
MetaModelica
A Unified Equation-Based Semantical and Mathematical

Modeling Language

Adrian Pop and Peter Fritzson

Programming Environment Laboratory
Department of Computer and Information Science

Linköping University
2006-09-14

JMLC’2006, September 13-15,
Oxford, UK

2

Outline

Modelica
Introduction
Language properties
Example

MetaModelica
Motivation
MetaModelica extensions to Modelica
Example

Future Work

Conclusions

3

Modelica – General Formalism to Model Complex Systems

Robotics
Automotive
Aircrafts
Satellites
Biomechanics
Power plants
Hardware-in-the-loop,
real-time simulation
etc

4

Modelica – The Next Generation Modeling Language

Declarative language
Equations and mathematical functions allow acausal
modeling, high level specification, increased
correctness

Multi-domain modeling
Combine electrical, mechanical, thermodynamic,
hydraulic, biological, control, event, real-time, etc...

Everything is a class
Strongly typed object-oriented language with a
general class concept, Java & Matlab like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, nonproprietary
Efficiency comparable to C; advanced equation
compilation, e.g. 300 000 equations

5

Modelica Language Properties

Declarative and Object-Oriented

Equation-based; continuous and discrete equations

Parallel process modeling of concurrent applications,
according to synchronous data flow principle

Functions with algorithms without global side-effects
(but local data updates allowed)

Type system inspired by
Abadi/Cardelli (Theory of Objects)

Everything is a class – Real, Integer, models,
functions, packages, parameterized classes....

6

The Form - Equations
Equations were used in the third millenium B.C.

Equality sign was introduced by Robert Recorde in 1557

Newton (Principia, vol. 1, 1686) still wrote text:
“The change of motion is proportional to the motive force impressed; ...”

CSSL (1967) introduced special form of “equation”:
variable = expression
v = INTEG(F) / m

Programming languages usually do not allow equations

∑=⋅ iFvm
dt
d)(

Modelica Background

7

Modelica Acausal Modeling Semantics

• What is acausal modeling/design?
• Why does it increase reuse?

The acausality makes Modelica classes more reusable than
traditional classes containing assignment statements where
the input-output causality is fixed.

• Example: a resistor equation:
R*i = v;

can be used in three ways:
i := v/R;

v := R*i;

R := v/i;

8

Modelica - Reusable Class Libraries

Info
R= C= L=

G

A
C=

DC=

V
s Is

S

D T

-
+

Op
V i

E

 : 1

Info
shaft3DS=

S
shaft3D= shaftS=

S

shaft=

gear1=

gear2=

planetary=
diff=

sun=

planet=
ring=

bearing fixTooth

S
moveS move

torque

c= d=

fric=

fricTab clutch=
converter

r

w a t
fixedBase

S
state

Info
inertial

bar= body= bodyBar=

cylBody=bodyShape=

revS=
S

prismS=
S

screw S=

S
cylS=

S

univS

S
planarS=

S

sphereS

S

freeS

S
rev= prism=

screw =

cyl= univ planar= sphere
free

C

barC=

barC2=
x

y

C

sphereC c= d= cSer=

force

torque

lineForce=

lineTorque=

sensor

s sd

lineSensor

Library

advanced

Library

drive

Library

translation

9

Graphical Modeling - Drag and Drop Composition

10

inertial
x

y

axis1

axis2

axis3

axis4

axis5

axis6
r3Drive1

1
r3Motor

r3ControlqdRef
1

S

qRef
1

S

k2

i

k1

i

qddRef cut joint

l

qd

tn

Jmotor=J

gear=i

spring=c

fr
ic

=R
v0

S
rel

joint=0

S

V
s

-

+
diff

-

+
pow er

emf

La=(250/(2*D*w
m

))
Ra=250

Rd2=100

C=0.004*D/w m

-

+
OpI

Rd1=100

Ri=10

Rp1=200
Rp

2=
50

Rd4=100

hall2

Rd
3=

10
0

g1

g2

g3

hall1

g4

g5

rw

qd q

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

Srel = n*n' + (identity(3) - n*n')*cos(q) - skew(n)*sin(q);
wrela = n*qd;
zrela = n*qdd;
Sb = Sa*Srel';
r0b = r0a;
vb = Srel*va;
wb = Srel*(wa + wrela);
ab = Srel*aa;
zb = Srel*(za + zrela + cross(wa, wrela));
fa = Srel'*fb;
ta = Srel'*tb;

Hierarchical Composition Diagram for a Model of a Robot

11

Multi-Domain Modelica Model - DCMotor

A DC motor can be thought of as an electrical circuit
which also contains an electromechanical component.

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
ElectroMechanicalElement EM(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, EM.n);
connect(EM.p, DC.n);
connect(DC.n,G.p);
connect(EM.flange,load.flange);

end DCMotor

load

EM
DC

G

R L

12

Modelica compilation stages

 Modelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

Modelica model

Flat model

Topologically sorted equations

Optimized sorted
equations

C code

Executable

13

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

(load component not included)

14

Connector Classes, Components and Connections

Keyword flow indicates
that currents of connected

pins sums to zero.

A connect statement in Modelica

corresponds to

connector Pin
Voltage v;
flow Current i;

end Pin;

connect(Pin1,Pin2)

Connection between Pin1 and Pin2

Pin1.v = Pin2.v
Pin1.i + Pin2.i = 0

15

Common Component Structure as SuperClass

model TwoPin
”Superclass of elements with two electrical pins”
Pin p,n;
Voltage v;
Current i;

equation
v = p.v – n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

16

Electrical Components Reuse TwoPin SuperClass

model Inductor ”Ideal electrical inductor”
extends TwoPin;
parameter Real L ”Inductance”;

equation
L*der(i) = u

end Inductor;

model Resistor ”Ideal electrical resistor”
extends TwoPin;
parameter Real R ”Resistance”;

equation
R*i = u

end Resistor;

17

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

(load component not included)

18

MetaModelica - Context

Syntax - there are many efficient parser
generator tools

lex (flex), yacc (bison), ANTLR, Coco, etc.

Semantics:
there are no standard efficient and easy to use
compiler-compiler tools

19

MetaModelica - Motivation

Can we adapt the Modelica equation-based style
to define semantics of programming languages?

Answer: Yes!
MetaModelica is just a part of the answer

executable language specification based on
a model (abstract syntax tree)
semantic functions over the model

elaboration and typechecking
translation
meta-programming
transformation
etc.

Further improvement – more reuse of language
specification parts when building specifications
for a new language (Future Work)

20

MetaModelica - Idea

We started from
The Relational Meta-Language (RML)

A system for building executable natural semantics specifications
Used to specify Java, Pascal-subset, C-subset, Mini-ML, etc.

The OpenModelica compiler for Modelica specified in RML

Idea: integrate RML meta-modeling and meta-
programming facilities within OpenModelica by extending
the Modelica language.
The notion of equation is used as the unifying feature

Now we have
The MetaModelica language
The Modelica executable language specification (OpenModelica
compiler) in MetaModelica (~114232 lines of code)
Meta-programming facilities for Modelica

21

MetaModelica extensions to Modelica (I)

Modelica
classes, models, records, functions, packages
behaviour is defined by equations or/and functions
equations

differential equations
algebraic equations
partial differential equations
difference equations
conditional equations

MetaModelica extensions
local equations
pattern equations
match expressions
lists, tuples, option and uniontypes

22

MetaModelica extensions to Modelica (II)

pattern equations
unbound variables get their value by unification

Env.BOOLVAL(x,y) = eval_something(env, e);

match expressions
pattern matching
case rules

pattern := match expression optional-local-declarations
case pattern-expression opt-local-declarations
optional-local-equations then value-expression;

case ...
...
else optional-local-declarations
optional-local-equations then value-expression;

end match;

23

MetaModelica – Example (I)

package ExpressionEvaluator

// abstract syntax declarations

...

// semantic functions

...

end ExpressionEvaluator;

24

package ExpressionEvaluator

// abstract syntax declarations

// semantic functions
...

end ExpressionEvaluator;

MetaModelica – Example (II)

uniontype Exp
record RCONST Real x1; end RCONST;
record PLUS Exp x1; Exp x2; end PLUS;
record SUB Exp x1; Exp x2; end SUB;
record MUL Exp x1; Exp x2; end MUL;
record DIV Exp x1; Exp x2; end DIV;
record NEG Exp x1; end NEG;

end Exp;
Expression: 12+5*13
Representation:
PLUS(
RCONST(12),
MUL(
RCONST(5),
RCONST(13)
)

)

PLUS

MULRCONST

RCONST RCONST12

5
13

25

MetaModelica – Example (III)
package ExpressionEvaluator
// abstract syntax declarations
...

// semantic functions

function eval
input Exp in_exp;
output Real out_real;

algorithm
out_real := match in_exp

local Real v1,v2,v3; Exp e1,e2;
case RCONST(v1) then v1;
case ADD(e1,e2) equation

v1 = eval(e1); v2 = eval(e2); v3 = v1 + v2; then v3;
case SUB(e1,e2) equation

v1 = eval(e1); v2 = eval(e2); v3 = v1 - v2; then v3;
case MUL(e1,e2) equation

v1 = eval(e1); v2 = eval(e2); v3 = v1 * v2; then v3;
case DIV(e1,e2) equation

v1 = eval(e1); v2 = eval(e2); v3 = v1 / v2; then v3;
case NEG(e1) equation

v1 = eval(e1); v2 = -v1; then v2;
end match;

end eval;

end ExpressionEvaluator;

26

Modelica/MetaModelica Development Tooling (MDT)

Supports textual editing of Modelica/MetaModelica
code as an Eclipse plugin
Was created to ease the development of the
OpenModelica development (114232 lines of code)
and to support advanced Modelica library
development
It has most of the functionality expected from a
Development Environment

code browsing
code assistance
code indentation
code highlighting
error detection
automated build of Modelica/MetaModelica projects
debugging

27

Modelica/MetaModelica Development Tooling

Code Assistance on
function calling.

28

Conclusions and Future Work

MetaModelica a language that integrates modeling
of

physical systems
programming language semantics

at the equation level

MetaModelica is a step towards reusable libraries
of specifications for programming language
semantics

Future Work
How do devise a suitable component model for the
specification of a programming language semantics in
terms of reusable components.
Tools to support such language modeling.

29

End

Thank you!
Questions?

http://www.ida.liu.se/labs/pelab/rml

http://www.ida.liu.se/labs/pelab/modelica/OpenModelica.html

