelica Standard Library 

The features of the Modelica language and Modelica tools have made easy for 
designers to create models. The Modelica Standard Library provides a shared 
repository of components for reuse in different models. Tools like MathModelica 
(MathCore [69]) are using the Modelica Standard Library to help users visually 
pick and connect components into larger models as in Figure 5-1. 

 
Figure 5-1. Visual construction of models using MathModelica. 

From the left part of the Figure 5-1 the components of a MSL library can be 
dragged into the current model where they can be connected and further configured. 
Because the components are very generic and highly configurable they can be 
easily re-used in different models or different parts of the same model.  

The library developers can impose certain weak restrictions on the use of the 
components to ensure that they cannot be misused. However, the Modelica 
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language lacks the power of imposing advanced constraints on the components or 
their relationship. We will address this issue in the future by translating Modelica to 
the Web Ontology Language (OWL) and use this language to express restrictions, 
additional domain knowledge, and distributed use of models over the WWW, etc. A 
short example of translating Modelica to OWL is given in the appendix (section 
5.7). 

5.4.3 Example 

As an example of Modelica Standard Library (MSL) use, we present the model of a 
DC-motor. The visual layout of this model is presented in Figure 5-2. Additional 
examples can be found at the Modelica website (Modelica-Association 1996-2005 
[75]). 

 
Figure 5-2. DC-motor model. 

The model presented contains components from three domains that can be found in 
the Modelica.Mechanics, Modelica.Electrical and Modelica.Blocks 
sub-libraries of MSL. The code for the DC-motor is as follows: 

model DCMotor 
 import Modelica.Electrical; 
 import Modelica.Mechanics; 
 import Modelica.Blocks; 
 Inductor inductor1; 
 Resistor resistor1; 
 Ground ground1; 
 EMF emf1; 
 SignalVoltage signalVoltage1; 
 Step step1; 
 Inertia inertia1; 
equation 
 connect(step1.y, 
         signalVoltage1.voltage); 
 connect(signalVoltage1.n, 
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         resistor1.p); 
 connect(resistor1.n, inductor1.p); 
 connect(signalVoltage1.p, ground1.p); 
 connect(ground1.p, emf1.n); 
 connect(inductor1.n, emf1.p); 
 connect(emf1.rotFlange_b, 
         inertia1.rotFlange_a); 
end DCMotor; 

The connections between components are realized by the connect statement and 
can only be established between connectors of equivalent types. This ensures that 
only valid connections can be made between components. 

A model definition can import several packages in order to use the classes 
defined in them. The packages can be extended through inheritance or specialized 
through redeclaration. The imports can be named (i.e. import 

SI=Modelica.Siunits), qualified or unqualified (import everything). These 
features provide a detailed control over the imported definitions and help avoid 
name conflicts.  

In this paper we focused more on the model design part and less on the 
simulation of the created models. For simulation the models are checked for 
correctness according to the Modelica static semantics, flattened and translated to 
highly efficient C code glued with numerical solvers. We simulate the DC-motor 
model and plot a few of its variables in Figure 5-3. 

 
simulate(DCMotor,stopTime=25); 
plot({step1.y,inertia1.flange_a.tau}) 
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Figure 5-3. DCMotorCircuit simulation with  

plot of input signal voltage step and the flange angle. 
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5.5 Conclusions and Future Work 

We have presented parts of the Modelica Standard Library (MSL) and showed how 
MSL is used when building models. We have also outlined the main similarities and 
differences between Modelica and other ontology languages (W3C [120], [122]) 
developed in the Semantic Web community. 

As future work we would like to automatically construct an ontology translated 
from MSL into the Web Ontology Language (OWL). We can foresee that the 
structural part of the Modelica classes can be translated easily into OWL as we 
briefly show in the appendix (section 5.7). The non-trivial part would be to build 
the relationships between the translated concepts. Such relationships would require 
additional ontologies that provide concepts for system decomposition, physical 
processes, etc. These ontologies, combined with the Semantic Web technologies 
would add new functionality to Modelica tools like: 

• Classifying new concepts (classes) and verifying models (i.e. that a model is 
coherent, etc) 

• Imposing additional restriction over the models (i.e. an electric circuit must 
have a ground component, a car must have 4 wheels, etc) 

• Expressing some of the Modelica static semantics directly in OWL 
(inheritance, subtyping, etc).  

5.6 Acknowledgements 
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maintenance of the Modelica Standard Library. 

5.7 Appendix 

In this section we show a simple example of how structural parts of Modelica could 
be translated into OWL. This kind of translation could be further augmented with 
additional constraints or information. Also, an OWL validator would be able to 
check such documents. 

The following Modelica models and their translation into OWL are presented in 
the following:  

class Body  "Generic body" 
  Real mass; 
  String name; 
end Body; 

 



Appendix   85 

class CelestialBody "Celestial body" 
  extends Body; 
  constant Real g = 6.672e-11; 
  parameter Real radius; 
end CelestialBody; 
 
CelestialBody moon(name = "moon",  
     mass = 7.382e22, radius = 1.738e6); 
 
Body body_instance(name = "some body",  
     mass = 7.382e22); 

 

Our Modelica model has two classes (concepts) Body and CelestialBody the 
latter being a subclass of the former (by using "extends" statement). 

The encoding in OWL was already presented in Chapter 2, section 2.6.1.  

 

 





Chapter 6  
 
 
Debugging Natural Semantics 
Specifications 

Adrian Pop, Peter Fritzson: Debugging Natural Semantics Specifications, submitted 
to the Sixth International Symposium on Automated and Analysis-Driven 
Debugging (AADEBUG 2005), March 2005. 

6.1 Abstract 

This paper presents the design, implementation and usage of a debugging 
framework for the Relational Meta-Language (RML) which is a language for 
writing executable Natural Semantics specifications.  The language is successfully 
used at our department for writing large specifications for a range of languages like 
Java, Modelica, Pascal, MiniML etc. The RML system previously had no 
debugging facilities, which made it hard for programmers to debug their 
specifications. With this work we address these issues by providing a debugging 
framework for debugging high level Natural Semantics specifications in RML.   

Categories and Subject Descriptors  

D.2.5 [Testing and Debugging].   
D.2.4 [Software/Program Verification].  
D.3.4 [Programming Languages]:Processors—debuggers.  
D.3.2 [Programming Languages]: Language Classifications—applicative 
(functional) languages 

General Terms: Debugging and Verification. 

Keywords: Debugging, rule-based, logical functional languages, proof-trees. 
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6.2 Introduction 

No programming language environment can be considered mature if is not 
supported by a strong set of tools which include debugging and profiling. At our 
department we have developed a language called Relational Meta-Language (RML) 
(PELAB 1994-2005 [86], Pettersson 1995 [88], 1999 [90]) for writing Natural 
Semantics specifications.  

The RML language is extensively used for teaching and writing large 
specifications for different languages like Java, Modelica, MiniML (Clément et al. 
1986 [25]), Pascal, etc. Even if the RML language has a very short learning curve, 
the absence of debugging facilities previously created problems of understanding, 
debugging and verification of large specifications.  

To overcome these issues a debugging framework for RML was designed and 
implemented. The debugger is based on abstract syntax tree instrumentation 
(program transformation) in the RML compiler and some runtime support. Type 
reconstruction is performed at runtime in order to present values of the user defined 
types. For inspecting complex variable values, an external data browser was 
implemented. Post mortem analysis is possible by recording parts of or the entire 
specification trace in an XML file, which can be queried using available XML tools 
(XML (W3C [113]), XQuery (W3C [117]), XPath and XSLT (W3C [116]), etc). 

The paper is structured as follows: this section presents an introduction. The 
next section compares our work with existing research. Section 6.4 introduces 
Natural Semantics and the Relational Meta-Language (RML). The design and 
implementation of the debugger is the topic of section 6.5. The debugger 
functionality is presented using examples in section 6.6. The browser for variable 
values is presented in section 6.7.  Section 6.8 describes shortly the post-mortem 
analyses one can describe on the recorded trace. In section 6.9 performance results 
of our debugger are presented. Conclusions and future work is the subject of section 
6.10. Acknowledgements and references conclude the last two sections of the paper. 

6.3 Related Work 

As pointed out in (Liebermann 1997 [65]), the computer science community is 
constantly ignoring the debugging problem even tough the debugging phase of 
software development takes more than the overall development time.  With our 
work we contribute to improving this state of affairs. 

In lazy functional languages like Haskell the execution order is hard to 
understand. Partly for these reasons the Evaluation Dependence Tree (EDT) tree 
(Nilsson 1998 [79]) concept was proposed to help the understanding and debugging 
of the language. On the other hand, RML is a strict functional language where 
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arguments are evaluated before the call and in this respect closer to Standard ML 
(Milner et al. 1997 [74]). Our work is related to the work done for Standard ML 
debugger (Tolmach and Appel 1995 [110], Tolmach 1992 [111]). We have not yet 
implemented time traveling, but this is one of our future work directions. General 
design ideas were inspired from (Pettersson 1998 [89]).  

Using assertions and print statements for debugging was and unfortunately still 
is many programmers choice for debugging programs. Source code instrumentation 
(or program transformation) that changes the program code in order to facilitate 
debugging is an approach present approach in the literature (Fritzson et al. 1994 
[35], Pope and Naish 2003 [98]).  

Explanation of program execution in deductive systems like Deductive 
Databases (Mallet and Ducassé 1999 [67]) or Description Logic reasoners 
(McGuinness 1996 [71], McGuinness and Borgida 1995 [70], McGuinness and 
Silva 2003 [72]) has similarities with our RML debugger because they generate and 
analyze proof-trees (or derivation trees).  RML is based on the style and visual 
layout of Natural Semantics and has a top-down left-right determinate search with 
local backtracking as proof procedure.   

6.4 Natural Semantics and the Relational Meta-
Language (RML) 

Natural Semantics (Kahn [57]) is formalism for specifying many aspects of 
programming languages, e.g. type systems, dynamic semantics, translational 
semantics, static semantics, etc. Natural Semantics is an operational semantics 
derived from the Plotkin (Plotkin 1981 [91]) structural operational semantics 
combined with the sequent calculus for natural deduction. 

The Relational Meta-Language (RML) (PELAB 1994-2005 [86], Pettersson 
1995 [88], 1999 [90]), is a practical language for writing Natural Semantics 
Specifications. The RML language is compiled to highly efficient C code by the 
rml2c compiler. In this way, large parts of a compiler can be automatically 
generated from their Natural Semantics specifications.  

From the features of the RML language we can mention: strong static typing, 
simple module system, type inference, pattern matching and recursion are used for 
control flow, types can be polymorphic.  
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v

6.4.1 A short example of an RML specification 

As a crash course in Natural Semantics and the Relational Meta-Language (RML) 
we give an example of a small expression (Exp) language and its realization in 
Natural Semantics and RML. 

A specification in Natural Semantics has two parts: declaration of syntactic and 
semantic objects involved, followed by groups of inference rules. In our example 
language we have expressions built from integer constants and arithmetic operators. 
The syntax of this language is declared in the following way: 

integers: 
   
expressions: 
    :: | 1 2| 1 2| 1* 2| 1/ 2|

v Int

e Exp v e e e e e e e e e

∈

∈ = + − −

 

The inference rules for our language are bundled together in a judgment  in 
the following way: 

e =>

1 1  2 2  1 2 = > 3
1 2 3

1 1  2 2  1 2 3
1 2 3

1 1  2 2  1 2 3
1* 2 3

1 1  2 2  1 / 2 3
1 / 2 3
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v v
= > = > +

+ = >

= > = > − = >
− = >

= > = > ∗ = >
= >

= > = > = >
= >

= > − = >

= >

g
e v n e g− = >

 

In the Relational Meta-Language (RML), the Natural Semantics specification 
presented above can be represented by the following source code (one can note that 
the visual layout of Natural Semantics is preserved in RML): 

(* file exp1.rml *) 
module exp1: 
 
  (* Abstract syntax of language Exp1 *) 
  datatype Exp =  INTconst of int 
               |  ADDop    of Exp * Exp 
               |  SUBop    of Exp * Exp 
               |  MULop    of Exp * Exp 
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               |  DIVop    of Exp * Exp 
               |  NEGop    of Exp       
  relation eval: Exp => int 
end 
 
(* Evaluation semantics of Exp1 *) 
relation eval: Exp => int  = 
 
 (* Evaluation of an integer node *)  
 axiom eval(INTconst(ival)) => ival  
  
 (* Evaluation of an addition node ADDop 
  * is v3, if v3 is the result of adding 
  * the evaluated results of its children  
  * e1 and e2 
  * Subtraction, multiplication, etc, 
  * operators have very similar specs *) 
 
 rule  eval(e1) => v1 & eval(e2) => v2 & v1 + v2 => v3 
       ------------------------------------------------ 
       eval( ADDop(e1, e2) ) => v3 
 
 rule  eval(e1) => v1 & eval(e2) => v2 & v1 - v2 => v3 
       ------------------------------------------------ 
       eval( SUBop(e1, e2) ) => v3 
 
 rule  eval(e1) => v1 & eval(e2) => v2 & v1 * v2 => v3 
       ------------------------------------------------ 
       eval( MULop(e1, e2) ) => v3 

 
 rule  eval(e1) => v1 & eval(e2) => v2 & v1 / v2 => v3 
       ----------------------------------------------- 
       eval( DIVop(e1, e2) ) => v3 
  
 rule  eval(e) => v & -v => vneg 
       -------------------------- 
       eval( NEGop(e) ) => vneg 
 
end (* eval *) 

The proof-theoretic interpretation is assigned to this specification. We interpret 
inference rules as recipes for constructing proofs. 

6.4.1.1 Proof theoretic interpretation 

We wish to prove that there is a value  such that 1 2  holds for this 
specification. To prove this proposition, we need an inference rule that has a 
conclusion, which can be instantiated (pattern-matched) to the proposition. The 
only proposition (rule) that matches is the second one.  

v v+ =>
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(2) 
1 1   2 2   1 2 3

1 2
=> => + =>

+ =>
v v v v

v
v

 

To prove further we need to apply the first proposition (here axiom) twice times and 
we reach the conclusion. 

6.4.2 The rml2c compiler and the runtime system 

The rml2c compiler is written in Standard ML ‘97 (Milner et al. 1997 [74]) using 
the Standard ML of New Jersey (SML/NJ) (SML/NJ-Fellowship 2004-2005 [108]) 
compiler. The compiler (Figure 6-1) uses several intermediate representations on 
which it makes extensive optimizations.  The front-end generates ANSI-C code 
which is linked with the runtime system.  

module Dump  
  with “absyn.rml”  
  relation dump: Absyn.Program => 
() 

Parse

RML AST Reordering 
Static Elaboration 

 
Figure 6-1. The rml2c compiler phases. 

FOL AST 

Debugging 
Instrumentation 

(Typecheck) 
RML AST  to FOL 

FOL to CPS via Pattern-Matching Compiler 

CPS AST 

CPS to Code 

Code AST 

Code to ANSI-C

ANSI-C 
Linking with the 

 RML runtime system 

Executable 



Debugger Design and Implementation   93 

Immediately after parsing, the specification structure is saved in the RML Abstract 
Syntax Tree (AST). A reordering phase is performed in order to arrange the 
declarations in the correct order of dependencies. The static elaboration phase is 
performing type inference and it checks the program correctness.  After the static 
elaboration phase the current RML AST representation is translated to FOL (a 
language similar to First Order Logic) representation. On this representation 
optimizations that improve determinism are applied and the result is translated to 
CPS (Continuation Passing Style) via a Pattern-Matching Compiler. Optimizations 
like constant and copy propagation and also inlining are applied to CPS. The CPS 
representation is translated to a low level imperative representation (Code) that has 
explicit memory management, data construction and control flow. In the last phase 
the Code is translated to ANSI-C. All these phases are depicted in Figure 6-1. 

The RML system has two runtime systems: one for fast execution and one for 
profiling and some logging of the runtime internals. 

6.5 Debugger Design and Implementation 

The design of the debugger had the following requirements as starting points: 

• Conventional debugger functionality (breakpoints, variable value 
inspections, call chain, stack trace, etc.) 

• Inspection/printing of large values. 
• Type querying facilities for variables, relations, datatypes. 
• Special features for failure discovery (In RML, when a relation fails, the 

entire specification can also fail. Because of this, is very important to have 
special functionality for discovering where and under what conditions such 
failure took place.)  

• Modular design for easy integration with other tools and graphical user 
interfaces. 

• Reuse of the existing rml2c compiler and runtime system. 

These requirement specifications were driven by existing tool implementation (the 
rml2c compiler and the runtime system) and easy future extensions and 
integration. Also, extensive user knowledge and experience when writing RML 
specifications was used to derive the debugger requirements.  

According to the requirements, the only changes of the rml2c compiler and 
runtime system to support debugging were: 

• Addition of a new phase that instruments the RML AST with debugging 
nodes. This phase is triggered from a command line parameter. 

• Small changes to the static elaboration phase to output a program database 
with names and types for all the language identifiers. This program database 
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is used from external tools such as the RML Project Browser and the RML 
debugging runtime system to query for types of identifiers. 

• Addition of a new runtime which has debugging functionality. 

The new tools that were developed to aid the debugging task were the RML Data 
Browser, the Emacs Mode for RML debugging and the Post Mortem Analysis tool. 

6.5.1 Overview 

The RML integrated environment with debugging and the various interactions 
between the components are presented in Figure 6-2.  

In the following we only describe the use of the toolbox with regards to 
debugging. The RML Project Browser is a navigator for RML specifications that 
ease the browsing of relations and datatypes.  

 
Figure 6-2. Tool coupling within the RML integrated environment with debugging. 

The rml2c compiler takes as input an RML specification. The specification is 
instrumented with debug nodes. Then, the normal compilation phases are applied 
until C code is generated. The generated C code is compiled and linked with the 
debugging runtime system. Also, the compiler dumps the program database at the 
end of static elaboration phase, after performing type inference. 
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When started, the executable reads in the program database and waits for user 
commands. This is a good time to set breakpoints using commands or helpers from 
Emacs Mode for RML Debugging. Then the execution can be resumed. At 
breakpoints one can print variable values directly in the standard output or they can 
be sent to the RML Data Value Browser for thorough inspection.  

User commands are available in the debugger for recording of the execution in 
an XML trace. The XML trace can be analyzed post-mortem using XML tools. In 
this way, when a certain relation fails and generates the failure of the entire 
specification, one can understand when and why that happens by a post-mortem 
analysis of the execution trace. 

6.5.2 Design Decisions 

This section discusses the design decisions that were taken in the design process of 
our debugging tools.  

6.5.2.1 Debugging Instrumentation 

The RML compiler has several intermediate representations on which aggressive 
optimizations are applied. Because of this, debugging approaches that keep a 
mapping between intermediate representations and store reverse transformations of 
optimizations were out of the question. The best available approach was to apply 
debugging instrumentation at the RML AST level.  

6.5.2.2 External program database 

In order to present variable values using user-defined data structure one has to do 
type reconstruction at runtime. There were two possibilities of keeping a program 
database with the defined relations, variables, types and datatypes: 

• Storing the needed information obtained after type inference in SML data 
structures and generating C code with this information in the Code to C 
phase of the compilation. 

• Exporting the needed information to external files which can be read later 
by the runtime system. 

We choose the second alternative because this kind of information is also useful in 
powerful RML IDE (which includes the RML Project Browser) that provides code 
assist (IntelliSense), displaying of types when hovering over variables and relations, 
pattern writing wizards, project browser, etc.  We have already started to develop 
such IDE for RML and we will report on this work in a future article. 
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6.5.2.3 External Data Value Browser 

After implementing the printing of variable values to standard output it soon 
became apparent that for large values such displaying is unreadable. As an 
alternative we have implemented a very simple but practical value browser 
prototype. One nice feature: the browser provides immediate information about 
where tin the specification code each part of the data structure was defined. Future 
work on this prototype could provide new functionality i.e. for searching, and 
analyses of the variables.  

6.5.2.4 Why not an interpreter? 

Interpreters are good when one wants hands on development with fast feedback. 
However, they are quite slow, because optimizations cannot be applied if one wants 
to give a clear feedback to the user. Also, we already had the compiler. As a future 
project we will consider implementing an interpreter.  

6.5.3 Instrumentation function 

In this section we define the transformations that are performed by the 
instrumentation function over the RML AST. The instrumentation function is 
simple but very effective. In order to define this function we need to explain in 
more detail some parts of the RML language. The detailed RML specification can 
be found in (PELAB 1994-2005 [86], Pettersson 1995 [88], 1999 [90]).  

RML modules have two parts: the interface specification (which defines the 
signatures that are to be exported from the current module) and the actual 
declaration of relations, private module types, datatypes, relations and global 
values. Clauses (rules and axioms) can be grouped together in relations. Rules have 
three parts: the matching pattern, premises, and results. Axioms are just rules 
without premises.  

Premises (also called goals) can be of the following types: 
 

Bindings let pat = exp 

Unification var = exp 
Relation calls longIdentifier(expseq) => patseq 

Negation not premise 

Sequence premise & premise 

Table 6-1. RML premise types. These constructs are swept for  
variables to be registered with the debugging runtime system. 
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Clauses (rules and axioms) have the following form: 
rule <premise> 
     ------------------ 
     var(pat) => result 
axiom var(pat) => result 

Premises can be optional in rules or a sequence of premises. Axioms are just rules 
without premises. 

The debugging instrumentation Instr function transforms only premises in the 
following way: 

Instr(premise) =  
 RML.register_in(parameters) & 
 RML.debug(...) & premise & 
 RML.register_out(results) 

For a sequence of premises the result variables from last executed premise, together 
with the parameter of the next premise, are registered with the debugging 
framework. Then the debugger function RML.debug(...) checks for breakpoints, 
user commands or single-stepping.  The debug function has as parameters the 
source filename, the line/column number of the premise, and the premise textual 
representation.  

As one can see for each premise a sequence of three premises are generated. We 
could have got the live variables for a premise from the runtime system, but we use 
instead call premises that register these in/out variables. We used this approach 
because in the runtime system some variables are not present due to optimizations 
and also a mapping should have been kept that map existing source code variable 
names to positional parameters of relations. The parameters of variable registration 
functions are built by sweeping the premises for variables that appear in expressions 
or patterns. 

6.5.4 Type reconstruction in the runtime system 

The debugging runtime system is loading the program database files at startup and 
stores them in some internal structures. When the program is executed in the 
RML.debug(...) function the filename and the line/column position of the current 
execution point are known. With this knowledge and the name of the variable to be 
printed the program database information is searched for a rule that frames this 
point and contains the variable. The variable type is then retrieved.  

The variable values are stored in the RML runtime heap as tagged pointers or 
immediate values. Immediate values are only integers.  All other values are boxed 
and tagged. The tags contain information about the structure and elements of the 
values.  
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Starting from the variable type and the variable pointer which was registered using 
the register_in/register_out functions the variable value is traversed. At the same 
time the variable type is unfolded and the new type components are mapped to the 
current variable components.  

6.5.5 Debugger implementation 

The implementation of the debugger follows the design closely.  

6.5.5.1 The rml2c compiler addition 

In the rml2c compiler we implemented the instrumentation phase as a separate 
Standard ML module that has as input the RML AST and as output the transformed 
RML AST with the debug nodes added. This additional phase is triggered by a 
command line parameter to the rml2c compiler. Also, the instrumentation can be 
applied selectively module or relation wise in order to instrument only the 
problematic parts of the specification and achieve a faster debugging execution.   

In the static elaboration phase, after type inference is performed we saved the 
type information (that was normally discarded) in an identifier dictionary based on 
balanced search trees. At the end of the phase we write this information to the 
program database file in a flat format composed of: the identifier type, the file 
where it appears, the identifier, the line/column number and its type. A small 
portion of the program database file for our exp1.rml example specification is 
presented in the appendix (section 6.12). 

6.5.5.2 The debugging runtime system 

All the low-level runtime debugger functionality is implemented in C. The user 
commands are read by a command parser and the program database is read using 
another parser. The parsers are implemented using Flex (Lex) (GNU 2005 [46]) and 
Bison (Yacc) (GNU 2005 [47]) and the readline library (GNU 2005 [48]) (for 
history, command input handling, etc).  

The program database is read and stored internally in the runtime as a list. An 
ordering phase is then performed to have the information indexed over module 
name (filename) and line number.  

The RML.debug(...) relation is implemented also in C and uses the RML 
foreign function interface. The relation checks if a breakpoint was reached and in 
that case stops the execution, prints the next premise to be executed and waits for 
user commands. The relations RML.register_in("var_name", var, ...) 
and RML.register_out("var_name", var, ...) save the live variable 
information in internal arrays as (variable name, pointer to variable value) pairs. 
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Only registered variables can be printed or sent to the external variable value 
browser.   

The printing or sending of the variable values is realized by recursive functions 
that traverse both the value structure and the value type at the same time. The type 
of certain variable is retrieved from the program database information by matching 
the file, the name of the variable and the positional frame of the rule. These 
traversing and displaying functions take into consideration the printing depth, which 
is a debugger setting and can be changed using commands. Sockets are used when 
variable values are sent to the external browser. 

6.5.5.3 The data value browser 

The browser is implemented in Java to have the same high portability as the RML 
system. The browser waits to read variable value information from sockets and 
displays them in a tree structure constructed by using the traversal depth. 

Syntax highlighting of RML files is performed by the browser, using a similar 
Emacs RML Mode style to keep the users on familiar grounds. 

6.5.5.4  The Post-Mortem analysis tool 

In this tool, at the moment we have only implemented a Failure analyzer that helps 
users understand where and why their specification failed.  The analyzer is 
implemented in Java and replays the specification execution by navigation in the 
saved XML trace. One can stop, go back and forward in time, display variable 
values, etc. In general users start from the end of the execution and go back to 
where their specification failed.  

The trace files can be quite large, in the order of several hundred megabytes.  To 
overcome this problem we gave the users the possibility to configure the tracer 
using a small specification file that contains:  

• Module, relation and/or rule to be traced. 
• Selection of variable names to include only their value in the trace.  

This file is read by the tracer function and all the information is filtered accordingly.   
We plan to implement more analyses and automated debugging in the future. 

Also, tuning of the specification data structures and its operational properties could 
be suggested by trace analysis.  

6.6 Debugger Functionality 

The Emacs RML debug mode is implemented as a specialization of the Grand 
Unified Debugger (GUD) interface (gud-mode) from Emacs (GNU 2005 [45]). 
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Because the RML debug mode is based on the GUD interface, some of the 
commands have the same familiar key bindings.  

The actual commands sent to the debugger are also presented together with 
GUD commands preceded by the RML debugger prompt: rmldb@>.  

If the debugger commands have several alternatives these are presented using 
the notation:alt1|alt2. The optional command components are presented using 
notation: [optional]. 

In the Emacs interface: M-x stands for holding down the Meta key (mapped to 
Alt in general) and pressing the key after the dash, here x,  C-x stands for holding 
down the Control (Ctrl) key and pressing x, <RET> is equivalent with 
pressing the Enter key and <SPC> with pressing Space key. 

The next subsections present a debugging session on the RML example 
specification presented in subsection 6.4.1. 

6.6.1 Starting the RML Debugging Subprocess 

The command for starting the RML debugger under Emacs: 
M-x rmldb <RET> executable <RET> 

6.6.2 Setting/Deleting Breakpoints 

A part of a session using this type of commands is shown in Figure 6-3. The 
presentation of the commands follows. 

To set a breakpoint on the line the cursor (point) is at: 
C-x <SPC> 
rmldb@> break on file:lineno|string <RET> 

To delete a breakpoint placed on the current source code line (gud-remove): 
C-c C-d 
C-x C-a C-d 
rmldb@> break off file:lineno|string <RET> 

Instead of writing break one can use alternatives br|break| breakpoint. 
Alternatively one can delete/display all breakpoints using: 

rmldb@> cl|clear <RET> 
rmldb@> sh|show <RET> 
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Figure 6-3. Using breakpoints. 

6.6.3 Stepping and Running 

To perform one step (gud-step) in the RML code: 
C-c C-s 
C-x C-a C-s 
rmldb@> st|step <RET> 
rmldb@> <RET> 
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To continue after a step or a breakpoint (gud-cont): 
C-c C-r 
C-x C-a C-r 
rmldb@> ru|run <RET>  

Examples of using these commands are presented in Figure 6-4. 

 
Figure 6-4. Stepping and running. 
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Figure 6-5. Examining data. 

6.6.4 Examining Data 

There are no GUD key bindings for these commands but they are inspired from the 
GNU Project debugger (GDB) [2].   

To print the contents/size of a variable one can write: 
rmldb@> pr|print variable_name <RET> 
rmldb@> sz|sizeof variable_name <RET> 
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at the debugger prompt. The size is displayed in bytes. 
Variable values to be printed can be of a complex type and very large. One can 

restrict the depth of printing using: 
rmldb@> [set] de|depth integer <RET> 

Moreover, we have implemented an external data value browser written in Java 
called RMLDataViewer to browse the contents of such a large variable. To send the 
contents of a variable to the external viewer for inspection one can use the 
command: 

rmldb@> bw|browse|gr|graph var_name <RET> 

at the debugger prompt. The debugger will try to connect to the RMLDataViewer 
and send the contents of the variable. The external data browser has to be started a 
priori. If the debugger cannot connect to the external viewer within a specified 
timeout a warning message will be displayed. More about the external 
RMLDataViewer tool can be found in section 6.7. 

If the variable which one tries to print does not exist in the current scope, a 
notifying warning message will be displayed. 

Automatic printing of variables at every step or breakpoint can be specified by 
adding a variable to a display list: 

rmldb@> di|display variable_name <RET> 

Removing a display variable from the display list: 
rmldb@> un|undisplay variable_name <RET> 

To print the entire display list or to remove all variables from it: 
rmldb@> di|display <RET> 
rmldb@> un|undisplay <RET> 

Printing the current live variables (variables available in the scope): 
rmldb@> li|live|livevars <RET> 

Instructing the debugger to print or to disable the print of the live variable names at 
each step/breakpoint: 

rmldb@> [set] li|live|livevars on|off]<RET> 

Figure 6-5 shows examples of some of these commands within a debugging session. 
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6.6.5 Additional commands 

Additional commands provide functionality for displaying the call chain, the stack 
contents, the runtime status, etc. A session using some of these commands is 
presented in Figure 6-6. 

 
Figure 6-6. Additional debugging commands. 

The stack trace can be displayed using: 
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rmldb@> bt|backtrace <RET> 

Because the contents of the stack can be quite large, one can print a filtered view of 
it: 

rmldb@> fbt|fbacktrace filter_string <RET> 

Also, one can restrict the numbers of entries the debugger is storing using: 
rmldb@> maxbt|maxbacktrace integer <RET> 

Also, the call chain is available in the debugger. Similar commands as for the 
backtrace are available for call chain trace.  

For displaying the status of the RML runtime: 
rmldb@> sts|stat|status <RET> 

The status of the RML runtime comprises information regarding the garbage 
collector, allocated memory, stack usage, etc. 

The current debugging settings can be displayed using: 
rmldb@> stg|settings <RET> 

The settings printed are, i.e.: the maximum remembered stack entries, the depth of 
variable printing, the current breakpoints, the live variables, the list of the display 
variables and the status of the runtime system. 

One can invoke the debugging help or exit the debugger by issuing: 
rmldb@> he|help <RET> 
rmldb@> qu|quit|ex|exit|by|bye <RET> 

6.7 The Data Value Browser 

The RMLDataViewer is a browser for variable values and a new addition to our 
debugging tools for RML. The need for such a tool became apparent when 
debugging specifications that use very large data structures (for example abstract 
syntax tree definitions for a certain language). 

From the executable, at the debugging prompt one can invoke a browse 
command which sends the queried variable value for displaying in the external 
browser. The variable values can be limited in depth using set depth command. In 
this way only needed parts of the variable value are sent.  
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Figure 6-7. Browser for variable values showing the current  

execution point (bottom) and the variable value (top). 

The variable values are displayed in the browser as trees. The trees are collapsed, 
but one can expand them further until the needed information is found. The children 
of the root are the browsed variable names. When users click on the variable names 
the bottom part of the browser shows (using tabs) the file where the execution point 
is/was when the variable was sent to the browser. This functionality is presented in 
Figure 6-7. To make it easy for users to understand their variables, the browser 
shows datatype definitions connections to pieces of variable values like in Figure 
6-8. 
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Figure 6-8. When datatype constructors are selected, the bottom part presents  
their source code definitions for easy understanding of the displayed values. 

The screens were captured while debugging the OpenModelica (Fritzson et al. 2002 
[37], PELAB 2002-2005 [87]) compiler specification and the variable value 
consists of the abstract syntax tree of the Modelica (Modelica-Association 1996-
2005 [75]) language. 

6.8 The Post-Mortem Analysis Tool 

As pointed out in the debugger design and implementation, one can record parts of 
or the entire execution trace of the specification in an XML file. The trace can then 
be analyzed by tools that point out specific issues.  
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In our post-mortem analysis environment we have developed a tool called Failure 
analyzer. The Failure analyzer is a replay debugger which is able to walk back and 
forth in time, display variable values, execution points, etc. When their specification 
fails the users can run this analyzer over the recorded trace, start from the end of the 
execution and go back and investigate where the execution has failed and why. This 
tool was very important for our users, because, for large specifications, is not trivial 
to understand where and why your specification failed.  

The Failure analyzer tool is similar to the data value browser, but has buttons for 
navigation in time, setting/deleting breakpoints and displaying values. 

6.9 Performance Evaluation 

In this section we make performance evaluation of our debugging strategy on three 
real-world semantic specifications that define compilers for extended Pascal 
(petrol), a small functional language (MiniML (Clément et al. 1986 [25])) and a 
large Modelica compiler (OpenModelica). The first two specifications are part of 
the examples bundled with the RML system (PELAB 1994-2005 [86], Pettersson 
1995 [88], 1999 [90]) and the Modelica compiler was implemented in the 
OpenModelica project (Fritzson et al. 2002 [37], PELAB 2002-2005 [87]) and is 
also available for download at the project address.  The semantic specifications 
were compiled to two versions of executables one in release mode and one in 
debugging mode. The compilers were then used to compile programs and the 
compilation performance was measured.  

We have tested the performance of our debugger on an Intel Pentium Mobile at 
1.5Ghz with 480 MB of RAM memory. We compared code growth, execution time, 
stack consumption, and number of relation calls.  

If we consider that a premise (one call) is executed in O(1) then the complexity 
of the call combined with the instrumentation will be O(number of variables from 
the premise)+O(premise)+O(call to the step function) which is a complexity in the 
order of the numbers of variables present in the specification. 

6.9.1 Code growth 

Table 6-2 below shows the additional number of lines of code added during code 
instrumentation. The code growth is between 1.3 and 1.7 which is quite limited. We 
can see that for very large specifications like the OpenModelica compiler the code 
grows less than for smaller specifications. The code growth was measured on the 
files obtained from the abstract syntax tree unparsing before and after the 
instrumentation. The comments were ignored. 
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test/mode  
(debug/normal) 

normal debug 

petrol (1.63) 2513 4083 
miniml (1.57) 1112 1747 

OpenModelica (1.36) 57186 77961 

Table 6-2. Size (#lines) without and with instrumentation. 

6.9.2 The execution time 

The execution time was also measured and the results are presented below.  
 

test/mode 
(debug/normal) 

normal 
(seconds) 

debug 
(seconds) 

petrol (24.63) 0.12 2.96 
miniml (11.19) 6.14 68.71 

OpenModelica (20.55) 0.20 4.11 

Table 6-3. Running time without and with debugging. 

Table 6-3 presents a performance evaluation of our debugger. As one can notice, 
the programs compiled in debug mode are between 10 and 25 times slower than the 
programs compiled without debugging. We find this very acceptable, as this is the 
first prototype and we can get more speedup from various optimizations we can 
apply to the debugging code. For the user, the delay times due to the added 
debugging code are practical. We can note also that very large specifications can be 
debugged without too much penalty. 

6.9.3 Stack consumption 

We have investigated the stack consumption needed during debugging versus the 
normal memory consumption. The results are summarized in Table 6-4. 

 
test/mode 

 (debug/normal) 
normal 
 (words) 

debug  
(words) 

petrol (1.19) 249 297 
miniml (1.01) 8966 9126 

OpenModelica  (1.06) 1447 1543 

Table 6-4. Used stack without and with debugging. 
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It is normal that the debugging version of the runtime needs more stack because it 
has more calls. This can be seen in the next subsection in Table 6-5. However, one 
can see that the stack grow due to debugging is small, which means that high level 
optimization (that improve determinism) in the rml2c compiler are very effective. 

6.9.4 Number of relation calls 

Presented in Table 6-5 is the total number of relations called during execution. Here 
one can see that the debugger is using a large number of calls to register variables 
and to check breakpoints or steps.  

 
test/mode  

(debug/normal) 
normal debug  

petrol (6.30) 350305 2209984 
miniml (16.30) 2809705 45805284 

OpenModelica (5.30) 510321 2706378 

Table 6-5. Number of performed relation calls. 

6.10 Conclusions and Future Work 

In this paper we have presented our practical debugging framework for Natural 
Semantics. The debugging design, implementation and usage (functionality) was 
detailed.  

We can report that some of our RML users that have debugged their 
specifications using this debugging framework have given us positive feedback and 
also various suggestions for improvement.  

While this is a good start, many improvements can be made to this framework. 
As future direction we plan to improve the debugger execution speed, implement 
time traveling without the need of execution tracing, define more post-mortem 
analyses. One of our goals is to integrate of all our tools in an integrated 
development environment (IDE) for RML based on the Eclipse platform 
(EclipseFoundation 2001-2005 [32]). We are already in the preliminary phases of 
designing and implementing such RML IDE. 

6.11 Acknowledgements 

This research was partially supported by the National Graduate School in Computer 
Science (CUGS) and the SSF RISE project. 

 



112   Chapter 6   Debugging Natural Semantics Specifications 

 

6.12 Appendix 

An excerpt from a program database file (saved as exp1.rdb) for our exp1.rml 
specification is given below. The first character defines the kind of the identifier: 
variable, type, datatype constructor or relation.  

v: exp1.rml:16.24.16.27|range[16.3.16.38]|eval[ival:int] 
v: exp1.rml:28.25.28.26|range[24.3.28.35]|eval[e2:exp1.Exp] 
... 
t: exp1.rml:3.12.3.14|exp1.Exp 
c: exp1.rml:6.21.6.25|exp1.MULop:(exp1.Exp,exp1.Exp) => exp1.Exp 
c: exp1.rml:7.21.7.25|exp1.DIVop:(exp1.Exp,exp1.Exp) => exp1.Exp 
c: exp1.rml:4.21.4.25|exp1.ADDop:(exp1.Exp,exp1.Exp) => exp1.Exp 
c: exp1.rml:3.21.3.28|exp1.INTconst:int => exp1.Exp 
c: exp1.rml:5.21.5.25|exp1.SUBop:(exp1.Exp,exp1.Exp) => exp1.Exp 
c: exp1.rml:8.21.8.25|exp1.NEGop:exp1.Exp => exp1.Exp 
r: exp1.rml:14.10.14.13|exp1.eval:exp1.Exp => int 
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Related research contributions 

7.1 Introduction 

In this chapter we give short summaries of additional publications that complete (or 
bring more detail level) this thesis in the proposed research goal.  

7.2 A Functionality Coverage Analysis of Industrially 
Used Ontology Languages 

Olof Johansson, Adrian Pop, Peter Fritzson: A Functionality Coverage Analysis of 
Industrially Used Ontology Languages, In Proceedings of the Model Driven 
Architecture: Foundations and Applications (MDAFA2004), June 10-11, 2004, 
Linköping, Sweden.  

In this article we compare three industrially used ontologies at the functionality 
level. Ontology development for engineering applications and domains is a time 
consuming negotiation and development process that takes years to complete, 
involving many domain experts and tool vendors that must agree. Once agreement 
is reached, an ontology serves as a common language that allows engineers and 
machines to share data and knowledge. The long term goal with this work is to 
share and reuse engineering ontologies amongst different programming languages 
and tools, and thus facilitate engineering system integration and automated sharing 
of huge amounts of engineering knowledge and product data. 

The paper presents and compares ontology functionality using UML diagrams 
for the software design language UML 1.5, the mathematical modeling language 
Modelica 2.1, and e-business datadictionary RosettanNet technical dictionary 3.2. 
The conclusion is that static, structural ontologies and product data can be shared 
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amongst these languages using fully automated processes. However UML 
TaggedValues and Modelica Annotations or CommentStrings must be used in a 
standardized way for full roundtrips.   

7.3 Deriving a Component Model from a Language 
Specification: An Example Using Natural 
Semantics 

Ilie Savga, Adrian Pop, Peter Fritzson: Deriving a Component Model from a 
Language Specification:An Example Using Natural Semantics, Technical Report, 
2004, http://www.ida.liu.se/~adrpo/reports.  

Development of a component model for a given language is tedious, time-
consuming, and error-prone. Moreover, many tasks of this process have to be 
repeated when modeling sets of related languages. In this paper, we propose to use 
the meta-modeling approach and for a given language to derive an invasive 
component model as its derived meta-model. The derivation of a component model 
then becomes a horizontal extension of the corresponding language meta-model. 
We argue that, in principle, any language construct can be made generic by a 
mapping to a generic element of its component model. Moreover, for extensible 
language constructs additional mappings can be provided to support extensible 
component constructs. Using this approach, a generic and extensible component 
model can be derived from a given language and used both for generic and view-
based programming.  

The presented approach provides significant automation support in the 
development of component models for arbitrary languages. 

As an example, we show the derivation of a component model using a Natural 
Semantics specification for a given language. The specification is defined using the 
Relational Meta-Language (RML), which is an executable implementation of 
Natural Semantics. 

7.4 A Portable Debugger for Algorithmic Modelica 
Code 

Adrian Pop, Peter Fritzson: A Portable Debugger for Algorithmic Modelica Code, 
In Proceedings of the 4th International Modelica Conference (Modelica2005), 
March 7-9 , 2005, Hamburg-Harburg, Germany.  

In this paper we present the first comprehensive debugger for the algorithmic subset 
of the Modelica language, which augments previous work in our group on 

http://www.ida.liu.se/~adrpo/reports
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declarative static and dynamic debugging of equations in Modelica. This replaces 
debugging of algorithmic code using primitive means such as print statements or 
asserts which is complex, time-consuming, and error- prone.  

The debugger is portable since it is based on transparent source code 
instrumentation techniques that are independent of the implementation platform. 

The usual debugging functionality found in debuggers for procedural or 
traditional object-oriented languages is supported: setting and removing 
breakpoints, single-stepping, inspecting variables, back-trace of stack contents, 
tracing, etc. 

7.5 ModelicaDB – A Tool for Searching, Analyzing, 
Crossreferencing and Checking of Modelica 
Libraries 

Olof Johansson, Adrian Pop, Peter Fritzson: ModelicaDB - A Tool for Searching, 
Analyzing, Crossreferencing and Checking of Modelica Libraries, In Proceedings 
of the 4th International Modelica Conference (Modelica2005), March 7-9, 2005, 
Hamburg-Harburg, Germany. 

This paper presents ModelicaDB, a tool that provides several kinds of queries on 
repositories of Modelica models.  

The Modelica language has a growing user community that produce a large and 
increasing code base of models. However, the reuse of models within the Modelica 
community can be greatly hampered in the future if there are no tools to address a 
number of management issues (i.e. scalable searching, analyzing, crossreferencing, 
checking, etc) of such a large repository of models.  

We try to address these issues by providing the Modelica community with a 
ModelicaDB database for storing models and services for querying this database to 
perform a wide range of model engineering tasks in a scalable fashion. 

In the long-term, this work also aims at providing integration between Modelica 
tools and advanced product development processes that rely on database 
technology. 

7.6 Towards Comprehensive Meta-Modeling and 
Meta-Programming Capabilities in Modelica 

Peter Fritzson, Adrian Pop, Peter Aronsson: Towards Comprehensive Meta-
Modeling and Meta-Programming Capabilities in Modelica, In Proceedings of the 
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4th International Modelica Conference (Modelica2005), March 7-9, 2005, 
Hamburg-Harburg, Germany.  

The need for integrating system modeling with tool capabilities is becoming 
increasingly pronounced. For example, a set of simulation experiments may give 
rise to new data that are used to systematically construct a series of new models, 
e.g. for further simulation and design optimization. Using models to construct other 
models is called meta-modeling or meta-programming. 

In this paper we present extensions to the Modelica language for comprehensive 
meta-programming, involving transformations of abstract syntax tree 
representations of models and programs. The extensions have been implemented 
and used in several applications, and are currently being integrated into the 
OpenModelica environment. 
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