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1. INTRODUCTION

Natural semantics has become the specification method of choice for the se-
mantics of programming languages during the last decade. It defines static
semantic properties as well as the dynamic semantics of programming lan-
guages by inference rule systems. Natural semantics has grown in popularity
over denotational semantics because fixed points are defined implicitly as part
of the rule formalism. Moreover, natural semantics is more modular than de-
notational semantics because static and dynamic semantic information can
be specified separately from each other without the need for a common fixed
point.

In this article, we argue that natural semantics is a uniform declarative spec-
ification method for static semantic properties of programming languages. In
particular, context-sensitive properties of programming languages such as well-
typing or proper declarations of variables can be specified in the same manner
as further static program analyses ranging from classical data and control flow
analyses to type and effect systems. Usually context-sensitive properties can
be computed directly during the semantic analysis phase in compilers by trans-
porting semantic information through the abstract syntax trees of programs. In
contrast, typical static program analyses need fixed-point computations to de-
termine a solution. Hence, we establish natural semantics as a uniform frame-
work to express the semantic analysis as well as fixed-point program analyses.
This is important not only from a theoretical point of view. Many compilers do
not strictly separate between the semantic analysis and succeeding program
analyses. Therefore it is an important feature of a specification framework to
be able to express both together. Moreover, because of its declarativity, natu-
ral semantics is especially suited to be used in the formal and, by employing
automated theorem provers, mechanical verification of programming language
properties. On the practical side, natural semantics specifications allow for the
generation of corresponding analyses. It is the goal of our work to establish
natural semantics as a formalism which meets the seemingly contrary require-
ments of being declarative and of being able to generate efficient analyses.

Natural semantics1 [Kahn 1987] is a deductive method to determine pro-
gram properties. Thereby, axioms and inference rules specify semantic proper-
ties with respect to language elements. For example, the type checking rule
for the conditional statement would be defined as shown in Figure 1. The con-
clusion of the inference rule describes the program node corresponding to the
whole conditional statement while the three assumptions specify the children
nodes. Natural deduction [Gentzen 1935] is used to infer the properties of an
entire program. Due to its logical character, natural semantics is a declara-
tive specification method. Moreover, the program structure corresponds directly

1Deductive semantics would be a better name.
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Fig. 1. Inference rule for the conditional statement.

with the structure of a proof for the static semantic properties of the program.
This correspondence means that analysis implementations can be automati-
cally generated because the proof structure is already known in advance and
does not need to be computed by an extensive search. So natural semantics
specifications have the potential to be declarative and, simultaneously, enable
the generation of efficient parts of a compiler. This is also the reason why na-
tural semantics specifications have become widespread in the last decade. The
most prominent example for this development is the complete specification of
the static and dynamic semantics of Standard-ML [Milner et al. 1990, 1997;
Milner and Tofte 1991]. In contrast to the general character of natural seman-
tics, most current tools need restricted forms as input so that declarativity and
the ability to generate analyses do not exist at the same time; see Section 8 for
a detailed discussion.

As a solution to bridge this gap between declarative and operational speci-
fication methods as well as between specification frameworks for the semantic
analysis and further fixed-point program analyses, we present sorted natural
semantics. It is a declarative specification method for static semantic properties
of programming languages. In particular, it is able to define semantic proper-
ties of imperative and object-oriented programming languages. Specifications
in this framework are modular. By modularity, we mean that different aspects
of the language semantics can be specified independently from each other so
that specifications are easily extensible and reusable. The corresponding ana-
lysis can be generated from such specifications. Therefore we represent the
solution of such an analysis by the notion of a proof tree. We show that proof
trees can be computed by solving an equivalent residuation problem. For the
semantic analysis, we show how such constraint problems can be solved with
a basic algorithm. In special cases, the efficiency of this basic algorithm can
be enhanced by solution strategies. Since attribute grammars are regarded
as sufficiently expressive to specify the context-sensitive properties of impe-
rative and object-oriented programming languages, we compare our approach
with them. Thereby we show that each well-defined attribute grammar can
also be expressed in our specification language so that the semantic analysis
can be generated. Moreover, we demonstrate that language constructs which
are common in object-oriented programming languages can be expressed more
easily and declaratively in sorted natural semantics than in attribute gram-
mars. Concerning fixed-point program analyses, we discuss that the classical
data and control flow analyses expressable within monotone frameworks, (cf.
Nielson et al. [1999]), can also be specified in sorted natural semantics. More-
over, we show that type and effect systems (cf. also Nielson et al. [1999]), can
directly be stated in sorted natural semantics. The basic algorithm for the se-
mantic analysis corresponds directly with a concurrent constraint program.
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We have implemented the basic algorithm based on this observation. A test
implementation using the concurrent constraint programming language Oz
shows the feasibility of the basic algorithm. The much more efficient prototype
implementation using Java employed these experiences and proves that the
basic algorithm can be used in practice. Throughout this article, we use two
example specifications: Mini-Java is a small object-oriented programming lan-
guage taking into account inheritance, subclassing, and the polymorphism of
Java. Its specification demonstrates the applicability of sorted natural seman-
tics to object-oriented programming languages. The second example language
concentrates on the use of variables before their definition and is introduced
to show that sorted natural semantics specifications are more declarative than
attribute grammars. (Parts of this article have been published in Glesner and
Zimmermann [1997, 1998] and Glesner [1998, 1999a, 1999b].)

This article is organized as follows: In Section 2, we define sorted natural
semantics, thereby also using parts from the example specifications to demon-
strate the method. In particular, we characterize analysis results based on the
notion of proof trees. In Section 3, we introduce the basic algorithm to generate
the semantic analysis. In Section 4, we describe solution strategies to enhance
the basic algorithm for the semantic analysis. They exploit ideas from the the-
ory of attribute grammars. The comparison with attribute grammars is given in
Section 5. In Section 6 we show that classical data flow analyses as well as type
and effect systems are expressible within sorted natural semantics. The proto-
type implementation is presented in Section 7. In Section 8, we discuss related
work. Finally, in Section 9, we conclude and list some ideas for future work. The
example specifications used throughout this article are listed in Appendices A
and B, respectively.

2. SORTED NATURAL SEMANTICS

We define the logical calculus of sorted natural semantics. In particular, we
demonstrate how static semantic properties of programming languages can be
specified within that calculus. Then we define the notion of proofs for semantic
properties. Finally we show how proofs can be found by reducing this question to
a residuation problem. This residuation problem can be tackled with constraint
solving techniques.

2.1 Logical Calculus

We describe semantic information as terms of a sorted logic. First we present
this logic. Then we introduce axioms and inference rules which define static
semantic properties of programming languages. They associate semantic infor-
mation with the terminals and nonterminals of particular productions of the
abstract syntax.

2.1.1 Sorted Semantic Information. We use abstract data types to describe
static semantic information. According to Wirsing [1990], an abstract data type
is defined over a signature � = 〈S, F 〉 where S is a set of sorts and F is a set of
function symbols. We associate with each f ∈ F input sorts T1, . . . , Tn ∈ S and
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one output sort T ∈ S denoted by T1×· · ·×Tn → T. The notion of a term t of sort
T is defined in the standard way; for details see Wirsing [1990]. Abstract data
types can be defined inductively as term algebras via constructor functions. In
these cases, a sort T ∈ S is interpreted as the set of constructor terms of sort
T. Additionally, we consider finite sets over sorts. The sort of finite sets over a
sort T is denoted by {T}. Elements of {T} can be defined extensionally as finite
sets because sets allow for particularly declarative specifications. Finite sets
are sufficient because all information derived by static analyses of programs is
finite.

To simplify the presentation, we assume that the following basic sorts Nat,
Bool, String, and GenInfo do already exist. Nat, Bool, and String are the
sorts representing the integers together with the usual arithmetic operations,
the Boolean values with the constants true and false and the common functions
on truth values, as well as the strings of finite length together with their opera-
tions and constants as, for example, string concatenation or constants to denote
individual strings. GenInfo is a sort with the constant correct whose sole func-
tion is to mark correct programs or program fragments. It is straightforward to
define the basic sorts as abstract data types via appropriate constructor func-
tions: for example, for the natural numbers we would take the constant 0 and
the successor function s : Nat → Nat. We assume the following pairwise dis-
joint, enumerable infinite sets of symbols: �, the set of all sorts, C, the set of all
constructor functions, and D, the set of all defined functions.

Each semantic information is a pair t : : Sort denoting that term t is of sort
Sort. Each sort is either a basic sort or defined by a sort equation. A specification
contains a list of sort equations, each of the form Sort = Sort Term, Sort ∈ �.
Sort Term is a term built from basic sorts or sorts which are also defined in
the list of sort equations, that is, inductive and mutually recursive definitions
are also allowed. In particular, Sort can appear in Sort Term as well. In detail,
Sort Term can be built as follows:

—Term algebra: Sort = F1(S(1)
1 , . . . , S(1)

m(1)) ⊕ · · · ⊕ Fn(S(n)
1 , . . . , S(n)

m(n)) is a valid
sort equation if Fi �= F j for i �= j , and if F1, . . . , Fn are constructor functions
which have not been used in any other sort equation in the specification. As
an example, consider the self-explanatory definition of the set Nat List of
lists of natural numbers: Nat List = [] ⊕ cons(Nat, Nat List).

—Cartesian product: Sort = S1 × · · · × Sn is a valid sort definition if for all
1 ≤ i ≤ n, Si is defined by a sort equation and Si does not depend on Sort. A
Cartesian product defines a term algebra with constructor 〈·, . . . , ·〉Sort. We
omit the subscript if it is clear from the context.

—Renaming: Sort = S is a Cartesian product with n = 1. For example, in the
specification of Mini-Java in Appendix A, we define the sort Type as being
equal to the sort String, Type = String. This is useful in object-oriented
programming languages because types are identified by names of classes.

—Sets: Sort = {S} is a valid sort definition if S is defined by a sort equation
and S does not depend on Sort. Each set sort is defined as a term algebra
with the constructor functions ∅Sort, {·}Sort, and ∪Sort. We omit the subscript
if it is clear from the context. The constructor ∪ is associative, commutative,
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and idempotent. Consequently only finite subsets of S can be represented by
Sort. For example, Types = {Type} defines Types as a sort whose elements
are sets containing terms of sort Type.

—Lists: Sort = [S] is valid sort definition if S is defined by a sort equation
and S does not depend on Sort. A list sort has the constructors []Sort and
consSort : S × Sort → Sort.

The sort equations define the signatures of the constructor functions: if S =
F1(S(1)

1 , . . . , S(1)
m(1)) ⊕ · · · ⊕ Fn(S(n)

1 , . . . , S(n)
m(n)) is the sort equation, then Fi : S(i)

1

× · · ·×S(i)
m(i) → S is the signature of constructor function Fi, 1 ≤ i ≤ n. Since we

deal only with first-order functions, the symbol → only occurs in the function
signatures and not in the arguments or results.

We allow recursion only via constructors in order to avoid inconsistencies
such as, for example, Sort = {Sort} or Sort = S × Sort. It is not possible to
construct terms representing such sets or Cartesian products, respectively. We
also do not have subsort declarations. This avoids Russell’s paradox because
there is no common supersort Set which would have {Set} as a subsort of Set.

The sort equation Sort = {R(S1, . . . , Sn)} is an abbreviation for the two defini-
tions X = R(S1, . . . , Sn) and Sort = {X}, where X is a new sort symbol different
from all sorts in the specification. It defines the sort of all n-ary relations over
the sorts S1, . . . , Sn whereby R is the relation predicate of these relations. As
an example, consider the sort equation Subtyping = {� (Type, Type)} from
the Mini-Java specification in Appendix A which defines the sort of subtyping
relations as a binary relation over Type with the relation symbol �.

For the defined functions, the signatures are explicitly stated in the set Sig:
Sig = {f : S1 × · · · × Sn → S | n ∈ N, S1, . . . , Sn, S ∈ �, f ∈ D}. DSetSort =
{∩Sort, ∈Sort, \Sort} ⊆ D are the defined functions for sets of sort Sort = {S}.
With DSet = ⋃

{Sort|Sort is a set sort} DSetSort , we denote the set of the defined func-
tions of all set sorts.

Terms and formulas are built as a first-order language. We assume a set V
of sorted variables x : : Sort. Each variable x is annotated with its sort Sort.
Terms t are also annotated with their sort: t : : Sort. If clear from the context,
we omit the sort annotation, especially for formulas. An equation is a pair of
terms of the same sort, denoted by t1 = t2. An atomic formula is either an
equation, or a sort membership statement of the form t : : Sort, or a term of
sort Bool. General formulas are built as usual, (cf. Wirsing [1990]). The free
and quantified variables in a formula ϕ and the variables contained in a term
t are defined in the usual way as well, denoted by FV(ϕ), QV(ϕ), and V (t). We
use the standard interpretation for formulas; see, for example, Wirsing [1990].
{x1, . . . , xn} is an abbreviation for {x1} ∪ (· · · ∪ ({xn−1} ∪ {xn})), P(t1, . . . , tn) is an
abbreviation for P(t1, . . . , tn) = true. Restricted quantified formulas are formulas
where only quantifications over finite sets are allowed, for example, ∀ (x : : S1) ∈
(M : : {S1}).ϕ. This is an abbreviation for ∀ (x : : S1).(x : : S1) ∈ (M : : {S1}) ⇒ ϕ.
Truth values of restricted quantified formulas can easily be computed as soon
as the values of all free variables representing finite sets are known (M : : {S1}).
If M = {t1, . . . , tn}, the above formula is equivalent to ϕ[t1/x]∧· · ·∧ϕ[tn/x] where
ϕ[t/x] denotes the substitution of the free variable x by term t.
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Variable substitutions are sorted in the sense that variables are replaced by
terms of the same sort. Variable renamings are injective variable substitutions
replacing variables by variables. Two terms t1 and t2 are unifiable if there exists
a substitution σ such that σ (t1) = σ (t2). σ is a most general unifier of t1 and t2 if,
for every unifier τ , there exists a substitution π such that τ = π◦σ . Most general
unifiers are computed with the Herbrand-Robinson algorithm [Robinson 1965].

A syntactic unification is not sufficient for terms of a set sort. For unifica-
tion of set terms we often consider terms such S ∪ {t1, . . . , tn} where ti �∈ S. We
denote this by S � {t1, . . . , tn}. Therefore, we need to consider the associativity
and commutativity of ∪ but not the idempotency. Hence, in our framework each
set sort can be described by an AC1 (associative, commutative with identity
element) equational theory where the empty set is the identity element with
respect to ∪. Two semantically equivalent set terms can be syntactically differ-
ent. Therefore, we need to consider AC1-unifiers which unify set terms modulo
the AC1 equational theory. In general, a minimal complete set of AC1-unifiers
may be doubly exponential in the size of the given AC1-problem [Domenjoud
1992]. To decide the AC1-unifiability of two terms is NP-complete [Kapur and
Narendran 1992] (cf. Baader and Schulz [1998] for an overview). In Section 3,
we show how AC1-unifiers can be computed efficiently in special cases which
are sufficient to cover the situations arising in semantic analysis. In general,
one needs to make sure that, for each specification employing set sorts, this
AC1-unification problem has a reasonable solution. For now, we assume that
we have AC1-unifications at our disposal.

Remark 2.1. We distinguish between properties depending on the program
and general properties which are independent of the program. The latter are
formalized by logical formulas, the former by means of inference rules. However,
there are situations where properties stem from both, the program and general
properties. For example, the subtyping relations in object-oriented programs
stem from the subclass declarations in the program (program-dependent prop-
erty) and from the transitivity of subtype relations (program-independent prop-
erty). Such situations are modeled by relations. We therefore distinguish be-
tween predicates (completely program-independent) and relations (based also
on program-dependent information).

Predicates and defined functions on the sorts are specified declaratively by
equational Horn clauses. We have chosen Horn clauses because we regard them
as a declarative formalism but any other equivalent will do as well. For exam-
ple, the sort Subtyping = {� (Type, Type)} represents inheritance relations
in object-oriented programs. Such relations are transitive, expressed by the
following Horn clause:

A � C ∈ subtypes ← subtypes : : Subtyping,
A � B ∈ subtypes,
B � C ∈ subtypes.

The head of the Horn clause has the form F(t1, . . . , tn) = t where F is a de-
fined function not contained in DSet except ∈ for relations. The subgoals of the
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Horn clause are either sorted variables x : : Sort or formulas without quantifi-
cations. Extra variables, that is, variables which occur in the body of a clause
but not in the head, are allowed (cf. as an example the above transitivity rule).
Furthermore, a Horn clause might have a side condition which states when this
Horn clause is valid. As conditions, restricted quantified formulas are allowed
whereby the free variables of the condition must be contained in the variables
of the subgoals and the head of the Horn clause. Note that it is not possible
to specify the behavior of constructor functions or functions on sets with Horn
clauses; only defined functions and predicates as well as relations can be defined
with them. Relations are special because general properties on relations are re-
quired to be defined (e.g., the transitivity of a binary relation; see above). This
affects the element-function “∈” on relations. If there is no explicit definition
for the properties of a relation, then the usual ∈-function is assumed.

Sorts constructed from sets are particularly useful to define semantic infor-
mation consisting of a collection of uniform data, for example, definition tables
in the semantic analysis. Elements from such sets have typically an internal
structure with certain properties. For example, they could be tuples whose first
component uniquely identifies them. We specify such a search key property by
defining a function uniqueSort. Assume that elements of Sort Sort are sets con-
taining elements of sort Sort′. Assume furthermore that elements of Sort′ are
pairs whose first component (e.g., the name of a variable) uniquely identifies
them. This can be expressed with the following two Horn clauses:

uniqueSort(〈x, y〉) = [x].
e1 = e2 ← uniqueSort(e1) = uniqueSort(e2).

The latter of the two Horn clauses can be specified for every sort. In general,
the signature of uniqueSort is given by uniqueSort : Sort′ → [S] where S is the
sort of the search keys. For each sort S of a specification, if there is no explicit
definition of a unique-function, by convention it is implicitly assumed to be the
identity function. The unique-functions play an important rôle in the restricted
AC1-unification, as shown in Section 3.

2.1.2 Axioms and Inference Rules. Axioms and inference rules define the
static semantic properties of nodes in the abstract syntax tree. Their assump-
tions and conclusions consist of judgments. Judgments define the properties
of a program node k as a sequence of semantic information t1, . . . , tl+n of sorts
Sort1, . . . , Sortl+n, respectively:

t1 : : Sort1, . . . , tl : : Sortl  k : tl+1 : : Sortl+1, . . . , tl+n : : Sortl+n.

The sequence of semantic information t1 : : Sort1, . . . , tl : : Sortl is called the
context of node k while tl+1 : : Sortl+1, . . . , tl+n : : Sortl+n is called the properties
of k. We say that the judgment is a judgment for k. In principle, there is no dif-
ference between the semantic information in the context and in the properties.
In particular, there is no logical consequence between the semantic information
in the context and in the properties. Merely in the description of programming
languages, it is common to separate the semantic information of a node into
that which is derived from its predecessor (the context) and into that which is
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derived from its children (the properties), even though this distinction is not
strict here.2 Since we use sorted semantic information, we can specify different
kinds of semantic information independently from each other, making modular
specifications possible.

Inference rules define the judgment for a node of the abstract syntax tree
depending on the judgments of its successors. An inference rule consists of
assumptions A1, . . . , An, a conclusion C, and a side condition ϕ. A1, . . . , An, C
are judgments.

A1, . . . , An

C
if ϕ

ϕ is a restricted quantified formula which contains as free variables only those
which are already contained in the assumptions or the conclusion of the in-
ference rule. Therefore the validity of ϕ is decidable and easily computable if
the values of all free variables in the inference rule are known and if the free
variables in the restricted quantified formulas are instantiated with finite sets.
If there is a production X 0 : := X 1 · · · X n in the abstract syntax of the program-
ming language, then we require that there be at least one inference rule whose
conclusion is a judgment for X 0 and whose n assumptions are judgments for
X 1, . . . , X n. An axiom is an inference rule without assumptions, necessary to
describe the judgments for terminal nodes without successors. Substitutions σ

can be applied to judgments and inference rules by replacing each contained
semantic information t : : Sort by σ (t) : : Sort.

Example 2.2. In the specification of Mini-Java, we specify the following
inference rule for the assignment production. Thereby, we use a context which
consists of five components. Names is a set that contains the names of all
classes in the program, TH is a reflexive and transitive relation describing the
type hierarchy, that is, the subtype relation, of the program, Intfs describes
the interfaces of all methods and attributes of all classes, A is the name of the
current class, and locals are the local declarations within its body. (It would
have been also possible to use five separated items of semantic information
in the context but for the sake of readability, we have put them together.)
stat : := des := expr:

〈Names, TH, Intfs, A, locals〉 : : Context3  des : t1 : : Type
〈Names, TH, Intfs, A, locals〉 : : Context3  expr : t2 : : Type

〈Names, TH, Intfs, A, locals〉 : : Context3  stat : correct : : GenInfo
if t2 � t1 ∈ TH.

Remark 2.3. The sort GenInfo distinguishes correct programs (correct)
from incorrect ones with respect to the static semantics. For example, if it can-
not be shown using the inference rules that  stat : correct : : GenInfo, then the
program fragment stat is not correct with respect to the static semantics. This
is a standard technique used in natural semantics specifications. For example,

2In the theory of attribute grammars, inherited attributes correspond to semantic information in
the context and synthesized attributes correspond to properties. However, one of the advantages
of natural semantics specifications is that these directions of attribute computations do not need
to be specified.
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Fig. 2. Rule cover.

the static semantics of Java [Nipkow and von Oheimb 1998] uses the notation
 stat : ✸ for this purpose. In contrast, we use the sort Bool for defining aux-
iliary predicates (independent of the program to be analyzed) that are used in
the inference rules.

A specification is well-formed if, in each judgment for a symbol X of the abstract
syntax, the sorts of the semantic information in the context and the properties
are the same. Speaking in the language of attribute grammars, this means
that each symbol X has been assigned the same attributes by each judgment
describing it.

2.2 Proofs in Sorted Natural Semantics

The principal task of a static analysis consists of the construction of a proof tree.
A proof tree verifies that some program information is statically semantically
correct. Its structure coincides with the structure of the abstract syntax tree.
In this subsection, we define proof trees formally and show how they can be
computed by solving an equivalent residuation problem.

A rule cover (Figure 2) is a mapping from the nodes of the abstract syntax
tree to instances of inference rules of the specification. A rule cover3 maps a
node X 0 with successors X 1, . . . , X n to an instance of inference rule R only if
the conclusion of R is a judgment for X 0 and if R has n assumptions which are
judgments for X 1, . . . , X n. Nodes without successors are mapped to axioms. We
assume that the instances of the inference rules contained in the rule cover
do not have common variables. A rule cover assigns one judgment to the root
node and two judgments to each other node describing their static semantic
information. Hence, the static semantic information of each node in the abstract
syntax tree is described by two terms, except for the root node with only one
term per semantic information. Note that leaves are described by two terms
where one stems from an axiom.

A proof tree B for a given abstract syntax tree is a rule cover together with
a substitution σ whereby σ satisfies the following two requirements: σ in-
stantiates the free variables in the side conditions of the inference rules of

3This is an abuse of notation. Each node in an abstract syntax tree corresponds to a grammar
symbol. This could be viewed as a type of an abstract syntax tree node. The notation here uses for
simplicity the grammar symbols instead of the concrete nodes.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.



520 • S. Glesner and W. Zimmermann

Fig. 3. Constraint-generating system.

the rule cover such that their truth values can be computed straightforwardly
and such that they hold. Furthermore, for each semantic information of each
node in the abstract syntax tree, it must be possible to prove the equality
of its two terms using the Horn clauses. Note that this common term, also
called attribute, may contain variables. This makes sense for example when
doing separate analysis, for example, separate compilation, where only pro-
gram fragments are checked. As an example, assume a programming language
with procedures. Furthermore assume that such procedures shall be compiled
separately. The procedure bodies may use global variables whose declarations
are not known at compile time. Then we would have semantic information
employing the type information of these global variables in form of logical
variables which cannot be instantiated only in the context of the procedure
body.

The abstract syntax tree together with all attributes is called an attributed
syntax tree. The assignment of attributes to an abstract syntax tree B is called
an attribution of B. A proof tree B is a most general proof tree if, for every other
proof tree B′, there exists a substitution π that maps the attribution of B to the
attribution of B′.

To compute a proof tree, we consider all possible rule covers of the abstract
syntax tree. For each such rule cover, we need to compute the static semantic
information and check the side conditions of the rules. A rule cover assigns two
judgments to each node in the abstract syntax tree (except the root node which
has only one judgment assigned to it). Each of these two judgments defines two
terms for each semantic information of each node. To compute the semantic
information, we need to unify all these pairs of terms while also computing
the defined functions contained in them. The combination of unification and
evaluation steps where the evaluation steps are always applied to ground terms
is called residuation Hanus [1994]. Thus, we can regard static analysis as a
residuation problem. The question is how such residuation problems can be
solved.

Therefore, we consider a sorted natural semantics specification as a
constraint-generating system (Figure 3). For each rule cover, we generate auto-
matically constraints whose solution is also a valid attribution of the abstract
syntax tree. We introduce this process of generating constraints by an example
before dealing with the general case. Let us assume an arbitrary but fixed
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rule cover and a node k of the abstract syntax tree. This node k is influ-
enced by two rules which we call rule 1 and rule 2. Assume furthermore that
rule 1 and rule 2 define the following two judgments for node k, respectively:
	1 : : Context  k : t1 : : Type and 	2 : : Context  k : t2 : : Type.
Then these are the constraints for k to be solved during the static analysis:

Contextk = 	1, Contextk = 	2, Typek = t1, and Typek = t2,

where Contextk and Typek are new variables. The constraints specify that the
semantic information of sort Context for node k must be equal to 	1 and 	2
and that the semantic information of sort Type for node k must be equal to t1
and t2.

In general, the constraints are defined as follows. We assume that the nodes
in the abstract syntax tree have unique names. Using these unique names, we
define sort variables for the nodes. If a judgment for a node k has the form
	1 : : S1, . . . , 	l : : Sl  k : t1 : : Sl+1, . . . , tn : : Sl+n, then its sort variables
are (S1)k , . . . , (Sl )k , (Sl+1)k , . . . , (Sl+n)k . Sort variables are place holders for the
values of the semantic information of the corresponding node. Constraints de-
scribe requirements on these sort variables. The rules in a rule cover specify
judgments for the nodes of the abstract syntax tree and, hence, terms for the val-
ues of the sort variables. If 	1 : : S1, . . . , 	l : : Sl  k : t1 : : Sl+1, . . . , tn : : Sl+n is a
judgment for a node k, then the constraints on the sort variables of k resulting
from this judgment are (S1)k = 	1, . . . , (Sl )k = 	l , (Sl+1)k = t1, . . . , (Sl+n)k = tn.
In a rule cover, each node (besides the root node) is described by two judgments.
The constraints for a node are the constraints induced by its two judgments
(or by its judgment in case of the root node, respectively). The constraints
of an entire program consist of the constraints of all its nodes. So to com-
pute a proof tree, we need to solve the constraints induced by a suitable rule
cover.

3. GENERATING SEMANTIC ANALYSIS

Sorted natural semantics is a general framework to specify static program anal-
yses. As a major example, we investigate the semantic analysis in the frontends
of compilers and show how it can be expressed within sorted natural seman-
tics. The static semantics specifies and checks context-sensitive properties by
computing attributes for the nodes in abstract syntax trees and by checking
local consistency requirements for them. Here we concentrate on imperative
and object-oriented programming languages but other programming language
paradigms may be treated as well. We characterize programs of a programming
language by the existence of a unique most general proof tree with respect to
a sorted natural semantics specification defining the static semantics of the
programming language. In this section, we show how such proof trees can be
computed with a basic algorithm. First, in Section 3.1, we discuss three major
requirements which we expect to hold for reasonable static semantics specifi-
cations of programming languages. We present the basic algorithm and prove
its correctness in Section 3.2. Finally, in Section 3.3, we show how the basic
algorithm works by analyzing small programs written in the example language
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DEMO from Appendix B. As a larger demonstration, the specification of the static
semantics of Mini-Java is given and explained in Appendix A.

3.1 Requirements of the Semantic Analysis of Programming Languages

The principal task of the semantic analysis is the transport of information from
one program point to another. For example, the information from a variable dec-
laration needs to be known at program points where this variable is used in
order to do some correctness checks. The attribution of programs is assem-
bled from such transported information or information inferred from it. There
may be programs whose syntax is consistent with the abstract syntax of the
programming language but that do not satisfy the static semantic conditions.
By definition, these programs do not belong to the programming language and
may have more than one most general proof tree (representing ambiguous infor-
mation) or no proof tree at all (representing inconsistent information). Hence,
we can state our first requirement to be satisfied by sorted natural semantics
specifications of successful semantic analyses:

First requirement: Specifications of sorted natural semantics for semantic
analysis are written such that, for each program of the defined programming
language, there exists a unique most general proof tree upto renaming and
AC1-equivalence.

Thus, if during semantic analysis, it is detected that there is more than one
most general proof tree, then the semantic analysis is not successful and the
analyzed program is rejected.

During semantic analysis, it is decidable whether an attribution is valid, that
is, whether the side conditions of the inference rules are fulfilled. In general,
the side conditions may contain variables, turning the test of validity into a
nondecidable task. Nevertheless, the side conditions specifying the correctness
checks must be decided after the computation of all attributes. In particular,
for each program point, it must be decided whether the side conditions of its
associated inference rule are evaluated to true or false. The second requirement
is a sufficient condition for this property:

Second requirement: The free variables in the side conditions of the infe-
rence rules are completely instantiated in a most general proof tree.

Note that this requirement still allows for variables in the attributes of a most
general proof tree. Only variables in the side conditions are excluded. Again, the
second requirement is only necessary for successful semantic analyses. If it is
detected during semantic analysis that, after the instantiation of the inference
rules in a most general proof tree, there are side conditions with free variables,
then the analyzed program is rejected.

The third assumption concerns the data structures, that is, the sorts and
their functions and predicates. It is our goal to have declarative specifications,
which means also declarative descriptions of the data structures. Therefore we
define them with sort equations and Horn clauses. Since for semantic analysis
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the attribution must be unique, the defined function values must evaluate to
unique constructor terms, if their arguments do not contain free variables.
This leads us to the third requirement which suffices for the uniqueness of the
evaluation of defined functions:

Third requirement: The Horn clauses define a ground-confluent conditional
term-rewrite system. The most general proof tree can be computed without
evaluating terms containing free variables.

This requirement states that defined functions must be unambigously defined.
Nevertheless, as a consequence, the defined functions can be implemented dif-
ferently. From a practical point of view, this is desirable and follows the tradition
of other compiler generator tools [Eli n.d.; Kastens et al. 1982]. Therefore, we
can assume that there are correct implementations for the sorts and their func-
tions and predicates at our disposal. Observe that the third requirement still
allows for attributions containing variables. Only subterms of the attributes
which contain defined functions need to be variable-free.

It is undecidable if a given sorted natural semantics specification conforms to
the above three requirements. Nevertheless when specifying the static seman-
tics of a programming language, one might be able to prove them for a specific
specification. In the following subsection, we answer the question how the most
general proof tree can be computed for sorted natural semantics specifications
satisfying the above requirements.

3.2 Basic Algorithm

The basic algorithm considers all possible rule covers and checks which of them
can be completed to a unique proof tree. For now, we assume that all rule covers
are tested separately and discuss improvements of this strategy at the end of
this subsection. For each rule cover, the basic algorithm generates the corres-
ponding constraints as defined in Section 2.2. We can think of the constraints
as pairs of equations (S = t1, S = t2) where S is a sort variable and t1 and t2
are the terms constraining the value of S. (Remember that each node except
for the root node is influenced by two judgments. If S is a sort variable of the
root node, then without loss of generality t1 and t2 are syntactically identical.)
To compute the proof tree and its attribution, the two terms t1 and t2 must be
unified while simultaneously evaluating the contained defined functions. In the
unification process, the sort variables are not replaced because they are merely
a coding for the node and its attribute value which is represented by t1 and t2.
If it is possible to evaluate and unify all pairs of constraints such that the side
conditions of the inference rules in the rule cover are also fulfilled, then a proof
tree is found.

The basic algorithm solves pairs of constraints by residuation [Hanus 1994].
Residuation nondeterministically performs unification and computation steps.
In a unification step, a pair of terms t1 and t2 which are required to be
equal is unified by some substitution σ . This unifier σ is also applied to all
other constraints of the program. In a computation step, a ground subterm
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f (t1, . . . , tn) of a term t where f is a defined function with arguments ti is
replaced by an equivalent ground constructor term. A particular run of the ba-
sic algorithm can be described by a residuation sequence which consists of a
sequence of unification and computation steps.

Since we assume that implementations for the defined functions are
available, the computation steps do not pose any problems, in contrast to the
unification steps: Terms may be built with the constructor functions ∅, ∪, {·}
for sets. Hence, in general, AC1-unifications would be required whereby
a minimal complete set of AC1-unifiers may be doubly exponential in the
size of the given AC1-problem. In the semantic analysis, it makes no sense
to compute all these unifiers. A program is correct only if its attribution
can be determined uniquely. Therefore we use a restricted version of AC1-
unification by extending the Herbrand-Robinson unification algorithm
[Robinson 1965].

Extending Herbrand-Robinson to restricted AC1-unification: The Herbrand-
Robinson unification algorithm computes a most general unifier of two terms
under which they are syntactically equal. This most general unifier is unique
up to renaming of variables, that is, if σ1 and σ2 are both most general uni-
fiers, then there exists a variable renaming π such that σ1 = π ◦ σ2. The uni-
fication algorithm assumes that a term is either a variable, a constant, or a
structured term. If the two input terms to be unified are not structured, then
the unifier can be determined directly, if it exists. Otherwise, all corresponding
subterms of the input terms have to be unified recursively. The overall unifier
is the composition of the recursively computed unifiers. The order in which
subterms are considered does not matter. We extend this unification algorithm
in the following way: if two terms s and t being sets are to be unified, then
for reasons of efficiency this is allowed in our approach only if their unifier
can be determined uniquely (up to renaming of variables). We distinguish two
cases:

—If s = ∅ or t = ∅, then the unique unifier can be easily determined if it exists.
—If s = S � {s1, . . . , sm} and t = T � {t1, . . . , tn}, n not necessarily equal4

to m, then this unification problem can be reduced to the problem of uni-
fying σ (s′) and σ (t ′) with s′ = S � {s1, . . . , si−1, si+1, . . . , sm} and t ′ = T �
{t1, . . . , t j−1, t j+1, . . . , tn} if unique(si) = unique(t j ), unique(si) and unique(t j )
are variable-free, and σ is the most general unifier of si and t j . The unifi-
cation algorithm can proceed with the smaller problem of unifying σ (s′) and
σ (t ′). unique(si) = unique(t j ) means that unique(si) and unique(t j ) are evalu-
ated into ground terms which are equal up to AC1-equivalence. Since they
are variable-free, this test is decidable. Remember that the unique-function
returns the parts of an element with which it can be identified uniquely; see
Section 2.

The requirement that unique(si) and unique(t j ) be variable-free is just for
reasons of efficiency. Clearly, this restricted AC1-unification is not complete

4Sets S and T may have different sizes.
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because it can happen that no unifier is found even though one might exist. As
a simple example, consider s = S � {s1} and t = T � {t1} with s1 �= t1. S and
T are unifiable by instantiating S with {t1} and T with {s1}. Nevertheless, the
above extension of the Herbrand-Robinson algorithm will reject them because
this unifier is not unique. Any other unifier which replaces S by {t1} ∪ M and
T by {s1} ∪ M for some set M will also suffice.

LEMMA 3.1. If σ1 and σ2 are two AC1 unifiers which can be computed by the
restricted AC1-unification algorithm, then there is a renaming π such that σ1
and π ◦ σ2 are equal up tp AC1-equivalence.

PROOF. The correctness of the restricted AC1-unification algorithm follows
directly from the correctness of the Herbrand-Robinson algorithm: a unifier is
computed only if it can be determined uniquely up to variable renaming. In
particular, sets are only unified if the correspondence between their elements
is unique. Thereby the ordering of the elements in a set does not matter. Be-
sides these modifications, the unifier is computed according to the Herbrand-
Robinson algorithm. Hence the unifier is unique up to renaming.

THEOREM 3.2. Each residuation sequence used in a run of the basic algo-
rithm yields the same result modulo variable renaming.

PROOF. The basic algorithm computes unique (up to variable renaming and
AC1-equivalence) unifiers. Furthermore, the order in which unification and
computation steps are performed does not matter. Computation steps affect
only variable-free terms which are not modified by the unification steps. Even
though performing certain computation steps may be necessary in order to
enable some subsequent unification steps, the final solution is nevertheless the
same up to AC1-variants. Hence, each residuation sequence leads to the same
result up to renaming of variables and AC1-equivalence.

The size of a term t, denoted by |t|, is recursively defined by |c| = 1 for a
constant or variable c and | f (t1, . . . , tk)| = |t1|+· · ·+|tk|. The size of a constraint
S = t is |t|+1 and the size of a constraint set is the sum of the size of its elements.

THEOREM 3.3. Given the constraints of a single rule cover, the time complex-
ity to solve them with the basic algorithm is O(n2 log n) where n is the size of
the constraint set, provided that every defined function call f (t1, . . . , tk) can be
evaluated in time O(| f (t1, . . . , tk)|).

PROOF. The basic algorithm performs standard unification steps inter-
leaved with the evaluation of defined functions and with the restricted AC1-
unification. The standard unification can be done in linear time using sharing
of common subexpressions [Paterson and Wegman 1978]. Whenever this stan-
dard unification stops, it is necessary to either evaluate defined functions or to
unify sets. Hence, the overall time complexity is the sum of the time complexity
for the standard unification, of the time complexity for the evaluation of the
defined functions, and of the time complexity to find all pairs of elements of
sets to be unified (those whose unique-parts are identical). In the rest of this
proof, we show that all defined functions can be evaluated in time O(n2) and
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that the pairs of set elements to be unified can be found in time O(n2 log n).
From these results it follows that the time complexity of the basic algorithm is
O(n2 log n).

To evaluate subterms starting with defined function symbols, we proceed as
follows: we keep two lists with references to subterms that start with a defined
function symbol. In the first list, we keep all variable-free subterms starting
with a defined function symbol while the second list contains all subterms start-
ing with a defined function symbol which still contain variables. Moreover, we
define a reference from each variable to the subterms in the second list in which
this variable is contained. Whenever a variable is substituted, either with a
variable-free term or with a term containing other variables, the two lists are
updated: in the first case, the substituted, variable-free subterm is transferred
from the second into the first list. In the second case, the references from vari-
ables to the terms in the second list are updated appropriately. Both kinds of
updates can be done in time O(n). The overall time complexity to evaluate the
subterms starting with a defined function symbol (as soon as they are in the
first list) is therefore O(n2).

The time complexity to find all pairs of elements of sets to be unified is
O(n2 log n): the worst case appears whenever two sets {s1, . . . , sn} and {t1, . . . , tn},
both of size 
(n), are to be unified. Then we need to find a pair (si, t j ) such that
unique(si) and unique(t j ) are identical. Therefore, we sort the elements of both
sets lexicographically, each set separately. Then we take the first element of
the first set and try to find, by binary search, a corresponding element in the
second set. If this search is successful, then we are done. Otherwise, we proceed
with the second (third, ...) element of the first set until we find a corresponding
element in the second set. The cost for a single binary search is O(log n); hence
for the overall search it is O(n log n). In the worst case, we need to repeat such
a search n times, giving us a time complexity of O(n2 log n).

Up to now, we have assumed that one rule cover is checked after the other. An
easy calculation shows that if there are alternative inference rules in a specifica-
tion, then the number of possible rule covers is exponential in the size of the ab-
stract syntax tree. It is too costly to consider these many rule covers separately.
Therefore we carry out the following efficiency enhancement: First, we consider
only the constraints which are the same for all rule covers, that is, the con-
straints stemming from inference rules which do not have alternatives. We eval-
uate and unify them as far as possible. Then we sort out dynamically as many
of the alternative inference rules and, in turn, rule covers as possible by either
showing that their side conditions are not fulfilled or by proving that the unifi-
cation fails. This is in fact a clear improvement—experiments in our prototype
implementation indicate that, in most semantic analyses, only linearly many
(instead of exponentially many) rule covers need to be checked (cf. Section 7).

3.3 Example Semantic Analyses

In this subsection, we demonstrate the application of the basic algorithm to
programs of the language DEMO defined in Appendix B. DEMO is a very simple
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Fig. 4. Rule cover for the program in Example 3.4.

imperative language whose programs consist of a list of assignments and vari-
able declarations. Declarations of variables do not need to occur before their
use. However, every variable used in a DEMO-program must be declared. It
is possible to declare a variable twice. In this case, the declaration, that is,
the type of the variable, must be identical. DEMO has two types, integers and
reals. Integers are coercible to reals but not vice versa. Example 3.4 shows
that the attribution is ambiguous if a variable is used but not declared. This
is erroneously fixed in Example 3.5. This example demonstrates that there
exists no proof if a program is ill-typed. Example 3.6 shows the proof if the
erroneous type declaration is fixed. Here, the variable is declared after its
use.

Example 3.4. Consider the DEMO-program x:=1.3. It contains the unde-
clared variable x. Figure 4 shows the abstract syntax tree according to the
syntax of DEMO (cf. Figure 31). The names of the nodes correspond to the non-
terminals. A node has up to five annotations. The annotation below a node is
the applied inference rule. At the upper left corner, we annotate side condi-
tions stemming from an inference rule. Alternatively, this may also be denoted
below the name of the inference rule. At the lower left corner of a node we
annotate its depth-first order number. The upper right corner and lower right
corner of a node are annotated with the judgments stemming from the applied
inference rules at its parent and the node, respectively. For better readabil-
ity, we omit the sorts. Thus, the annotations represent a complete rule cover
constructed by the basic algorithm. The following constraints are derived from

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.



528 • S. Glesner and W. Zimmermann

Fig. 5. A Rule cover for the program in Example 3.5.

Figure 4:

Context2 = ∅, Id4 = id2, Type6 = type4,
Context2 = 	1, Id4 = x, Type7 = type4,
Context3 = 	1, Context6 = 	2, Type7 = realtype,
Context3 = 	2, Context6 = 	3, Context9 = 	1 � {〈id1, type1〉},

Decl3 = 〈id1, type1〉, Type6 = type3, Context9 = 	4.

Decl3 = 〈id2, type2〉,

A solution algorithm will stop with the following solutions:

Context2 = ∅, Id4 = x, Type7 = realtype,
Context3 = ∅, Context6 = ∅, Context9 = {〈x, type1〉}.

Decl3 = 〈x, type1〉, Type6 = realtype,

The side condition type3 � type2 becomes realtype � type1. Hence, requirement
2 is violated, implying that the static semantics, that is, the context-sensitive
properties of the program, are not correct. Due to the second requirement, every
successful semantic analysis would not end with a side condition containing
free variables. Hence, the context-sensitive properties of the program are not
correct.

Example 3.5. The DEMO-program x := 1.3; x:int is not correctly typed.
Figure 5 shows an annotated abstract syntax tree of this program computed by
the basic algorithm.

The basic algorithm derives from the rule cover in Figure 5 the same
constraints for nodes 1–8 as in Example 3.4 and additionally the following
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constraints:

Context9 = 	1 � {〈id1, type1〉}, Decl10 = 〈id3, type5〉, Type13 = type6,

Context9 = 	4 � {〈id3, type5〉}, Decl10 = 〈id4, type6〉, Type13 = inttype,

Context10 = 	4 � {〈id3, type5〉}, Id11 = id4, Context15 = 	4 � {〈id3, type5〉},
Context10 = 	5, Id11 = x, Context15 = 	6.

This constraint system has the solution

Context1 = ∅, Type6 = realtype, Decl10 = 〈x, inttype〉,
Context2 = ∅, Type7 = realtype, Id11 = x,

Decl3 = 〈x, inttype〉, Context9 = {〈x, inttype〉}, Type13 = inttype,
Id4 = x, Context10 = {〈x, inttype〉}, Context15 = {〈x, inttype〉}.

Context6 = ∅,

Using this solution, the side condition type3 � type2becomes realtype � inttype.
Thus, this side condition fails. Therefore the rule cover cannot be completed to
a proof.

There are two alternatives for the rule cover: at node 2, inference rule (B.S3)
can be applied instead of (B.S2). At node 9, inference rule (B.S2) can be applied
instead of (B.S3).

Consider first the former case. The constraint Context2 = 	1 is replaced
by Context2 = 	1 � {〈id1, type1〉}. Hence, the basic algorithm tries to unify ∅
and 	1 �{〈id1, type1〉}. This unification fails. Therefore, the rule cover cannot be
completed to a proof.

In the latter case, the constraints Context9 = 	4 � {〈id3, type5〉} and
Context10 = 	4 � {〈id3, type5〉} are replaced by constraints Context9 = 	4
and Context10 = 	4. The basic algorithm unifies 	4 and {〈x, type1〉}. Fur-
thermore, it unifies 〈x, inttype〉 and 〈id3, type5〉. If the resulting substitutions
are applied to the side condition of inference rule (B.S2), we have to evaluate
undefined({〈x, type1〉}, x) which fails. Hence, the rule cover cannot be completed
to a proof tree either. Furthermore, the solution for the resulting constraint
system contains the free variable type1.

Example 3.6. The DEMO-program x:=1; x:real declares the variable x af-
ter its use. Figure 6 shows the rule cover for this program. The constraints
derived from this program are the same as those derived from the program in
Example 3.5 except that the constraints Type7 = realtype and Type13 = inttype
are replaced by the constraints Type7 = inttype and Type13 = realtype, respec-
tively. The constraint system has the solution:

Context1 = ∅, Type6 = inttype, Decl10 = 〈x, realtype〉,
Context2 = ∅, Type7 = inttype, Id11 = x,

Decl3 = 〈x, realtype〉, Context9 = {〈x, realtype〉}, type13 = realtype,

Id4 = x, Context10 = {〈x, realtype〉}, Context15 = {〈x, realtype〉}.
Context6 = ∅,

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.



530 • S. Glesner and W. Zimmermann

Fig. 6. Rule cover for the program in Example 3.6.

Then, the following side conditions have to be evaluated:

—undefined(∅, x) stemming from node 2,
— inttype � realtype stemming from node 3,
—undefined(∅, x) stemming from node 9.

All these side conditions evaluate to true. Hence, the rule cover in Figure 6
can be completed to a proof tree.

The same arguments as in Example 3.5 show that there is no other proof
tree. Hence, the basic algorithm succeeds.

4. SOLUTION STRATEGIES

If the basic algorithm succeeds to compute a solution, then this solution is
unambiguous, that is, there is no other solution provided the sorted natural
semantics specification satisfies the three requirements of Section 3.1. How-
ever, since it is undecidable whether these three requirements are satisfied, it
cannot be guaranteed that the basic algorithm finds such a solution for all legal
programs (with respect to the static semantics). This section discusses solution
strategies which are independent from the concrete program to be analyzed.
A solution strategy induces one possible residuation sequence to construct a
proof tree, that is, it will not find a solution in cases where the basic algorithm
will not find any but, instead, might be able to improve the efficiency of the
semantic analysis. Thereby, our goals are twofold: first, we want to be able to
analyze a sorted natural semantics specification in advance whether a solution
strategy will succeed. Second, we want to perform the semantic analysis more
efficiently than with the approach in Section 3.

In contrast to the previous sections we consider here only semantic analyses
for complete programs. This implies that the attributions of complete programs
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do not contain free variables. This holds because otherwise the attribution
would be ambiguous since each ground-term can be substituted for a free
variable. In contrast, in case of separate compilation, the attribution could
contain free variables that are substituted when linking the units together.
Section 4.1 shows that, if there is a solution to the constraints of the semantic
analysis, then each solution strategy computes the same (unambiguous)
solution. Section 4.2 presents the particular solution strategy LNS(1). It
guarantees that every rule cover can be completed to a proof tree by one
left-to-right traversal through the corresponding abstract syntax tree. Finally,
Section 4.3 sketches some generalizations.

4.1 Invariance of the Solution Strategy

Each inference rule defines a dependency graph connecting constraints with
their variables. The basic idea of a solution strategy is to assign directions to
the edges of this dependency graph such that, whenever its inference rule is
applied, the constraints can be solved in a topological order. A solution strategy
is such a topological order. We first introduce the notion of dependency graphs,
then we define the notion of (legal) direction assignments. We finally show that
any solution strategy based on a legal direction assignment will compute the
same solution.

Definition 4.1. Let S be a sorted natural semantics specification, and R be
an inference rule for production X 0 : := X 1 · · · X m of the form

t1
1 : : S1

1, . . . , t1
k1

: : S1
k1

 X 1 : t1
k1+1 : : S1

k1+1, . . . , t1
n1

: : S1
n1

...
tm
1 : : Sm

1 , . . . , tm
km

: : Sm
km

 X m : tm
km+1 : : Sm

km+1, . . . , tm
nm

: : Sm
nm

t0
1 : : S0

1, . . . , t0
k0

: : S0
k0

 X 0 : t0
k0+1 : : S0

k0+1, . . . , t0
n0

: : S0
n0

if ϕ,

where S j
i are sort symbols and t j

i are terms. The dependency graph of R is a
bipartite graph DP(R) = (V , C, E) with the two node sets V and C and the set
E of edges where V is the set of all sort variables and logical variables of R,
C = {S j

i = t j
i : 0 ≤ j ≤ m, 1 ≤ i ≤ nj } is the set of all constraints implied

by R, and E = {{S = t, x} : S = t ∈ C ∧ x ∈ V (t) ∪ {S}} is the set of edges
such that there is an edge between a variable and a constraint if and only if
this variable is contained in the constraint. If t contains a subterm of the form
t ′ = f (t1, . . . , tk) where f is a defined function, then the edges {S = t, x} for
x ∈ V (t ′) are directed from the variable to the constraint. All other edges are
undirected. Let p be a program and δp be a rule cover for p. The dependency
graph DP(δp) is the union of all dependency graphs of the inference rules in the
rule cover where the sort variables from judgments of a node occur only once.

As an example, Figure 7 shows the dependency graph for the rule (B.S10)
	 : : Context  expr1 : type1 : : Type 	 : : Context  expr2 : type2 : : Type

	 : : Context  expr0 : type1 ! type2 : : Type

of the example language DEMO.
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Fig. 7. A dependency graph for inference rule (B.S10).

Fig. 8. The graph of Figure 7 after a direction assignment.

Remark 4.2. A dependency graph defines a data flow driven computation.
Values of the sort and logical variables can flow along the edges, thereby paying
attention to their directions. In this sense, the directed edges formalize the
requirement that a defined function can be evaluated only if all its arguments
are known. Undirected edges formalize that the flow can be in either direction
in order to solve the constraint.

When defining a solution strategy, directions are assigned to the undirected
edges. These directions are assigned not independently for each inference rule
but need to consider the rule covers of all potential input programs. If the
resulting graph is acyclic such that the constraints can be solved when their
predecessors are known, then a topological order induces a solution strategy to
solve the constraints.

Definition 4.3. A constraint S = t is directly solvable iff there is at most one
ground-term substitution σ for V (t)∪{S} such that σ (S) = σ (t). In particular, if
t contains a subterm f (t1, . . . , tn) with a defined function f , then the arguments
t1, . . . , tn must be ground-terms. S = t is solvable with respect to a set of variables
V iff, for all substitutions σ substituting the variables v ∈ V by ground-terms,
the constraint σ (S) = σ (t) is directly solvable.

As an example, consider the constraints in Figure 7. None of them is directly
solvable. The constraint Type1 = type1 is solvable with respect to {Type1}, with
respect to {type1}, and with respect to {Type1, type1}. The constraint Type0 =
type1 ! type2 is solvable with respect to a set of variables X only, if type1, type2 ∈
X because ! is a defined function. For example, the constraint Context0 = 	

is solvable with respect to {Context0}, and the constraint Context1 = 	 and
Context2 = 	 are solvable with respect to {	}.

Let G = (V , E) be a graph with directed and undirected edges. A direction
assignment is a bijective mapping α : E → E ′ such that α(e) = e for each
directed edge and α({u, v}) = (u, v) or α({u, v}) = (v, u) for each undirected
edge. Hence, a direction assignment implicitly defines a directed graph α(G) =
(V , E ′).

Figure 8 shows a graph α(G) stemming from a direction assignment to the
dependency graph of Figure 7.
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Definition 4.4. Let S be a sorted natural semantics specification, p be a
program, and δp be a rule cover for p. A direction assignment α for DP(δp)
is legal iff α(DP(δp)) is acyclic, each variable has at least one predecessor in
α(DP(δp)), and every constraint S = t is solvable with respect to its predeces-
sors in α(DP(δp)). A solution strategy with respect to α is a topological order of
α(DP(δp)).

Each solution strategy computes the same result:

THEOREM 4.5. Let S be a sorted natural semantics, p be a program, and α

be a legal direction assignment for DP(δp). Then, every solution strategy with
respect to α computes the same result.

PROOF. According to Theorem 3.2, it is sufficient to prove that every topo-
logical order of α(DP(δp)) is a valid residuation sequence. Hence, it must be
shown that all computation steps replace variable-free terms. Let v1, . . . , vn be
a topological order of α(DP(δp)). We prove by induction the following stronger
claim:

If all constraints vj , j < i have a solution, then the following two
properties are satisfied: if vi is a variable, then the value for vi is
known. If vi is a constraint, then σ (vi) is directly solvable where
σ is the substitution substituting the variables vj , j < i, by their
solution.

v1 must be a directly solvable constraint because it has no predecessors. Suppose
vi is a variable. Then there is constraint vk , k < j , which is a predecessor of
vi. This constraint is already solved and contains variable vi. By the induction
hypothesis this constraint has a ground-term solution. Hence there is a value
for vi. Suppose now vi is a constraint. By the induction hypothesis, the values
of all predecessors of vi are known. By Definition 4.4, σ (vi) is directly solvable
with respect to V (vi) ∩ {v1, . . . , vi−1}.

Theorem 4.5 is the basis for generators of efficient semantic analyses:

(1) Compute the dependency graphs for the inference rules.
(2) Compute a direction assignment αR for each inference rule R such that, for

any program and rule cover, the composed direction assignment is legal.
(3) Compute a topological order of αR(DP(R)) such that, for any program and

rule cover, these topological orders can be composed to a solution strategy.

The generated semantic analysis solves the constraints according to the solu-
tion strategy. For the second step, it is necessary to determine whether a con-
straint S = t is solvable with respect to a set of variables. The following lemma
gives a constructive sufficient criterion. Its idea is to formalize sufficient crite-
ria for the solvability of constraints S = t with a sort variable S and term t. If t
is a variable, then this criterion is rather simple. We need to know at least the
value for one of the two variables S and t. If both values are known, then solving
the constraint becomes a simple consistency check whether the values on the
left-hand side and the right-hand side of the constraint are the same. If t is a
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term starting with a defined function symbol, then we need to know the values
for all variables contained in t. This requirement is contained in the general
assertion that a constraint S = t is solvable with respect to X if V (t) ⊆ X . If t
is a constructor term f (t1, . . . , tn), then we either need to know the value of S
(then its value must be the same as the value for t) or we need to know so many
variables contained in t that we can solve the smaller problems Si = ti whereby
the Si, 1 ≤ i ≤ n, are new sort variables. This idea is also formalized in the
case that t = {t1, . . . , tn} is a set term. Then the subsets of t which contain all
constructor term elements as well as variables may not contain more than one
element since then the substitution cannot be determined uniquely, expressed
with the requirement |(Av ∪ V (A f )) \ X | ≤ 1. All cases which are not covered
by Lemma 4.6 are classified as not solvable even though a solution might exist.
Since we are interested in defining a sufficient criterion, this is legitimate.

LEMMA 4.6. Let S = t be a constraint and X ⊆ V (t)∪{S} be a set of variables.
S = t is solvable with respect to X if V (t) ⊆ X or V (t) �⊆ X , S ∈ X , and one of
the following conditions is satisfied:

(1) t is a variable.
(2) t = f (t1, . . . , tn) for a constructor f and each of the constraints Si = ti,

i = 1, . . . , n, is solvable with respect to (X ∩ V (ti))∪{Si} where S1, . . . , Sn are
new sort variables.

(3) t = {t1, . . . , tn}, each of the constraints Si = ti is solvable with respect to (X ∩
V (ti)) ∪ {Si} where S1, . . . , Sn are new sort variables, and for all constructor
functions f , |(Av ∪ V (A f )) \ X | ≤ 1 where Av is the largest subset of t
consisting of variables and A f is the largest subset of t consisting of all
terms ti of the form f (· · · ).

PROOF. If V (t) ⊆ X , it follows directly from the definition that S = t can be
solved with respect to X . Hence, suppose V (t) �⊆ X and S ∈ X . The case that t
is a variable follows directly from the definition.

Consider now the case t = f (t1, . . . , tn) for a constructor f . Let σ be any
ground-term substitution on variables X . If σ (S) does not have the form
f (u1, . . . , un), then σ (S) = f (σ (t1), . . . , σ (tn)) has no solution. Consider now
the case σ (S) = f (u1, . . . , un) for some ground-terms ui. Our goal is now to
solve the constraints ui = σ (ti). Consider the substitution

σi(x) =
{

σ (x), if x �= Si,
ui, if x = Si.

Since σ is a ground-term substitution and ui are ground-terms, σi is also a
ground-term substitution. Furthermore σ (ti) = σi(ti) because ti does not contain
the variable Si. Since each constraint Si = ti is solvable with respect to (X ∩
V (ti)) ∪ {Si}, i = 1, . . . , n, the constraint σi(Si) = σi(ti) (equal to ui = σ (ti)) is
directly solvable. If one of these constraints is not solvable, then the constraint
σ (S) = f (t1, . . . , tn) has no solution. If there are two constraints ui = σ (ti)
and t j = σ (t j ), 1 ≤ i < j ≤ n, having incompatible solutions, that is, ground
substitutions τi, τ j where τi(x) �= τ j (x), then the constraint σ (S) = f (t1, . . . , tn)
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Fig. 9. Contradiction in the proof of Lemma 4.6.

has also no solution. Otherwise, it has the solution τ1 ◦ · · · ◦ τn where τi is the
solution of the constraint ui = σ (ti), i = 1, . . . , n. Hence, σ (S) = σ ( f (t1, . . . , tn))
has at most one solution, that is, S = f (t1, . . . , tn) is directly solvable.

Finally consider the case t = {t1, . . . , tn}. We prove by contradiction that
S = {t1, . . . , tn} is solvable. Suppose that S = {t1, . . . , tn} is not solvable. Then
there is a ground-term substitution σ on variables X such that σ (S) = σ (t) is not
directly solvable. By Definition 4.3 there are at least two different ground-term
substitutions τ and τ ′ on V (σ (t)) such that σ (S) = τ (σ (t)) and σ (S) = τ ′(σ (t)).
Then, σ (t) = {u1, . . . , uq} for a q ≤ n, σ (S) = {s1, . . . , sm} for a m ≤ q, and
ui ∈ σ (S) for every ground-term ui ∈ σ (t) (otherwise σ (S) = σ (t) would have
no solution). Since the constraints Si = ti, i = 1, . . . , n are solvable, τ (σ (t)) =
τ ′(σ (t)) and τ �= τ ′, there must be a subset W = {w1, . . . , wk} ⊆ σ (t), k ≥ 2, such
that τ (W ) = τ ′(W ) and τ (wi) �= τ ′(wi) for i = 1, . . . , n. Without loss of generality
suppose that W is minimal. Such a set W is minimal iff

τ (w1) = τ ′(w0), . . . , τ (wk) = τ ′(wk−1), τ (w0) = τ ′(wk). (4.1)

Each of these terms is either a variable or starts with the same constructor
symbol f . The set V ({w1, . . . , wh}) contains exactly one variable x because |(Av∪
V (A f )) \ X | ≤ 1, the terms wi are pairwise different, and wi = σ (t j ) for a term
t j ∈ {t1, . . . , tn} .

We show now that there is a contradiction for k = 1, that is, τ (w1) = τ ′(w0),
τ (w0) = τ ′(w1), τ (w0) �= τ ′(w0), and τ (w1) �= τ ′(w1). The case k > 1 follows
by a straightforward induction. Equation (4.1) implies that τ (x) �= τ ′(x). For
simplicity we assume that each of the terms w0, w1 contains the variable x
exactly once. The general case can be proven analogously. Two cases may occur:
either w0 is a proper subterm of w1 (or vice versa) or they have the forms
shown in Figure 9(a) and (b). Suppose w0 is a proper subterm of w1. Then,
τ (w0) is a proper subterm of τ (w1) = τ ′(w0) and τ ′(w0) is a proper subterm of
τ ′(w1) = τ (w0). Hence τ (w0) = τ ′(w0). This contradicts τ (w0) �= τ ′(w0). Hence
w0 is not subterm of w1 or vice versa. According to Equation (4.1) it holds
τ (w0) = τ ′(w1). Then, the terms w0 and w1 have the forms shown in Figure 9(a)
and (b), respectively. This implies that the terms τ ′(w0) and τ (w1) have the
forms as shown in Figure 9(c) and (d), respectively. However, since τ (x) �= τ ′(x),
τ ′(w0) �= τ (w1) in contradiction to Equation (4.1). Hence, there cannot be two
different substitutions τ and τ ′ which are solutions to σ (S) = σ (t). Thus, S = t
is solvable with respect to X .
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Example 4.7. This example demonstrates condition (3). We show a positive
and a negative example. For both examples, x and y are variables of sort Nat.

Consider the constraint S = {x, succ(x)}. This constraint is solvable with
respect to {S}: let σ be a ground substitution for {S}. If |σ (S)| �= 2, then there is
no solution to σ (S) = {x, succ(x)}. If σ (S) has exactly two elements, it has exactly
one solution iff these elements have the form t, succ(t) for a term t : : Nat. Thus
σ (S) = {x, succ(x)} is directly solvable.

It is easy to see that the constraints S1 = x and S2 =, succ(x) are solvable
with respect to S1 and S2, respectively. Furthermore, Av = V (Asucc) = {x}, that
is, (Av ∪ V (Asucc)) \ {S} = {x}. Hence (3) is satisfied.

Consider now the constraint S = {x, succ(y)}. This constraint is not solv-
able with respect to {S}: if σ (S) = {succ(0), succ(succ(0))}, then the constraint
σ (S) = {x, succ(y)} has two different solutions. The first solution τ is defined
by τ (x) = succ(0) and τ (y) = succ(0). The second solution τ ′ is defined by
τ ′(x) = succ(succ(0)) and τ ′(y) = 0.

Here, Av = {x} and V (Asucc) = {y}. Therefore (Av ∪ V (Asucc)) \ {S} = {x, y}.
Hence (3) is violated.

The counterexample to condition (3) demonstrates the property (4.1):
τ (σ (y)) = τ ′(σ (y)) = succ(succ(0)) and τ (σ (x) = τ ′(σ (y)) = succ(0). The restric-
tion |(Av ∪ V (A f )) \ X | ≤ 1 avoids these kinds of cycles. It basically states that
for each constructor f there is at most one variable left for substitution if all
variables in X are substituted by ground-terms.

We say, a constraint is patently solvable with respect to a set of variables iff
the sufficient conditions of Lemma 4.6 are satisfied.

Remark 4.8. In the rest of this section, we only consider patently solvable
constraints.

4.2 LNS(1)-Specifications

We now introduce a subclass of sorted natural semantics specifications that
allow for the computation of a proof tree by one depth-first left-to-right traversal
through the abstract syntax tree of a given program. We call these specifications
LNS(1) (Left-to-Right Natural Semantics).

Consider an inference rule R for a production X 0 : := X 1 · · · X n, (cf. Figure 10)
and a left-to-right traversal through its nodes. The sort variables for every
nonterminal X i, i = 0, . . . , n, can be partitioned into input sorts ISX i and output
sorts OSX i . Before the traversal of rule R, the values for sort variables ISX 0

must be known. Using these values, computing values of logical variables and
sort variables of rule R starts until all sort variables of ISX 1 have a value. This
constraint solving computes alternatingly values for logical and sort variables.
Then the subtree rooted at X 1 is visited. After this visit the values of the sort
variables OSX 1 are known. Then, again, the values of logical variables and
sort variables are computed alternately until the values of all sort variables in
ISX 2 are known. This traversal repeats analogously until X n is visited. Finally,
the remaining logical variables and sort variables are computed. After R is
traversed, the values of all variables of rule R must be known.
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Fig. 10. LNS(1)-condition.

Definition 4.9. Let S be a sorted natural semantics specification, SX be the
set of sorts of grammar symbol X , ISX � OSX = SX be a partition into a set of
input and output sorts, and R be an inference rule of S of production X 0 : :=
X 1 · · · X n. A sequence V0, . . . , Vm of sets of logical variables and sort variables
of R is LNS(1)-computable iff 5 V0 � · · · � Vm = LVARS(R) ∪ SX 0 ∪ · · · ∪ SX n ,
V0 = ISX 0 , and for the sets Vk , k ≥ 1, one of the following conditions is satisfied:

(1) Vk ⊆ LVARS(R), Vk−1 ⊆ SX 0 ∪ OSX 1 ∪ · · · ∪ OSX n , and for each v ∈ Vk there
is a constraint c adjacent to v in DP(R) such that c is patently solvable with
respect to FV(c) ∩ (V0 ∪ · · · ∪ Vk−1).

(2) Vk ⊆ SX 0 , Vk−1 ⊆ LVARS(R), and for each v ∈ Vk there is a constraint
c adjacent to v in DP(R) such that c is patently solvable with respect to
FV(c) ∩ (V0 ∪ · · · ∪ Vk−1).

(3) Vk = OSX i for a k ≥ 1, i ≥ 1 and Vk−1 = IS(X i).
(4) Vk = ISX i for a i ≥ 1, Vk−1 ⊆ LVARS(R), for each v ∈ Vk there is a constraint

c adjacent to v in DP(R) such that c is patently solvable with respect to
FV(c)∩ (V0 ∪ · · · ∪ Vk−1), IS(X j ) ⊆ V0 ∪ · · · ∪ Vk−1 for all j = 0, . . . , i −1, and
IS(X j ) ∩ (V0 ∪ · · · ∪ Vk−1) = ∅ for all j = i + 1, . . . , n.

S is LNS(1) iff for each symbol X there exists a partition SX = ISX � OSX
(ISZ = ∅ for the start symbol Z ) such that for every production each of its
inference rules has a LNS(1)-computable sequence.

Intuitively, LNS(1) ensures that the variables V0, . . . , Vm can be computed in
this order. The sort variables of the grammar symbols X 1, . . . , X n are computed
from left to right. The conditions (1)–(4) state how the variables v ∈ Vk can be
computed, provided that the variables w ∈ V0 ∪· · ·∪Vk−1 are already computed.
This process alternately computes logical variables as soon as they can be com-
puted and sort variables. Condition (1) states the previous step Vk−1 computed
sort variables. Thus, Vk computes logical variables. In this case, there must
be a constraint c that is solvable with respect to the variables V0 ∪ · · · ∪ Vk−1.
Condition (2) states an analogous condition for the case that Vk computes sort
variables of the grammar symbol X 0. Condition (3) states that, if the input sorts
of symbol X i are computed, then the output sorts of X i can be computed (by
recursively computing the variables of the production with left-hand side X i in
the structure tree). Condition (4) considers the remaining case that Vk computes

5LVARS(R) is the set of logical variables of inference rule R.
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Table I. Sets and Their Meanings During Traversal of Abstract Syntax Tree

V0 = {Context0} sort variables of expr0 already computed when starting to visit the
sub-tree rooted at expr0

V1 = {	} logical variables that can now be solved by a constraint of the rule
V2 = {Context1} sort variables of expr1 that can be solved by a constraint of the rule
V3 = {Type1} sort variables computed after visit of sub-tree rooted at expr1
V4 = {type1} logical variables that can be solved after visit of sub-tree rooted at

expr1
V5 = {Context2} sort variables of expr2 that can be solved by a constraint of the rule
V6 = {Type2} sort variables computed after visit of sub-tree rooted at expr2
V7 = {type2} logical variables that can be solved after visit of sub-tree rooted at

expr2
V8 = {Type0} sort variables of expr0 that can be solved by a constraint of R

input sort variables of symbol X i by inference rule R. In this case, Vk−1 must be
a set of logical variables. The condition furthermore states that all sort variables
of X 1, . . . , X i−1 are computed before computing the input sorts of X i and each of
the sort variable of X i+1, . . . , X n is computed after the computation of the input
sorts of X i. Thus, these conditions specify the left-to-right evaluation order.

Example 4.10. The inference rule (B.S10)

	 : : Context  expr1 : type1 : : Type 	 : : Context  expr2 : type2 : : Type
	 : : Context  expr0 : type1 ! type2 : : Type

of the example language DEMO is LNS(1)-computable. The grammar symbol expr
has semantic information of sorts Context and Type. We classify theses sorts
as an input sort and an output sort, respectively. Hence ISexpr = {Context} and
OSexpr = {Type}. In the following, Contexti and Typei denote the sort variable
Context and Type of grammar symbol expri, i = 1, 2, 3, respectively.

According to Definition 4.9 we have V0 = {Context0}. Since V0 ⊆ Sexpr0
, (1) is

applicable. The constraint Context0 = 	 can be patently solved with respect to
{Context0}. Thus V1 = {	}. Now, the constraint Context1 = 	 can be patently
solved with respect to {Context0, 	}. Since V1 ⊆ LVARS(R) and ISexpr1

=
{Context1}, (4) can be applied. Therefore, V2 = {Context1}. Now, property (3)
is applicable, that is, V3 = OSexpr1

= {Type1}. The constraint Type1 = type1
is patently solvable with respect to {Context1, 	, Type1}. Thus, V4 = {type1}.
Since V4 ⊆ LVARS(R), ISexpr2

= {Context2}, and Context2 = 	 is patently
solvable with respect to {Context0, Context1, 	, Type1, type1}, (4) is applica-
ble. This leads to V5 = {Context2}. Then, we construct V6 = OSexpr2

= {Type2}
because only (3) is applicable. The constraint Type2 = type2 is patently solv-
able with respect to {Context0, Context1, Context2, 	, Type1, type1, Type2}.
Hence, V7 = {type2} by (1). Since V7 ⊆ LVARS(R) and the con-
straint Type0 = type1 ! type2 is patently solvable with respect to
{Context0, Context1, Context2, 	, Type1, type1, Type2, type2}, we ob-
tain V8 = {Type0}. This finishes the construction because we have now
encountered all variables from LVARS(R). Table I summarizes these sets and
their meaning with respect to the traversal of abstract syntax trees.
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The specification of DEMO is not LNS(1) because there is no partition of the
sorts into input sorts and outputs sorts of stat such that rule (B.S3) is LNS(1)-
computable: it requires that Context is an output sort of stat because x and type
are known only after visiting stat. (B.S5) implies that Context is also an output
sort of expr, since otherwise the constraint Contextexpr = 	 is not patently
solvable with respect to ∅. However (B.S8) requires Context as an output sort
of expression since otherwise the constraint Contextexpr = 	 � {〈x, type〉} is not
patently solvable with respect to {Contextexpr, 	}.

We have intuitively stated that LNS(1)-specifications induce a particular
traversal strategy. LNS(1) implies that, for all legal abstract syntax trees, the
variables can be computed by a left-to-right traversal following the order in-
duced by Definition 4.9:

THEOREM 4.11. Let S be a LNS(1)-specification. Then every rule cover can be
completed to a proof by a single depth-first left-to-right traversal of an abstract
syntax tree.

PROOF. We first prove by structural induction that, for each node n of an
abstract syntax tree stemming from nonterminal X , after visiting the sub-
tree rooted at n the values of all variables are computed provided the values
of the variables at n stemming from ISX are known before the visit. If n is
described by an axiom, then Definition 4.9 directly implies that the values of
all variables of n can be computed. Suppose the children of n are obtained by
production X 0 : := X 1 · · · X m and the inference rule applied is not an axiom.
Let k j , j = 1, . . . , m, be defined such that Vk j = ISX j . Definition 4.9(4) im-
plies k1 < k2 < · · · < km. According to Definitions 4.9(1), 4.9(2), and 4.9(4),
the values of all variables in V1 ∪ · · · ∪ Vk1 can be computed. By the induc-
tion hypothesis, the values of all variables of the subtree rooted at the first
child of n can be computed, in particular those at Vk1+1 = OSX 1 . By a sim-
ple induction on the child number, we can prove that, after visiting the sub-
tree of the last child of n, all variables in V0 ∪ · · · ∪ Vkm+1 are computed.
Definitions 4.9(1) and 4.9(2) imply that, after the visit of the last child of n,
the values of the remaining variables can be computed. This induction also
shows that, upon each visit of a node of the abstract syntax tree, the values for
its input sorts are known (and the root has no input sorts). This completes the
proof.

Example 4.12. The converse of Theorem 4.11 is not true, that is, LNS(1) is
just a sufficient criterion. Figure 11 shows a sorted natural semantics specifi-
cation where all abstract syntax trees can be computed by a depth-first left-to-
right traversal. The sort definition for sort S is omitted for simplicity.

Figure 12 shows the two abstract syntax trees of this programming language.
It is easy to see that, in both cases, the values of all variables can be computed
by a single left-to-right traversal. However, the specification in Figure 11 is not
LNS(1), because the inference rule (4.2) has no LNS(1)-computable sequence.
For this inference rule, it is not possible to fix an order V0, . . . , Vm on its variables
such that the variables can be computed in this order by a left-to-right traversal
for any abstract syntax tree:
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Fig. 11. A sorted natural semantics specification which is not LNS(1).

Fig. 12. The two abstract syntax trees for the language of Figure 11.

Consider first the subtree on the left of Figure 12. After the visit of the first
child, the value of x from the inference rule (4.2) is known. Then, the second
child is visited, and after this visit, the values of y and all other variables are
known. However, for the abstract syntax tree on the right, the value of y is
known after visiting the first child and the value of x is known after visiting
the second child of the root. Hence, there is no LNS(1)-computable sequence for
inference rule (4.2).

In the following, we present an algorithm that decides whether a sorted natu-
ral semantics specification is LNS(1), and if it is so, it returns for each inference
rule an LNS(1)-computable sequence. The algorithm visits each grammar sym-
bol. During the visit of a grammar symbol X , it visits each production with
left-hand side X . The visit of a production p : X 0 : := X 1 · · · X n visits first
every inference rule of p and then in turn each grammar symbol X 1, . . . , X n
not yet visited. During the visit of an inference rule R, the algorithm tries to
find an LNS(1)-computable sequence for R. For this, it is necessary to have
some assumptions on the input sorts ISX 0 . There are two possibilities during
this construction: either a contradiction is found or it is not possible to find an
LNS(1)-computable sequence for the inference rule R. In the former case, the
specification is not LNS(1) and the algorithm terminates. In the latter case,
the assumptions on the input sorts are revised and the visit process starts
again with the revised assumptions. Initially, it is optimistically assumed that
ISX = SX for all grammar symbols X . The revision process stops iff no revision
was necessary or a contradiction was found.

Figure 13 shows the algorithm for visiting an inference rule R of production
p : X 0 : := X 1 · · · X n. It greedily computes an LNS(1)-computable sequence
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Fig. 13. Algorithm for computing an LNS(1)-computable sequence of an inference rule R for pro-
duction X 0 : := X 1 · · · X n.

V0, . . . , Vm of R until the sequence is a partition of LVARS(R) or a contradiction
to LNS(1) is detected. The set V̄ = V0 ∪ · · · ∪ Vj contains the variables already
considered and X i is the last considered symbol of p. According to Definition 4.9
only the cases specified by the conditions in lines (3), (12), and (15) need to be
considered. First each iteration computes the new set Constr of constraints
that can be solved with respect to V̄ . Vj+1 is defined to be the maximal set of
new variables whose value can be computed using the constraints of Constr. If
Vj ⊆ LVARS(R), it may happen that there are no constraints that can compute
sorts of SX 0 . Then, according to Definition 4.9, the next set must be the input
sorts of the next nonterminal X i+1. If there is no such next nonterminal, there
must be a contradiction to LNS(1) because no remaining constraints can be
solved with respect to V̄ . If there is such a next nonterminal, then a revision is
necessary if not each of its input sorts can be computed. Except the subsets of
SX 0 , the other types of subsets may be empty. Therefore, a flag indicating the
type of the set is maintained. For simplicity, we omit this detail in Figure 13.

Remark 4.13. The algorithm in Figure 13 can also be used to compute a
legal direction assignment for DP(R): before the computation of Constr all undi-
rected edges {x, c} are directed from logical variable or sort variable x to con-
straint c, if x ∈ Vj . After the computation of Vj+1 all undirected edges {x, c} are
directed from c ∈ Constr to x ∈ Vj+1.

THEOREM 4.14. The algorithm for checking the LNS(1) property detects that
a specification S is LNS(1) together with the LNS(1)-computable sequences for
every rule R iff S is LNS(1).

PROOF. ONLY IF: If the algorithm terminates with detection that S is LNS(1),
then it has computed a set of input sorts ISX for each grammar symbol X . The
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definition OSX = SX \ ISX induces a partition of SX . It remains to show that,
for each inference rule R, the sequence V0, . . . , Vm computed by the algorithm is
LNS(1)-computable. Since the algorithm terminates with the detection that S

is LNS(1), the last visit of each inference rule neither revises a set of input sorts
nor detects a contradiction to LNS(1). Hence, the loop (2)–(19) terminates with
V0∪· · ·∪Vm = SX 0 ∪· · · SX n ∪VR , that is, after termination all sort variables and
logical variables are considered. It remains to show that V0, . . . , Vm are pairwise
disjoint and that one of the conditions (1)–(4) of Definition 4.9 is satisfied. We
prove this property by induction on j . Initially V0 = ISX 0 . By the induction
hypothesis, Vj satisfies one of the properties (1)–(4) of Definition 4.9. Hence,
Vj satisfies one of the conditions in lines (3), (12), or (15). Hence, the set Vj+1 is
computed by one of the assignments in lines (5), (7), (14), and (16). In any case,
Vk ∩ Vj+1 = ∅ for k = 0, . . . , j . Furthermore, these assignments imply directly
that Vj+1 satisfies conditions (2), (4), (1), or (3) of Definition 4.9, respectively.

IF: We prove that if the algorithm terminates with output “S is not LNS(1)”
then S is not LNS(1). This output is possible only if line (11) of Figure 13 is
executed for a inference rule R. Hence V0 ∪ · · · ∪ Vj �= LVARS(R) ∪ SX 0 ∪
· · · ∪ SX n , Vj ⊆ LVARS(R), the last nonterminal X n is already visited, and it
is not possible to find a constraint S = t that can be solved with respect to
V̄ . Hence, there is no LNS(1)-computable sequence for R with respect to the
current partitions SX = ISX � OSX of grammar symbols X . However, there
might be other partitions. Let S = t be a constraint that cannot be solved with
respect to V̄ . Since SX 1 ∪· · ·∪SX n ⊆ V̄ , line (11) is also executed for all different
partitions of SX 1 , . . . , SX n . Furthermore, S ∈ OSX 0 . Suppose there is a different
partition of SX 0 = IS′

X 0
� OS′

X 0
where an LNS(1)-computable sequence for R is

computed. Then, it must hold S ∈ IS′
X 0

. Therefore, there was a previous visit of
R where S ∈ ISX 0 . Since S �∈ ISX 0 at the current visit, the set ISX 0 was revised.
In particular S was eliminated. This can only be done if line (9) is executed for
a inference rule R ′ of a production Y : := · · · X 0 · · · . However, this means that S
cannot be computed by a LNS(1)-computable sequence for R ′. Hence, S cannot
be LNS(1).

4.3 Other Solution Strategies

This subsection discusses informally several other solution strategies. LNS(k)-
specifications guarantee that all rule covers be completed by k depth-first left-
to-right traversals through the abstract syntax tree. It is a straightforward
generalization of the LNS(1)-condition: for each grammar symbol X we have
partitions ISX = IS(1)

X �· · ·�IS(k)
X of the input sorts and OSX = IS(1)

X �· · ·�IS(k)
X of

the output sorts into k sets. With this partition, Definition 4.9 can be directly ge-
neralized to LNS(k)-computable sequences and LNS(k)-specifications. RNS(k)-
specifications guarantee that all rule covers can be completed by k depth-first
right-to-left traversals through the abstract syntax trees. ANS(k)-specifications
guarantee that all rule covers can be completed by k depth-first traversals
through the abstract syntax tree alternating between left-to-right traversals
and right-to-left traversals. The idea behind these different traversal strate-
gies is analogous to the predefined traversal strategies in attribute grammars.
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It is an open problem whether there is a class of sorted natural seman-
tic specifications for derived solution strategies analogous to ordered attribute
grammars. However, if all inference rules of a sorted natural semantics speci-
fication use only defined functions (i.e., each semantic information has a term
consisting only of variables and symbols for derived functions), then no logical
variable is solved by unification because they must be computed before this
according to the restricted AC1-unification which we employ. We will show in
Section 5 that these specifications can be transformed directly into attribute
grammars. Therefore this special case allows us to apply all results known from
attribute grammars.

5. COMPARISON WITH ATTRIBUTE GRAMMARS

Attribute grammars are used for specifying and generating semantic analysis.
This section compares the expressiveness of sorted natural semantics and at-
tribute grammars and the efficiency of the semantic analyses generated from
them. In Section 5.1 we show that each well-defined attribute grammar can
be represented directly as a sorted natural semantics specification. Section 5.2
shows that the converse is not true. Section 5.3 compares LAG-grammars with
LNS-specifications.

5.1 Representation of Attribute Grammars by Sorted Natural Semantics

First, we present the basic terminology for attribute grammars. Then we discuss
the relation between attribute grammars and sorted natural semantics.

Definition 5.1. An attribute grammar is a tuple AG = (G, A, R, C) where
G = (T, N , P, Z ) is a context-free grammar with terminals T , nontermi-
nals N , productions P , and start symbol Z describing the abstract syntax,
A = ∪X ∈T∪N A(X ) is a finite set of attributes, R = ∪p∈P R(p) is a finite set of
attribution rules, and C = ∪p∈P C(p) is a finite set of AG-conditions.

Example 5.2. Appendix B.3 contains the attribute grammar for DEMO. X .a
denotes that a is an attribute of X , that is, a ∈ A(X ). Attribution rules are as-
sociated with the productions and have the form X i.a ← f (· · · ). AG-Conditions
are Boolean formulas also associated with a production.

The set AF(p) is the set of attributes that are computed by production p,
that is, X i.a ∈ AF(p) iff there is an attribution rule of production p with left-
hand side X i.a. The attribute X i.a is synthesized iff X i is the left-hand side
of the production, otherwise it is inherited. AS(X ) and AI(X ) denote the set
of synthesized and inherited attributes, respectively. An attribute grammar is
complete iff AI(X ) ∪ AS(X ) = A(X ), AS(X ) ⊆ AF(p) for each production with
left-hand side X , and AI(X ) ⊆ AF(p) for each production p with a right-hand
side containing X . An attribute grammar is consistent iff AI(X ) ∩ AS(X ) = ∅
for all X ∈ T ∪ N and if, for each p ∈ P and for each X .a ∈ AF(p), there is
exactly one attribution rule in R(p) with left-hand side X .a.

Attribute grammars specify the values of the attributes by attribution rules.
If the attribute values are known for the right-hand side of an attribution rule,
then the attribute value of the left-hand side can be computed. Let t be an
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abstract syntax tree. t is correctly attributed iff for every node n0 with chil-
dren n1, . . . , nk obtained according to production p : X 0 : := X 1 · · · X k , Xi.a =
f (X j1 .a1, . . . , X jk .ak) for every attribution rule X i.a ← f (X j1 .a1, . . . , X jk.ak) ∈
R(p) and each AG-condition c(Xi1.a

′
1, . . . , Xip.a

′
p) ∈ C(p) evaluates to true. Com-

plete and consistent attribute grammars guarantee that for each abstract syn-
tax tree there is at most one correct attribution.

For an abstract syntax tree, the attributes can be computed if the dependen-
cies induced by the attribution rules do not define a cycle. An attribute grammar
is acyclic iff this is true for every abstract syntax tree. An attribute grammar
is well-defined iff it is complete, consistent, and acyclic. For well-defined gram-
mars an attribution can be computed for each abstract syntax tree by evaluating
them in a topological order of the dependencies.

The following theorem shows that each well-defined attribute grammar can
be transformed automatically into an “equivalent” sorted natural semantics
specification with the same attributes:

THEOREM 5.3. For every well-defined attribute grammar AG = (G, A, R, C)
there is a transformation to a well-formed sorted natural semantics specification
S based on G with the following properties:

(1) X .a ∈ A iff the judgment for nonterminal X has a semantic information of
sort a.

(2) The attributions obtained by AG and S are equal for every abstract syntax
tree.

(3) The basic algorithm on S rejects an abstract syntax tree iff there is no correct
attribution for AG.

PROOF. Property (1) defines the sorts of S. Since all functions and AG-
conditions used in AG are computable, they can be specified by sort definitions
and Horn clauses [Andréka and Németi 1978]. Without loss of generality we
assume that the attribute grammar is normalized, that is, for every production
p it holds X j .a �∈ AF(p) if there is a rule Xi.a ← f (· · · X j .a · · · ) ∈ R(p) or
an AG-condition φ(· · · X j .a · · · ) ∈ C(p). Furthermore, assume without loss of
generality that there is only one AG-condition per rule. The construction of the
inference rules of S is based on the following transformation: for each grammar
symbol X , the natural semantics specification contains judgments of the form

t1 : : a1, . . . , tk : : ak  X : tk+1 : : ak+1, . . . tn : : an,

where AI (X ) = {a1, . . . , ak} are the inherited attributes of X and AS(X ) =
{ak+1, . . . , an} are the synthesized attributes. Our goal is to define inference
rules such that for any attributed syntax tree after solving the constraints
stemming from the inference rules, the value for sort a equals the value of the
attribute a for any node of the attributed syntax tree.

For each production p : X 0 : := X 1 · · · X m we generate an inference rule that
computes the inherited attributes of X 1, . . . , X m and the synthesized attributes
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of X 0. Thus, we generate the following inference rule:

t1
1 : : a1

1, . . . , t1
k1

: : a1
k1

 X 1 : a1
k1+1 : : a1

k1+1, . . . , a1
n1

: : a1
n1

...
tm
1 : : am

1 , . . . , tm
km

: : am
km

 X m : am
km+1 : : am

km+1, . . . , am
nm

: : am
nm

a0
1 : : a0

1, . . . , a0
k0

: : a0
k0

 X 0 : t0
k0+1 : : a0

k0+1, . . . , t0
n0

: : a0
n0

if φ̄. (5.1)

The ai
j are new variables for each synthesized attribute Xi.aj of Xi, i = 1, . . . , m,

and for each inherited attribute X0.aj of X 0, and φ̄ is obtained from the conjunc-
tions of the AG-conditions φ ∈ C(p) by replacing each occurrence of an attribute
Xh.al �∈ AF(p) by variable ah

l and each occurrence of an attribute Xh.al ∈ AF(p)
by the term th

l . The attributes Xh.al �∈ AF(p) are not computed within the con-
text of production p and, hence, their values are denoted by new variables. The
terms ti

j denote the values for the attributes which are computed within the
context of production p. They are obtained from the right-hand sides of the at-
tribution rule for Xi.aj ∈ AF(p) by replacing each occurrence of an attribute
Xh.al by variable ah

l , 0 ≤ h ≤ m. The terms ti
j are uniquely determined because

AG is consistent.
Since there is only one inference rule per production, each abstract syn-

tax tree has exactly one rule cover. Let t be an abstract syntax tree and n0
be a node of t with children n1, . . . , nm obtained by production p : X 0 : :=
X 1 · · · X m. According to the transformation (5.1) each attribute evaluation
ni.a ← f (nj1 .a1, . . . , njq .aq) induced by R(p) corresponds one-to-one to a con-
straint a = f (a1, . . . , aq). Since AG is well-defined, the attributes can be com-
puted in any topological order of the dependencies. Hence, the constraints can
be solved in the same order. It is a straightforward induction on this topological
order to prove that the attribution of t computed by the basic algorithm with S

and by the attribute grammar AG is the same, that is, property (2) holds. An
analogous argument shows that each side condition is evaluated with the same
arguments in both cases. Hence, property (3) holds.

Example 5.4. We apply the transformation (5.1) to the attribute grammar
in Figure 35. The result is the sorted natural semantics specification shown
in Figure 14. In contrast to the sorted natural semantics specification of DEMO

shown in Figure 34, this specification has only one inference rule per production.
Since the attribute grammar in Figure 35 has an attribute defs that collects
all declarations of the program, the sorted natural semantics specification in
Figure 14 has an additional sort Defs to collect all declarations of a program
and to propagate them as a context through the entire abstract syntax tree. The
sorted natural semantics specification of Figure 34 has only one context because
constraints may be partially solved and the remaining variables substituted
later.

The construction in the proof of Theorem 5.3 defines a subset of sorted natu-
ral semantic specifications, namely those corresponding to a well-defined at-
tribute grammar. For this subset, we can generate semantic analyses with
the same efficiency as if they were generated by attribute grammars. To see
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Fig. 14. Transformation of the attribute grammar in Figure 35.
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this suppose that all inference rules have the shape (5.1) and all judgments
for a nonterminal X have the same sorting. Then the converse transforma-
tion can be applied. The result is an attribute grammar which can be tested
for all properties (e.g., completeness, consistency, well-definedness, etc.). Thus,
the generators generating semantic analyses from attribute grammars can be
applied.

5.2 Representation of Sorted Natural Semantics by Attribute Grammars

The converse of Theorem 5.3 is not true: there are sorted natural semantics
specifications which cannot be expressed by an equivalent attribute grammar.
This implies that the specification technique of sorted natural semantics is more
expressive than the specification technique of attribute grammars. For proving
this claim it is sufficient to give one example of such a sorted natural semantics
specification:

THEOREM 5.5. For the sorted natural semantics specification of DEMO in
Appendix B.2 there is no well-defined attribute grammar such that properties
(1)–(3) of Theorem 5.3 are satisfied.

PROOF. Suppose there were such a well-defined attribute grammar AG.
According to (1), its attributes are

A(stats) = {context}, A(var) = {string}, A(expr) = {context, type},
A(stat) = {context, decl}, A(type) = {type}, A(const) = {type}.

Consider the two abstract syntax trees in Figure 15. In both cases, there must
be an indirect dependency from the declaration of x to its use in the expression
x + 1.

Consider the abstract syntax tree on the left. Since context is the only at-
tribute of stats, the node marked with ∗ implies that the production stats0 : :=
stat; stats1 has an attribution rule stats1.context ← stats0.context. Otherwise
there could not be any indirect dependency from the declaration of x to its use
in the expression x + 1.

Now consider the abstract syntax tree on the right. With the same argu-
ments as above, the node marked with + implies that the production stats0 : :=
stat; stats1 has an attribution rule stats0.context ← stats1.context.

Combining these two attribution rules implies that AG is not well-defined,
contradicting our assumption.

Remark 5.6. There is a well-defined attribute grammar AG such that any
abstract syntax tree is accepted by the sorted natural semantics specification
for DEMO iff it is also accepted by AG and for all nonterminals, its number of at-
tributes in AG being at most its number of sorts in the sorted natural semantics
specification. This is an immediate consequence of the fact that one synthesized
attribute per nonterminal is sufficient to describe any static program meaning
[Knuth 1968, 1971]. Note that this synthesized attribute may be structured
arbitrarily complex. However, if a semantic analysis is used in a compiler, the
intermediate code-generation and later phases require specific attributes for
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Fig. 15. Abstract syntax trees used in the proof of Theorem 5.5.

nonterminals—and this is exactly the situation reflected by Theorems 5.3 and
5.5.

5.3 LAG(1)-Grammars versus LNS(1)-Specifications

In this subsection, we show that if there is exactly one inference rule per
production, then LAG(1)-attribute grammars are as expressive as LNS(1)-
specifications. In particular, the transformation of attribute grammars into
sorted natural semantics specifications discussed in Section 5.1 always trans-
forms LAG(1)-attribute grammars into LNS(1)-specifications. In contrast to
Theorem 5.5, LNS(1)-specifications can also be transformed into LAG(1)-
grammars with the same attributes.

Definition 5.7. An attribute grammar AG = (G, A, R, C) is LAG(1) iff, for
every application of p : X 0 : := X 1 · · · X n in an abstract syntax tree, the at-
tributes in A(P ) = A(X 0) ∪ · · · ∪ A(X n) can be computed in the following order:
AI(X 0), AI(X 1), AS(X 1), AI(X 2), . . . , AS(X n), AS(X 0).

For LAG(1)-grammars, the attributes of each abstract syntax tree can be
computed by one depth-first left-to-right traversal.

THEOREM 5.8. For every LAG(1)-grammar AG = (G, A, R, C) there is a
transformation to an LNS(1)-specification S based on G with the properties
(1)–(3) of Theorem 5.3.
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PROOF. We use the same transformation as in the proof of Theorem 5.3
and also assume that AG is normalized. It remains to show that the resulting
specification S is LNS(1). Each attribute a ∈ A(X ) is represented by a sort
a ∈ SX where SX is the set of sorts of grammar symbol X . We partition the
sorts SX into a set of input sorts and a set of output sorts by defining ISX = {a :
a ∈ AI(X )} and OSX = {a : a ∈ AS(X )}. Since A(X ) = AI(X ) � AS(X ), it holds
SX = ISX � OSX . It remains to show how LNS(1)-computable sequences for
inference rules can be defined. Consider the production p : X 0 : := X 1 · · · X m
with the inference rule (5.1). The sequence

V0 = ISX 0 , V1 = {
a0

1, . . . , a0
k0

}
,

V2 = ISX 1 , V3 = OSX 1 , V4 = {
a1

k1+1, . . . , a1
n1

}
,

V5 = ISX 2 , . . . , V3m−2 = {
am−1

km−1+1, . . . , am−1
nm−1

}
,

V3m−1 = ISX m , V3m = OS(X m), V3m+1 = {
am

km+1, . . . , am
nm

}
, V3m+2 = OS(X m)

(5.2)

is an LNS(1)-computable sequence. Obviously, the sequence is a partition of
the logical variables and the sort variables of inference rule (5.1). We show by
induction that every Vj , 1 ≤ j ≤ m satisfies one of the properties (1)–(4) of
Definition 4.9.

By construction it holds ISX 0 = {a0
1, . . . , a0

k0
}. Hence, the constraints a0

i = a0
i ,

i = 1, . . . , k0, are solvable with respect to V0. Thus, V1 satisfies property (1).

Case 1: j = 3h − 1 for a 1 ≤ h ≤ m. Then Vj = ISX h . Suppose that there is
a constraint ah

i = th
i that is not solvable with respect to V0 ∪ · · · ∪ Vj−1. Then,

th
i contains a variable al

s for a l > h. However, then the attribute ah
i ∈ AS(X h)

cannot be computed before attribute al
s ∈ AS(X l ) for a l > h, which contradicts

the LAG(1) condition. Therefore, condition (4) is satisfied.

Case 2: j = 3h for a 1 ≤ h ≤ m. Then Vj = OSX h and condition (3) is satisfied.

Case 3: j = 3h + 1 for a 1 ≤ h ≤ m. This case is argued analogous to V1 using
the set ISX h instead of AIX 0 .

Case 4: j = 3m+2. It holds LVARS(R) ⊆ V0∪· · ·∪V3m+1. Hence, the constraints
a0

i = t0
i , i = k0 + 1, . . . , n0 are patently solvable with respect to V0 ∪ · · · ∪ V3m+1.

Therefore (2) is satisfied.

THEOREM 5.9. For every LNS(1)-specification S based on the abstract syntax
G with one inference rule per production, there is a transformation to an LAG(1)-
grammar AG = (G, A, R, C) with the properties (1)–(3) of Theorem 5.3.

PROOF. We define first AG = (G, A, R, C) and then show that AG is LAG(1).
In the proof, X .S denotes that S is the sort of a semantic information of X , and
SX denotes the set of all sorts of semantic informations of X . For every symbol
X of G we define A(X ) = SX .

Since S is LNS(1), for each symbol X of G there is a partition SX = ISX �OSX
into input sorts and output sorts such that for each inference rule there is an
LNS(1)-computable sequence V0, . . . , Vk . In order to construct R(p) and C(p) it
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Fig. 16. Elimination of logical variables from an inference rule ρ.

is necessary to know functions that compute the values of the logical variables
and sort variables. Let c be a constraint that is patently solvable with respect
to a set of variables X = {x1, . . . , xm}. Then, for each variable x0 ∈ FV(c) \ X
there is a function φc,x0 : S1 × · · · Sm → S0 where Si = xi if xi is a sort variable
and Si is the sort of xi if xi is a logical variable, i = 0, . . . , m. If FV(c) = X , then
there is a function φc : S1 × · · · × Sm → Bool.

Consider now an inference rule ρ of production p : X 0 : := X 1 · · · X n. Let
V0, . . . , Vk the LNS(1)-computable sequence of ρ. We use this sequence and
the functions φc to construct R(p) and C(p). First, we eliminate the logical
variables from ρ using the functions φc. During this elimination, the set C(p) is
computed. The second step computes the set R(p). In the following discussion
V̄ j = V0 ∪ · · · ∪ Vj and Constr j denotes the set of constraints that are patently
solvable with respect to V̄ j .

The first step traverses the LNS(1)-sequence from the back and replaces
successively in the inference rule ρ the variables Vj ⊆ V (ρ) by function calls
and computes the AG-condition set C(p) = C0(p). Figure 16 shows the details.
Each variable x ∈ Vj is considered in turn. If there is more than one constraint
in Constr j containing x, then the computed values must be equal. Therefore,
these equalities are added to C(p) (cf. line (9)). After one iteration of loop (4)–
(10), neither ρ nor Cj (p) contains x. Hence, after the transformation, the new
inference rule ρ ′ and the AG-conditions C(p) do not contain logical variables.

LEMMA 5.10. Let S be a specification and S′ be the specification obtained
from S by elimination of the logical variables. Then, for every abstract syntax
tree, a rule cover with the rules of S can be completed to a proof iff a rule cover
of S′ can be completed to a proof tree, the values for the sort variables are equal,
and all side conditions are satisfied.

PROOF. All constraints S = t can be evaluated from right to left by a depth-
first traversal through an abstract syntax tree. An induction on the abstract
syntax tree analogous to the proof of Theorem 4.11 proves that the values of the
sort variables remain unchanged and that the side conditions are satisfied.
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The second step considers the inference rule ρ ′ of S′. It inductively constructs
sets R j (p) of attribution rules for the sequence V0, . . . , Vk . R0(p) = ∅ and

R j (p) =




R j−1(p) ∪ {X 0.S ← t : S = t ∈ Constr j }, if Vj ⊆ OSX 0 ,
R j−1(p) ∪ {Xi.S ← t : S = t ∈ Constr j }, if Vj ⊆ ISXi , i ≥ 1,
R j (p), otherwise.

(5.3)

Remember that t does not contain logical variables.

LEMMA 5.11. Let S′ be defined as in Lemma 5.10 and AG = (G, A, R, C) the
attribute grammar constructed by (5.3). Then, for any abstract syntax tree, a rule
cover can be completed to a proof tree such that all side conditions are satisfied
iff the values for the sort variables define a correct attribution with respect to
AG

PROOF. It follows directly from the fact that Xi.S ← t ∈ R(p) iff Xi.S = t is
a constraint derived from the inference rule of p.

In this attribute grammar, AI(X ) = ISX and AS(X ) = OSX . As above let ρ

be the inference rule of p in S, V0, . . . , Vk be an LNS(1)-computable sequence
for ρ, and Vj0 , . . . , Vjs be the subsequence consisting of sets of sort variables.
Lemmas 5.10 and 5.11 imply that, for p, the attributes can be computed in
order Vj0 , . . . , Vjs . This sequence almost has the form in Definition 5.7. The only
difference is that between AI(X 0) and AI(X 1), between AS(Xi) and AI(Xi+1),
i = 1, . . . , n − 1, and after AS(X n), there might be sets Vj ⊆ AS(X 0). However,
if AG is normalized, then no attribution rule uses an attribute of AF(p) on
its right-hand side. Therefore all rules computing an attribute of AS(X 0) can
be computed after all children are visited. Therefore the normalized attribute
grammar is LAG(1).

Remark 5.12. If the constraint c has the form S = f (t1, . . . , tn), then
there are only two functions φc,S and φc with the definition φc,S(x1, . . . , xm) =
f (t1, . . . , tn) and φc(x1, . . . , xm, S) = c. If the constraint c does not contain defined
functions, then the functions φc and φc,x0 can be obtained by partial evaluation
of the unification algorithm with respect to X . Thus, the transformation in the
proof of Theorem 5.9 is automatic.

6. APPLICATION IN FIXED-POINT ANALYSES

Many static program analyses specify static semantic information of programs
in such a way that it cannot be computed directly. Instead one needs to deter-
mine a solution iteratively by searching for a fixed-point with respect to the
specification. Typically the solutions for such fixed-point analyses are defined
by suitable sets of constraints. Thereby one needs to rely on well-developed
theories to ensure three requirements. First, one needs to make sure that there
is at least one fixed-point for the specification. Furthermore, one needs to es-
tablish that a fixed-point will be found by a suitable algorithm. Finally, one
needs to prove that this algorithm will find the desired fixed-point, that is, the
smallest or greatest depending on the analysis problem.
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Such fixed-point program analyses can be described within sorted natu-
ral semantics. As a detailed example, we consider type and effect systems in
Section 6.1. In Section 6.2 we discuss that classical data flow analyses fit into
the framework of sorted natural semantics as well.

Taking sorted natural semantics as a common framework has the advantage
that solutions of an analysis problem are described in a mathematically concise
way. A solution is a proof tree in the sense of Section 2. This standardized view
on static program analyses opens new possibilities concerning their uniform
treatment, for example, in the mechanical verification of program properties,
because the notion of a proof tree defines uniquely which interpretations a
specification may have.

6.1 Type and Effect Systems

A type and effect system has judgments of the form S : T
F→ T ′ where S is a

program fragment, T and T ′ are some types, and F is a set of effects giving
information on the execution of S, for example, exceptions that might be raised
during execution of S or new objects that are created during execution of S.
The notion of type is more general than usual and includes every kind of static
information, for example, reaching definitions, available expressions, etc. In
this case, T denotes the information before execution of S and T ′ denotes that
information after execution of S. Usually type and effect systems are described
by means of inference rules. For more applications see, for example, Nielson
et al. [1999]. Our goal is to model type and effect systems with sorted natural
semantics. Consequently, we can derive automatically constraints from such a
specification which can be solved by a suitable constraint solver being able to
compute fixed-points.

In order to model type and effect systems with sorted natural semantics,
the sorts of the types and effects have to be given, the judgments have to be
converted into judgments of sorted natural semantics, and finally the inference
rules of the type and effect systems have to be converted into inference rules of
sorted natural semantics.

If a type and effect system has judgments of the form S : T
F→ T′, we have to

provide sort definitions T and T′ for types T and T′, respectively, a sort definition
E for the effects F , and a function definition for any function f used in the
inference rules of the type and effect system. We model the above judgment of a
type and effect system by the following judgment of sorted natural semantics:

T : : T  S : T′ : : T′, F : : E.

The inference rules of sorted natural semantics are obtained by converting each
judgment in the inference rules of the type and effect system into a judgment
of the sorted natural semantics according to the above transformation.

Example 6.1. We formalize reaching definitions. The types are sets of defi-
nitions that may reach a program point. A definition is a pair 〈x, l 〉 where x is a
variable and l refers to the assignment defining this variable. Any assignment
to a variable x invalidates all definitions reaching that assignment. One says
that an assignment to x kills all definitions for x. The effects are the variables
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Fig. 17. A type and effect system for reaching definitions.

that are definitely killed by a program fragment S. Figure 17 shows a type and
effect system for a simple language. This example is a slight modification of the
corresponding example in Nielson et al. [1999] (they also used reaching defini-
tion as effects while we use them as types). The type and effect system assumes
that each assignment has a unique label l . var.id denotes the identifier asso-
ciated with a variable. The variables that are definitely killed in a conditional
statement are only those that are killed in the then-part and in the else-part.
The reaching definitions are those that may reach the end of the then-part or
else-part. An assignment to variable x kills all reaching definitions for x and
introduces a new definition for x. The operation kill(R, x) deletes all definitions
of x from R. The loop leads to a recursive equation on sets of definitions. Since
the loop may not be executed at all, it cannot be guaranteed that there is a
variable being killed by a loop.

In the first step we introduce the sorts and defined functions. We define the
labels for assignments as natural numbers. The inference rules of Figure 17
require that a unique label be associated with each assignment. This association
has to be modeled using sorts. One sort contains the maximal label assigned
so far. The other sort contains the maximal label assigned in a statement. A
definition is pair of variable name (which is a string) and a label. Reaching
definitions at the beginning of a statement as well at the end of a statement
are sets of definitions. The effects are sets of variables. The sort definitions in
Figure 18 formalize these considerations.
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Fig. 18. Sorts used for reaching definitions.

We have to define the operation kill : RDIn × String → RDOut:

kill(∅, x) = ∅,
kill(R � {〈x, l 〉}, x) = kill(R, x),

kill(R � {〈 y , l 〉}, x) = kill(R, x) � {〈 y , l 〉} ← x �= y .

The other operations are classical functions on sets.
Finally, we have to transform the inference rules. A judgment in sorted na-

tural semantics has the form

l : : LabIn, RD : : RDIn  stats : l′ : : LabOut, RD′ : : RDOut, F : : Eff,

where l is the maximal label used before stats, the RDs are the reaching def-
initions before stats, l′ is the maximal label used after stats, the RDs′ are the
reaching definitions after stats, and F are the variables that are definitely
killed in stats. Figure 19 shows the inference rules for reaching definitions in
sorted natural semantics that are obtained from the type and effect system in
Figure 17.

6.2 Data Flow Analysis

Data flow analyses are the classical form of static program analyses and im-
plemented in many compilers. They regard programs in form of control flow
graphs. Nodes of a control flow graph are the basic blocks which are connected
by edges according to the control flow of the program. A typical data flow analy-
sis specifies the control flow graphs of programs inductively over the program
structure. Characteristic ingredients are definitions for the control flow of the
program, for its basic blocks, for its initial and final blocks, and for whatever
is important for the respective analysis. As an example, consider the avail-
able expressions analysis. It determines, for each program point, which expres-
sions must have already been computed, and not later modified, on all paths to
the program point. To define this analysis formally, one would need to define
the set of expressions which are contained in a program and, based on it, the
set of expressions which are available at a certain program point. Details of
such data flow analyses can be found in textbooks on static program analysis
[Nielson et al. 1999; Muchnick 1997]. The solution of data flow analyses can usu-
ally be determined iteratively. Thereby one needs to make sure that a unique
minimal (or maximal, respectively), solution exists and can be found by suitable
algorithms.
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Fig. 19. Inference rules in sorted natural semantics for reaching definitions.

Monotone frameworks as introduced in Nielson et al. [1999] summarize the
common characteristics of classical data flow analyses. They can be instantiated
with particular data flow analyses. In particular, one distinguishes between
forward versus backward analyses and between may versus must analyses. A
forward analysis takes the control flow as specified by the operational semantics
while a backward analysis reverses it. A must analysis considers only events
which will be definitely true during program execution while may analyses also
take those events into account which may happen but do not need to become
true.

Data flow analyses which fit to the monotone framework have a common
characteristic: they define static semantic information for programs whereby
the definitions are given along the structure of the abstract syntax trees of the
programs. This implies that they can be directly stated within the framework of
sorted natural semantics. Thereby it is necessary to define a sort which points
to nodes in the abstract syntax tree, as it was done already in Section 6.1 with
the sorts LabIn and LabOut.

7. IMPLEMENTATIONS AND RESULTS

We have implemented the basic algorithm by employing the observation that it
specifies directly a concurrent constraint program. As a test to get first runtime
experiences, we realized it directly in the concurrent constraint programming
language Oz. The insights gained during this test helped us in accomplishing
an efficient Java prototype implementation.
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7.1 Concurrent Constraint Solving

The basic algorithm for the semantic analysis specifies directly a program of a
concurrent constraint programming language. The basic algorithm generates
equality constraints which are solved by unification interleaved with the eval-
uation of defined functions. Thereby it is an essential feature that also partial
information can be exploited. For example, if the first component of a tuple is
known, then its value can contribute to the ongoing computation while the final
evaluation of the entire tuple is postponed. Furthermore, it can happen that
several rule covers are possible if more than one inference rule exists for a single
production. Therefore, a running computation must be split into independent
ones considering the alternative constraint sets. Such constraint systems can
be expressed within concurrent constraint programming languages. One such
programming language is Oz [Oz n.d.].

Computations within the Oz programming model (OPM) take place in com-
putation spaces consisting of constraints which are logical formulas and a com-
mon constraint store. The computation goes on by solving constraints. The order
in which constraints are solved can be determined by threads. If the constraints
in a given computation space cannot be solved entirely, then additional assump-
tions can be made and solutions can be found by a search. Therefore, a constraint
C must be chosen and the original problem P is separated into the two com-
plementary constraint problems P1 = P ∧ C and P2 = P ∧ ¬C such that P is
equivalent to P1 ∧ P2. P1 and P2 are solved independently from each other by
creating a new computation space for each of them.

We have test-implemented the basic algorithm [Geiß 1998] using Oz in or-
der to gain insights concerning the behavior of this principle in practice. The
Oz implementation takes a program as input, generates its constraints, trans-
forms them into an Oz intern representation, and solves them. Each solution
process takes place in a separate computation space. Instead of looking at all
possible rule covers separately, we dynamically create new computation spaces
whenever otherwise a solution cannot be determined uniquely, as discussed
in Section 3.2. In doing so, we can eliminate rule covers dynamically. Even
though the theoretical complexity of analyzing alternative rule covers is still
exponential, this case did not show up in our experiments where the number
of computation spaces is linear in the program size. In Figure 20, we visualize
this number of computation spaces examined during the semantic analyses.
These experimental results indicate that an efficient implementation of the
basic algorithm is possible.

7.2 Prototype Implementation

Our prototype implementation in Java [Geiß 1999] follows the same principles
as the idealized Oz implementation. The main difference is that the Oz imple-
mentation of the basic algorithm does not need to specify any solution order for
the constraints because the underlying Oz constraint solver cares for it. In the
Java implementation we need to define this solution order explicitly. Of course
any random order would do but we decided to choose one fitting to the context-
sensitive nature of programming languages. The Java implementation tries to
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Fig. 20. Experiments: number of computation spaces.

Table II. Experimental Results for the Oz and Java Implementation

Program Oz implementation Java implementation
Lines of code Time [s] Memory [MB] # Comp. spaces Time [s] Memory [MB]

39 44.1 10 550 4.6 5
77 134.9 25 1099 5.5 5

115 289.1 52 1648 6.3 6
153 552.8 92 2197 7.0 6
191 8.3 6
229 9.2 7

solve the constraints in, possibly several, left to right depth first traversals of
the abstract syntax tree. This heuristic assumes that program entities are de-
clared before used in most of the cases. Nevertheless, it is a general solution
strategy which is able to solve any constraint systems arising during semantic
analysis. The abstract syntax tree is traversed as many times as necessary un-
til nothing changes. It stops when all constraints are solved or when no more
constraints can be solved. Besides this change, everything else is implemented
basically as in the Oz implementation but without the overhead of the Oz sys-
tem. The experimental results of this Java implementation concerning time
and memory consumption when analyzing Mini-Java programs are given in
Table II (when executed on an Intel Pentium with 133 MHz) and are also visu-
alized, together with the results of the Oz test implementation, in Figures 21
and 22. We have also listed the corresponding results of the Oz test implemen-
tation to show that the efficiency of the implementation language together with
the solution heuristic for the constraints have an enormous effect on the run-
ning time as well as on the memory consumption. This comparison implies
directly that Oz should not be used as prototype implementation language
even though its computation model fits directly because its overhead is too
large.

The prototype implementation in Java demonstrates the feasibility of the
semantic analysis with the basic algorithm. The experimental results show
that the basic algorithm can be used in practical applications. In particular, it
shows that the overall complexity is often linear in practice. The theoretical

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.



558 • S. Glesner and W. Zimmermann

Fig. 21. Experiments: running time of the Oz and Java implementations.

Fig. 22. Experiments: memory consumption of the Oz and Java implementations.
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worst case, an exponential number of computation spaces, does not show up
because the number of computation spaces grows linearly in the program
size.

8. RELATED WORK

The static analysis is a phase in a compiler consisting of the semantic analysis
followed by data and control flow analyses. The semantic analysis consists of
name analysis (which declaration belongs to which use of a variable), type
checking (determines the types of variables and expressions), and operator
identification (which operation is denoted by which operator). Data and con-
trol flow analyses determine abstractions of run-time properties by fixed-point
computations. In this section, we characterize related approaches for the spec-
ification of static semantic properties and the generation of the corresponding
analyses.

8.1 Attribute Grammars

Attribute grammars [Knuth 1968, 1971] are used to describe the static seman-
tics of programming languages. They associate attributes with the nodes of a
program’s syntax tree to express static semantic information. Functional depen-
dencies between the attribute values within one production of the underlying
context-free grammar are specified by attribution rules. The AG-conditions of
the attribution rules describe consistency requirements on the attribute values
which must be fulfilled by a correct attribution. An attribute grammar is well-
defined if, for each correct program, the attribution is unique and computable.
Since attribute grammars with a single attribute per node are sufficiently pow-
erful, it follows directly that all well-defined attribute grammars have the same
expressiveness, namely Turing-completeness. For efficiency reasons, subclasses
of attribute grammars have been investigated: ordered attribute grammars
[Kastens 1980] allow for the computation of the attribute values in a fixed
evaluation order which is inferred from the specification. Thereby it can be
checked in polynomial time whether a given attribute grammar is ordered.
LAG(k)-attribute grammars require that the attributes can be evaluated in
k depth-first left-to-right traversals of the abstract syntax tree [Lewis et al.
1974; Bochmann 1976]. Attribute grammars have been applied successfully in
generators for the semantic analysis. The compiler generator system ELI [Eli
n.d.] and the tool box Cocktail [Grosch and Emmelmann 1990] employ attribute
grammars for the semantic analysis.

Altogether, attribute grammars have been proven to be a suitable method
to specify the static semantics of imperative and object-oriented programming
languages. Descriptions are modular because different semantic aspects of a
language are defined independently from each other by different attributes.
Furthermore, the semantic analysis can be generated such that the resulting
analyses are efficient. Unfortunately, attribute grammars are not declarative
because, when writing a specification, one must already plan in which order the
attribute values need to be computed, thus leading to specifications which are
more complicated than necessary and, hence, hard to use in practice. Their most
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severe drawback is their restriction to analyses which can be solved directly
without fixed-point computations.

8.2 Natural Semantics

Sorted natural semantics is a sorted version of natural semantics [Kahn 1987].
Natural semantics takes advantage of the semantic compositionality of pro-
gramming languages, which implies that the meaning of a program is always
composed from the meanings of its direct subprograms. Natural semantics is
not only able to specify static semantic properties but can also be used to de-
fine the operational semantics of programming languages. However, this is not
within the scope of this paper.

During the last decade, natural semantics has been used for the specifica-
tion of numerous programming languages. The most prominent representative
is the complete description of the static and dynamic semantics of Standard-ML
[Milner et al. 1990, 1997; Milner and Tofte 1991]. This specification has turned
out to be very stable. Its revision shows that it has not contained any serious
errors because most of the corrections affected the programming language’s
design but not mistakes in the specification itself. The inference rules for the
type system are not completely structural because of specialization and genera-
lization rules. These rules cannot be formalized directly in natural semantics.
However, there are structural versions that can be formalized directly using
natural semantics [Kfoury et al. 1994]. Further language specifications were
stated at the French research institution INRIA, for example, of the dynamic
semantics of Eiffel [Attali et al. 1996]. The investigations in Drossopoulou and
Eisenbach [1999], Igarashi et al. [1999], Syme [1999], Nipkow and von Oheimb
[1998], von Oheimb and Nipkov [1999], and von Oheimb [2001] proved the static
type safety of subsets of the Java programming language based on natural se-
mantics specifications. Other work on object-oriented calculi abstracted from a
concrete programming languages and investigated typing rules for these calculi
[Abadi and Cardelli 1996; Castagna 1997]. Their typing rules are also inference
rules on the structure of terms of their calculi. This shows that specifications
in natural semantics are convenient to formally verify properties of program-
ming languages. In summary, natural semantics is a well-suited framework to
specify imperative and object-oriented programming languages.

We note two implementations of natural semantics, the Typol [Despeyroux
1984] and the RML [Pettersson 1995, 1996] implementation. In Typol, infe-
rence rules are regarded as Prolog clauses. The semantic analysis of a program
tries to find semantic information for its root node by using the Prolog search
engine. Hence, the program is traversed in a single left-to-right depth-first
traversal. This is analogous to the strategy of LAG(1)-attribute grammars but
more powerful since Typol uses the Prolog unification algorithm. Theoretically,
it is sufficient to allow a single synthesized attribute per node in the syntax
trees to specify any static semantics. But in most cases, the specifications are
much more declarative and readable if more flexibility and further attributes
are allowed. This holds for Typol specifications as well; since Prolog and Typol
are Turing-complete frameworks, every static semantics can be specified.
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Nevertheless, the following example demonstrates that such specifications
can become more cumbersome than necessary and desirable: think of a block-
structured programming language which requires that variables are declared
but allows their use before their definition. (The language DEMO in Appendix B
is such a language and is discussed in detail throughout this paper.) To specify
the name analysis of such a language in Typol, one needs to define two different
data structures (e.g., based on lists) which collect the declarations within the
block (the declaration list) as well as the variables which are used without a
local declaration in the current block (the usage list). When starting to analyze
a block, both lists are empty. If the use of a variable is found and if this variable
has not been declared before in the block, then it is put in the usage list. If it
has been declared before, nothing needs to be done. If a variable declaration is
found, it is put in the declaration list. Furthermore, if this variable has been
put in the usage list before, it is removed from the usage list. At the end of
a local block, all its declarations are known as well as all variables which are
used without a local declaration and for which a declaration must exist in the
outer block. Hence, to specify the name analysis, it is necessary to define two
different context attributes.

This example demonstrates a typical situation in object-oriented program-
ming languages where all attributes and methods of a class are known in the
entire class body independent of the order of definitions. In this paper, we show
how specifications for such situations can be given more declaratively by using
only one context attribute whereby the semantic analysis can still be gener-
ated automatically. Besides its restricted specification possibilities, Typol has
also another disadvantage because its implementation is Prolog-based and in-
efficient. Therefore, the transformation of a subset of the Typol specifications
into attribute grammars has been investigated [Attali and Franchi-Zannettacci
1988; Attali 1989] in order to evaluate them efficiently without unification. The
RML specification also overcomes the inefficiency of the Typol implementa-
tion. Therefore, inference rules are regarded as procedures and the semantic
information in the inference rules is strictly separated into arguments and into
results. During the semantic analysis, the semantic information is computed
in a left-to-right depth-first-traversal of the syntax tree. The RML implemen-
tation generates very efficient semantic analyses, as is demonstrated by many
examples. But still, there are the same problems concerning flexibility and
declarativity as in the Typol implementation.

Concluding, we see that natural semantics has stood the test of being a suit-
able specification method for the static semantics of programming languages.
Since specifications are modular, natural semantics is also applicable for im-
perative and object-oriented languages. Nevertheless, the implementations of
natural semantics have not kept abreast of this development. Though there
are efficient implementations as RML, the corresponding restricted specifica-
tion possibilities are not sufficiently declarative and flexible and especially not
suited for object-oriented programming languages. In this paper, we present
sorted natural semantics which can be used to specify object-oriented program-
ming languages declaratively, demonstrated with the example specification of
Mini-Java. When generating the semantic analysis with the basic algorithm,
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we do not assume a fixed traversal strategy of the syntax tree, but instead we
regard the specification as a constraint system on the semantic information
of a program. During the semantic analysis, these constraints are generated
and solved. With this concept, we clearly exceed previous implementations of
natural semantics. Moreover, we have established natural semantics as being
sufficiently expressive to define fixed-point analyses.

8.3 Fixed-Point Analyses

Static program analyses are abstractions from the dynamic semantics of pro-
grams that can be determined statically. The classical approach toward static
program analyses used in compilers are monotone frameworks that allow solv-
ing systems of equations over lattices by fixed-point computations. Classical
compiler optimizations such as, for example, reaching definitions (definitions
of variables that may reach a program point), available expressions (expres-
sions whose value is available at a program point), copy propagation (propa-
gates copy assignment x := y), constant propagation, etc., can be modeled by an
equation system over lattices [Muchnick 1997; Morgan 1998]. We have shown
in Section 6 on the example of reaching definitions that these analyses can be
formalized using natural semantics.

Other approaches for static analysis of programs include abstract interpre-
tation [Cousot and Cousot 1977], constraint-solving approaches [Palsberg and
Schwartzbach 1994], and type and effect systems [Jouvelot and Gifford 1991].
The textbook by Nielson et al. [1999] shows a unified view on all these different
approaches and discusses their commonalities from a static analysis point of
view. However, these analyses are not stated in a uniform framework and their
focus does not lie on the analysis of context-sensitive program properties.

8.4 Further Approaches

There are approaches describing the static semantics of programming lan-
guages based on predicate logic. In Odersky [1993] a specification defines a
set of predicate logic formulas for each program. During the semantic analy-
sis, these formulas are generated. Then it is checked whether the program is
a model of these formulas, in which case it is statically semantically correct.
Since this test is not decidable, the specification language must be restricted,
whereupon the test becomes NP-complete. This approach is, as the author re-
marks, not useful in compilers but only in prototypes during the development
of new programming languages. It has been implemented and tested by gene-
rating the semantic analysis for Oberon. Altogether, we characterize this spec-
ification method as declarative because predicate logic formulas are used. It
is applicable for imperative and object-oriented programming languages since
the descriptions are modular. The drawback lies in the inefficiency of the gen-
erated semantic analyses and we do not foresee any possibility reducing the
complexity in principle. We think that this method of describing the seman-
tics of programming languages by predicate logic is not tailored to the prob-
lem because the structure of programs, given by the abstract syntax, is not
exploited.
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Context relations [Snelting and Henhapl 1986] describe the static semantics
of programming languages via sorted inference rules. During the semantic ana-
lysis, the syntax tree of a program is traversed bottom-up, thereby collecting
for each node the relation of still possible combinations of values for its at-
tributes. These relations are transferred to the respective predecessors in the
syntax tree, thereby combining relations from different children nodes with
the natural join operation. An error occurs if no elements remain as possible
values. Context relations have been implemented in the PSG system (Program-
ming System Generator) [Bahlke and Snelting 1986]. Context relations are a
declarative and modular approach which allows for the generation of efficient
semantic analyses. Nevertheless, they regard the name analysis as a prepro-
cessing step which should be done during the syntactic analysis. This view does
not hold for object-oriented languages: for example, if a subclass defines a me-
thod with the same name as a method of its superclass, then it is not clear a
priori whether the method of the superclass is overridden by this new method
or not. This depends on the inheritance relation between the parameter types of
the two methods, which is not known during the syntactic analysis. Therefore
context relations are not applicable for object-oriented programming languages.
Moreover, context relations are not able to express fixed-point analyses because
of their bottom-up nature.

9. CONCLUSIONS AND FUTURE WORK

We have presented sorted natural semantics, a declarative specification me-
thod suitable to define static program analyses by using axioms and inference
rules. In particular, we have established natural semantics as being sufficiently
expressive to define fixed-point analyses. We have shown that it is possible to
generate static analyses from these specifications without loosing their declar-
ativity. Due to the sortedness, the specifications are modular because the sorts
allow for an independent definition of different kinds of semantic information.
We have demonstrated the ability of sorted natural semantics to express two
principal kinds of static analyses: semantic analysis which computes context-
sensitive properties of programs and fixed-point analyses which compute ab-
stractions of run-time properties of programs. We have defined solutions of
analyses formally based on the notion of proof trees. In particular, we have
shown that they can be computed by solving an equivalent set of constraints
by residuation. Hence, when generating implementations, we regard the spec-
ification as a constraint-producing system and generate a set of constraints for
each program under consideration. In the case of the semantic analysis, these
constraints can be solved directly with the basic algorithm. In special cases,
more efficient solution strategies are possible, such as for example, the LNS(1)
strategy which solves the constraints in a left-to-right depth-first traversal.
For more general program analyses computing abstractions of run-time pro-
perties, fixed-point algorithms are necessary. We have implemented the basic
algorithm in a prototype which shows its applicability in practical situations. In
contrast to other implementations of natural semantics such as Typol or RML,
our method offers more degrees of freedom when writing specifications. This
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yields better understandable descriptions because one does not need to consider
a possible evaluation strategy. Therewith we clearly exceed hitherto existing
implementations of natural semantics because in the basic algorithm we can
utilize partial information to compute the overall solution of the constraints.
In comparison with attribute grammars as a standard specification and gen-
eration method for the semantic analysis, sorted natural semantics is clearly
more expressive. Attribute grammars are not able to handle fixed-point analy-
ses at all. This means that we do not lose any descriptive power nor the ability
to generate semantic analyses compared to attribute grammars. Instead, we
demonstrated that we gain power of expressiveness. Depending on the speci-
fication, a solution of the constraints can be found efficiently with a solution
strategy or requires a general-solution algorithm as the basic algorithm or even
a fixed-point algorithm.

The approach to semantic analysis demonstrates that special requirements
stemming from the task of semantic analysis have helped us to define efficient
solution strategies. Although we have not yet investigated similar considera-
tions for fixed-point analyses, this should also be possible when they represent
a monotonous framework. If the defined functions are marked as monotonous
with respect to a lattice, then it should be possible to analyze the constraints
and solve them using fixed-point iterations. Due to the experience in regard
semantic analysis, we are optimistic that it is possible to derive from such
specifications whether a backward- or forward-analysis has to be performed.
Besides, the direction does not make any difference to the solution algorithm
because the constraints are solved independently from the abstract syntax tree.

There are also application domains for the presented results outside the
area of programming languages. In comparison with previous implementations
of natural semantics, the basic algorithm offers an important advantage. It
does not take advantage of the tree structure of the abstract syntax tree and
could therefore also be used in application domains where the specified systems
do not necessarily show tree structure. One such domain is component-based
software systems where the relation between the components can be described
by a graph structure. In future work, we want to apply the presented results to
such problems.

APPENDIX A. SPECIFICATION OF MINI-JAVA

Mini-Java is a small object-oriented programming language featuring many
Java characteristics such as concrete classes, inheritance, and polymorphism.
In Mini-Java, it is not possible to overload features. Furthermore, there are no
static features, no interfaces, no threads, and no privacy concepts. For simplic-
ity, methods contain only one parameter. The imperative kernel is reduced to
assignments and while loops (in Pascal-style syntax). Figure 23 shows the syn-
tax of Mini-Java. Methods with more than one parameter and other imperative
language constructs can easily be added but do not provide new insights. This
appendix introduces the static semantics of Mini-Java.

Remark A.1. The distinction between the types feature type and decl type
is necessary because the sort of the context of the judgment for productions
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Fig. 23. Syntax of Mini-Java.

Fig. 24. Sorts used in the specification for Mini-Java.

(A.9) and (A.10) differs from the context in the judgment for production (A.13).
If there were just one nonterminal type, then productions (A.11) and (A.15)
would be the same. Since the contexts of the judgments for feature type and
decl type are different, and there can be at most one sorting for the judgment
of a nonterminal, the specification would not be well-defined.

Figure 24 shows the sort definitions used for the specification of the static
semantics of Mini-Java. There are three different levels of contexts: one on
the level of classes, one within the level of classes, and one within the level of

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.



566 • S. Glesner and W. Zimmermann

Fig. 25. Defined functions used in the specification for Mini-Java.

methods. The first context contains information on the types of the program, its
subtype hierarchy, and on the features of the classes of the program. Concerning
the signature of features, there are in principle two kinds, one for methods and
one for attributes. Attributes have no argument type. We represent both by
using semantic information of sort Signature. For attributes, the two items
of type information are the same. When analyzing a class, the second context
additionally contains information on the class currently being considered. The
context for analyzing method bodies contains additionally the local variables
and parameters of the method. The information on local variables requires also
information on whether the variable is a local variable, an input parameter,
or a return parameter. Finally, we need to distinguish whether it is possible to
assign a value to designator (lvalue in the positive case; rvalue in the negative
case). For example, if a designator refers to a method, it is impossible to assign
a value to it.

The static semantics requires the defined functions shown in Figure 25. Their
meaning is defined by the Horn clauses in Figure 26.

Remark A.2. Sorts are denoted in bold face, constructors are underlined,
defined functions are written in italic style, and variables are written sans serif.

The Horn clauses ((A.G1)–(A.G7) in Figure 26) define a notion of equality on
the elements of class environments, environments, and sets of local variables.
The basic algorithm is able to use special functions unique in order to define
equality of elements of sets based on keys. Just for specification, the use of the
functions unique would not be necessary. However, without them, a feasible
semantic analysis would be impossible.

The constructor � is special in the sense that it has also Horn clauses for
describing the transitivity (A.G8) of the subtype relation, that is, it implicitly
refines the element-function.

The defined functions overridden and not overridden specify the conditions
when a method overrides another (cf. (A.G9) and (A.G10)). This is the case if
and only if the methods have the same name and the same argument type
and if the result type of the overriding method is greater or equal to the result
type of the method being overridden. Finally, Thru filters from the set of meth-
ods of a current class those which are not overridden by the set of methods of
the predecessor class (cf. (A.G11–(A.G14)). It takes three arguments. The first
argument is the type hierarchy. The second argument contains the interfaces
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Fig. 26. Horn clauses for Mini-Java.

of the current class while the third argument contains the interfaces of the
predecessor class. Horn clause (A.G11) states that if the predecessor class has
no methods, then nothing can be overridden and all methods of the current
class will go through. If the current class has no methods, then nothing can go
through, as stated in Horn clause (A.G12). Horn clause (A.G13) formalizes the
situation that if there is a method in the predecessor class which overrides a
method from the current class, then this method cannot go through (hence, it
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Fig. 27. Inference rules for productions (A.1)–(A.6).

is removed from the methods of the current class) and it cannot override any
other method in the current class (hence, it is also removed from the method
set of the predecessor class). Last, but not least, Horn clause (A.G14) reflects
that, if a method from the predecessor class does not override any method from
the current class, then it can be removed from the method set of the predeces-
sor class. In summary, the results of the function Thru are those interfaces of
the current class which are not overridden by the methods from the predeces-
sor class. This defined function is needed when defining inheritance. void is a
constant denoting a special type needed for the return type of procedures.

Finally, we discuss the inference rules for the productions. Figure 27 shows
the inference rules for productions (A.1)–(A.6). The side condition of inference
rule (A.S1) checks whether the type hierarchy derived from the program is
acyclic. Inference rules (A.S2) and (A.S3) collect the information of the classes.
The name of a class added must be unique and different from the other class
names (cf. the side condition of (A.S2)). (A.S4) and (A.S5) summarize local infor-
mation on classes. If a class B inherits a class A (cf. (A.S4)), then the inherited
features that are not overridden also belong to B and a subtype relation is
added. In any case, a type is a subtype of itself. The class main contains a
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Fig. 28. Inference rules for productions (A.7)–(A.11).

method Main (cf. inference rule (A.S6)). This method is executed when starting
the execution of a program.

Remark A.3. The inference rules (A.S4) and (A.S5) use the function v (v =
value) stemming from the lexical analysis. For every occurrence of nonterminal
id, v returns the string of the corresponding identifier.

Figure 28 shows the inference rules for productions (A.7)–(A.11). These pro-
ductions specify features of a class. Rules (A.S7) and (A.S8) collect the informa-
tion from a list of features. The side condition of (A.S7) specifies that the name
of a feature added to a list of features must be new. Rules (A.S9) and (A.S10)
define the information of a single feature. It is a pair: the first component spec-
ifies whether the feature is an attribute or a method, the second component
specifies the name of the feature and its signature. In case of methods the sig-
nature consists of the argument type and the return type. The side condition of
(A.S10) specifies that the name of the parameter of a method must be different
from result and from all local variables of the method. (A.S11) defines that the
type of an attribute, the parameter type of a method, and the return type of a
method must be available in the context, that is, occur as a class name of the
program.

The remaining inference rules define the static semantics of method bodies.
Figure 29 shows the inference rules for blocks, their declarations, and state-
ments. The inference rule (A.S12) collects the local variables of a block and
specifies that the context of the block is the same as the context of its decla-
rations and its statements. The inference rules (A.S13) and (A.S14) collect the
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Fig. 29. Inference rules for productions (A.12)–(A.19).

information of declaration lists. The side condition of (A.S13) ensures that a
new name is added to the list of local variables previously collected. The infor-
mation on local variables consists of three components: the information that
it is a local variable (distinguishing them from input parameters and return
parameters), its name, and its type. Rule (A.S15) specifies that the type of a
declaration must be defined in a program, that is, in the context of the decla-
ration. Rules (A.S16) and (A.S17) specify that the context of statements in a
statement list is the same as the context of a statement. Inference rule (A.S18)
specifies the static semantics of an assignment, that is, the types of its left-hand
side and right-hand side, respectively, and that it must be possible to assign an
object to the designator of the left-hand side (lvalue). The side condition speci-
fies that the type of the right-hand side of an assignment must be a subtype of
the left-hand side. The inference rule (A.S19) for while loops does not specify
that the control expression must be of Boolean type because Mini-Java does
not offer basic types. Instead, the loop terminates when the control expression
evaluates to the nil-object.

Figure 30 completes the specification of the static semantics of Mini-Java
with the inference rules for designators and expressions. Inference rule (A.S20)
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Fig. 30. Inference rules for productions (A.20)–(A.25).

specifies that it is possible to assign a value to an attribute of an object specified
by a designator iff it is possible to assign a value to the designator. Furthermore,
the identifier for the attribute must be a feature of the type of this designator.
According to the grammar, a designator consisting of a single identifier is either
an attribute or a local variable; it never can be a method call. There is an
inference rule for each of these two cases: (A.S21) and (A.S22), respectively. In
both cases, it is possible to assign values to these designators. The side condition
of (A.S21) defines that a designator is an attribute only if the corresponding
identifier is not hidden by a local variable. The inference rule (A.S23) describes
the situation when a method is called on an object specified by a designator. It
specifies that the called method is a method of the static type of the designator
and (by its side condition) that the type of the argument is a subtype of the
parameter type of the method. Furthermore, the type of the method call is the
return type of the method, and it is not possible to assign a value to a method
call. (A.S24) describes the analogous situation for a plain method call. The
inference rule (A.S26) specifies that the type of a new operation must be a class
name different from void and that the type of the expression is the class of the
created object.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.



572 • S. Glesner and W. Zimmermann

Fig. 31. Syntax of DEMO.

Fig. 32. Sorts used in the sorted natural semantics for DEMO.

Fig. 33. Defined functions for DEMO.

APPENDIX B. SPECIFICATION OF DEMO

This appendix specifies the language DEMO. DEMO is used in Section 3 for demon-
strating the basic algorithm and in Section 5 for the comparison of natural
semantics and attribute grammars. Section B.1 introduces the syntax and in-
formal static semantics of DEMO. Section B.2 defines its static semantics by a
sorted natural semantics specification, and Section B.3 gives a definition by an
attribute grammar.

B.1 Syntax and Informal Introduction to DEMO

DEMO is a very simple imperative language. A DEMO-program is a list of assign-
ments and variable declarations. Figure 31 shows the context-free grammar
specifying the syntax of DEMO.

DEMO has two types, integers and reals. Integers are coercible to real numbers
but not vice versa, that is, if the left-hand side of an assignment is of type
integer, then the expression on the right-hand side must also be of type integers.
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Fig. 34. Inference rules for DEMO.

Declarations of variables do not need to occur before their use. However, every
variable used in a DEMO-program must be declared. It is possible to declare a
variable twice. In this case, the declaration (i.e., the type of the variable) must
be identical.

B.2 Sorted Natural Semantics for DEMO

Figure 32 shows the sorts used in the specification of the static semantics for
DEMO. The context contains a set of declarations. A declaration consists of a
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Fig. 35. An attribute grammar for DEMO.

variable name and its type. Figure 33 shows the defined functions and their
definitions. � is the subtype predicate. ! computes the least upper bound of
two types with respect to �.

Figure 34 shows the inference rules for DEMO. Each statement defines an
identifier—even if it is an assignment (cf. rule B.S5). The two inference rules
(B.S2) and (B.S3) distinguish the situation when a variable is not yet defined
in a context and when it is already defined. In the latter case, the type in
the context and the type derived from the statement must agree. Inference
rule (B.S5) specifies that the type of the expression on the right-hand side
of an assignment must be coercible to the left-hand side of the assignment.
Rule (B.S6) specifies that the type of a variable in a declaration is the declared
type. The remaining rules for typing expressions (rules (B.S8)–(B.S12)) and for
obtaining types (rules (B.S13) and (B.S14)) are straightforward.

The interaction between rules (B.S2), (B.S3), (B.S5), and (B.S6) requires some
explanation. Suppose that a value is assigned to an identifier x before its decla-
ration. Then the application of rule (B.S5) introduces a new variable type for the
type of the identifier x. Rule (B.S2) adds this declaration to the context for the
remaining statements in the program without instantiating the variable type
because the variable x may be declared later. This context is passed through
(and possibly extended) by inference rules (B.S2) and (B.S3). As soon as a dec-
laration of x is encountered, the variable type is substituted by the type of x by
rule (B.S6).

If inference rule (B.S3) is applied, then variable x is declared before the exam-
ined statement stat. Then, the type stemming from the declaration is already
in the context 	. It must be equal to the type of the variable x in stat. For any
of the two cases, the type information flows from the declaration of a variable
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to the statement. However, the flow directions are different. The unification
mechanism is powerful enough such that, for both cases, the attribution can be
computed from the first to the last statement in order.

B.3 An Attribute Grammar for DEMO

Since the flow-direction of context information is not uniform, we need two
attributes for the context. Otherwise, the attribute grammar will not be well-
defined (cf. Section 5.2). The attribute grammar in Figure 35 collects all decla-
rations (attribute defs) and passes them at the root to the context. The context is
simply propagated down. At the root it is checked whether the declarations are
unambigous (using the function unambigous). The AG-condition for production
(B.4) checks whether the type of the right-hand side is coercible to the left-hand
side and whether the left-hand side is declared in the context. Similarly, if a
variable occurs on the right-hand side, the AG-condition of production (B.7)
checks whether it is declared in the context. Hence, all programs using un-
declared variables are rejected. The attribution for stat.decl of the production
(B.4) does not add a declaration for the left-hand side. This is only done in the
attribution for stat.decl of production (B.5). The attribution rules for computing
types of expressions are analogous to the specification for the sorted natural
semantics. The only difference is that the type information for variables is not
obtained by unification (as in inference rule (B.S8)) but by an explicit function
gettype. All auxiliary functions need to be defined. We leave these definitions to
the reader.
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Switzerland.

COUSOT, P. AND COUSOT, R. 1977. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages. ACM Press, New York, NY,
238–252.

DESPEYROUX, T. 1984. Executable specification of static semantics. In Semantics of Data Types,
G. Kahn, Ed. Lecture Notes in Computer Science, vol. 173, Springer-Verlag, Berlin, Germany,
215–233.

DOMENJOUD, E. 1992. A technical note on AC-unification. The number of minimal unifiers of the
equation αx1 + · · · + αxp = β y1 + · · · β yq . J. Automat. Reason. 8, 1, 39–44.

DROSSOPOULOU, S. AND EISENBACH, S. 1999. Describing the semantics of Java and proving type
soundness. In Formal Syntax and Semantics of Java, J. Alves-Foss, Ed. Lecture Notes in Com-
puter Science, vol. 1523, Springer-Verlag, Berlin, Germany, 41 ff.
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