
Examensarbete

Collaborative web content management
- Wiki and beyond

av

Mattias Beermann

LITH-IDA-EX--05/087--SE

2005-12-08

Rapporttyp
Report category

Licentiatavhandling

Examensarbete

C-uppsats

D-uppsats

Övrig rapport

Språk
Language

 Svenska/Swedish

 Engelska/English

Titel
Title

Författare
Author

Sammanfattning
Abstract

ISBN

ISRN LITH-IDA-EX--05/087--SE

Serietitel och serienummer ISSN
Title of series, numbering

Nyckelord
Keywords

Datum
Date

URL för elektronisk version

X

Avdelning, institution
Division, department

Institutionen för datavetenskap

Department of Computer
and Information Science

Collaborative web content management - Wiki and beyond

Mattias Beermann

Wiki web sites are collaborative content management systems where everything can be edited by anyone, a concept
that at first glance seems to be impossible due to vandalism and spam. Wikipedia.org contains more than one
million articles, all of them are editable by anyone. Thanks to peer reviewing and tools that enable an article to be
reverted to a previous version, vandalism and spam can be controlled efficiently. The wiki concept has some
challenges ahead, to be able to handle the rapid growth, to standardize the markup language used to write articles
and to create better editors that can be used by anyone without any special markup language knowledge.

This thesis provides an extensive background to the wiki concept and possible solutions to the above problems. A
wiki XML language is designed, that is simple, extensible and uses some of the solutions proposed in the XHTML
2.0 draft recommendation. Different solutions are proposed for a browser based WYSIWYG XML editor together
with experiences from an experimental implementation. Architecture and design considerations for a scalable and
high performance wiki engine are described and experiences from a C\# 2.0 wiki engine implementation, code
named KuaiWiki, are presented.

Wiki, Web Content Management, C#, XML, KuaiWiki

2005-12-08
Linköpings universitet

X

Linköpings universitet
Institutionen för datavetenskap

Examensarbete

Collaborative web content management
- Wiki and beyond

av

Mattias Beermann

LITH-IDA-EX--05/087--SE

2005-12-08

Handledare: Adrian Pop
Examinator: Peter Fritzson

Abstract

Wiki web sites are collaborative content management systems where everything
can be edited by anyone, a concept that at first glance seems to be impossible
due to vandalism and spam. Wikipedia.org contains more than one million
articles, all of them are editable by anyone. Thanks to peer reviewing and tools
that enable an article to be reverted to a previous version, vandalism and spam
can be controlled efficiently. The wiki concept has some challenges ahead, to be
able to handle the rapid growth, to standardize the markup language used to
write articles and to create better editors that can be used by anyone without
any special markup language knowledge.

This thesis provides an extensive background to the wiki concept and pos-
sible solutions to the above problems. A wiki XML language is designed, that
is simple, extensible and uses some of the solutions proposed in the XHTML
2.0 draft recommendation. Different solutions are proposed for a browser based
WYSIWYG XML editor together with experiences from an experimental im-
plementation. Architecture and design considerations for a scalable and high
performance wiki engine are described and experiences from a C# 2.0 wiki en-
gine implementation, code named KuaiWiki, are presented.

The conclusions are:

• The wiki concept will continue to grow in popularity.

• XML is suitable as a markup language used to specify wiki articles together
with XSLT for transformations.

• Browser based WYSIWYG XML editors are possible, but hard to imple-
ment due to limitations in the browsers.

• A wiki engine can use XML and XSLT to present articles. By using the
new functions in Microsoft SQL Server 2005 some of the processing can
take place inside the database.

• An implementation that is from the ground up designed for performance
and scalability should be able to handle large wiki web sites and wiki
hosting scenarios. The use of caching at several levels in the application
can greatly enhance the performance.

Contents

1 Introduction 1
1.1 That cannot work! . 2
1.2 Reasons to consider wiki . 2
1.3 Different sites, different needs . 3
1.4 Wiki editing . 3
1.5 Purpose of the thesis . 4

2 Wiki evolution 6
2.1 History . 6
2.2 Susning.nu . 6
2.3 Wikimedia . 7

3 Review of wiki features 9
3.1 Large variety . 9
3.2 FlexWiki . 10

3.2.1 Features . 10
3.3 MediaWiki . 12
3.4 Look and feel . 12

3.4.1 Skins . 12
3.4.2 Readability . 13
3.4.3 Tool tips . 13
3.4.4 Side bar . 13
3.4.5 Stub threshold . 13
3.4.6 Printable version . 14
3.4.7 Report style . 14

3.5 Multimedia . 15
3.6 Version tracking . 15

3.6.1 Diff . 15
3.6.2 Edit notification . 15
3.6.3 Backup . 16

3.7 Page types . 16
3.8 Editing . 16

3.8.1 Smart tags . 17
3.8.2 Multilanguage support . 17

3.9 Search and queries . 17
3.10 Spam and vandalism protection 17
3.11 Extensibility . 17

ii

4 Document formats 18
4.1 Current situation . 18

4.1.1 Different dialects of wiki text 18
4.1.2 HTML and XHTML . 19

4.2 Markup Requirements . 20
4.3 Existing popular markup languages 21

4.3.1 LaTeX . 21
4.3.2 DocBook . 22
4.3.3 (X)HTML . 22
4.3.4 XML . 24

4.4 WXML - a wiki XML markup language 25
4.4.1 Style . 25
4.4.2 Modularization of XHTML 26
4.4.3 Metadata and article markup 27
4.4.4 Core modules . 27
4.4.5 Example of a WXML document 28

4.5 Transformation of XML documents 29
4.5.1 Overview of XSLT . 29

5 Wiki article editing 31
5.1 Textarea XML Editing . 31
5.2 Wiki text editing . 32
5.3 WYSIWYG XML editing . 32
5.4 Experimental implementation . 32

5.4.1 HTML WYSIWYG editors 32
5.4.2 Different approaches . 33
5.4.3 Lack of XML support . 33
5.4.4 Cut and paste . 33
5.4.5 DTD/Schema awareness 34
5.4.6 Browser issues . 34
5.4.7 Future work . 35

5.5 Multiple required editors . 35

6 Architecture and design considerations 37
6.1 Performance objectives . 38

6.1.1 Wikipedia.org as a performance example 38
6.2 Deployment scenarios . 39

6.2.1 Wiki on a stick . 39
6.2.2 Personal wiki server . 41
6.2.3 Wiki hosting . 41
6.2.4 Summary . 41

6.3 Client scenarios . 42
6.3.1 Fat client . 42
6.3.2 Slim clients . 44
6.3.3 Wiki web service . 44
6.3.4 Search robots . 45

6.4 Programming language . 45
6.4.1 Java . 45
6.4.2 C# . 46
6.4.3 Performance . 47

iii

6.4.4 Choice of programming language 47
6.5 Storage system . 48

6.5.1 Performance of database servers 48
6.5.2 MS SQL Server 2005 . 49

6.6 Performance versus simplicity . 50
6.6.1 Reflector for .NET . 51

6.7 Scale out versus Scale up . 51
6.7.1 Scale up . 51
6.7.2 Scale out . 52
6.7.3 Loosely coupled and layered design 52

6.8 Design patterns . 52
6.8.1 Adapter pattern . 52
6.8.2 Provider pattern . 53

6.9 Caching . 54
6.9.1 Database cache dependency 54
6.9.2 IIS and ASP.NET . 54

6.10 CSS stylesheets . 55
6.11 XSL stylesheets . 55
6.12 Preprocess . 55

6.12.1 Web server level caching 56
6.12.2 Database level caching . 56

6.13 Database optimization . 56
6.13.1 Table layout . 56
6.13.2 Indexes . 57
6.13.3 Stored procedures . 57
6.13.4 XML Storage . 57
6.13.5 Replication . 58

7 Implementation 59
7.1 Prototype in .NET Framework 1.1 59
7.2 .NET Framework 2.0 . 60

7.2.1 SQL Server 2005 . 60
7.3 Modified provider pattern . 60
7.4 Processing steps . 62

7.4.1 Request class . 63
7.4.2 WebConfig . 63
7.4.3 Pipeline . 63
7.4.4 KuaiWikiMainPageSource 66
7.4.5 InterceptHandler . 67
7.4.6 InterceptingXmlReader 67
7.4.7 xPathNavigableConverter 68

7.5 Database . 69
7.5.1 Table layout . 69
7.5.2 Stored Procedures . 70
7.5.3 Triggers . 73
7.5.4 Functions . 75

7.6 Future work . 77

iv

8 Conclusion 78
8.1 Document formats . 78
8.2 WYSIWYG Editing . 78
8.3 Wiki engine implementation . 79
8.4 The wiki concept . 80

v

Chapter 1

Introduction

The basic idea behind the wiki concept is simple. The inventor is Ward Cun-
ningham and he originally described it as:

The simplest online database that could possibly work. (Leuf and
Cunningham, 2001)

The current largest wiki web is Wikipedia.org, they describe wiki as:

...a group of Web pages that allows users to add content, as on an In-
ternet forum, but also allows others (often completely unrestricted)
to edit the content. (Wikipedia: Wiki, 2005-11-08)

The core concept of wiki is just that, it allows users to add content, but
it also allows anyone to edit that content. It is common that web sites have
some sort of functionality for users to add comments to pages, but wiki also
enables users to change the content, and not just the content the user himself
has written, but all content.

The names originate from the Hawaiian term wiki that means quick or super-
fast.

The essence of wiki is less is more:

• Simple navigation

• Edit, a click away

• Dirt simple markup

• Anyone can change anything

• Fast retrieval

• Built in search

• Quick cross linking

• Encourage linking

• No broken links

• Links are page titles

(Leuf and Cunningham, 2001)

1

1.1 That cannot work!

When people first hear about the wiki concept, the first response is usually that
cannot work! Wikipedia, the largest online encyclopedia with more than 800
000 articles just in English, and even more articles in other languages, is a wiki
site, editable by anyone, and it is becoming larger and larger, and more and
more popular.

The objection most people have against the wiki concept is that it must be
impossible to avoid vandalization, that people will erase content, or even worse,
add content that is not true. All this happens to a wiki, and can sometimes
be a large problem, but all articles are peer reviewed, often very quickly, and
anyone that finds vandalism, or a removed article, or content that is not true,
can easily revert to the last proper version of that article. IBM has studied
vandalism on Wikipedia and most cases of vandalism were found to be reverted
in five minutes or less (Wikipedia: Wiki, 2005-11-08). There are multiple ways
to get informed when an article is changed: it can be placed on a special watch
list, an e-mail with the changes can be sent or RSS-feeds and IRC-channels can
be used, to just name a few.

There is nothing that stops a person to publish a web page on an ordinary
web server, writing facts that are not true, and nothing stops him from specifying
a well known person’s name as the author. Are the facts on such a page truer,
more believable than on a page that anyone can change and correct? Just
because people can not vandalize a normal web page, there is nothing ensuring
that the information on that page is correct, and there is usually no way for
people to give feedback, at least not feedback that is available to the next visitor
of that specific page.

On a wiki site, this is possible. If it is obvious that the content is not true,
anyone can revert back to a previous version of the article, or if the visitor is un-
sure about something, he or she can add a note about this on the corresponding
discussion page.

Most wikis have discussion pages, for each wiki article, there is a discussion
page. This page is for discussion about the article, about doubts in the content,
or just to ask others if it is a good idea to add some information about this
or that. The discussion page itself is also a wiki page, so everyone can edit
anything on it. Usually the discussion page is longer than the corresponding
wiki article and gets more frequent updates.

1.2 Reasons to consider wiki

There are many different wiki engines and most of them can be used for free.
The wiki concept can have many types of information and uses, some of them
are:

• Free form notebook, log book, brainstorming

• Address book and resource finder, link library

• Informal register applications, videos, books, photo albums

• Document manager, linking to document on disk

2

• Resource collections

• Collaborative FAQs

• Project management

• Web site management

• Discussion and review

• Shared bulletin board posting

• Online guestbook

• Free-form database

(Leuf and Cunningham, 2001)

The wiki engines enable easy editing of articles without any required HTML
knowledge. Anyone can edit the information, the quick editing and the discus-
sion pages enable quick collaboration and updates. There are wiki engines for
most platforms, and wiki engines adapted to most usage scenarios.

1.3 Different sites, different needs

A Wiki site is not a solution that fits all types of content. There is probably
not a good idea for a company to have their company presentation and product
pages as a public wiki site that anyone can edit.

Not everyone needs a wiki. Not everyone wants a wiki. Not every
situation benefits from becoming an open discussion or collaboration
forum. (Leuf and Cunningham, 2001)

The companies’ intranet, restricted to people working at the company, is
probably a better place for a wiki, having a collaborative discussion about prod-
ucts, customer complains etc.

Wiki is not a solution that fits all web site needs, but for some types of
information it is a very powerful tool to get people to collaborate and create
content that would be impossible for a single user, or a single company to write.
Wikipedia is one proof of many that the wiki concept works, and that wiki can
make people contribute to create large amount of valuable content.

1.4 Wiki editing

The editing of wiki articles is usually performed on a markup language called
wiki text. Due to the evolution of many different wiki engines, and the rapid
development, there are many different wiki text dialects that usually share some
basic tags, but otherwise are incompatible. To continue the success of wikis, it
is probably necessary to create a standardized wiki text language, or to switch
to visual editing.

3

The wiki text language was designed to be very compact, easy to learn, and
easy to write. Wiki text is mostly focused at marking up structure, and the
editor has limited control of the layout.

You’re browsing a database with a program called WikiWikiWeb.
And the program has an attitude. The program wants everyone to
be an author. So, the program slants in favor of authors at some
inconvenience to readers. (Leuf and Cunningham, 2001)

An example of wiki text markup in the MediaWiki dialect:

\texttt{’’Wiki’’ with an upper case ’’W’’ and ’’’[[WikiWikiWeb]]’’’
are both used to refer specifically to the first wiki ever created
([[25 March]], [[1995]]). Like the [[Portland Pattern Repository]],
the WikiWikiWeb is a section of the [[Portland, Oregon]], [[website]]
of software consultancy Cunningham \& Cunningham.}

This is transformed by the wiki engine into the following HTML code:

\texttt{<p><i>Wiki</i> with an upper case <i>W</i> and
WikiWikiWeb
are both used to refer specifically to the first wiki ever created
(25 March
1995). Like the
<a href="/wiki/Portland_Pattern_Repository" title="Portland Pattern
Repository">Portland Pattern Repository, the WikiWikiWeb is a
section of the <a href="/wiki/Portland\%2C_Oregon" title="Portland,
Oregon">Portland, Oregon,
website of software consultancy Cunningham \& Cunningham.</p>}

This is rendered by a web browser as:

Figure 1.1: Wiki text rendered in browser

The double apostrophes change the mode to italic, the triple apostrophes
change the mode to bold and text inside double square brackets [[title of
wiki article]] creates a link to that wiki article. There are wiki text tags
to create lists of items, tables, timelines and many more structures describing
structure or layout.

1.5 Purpose of the thesis

The wiki concept has over the last years grown in popularity, and there are now
large amounts of high quality information available through wiki web sites. The
growth and popularity have lead to problems. Wikis are now commonly the

4

target for vandalism and spam, both in the form of manual editing but also by
special purpose bots.

The markup language most commonly used are based on different text tags,
and most wikis employ manual editing of the documents without any WYSI-
WYG support. The editing creates a barrier for new, none technical users and
the text markup is not standardized and is hard to validate and transform to
other formats.

Wikipedia.org, the biggest wiki has large problems with performance. This
might be because of the design and evolution of the MediaWiki engine that they
use.

The purpose with this thesis is to investigate three main areas that are
crucial for the ongoing success of wikis.

• Wiki markup as XML. How can the XML-format be used for wiki markup?

• Wiki document editing. How can WYSIWYG editing be used to improve
the editing experience?

• Scalability and performance. How an implementation should be archi-
tected to have high scalability and performance?

For each area, a review of existing solutions will be done, highlighting the
pros and cons. New solutions will be discussed and some of them will be imple-
mented as a support for this thesis.

During the thesis project, the core of a modular wiki engine will be written
and used to evaluate new solutions. The architecture and design of a modular
scalable and high performing experimental wiki engine is the main focus of the
thesis.

5

Chapter 2

Wiki evolution

The first wiki engine had only a few simple features, but that was ten years
ago and today’s top of the line wiki engines are advanced server applications
including many advanced features.

This chapter describes the evolution of the wiki concept, from the beginning
to present day, and also includes a discussion about future directions.

2.1 History

Ward Cunningham invented the wiki concept, implemented the first wiki engine,
and started the first wiki web called WikiWikiWeb on March 25, 1995. Wiki
is a Hawaiian term for quick, or fast, or to hasten. He learned the term from
the wiki wiki shuttle buses at Honolulu Airport, instead of naming the web
quick-web he chose the name wiki web.

The wiki concept became increasingly recognized in the late 1990s as a good
way to develop knowledge based web sites. In the early 2000s enterprises started
to use wiki webs for collaborative uses. Wikipedia was launched in January 2001.
In 2002 Socialtext launched the first commercial open source wiki engine. By
2004, open source wikis such as MediaWiki, Kwiki and TWiki had over one
million downloads reported on Sourceforge. Wikis are commonly used on cor-
porate intranets, where cases of spam and vandalism become less of a problem.
(Wikipedia: Wiki, 2005-11-08)

2.2 Susning.nu

In October 2001 susning.nu was opened, a Swedish wiki web started by Lars
Aronsson. In less than a month the site had grown to include 2000 articles.
At the end of 2001 the site contained 4000 pages (Aronsson, 2002-11-07), this
has grown to present day when the site includes 58 000 articles (Susning.nu:
Homepage, 2005-11-08).

Susning.nu has no license agreement which has the consequence that the
contributions are copyrighted by their submitters. This makes all susning.nu
content unavailable to use at other wiki sites without permission from the sub-
mitters. If Lars Aronsson decides to close down the site, the content can not be
used somewhere else.

6

Susning.nu is using advertisements on their pages, something not found in
wikimedia projects.

On the 15th of April 2004 the site was closed for editing due to large problems
with vandalism, and since then it is only possible for a small group of editors to
change the content. (Wikipedia: Susning.nu, 2005-11-08)

2.3 Wikimedia

The Wikimedia Foundation was started on June 20, 2003 by Wikipedia founder
Jimmy Wales. It is the parent organization of the various Wikimedia projects.
The foundation will maintain and develop free content in wiki based projects.
The foundation owns the computer hardware, domain names and trademarks
of all Wikimedia projects and the MediaWiki wiki engine. The content is li-
censed under the GNU Free Documentation License. (Wikimedia: About the
Wikimedia Foundation, 2005-11-08)

Imagine a world in which every single person is given free access to
the sum of all human knowledge. That’s what we’re doing. And we
need your help. (Wikimedia: Home, 2005-11-08)

The different projects in the Wikimedia family are detailed below.

Wikipedia Free encyclopedias in all languages of the world. The wikipedia
project is the largest in the wikimedia family of projects. Wikipedia now
contains more than one million articles in well over 100 languages.

Wiktionary Free ditionaries and thesaurus in every language. Today the
largest edition is the English, followed by Polish, Bulgarian and Dutch.
The total number of entries is almost 200 000.

Wikiquote A repository of quotations, proverbs, mnemonics and slogans. In
July 2005 it included nearly 18 000 pages in over 30 languages.

Wikibooks A collection of free e-books aimed at students and teachers at
high-school and university level but there is also a Wikijunior section.
The content include textbooks, language courses, manuals and annotated
public domain books.

One example is a Chinese Mandarin course for English speakers. The
advantage of books published as wikis are that the readers can give instant
feedback to the authors and the content evolves over time.

Wikisource A collection of primary source texts, distributed as free and open
content. It is a useful archive of classics, laws and other free texts.

Wikispecies A central extensive database for taxonomy aimed at scientific
users. It will be a free directory of species, covering animalia, plantae,
fungi, bacteria, archaea, prostista and other forms of life.

Wikimedia Commons Provides a central repository of video, images, music
and spoken texts to be used by other Wikimedia projects. In June 2005
it had over 150 000 multimedia files.

7

Wikinews One of the youngest projects, started in December 2004. This
project will provide news article from a neutral point of view, ranging
from original reports to summaries of news from external resources.

(Wikimedia: Our projects, 2005-11-08)

8

Chapter 3

Review of wiki features

The wiki concept has by now existed for ten years and over this period of time
there have been many implementations of wiki engines. The simplicity of the
concept makes a bare bone wiki engine implementable in a short timeframe. The
advanced wiki engines used for larger sites contain a large number of functions
and have become very advanced implementations.

This chapter begins with a quick overview of different wiki engines, and then
the FlexWiki engine and the MediaWiki engine are discussed in some detail. The
major part of this chapter is a feature list, describing the features that should
exist in a modern general purpose wiki engine. The list is based on the feature
list found in the MediaWiki manual but expanded with a lot more content and
ideas (MediaWiki - Documentation: Introduction, 2005-11-11).

3.1 Large variety

The original and first Wiki, WikiWikiWeb, has a long list of different wiki
implementations. The variety of implementation language is large, more than
thirty programming languages are listed, everything from scripting languages,
such as Classic ASP and PHP, to Ada, C++ and Java.

The languages with most implementations are PHP, Perl, Java and Python.
PHP is the most popular of those, with around 70 different wiki engines. A
lot of the engines are forks of other implementations. (WikiWikiWeb: Wiki
Engines, 2005-11-11)

WikiWikiWeb also contains a top ten wiki list, the criteria used are best
of class for a particular purpose, outstanding features and general popularity.
The list is in no particular order. Remember that the list is a wiki page, and
not the result of any formal voting, and the top ten list, contains only 9 items.
(WikiWikiWeb: Top Ten Wiki Engines, 2005-11-11)

UseModWiki - implemented in Perl, and is based on Ward Cunningham’s
original WikiWiki implementation. Wikipedia used this engine before
switching to their custom build MediaWiki engine.

PhpWiki - this engine is based on UseModWiki, but implemented in PHP and
with many added features.

OddMuseWiki - another popular engine based on UseModWiki.

9

TwikiClone - a mature, stable and full featured Perl wiki engine developed
for large corporate intranets. (WikiWikiWeb: Twiki Clone, 2005-11-11)

TikiWiki - a wiki trying to compete with content management systems. The
implementation gets mixed reviews by users. (WikiWikiWeb: TikiWiki,
2005-11-11)

MediaWiki - this is the wiki engine used by Wikipedia and is one of the most
popular wiki engines. It can handle large wiki sites and contains a rich
set of features. The implementation is actively developed.

PmWiki - another implementation written in PHP, claims to be easy to install
and have a simple design combined with a nice feature list.

WakkaWiki - featured on the Wiki Engine Hall of Fame, it has been split in
at least seven different forks. The implementation is designed for speed
and easy extensibility. (WikiWikiWeb: WakkaWiki, 2005-11-11)

MoinMoin - developed as a SourceForge project, implemented in Python and
used by the Python language community at http://www.python.org/moin
and many others. The implementation has a flexible and modular design,
with separate parsing modules for different wiki text dialects. (WikiWiki-
Web: Moin Moin, 2005-11-11)

3.2 FlexWiki

This is a wiki implementation written in the C# language. It was originally
developed by David Ornstein working as a lead program manager in the digital
documents group at Microsoft. He is still active in the project, but on the 27
September 2004 FlexWiki was released as an open source project at SourceForge.

He started FlexWiki as an experiment, he had been part of many projects
where lack of communication and a shared vocabulary created problems. He
thought that the wiki concept had the right features and was not to heavy weight
as some other tools he had used. The goal of the FlexWiki implementation was
to answer the question: could a good enough wiki implementation really improve
the software development process at Microsoft?

In his blog post announcing the open source release, he is not still sure about
the answer to this question, but several groups at Microsoft used FlexWiki at
that time and he thought the project was ready to become an open source
project.

FlexWiki is the third software released by Microsoft under their shared
source initiative at SourceForge, the other two being WiX and WTL. These
projects have become very successful, being in the top 5% of the most active
projects at SourceForge.

FlexWiki was designed to allow multiple teams to work on related projects
in the same wiki, with the help of separate namespaces. (Ornstein, 2005-11-11)

3.2.1 Features

The FlexWiki documentation has no up to date list of all the current features,
but some of the features implemented are:

10

Easy editing - with the FormattingRules dialect of wiki text which is very
similar to most wiki text implementations.

Email notification - based on subscription to WikiNewsletters. A WikiNewslet-
ter is a collection of wiki articles. When any article contained in the
WikiNewsletter is changed, every user subscribed to the newsletter will
get an email with the changes.

RSS feeds - a feature that is very similar to the email notification, but the
changes are published in an RSS feed.

Full article history - all versions of an article are saved. Functionality to see
the changes between two versions is available. When referring to a wiki
article, it is possible to refer to a specific version with an URL, creating a
stable reference that will never change.

Article search - the possibility to search for an article based on its name and
content. Regular expressions can also be used for searching.

Back links - contains a list of all the articles linking to the current page.

WikiTalk - a simple object oriented scripting language that is part of FlexWiki.
It enables wiki articles to incorporate dynamic content and to customize
the user interface. WikiTalk can access classes written in the .NET Frame-
work and serves as an extension mechanism.

Federation and namespaces - one FlexWiki installation is associated with
one federation that contains many wiki bases. A wiki base contains a
namespace name and a list of other imported wiki bases. A link is
constructed by specifying the namespace and the article name. If the
namespace is not specified, the engine will first look in the current namespace,
and then in all imported wiki bases. (FlexWiki: Wiki Federation Overview,
2005-11-12a)

Topic tips - when the mouse hovers over a link, a tool tip is shown with the
summary of the page that the link points at. The tool tip also includes
information about who and when last updated the page.

Page properties - metadata about an article is specified with a property
name, a colon, and one or multiple values separated with comma. The
metadata is for example used to define the summary used by the topic
tip and to create a to do list. (FlexWiki: Wiki Federation Overview,
2005-11-12b)

Optimistic locking - if two users are updating an article at the same time,
the user that finish the editing last, will get a message telling him that
the page has changed while he was editing it.

(FlexWiki: FlexWiki Features, 2005-11-11)

11

3.3 MediaWiki

This is the wiki engine used by the Wikipedia project. It is written in PHP,
and uses MySql for storage. The software was originally built for the Wikipedia
project, and contains a lot of functionality to handle the large number of users
and the large number of different topic areas that the engine is used for. The
code is licensed under the GPL license.

The current version is 1.5 that was released on October 5, 2005. The largest
change was a modified database schema to enhance the performance and ease
maintenance.

Since MediaWiki is used on the world largest wiki sites, it is probably the
wiki engine that most people have used, and its set of features became a de
facto standard. The huge traffic that MediaWiki can handle has impacts on
its feature set, features that demand a lot of processing power are, in general,
avoided.

MediaWiki has support for rendering complex math formulas using a com-
bination of LaTeX, dvips, ImageMagick and Ghostscript (WikiMedia: Enable
TeX, 2005-11-12).

The MediaWiki engine can run multiple instances on a single server, and use
either the same database with different table prefixes or a specific database for
each installation, but there is no support for running multiple wiki sites on the
same instance (WikiMedia: MediaWiki FAQ, 2005-11-12).

The configuration of the wiki engine is achieved by modifying different con-
figuration files and sometimes edits have to be made to the PHP source code.
MediaWiki is just as FlexWiki a SourceForge project.

The following list of features is based on the MediaWiki documentation
with comments and suggestions added by the author of this thesis. (MediaWiki
- Documentation: Introduction, 2005-11-11)

3.4 Look and feel

A web site’s success is not just about the content, the look and feel of a web site
is a major factor for visitors’ impression of both the quality of the information
and the ease of use.

Most companies have a graphical profile, all their documents, advertisements
and web sites should follow the recommendations of the graphical profile.

One CSS file should be used for the whole wiki, and all the articles should
be presented using the same layout. Tags in the wiki markup language that
enables the author to specify layout will soon create pages that do not share
the same look and feel, and should thereby be avoided when possible.

3.4.1 Skins

A wiki engine should have at least one predefined look and feel that is usable
out of the box, and that looks professional. A common feature is also to have
layout themes, or as some programs and web sites call them, skins. A skin is a
collection of images, CSS style sheets and for XSLT enabled applications, XSLT
style sheets. The skin architecture should allow skin developers great flexibility
in how the pages are rendered.

12

3.4.2 Readability

It is very common for web sites to use layouts that are not optimized for read-
ability. Often an exciting design and maximum exposure of advertisement has
been the main goal. This sometimes creates web pages that are both hard to
read, and hard to get a good overview of.

The wiki markup should try to be as layout neutral as possible to enable
skin developers great flexibility to create sites targeted at their user group.

One example of innovative thinking is International Herald Tribune’s (www.iht.com)
user interface. They have a menu option called Change format where the user
can chose between the one column layout, creating a long page where the user
has to scroll, this is the layout used by the great majority of all web sites.

They also have a layout that shares the ideas from the newspaper edition,
the text is in three columns, creating text lines that are very easy to follow
and read. They have replaced the scrolling with two buttons, previous page
and next page. These buttons are using DHTML to change the text, without
reloading the whole page. It is also possible to click on the rightmost column
to go to the next page, and on the leftmost column to go to the previous page.

On each page there is also possible to change the text size, this is saved for
use on other pages on the site.

Another feature that could be useful on a wiki site is the clippings feature.
Next to links to other articles and next to headings is a little symbol placed that
looks like a document with a plus sign. Clicking this symbol adds that page to
the Clippings menu. The content of the clipping menu seems to be stored as a
cookie in the client’s browser. If the user sees an article and wants to read it,
but do not have time at the moment, then he adds that article to the clippings
menu. On his next visit he can easily find it again. The functionally is similar
to browsers’ favorites or bookmarks feature, but this is implemented on the web
site instead of in the browser.

3.4.3 Tool tips

The topic tips used by the FlexWiki engine are a great way to inform the user
about an article without having to switch to that page. This is a feature that
is also found in many Windows applications using the name tool tip.

3.4.4 Side bar

Wikimedia has support for a side bar, a box usually placed on the right side of
the page to present a list of links. The side bar is often used in printed magazines
and papers to give summary information, a list of items or some quote. The
side bar is a way to grab the reader’s attention and to make the most important
information to stand out.

3.4.5 Stub threshold

A stub is an article with just the heading or just a few lines of text. It exists
mostly to indicate that it would be a good idea to have an article containing
information about a specific topic. Stubs can be detected by various methods,
Wikimedia used the comma count method, an article missing a comma was

13

regarded as a stub but they no longer use this method since some languages do
not use the comma symbol. A better method is probably to count the number
of characters in the article.

Links to article stubs should be rendered different from links to full articles.
This has two purposes, to indicate to a reader that there is no valuable content
on the page that the links point at, and to indicate to an editor, that this is a
page that needs attention.

Articles considered as stubs should also be noted on special stub list pages,
where editors easily can get a look of all the articles that are not finished.

3.4.6 Printable version

There are multiple ways to create a page good for printing. It is possible to
mark menu elements and other items that should not be part of the printout
with CSS attributes that hides them when they are to be printed. A more
common method is that there is a printable version link on each page, which
links to the same article but rendered in a way optimized for printing.

The printed page should contain information about when the last edit time
and date, the URL to the specific version of the article, and a link to the latest
version of the article.

Often the license used for the content should be included in the printout,
sometimes creating problems since the license is often longer than the article
itself.

3.4.7 Report style

For some types of content, a more professional report style is needed. This
could be archived with some template model, forcing the content of the article
to follow a specific set of rules.

For scientific reports, this could add obligatory summary, introduction, dis-
cussion and conclusion sections. There should also be the option for long articles
to include a table of contents. One thing that is not very often specified in wiki
articles are references, which are very important for some subjects, and there
should be a functionality to specify references in the same way as in a formal
report, and to generate a list of references at the end of the article.

Numbered headings and other features used in formal report writing should
if possible be supported.

Another feature that could be useful is to be able to group a set of articles
together into a combined report or a book. This could be used to enable a
user to print all pages related to a specific subject without having to print each
individual article.

To take this one step further is to enable the content of multiple articles to
be grouped together, and with the use of some functionality, like XSL-FO create
a professional looking PDF of the set of articles. If this feature was combined
with report style elements, it should be possible to write professional reports
and thesis directly on the wiki. This would enable many authors to collaborate
on one report, and give editors and reviewers functionality to provide instant
feedback and progress reports.

14

3.5 Multimedia

A wiki engine should have the functionality for users to upload images, audio
and video to the wiki. It should be encouraged to upload the media to the wiki
instead of linking to it, this is to ensure that the content stays available. This
type of content is often copyrighted, and the users that submit content must
make sure that the media is licensed under terms compatible with the wiki’s
license rules.

There are text-to-speech engines that could be used to enable visitors to
download an audio-file with the content of the page. This file could be used
to increase accessibility and to enable users to listen to the content on their
portable mp3-players, etc.

3.6 Version tracking

All the different versions of a wiki article should be saved in the archive. It
should easily be possible to view or revert back to any previous version. When
viewing an old article, it should be possible to choose if the links points to
the latest version of their target articles, or the article that existed when the
archived article was created.

This feature could be called snapshot view, for any point in time, it should
be possible to browse the content of the wiki as it was at just that moment.

Older versions of media files, should, just as wiki articles, be preserved in the
archive. There are two ways to link to media from an article, either the link is to
one specific version of the media file, or the link is to the most current version,
both types of links should be supported. When viewing an old archived article,
it should be possible to decide what images are shown, either the images that
existed at the same time as the article was created, or the most recent images.

3.6.1 Diff

A diffing feature is used to view what changed between two different versions,
either just the changes could be shown, or the articles are viewed side by side,
with changes highlighted. The functionality should be very similar to the diffing
tools used by CVS and Subversion users.

3.6.2 Edit notification

To ensure the quality of the content it should be very easy to get notified when
content is changed. This is to make sure that article edits are peer reviewed as
soon as possible.

The notification should either contain the whole article, or just the sections
that changed. There are many ways to deliver the notification, e-mail, news-
group, IRC or other type of instant messaging system, RSS feeds etc.

A wiki engine should have a plugin system enabling easy extension of the
notification features.

A user should be able to select what changes he should be notified about,
this could include articles he has edited before, and their related articles, or any
topic category, or something similar to FlexWiki’s WikiNewsletter.

15

3.6.3 Backup

A wiki engine soon becomes a large repository of valuable content, it is very
important that this content does not vanish in a system failure. All settings and
all articles including archives and media files should be easy to backup. The
backup should be easy and quick to restore, and there should also be backup
options that provides more of export functionality, enabling content to be moved
between different wikis.

3.7 Page types

The most common page type used is the article page type, this page type shows
a specific version of an article, usually the latest version. A wiki engine needs
to have support for other types of pages, the following should be a good start.

Archive - a dynamic page that shows a list of all versions of the article, con-
taining information about modification time, the size of the edit, the name
of editor and an optional edit remark.

Difference - a dynamic page showing the differences between the versions of
an article.

Discussion - a wiki page that exists for each wiki article. Used by users to
discuss the content of the article, and propose changes.

Voting - a dynamic page that can be used for voting. If editors disagree about
the content of an article, a vote can be conducted, and hopefully the
editors will follow the outcome of the vote. If not, there is the possibility
of a wiki editing war, where two editors revert back to their version over
and over again.

Who’s who - a page that exist for each registered user, this page is only ed-
itable by that user and contains information about himself.

Special pages - dynamic pages that are needed for various functionality on
the wiki web, such as user registration and administration.

3.8 Editing

There is a large variety of different markup languages for wiki content, most are
some type of dialect of wiki text. This is a problem for editors who contribute
with content to wikis using different dialects since they have to know several
dialects and not mix them together.

The editing should, if possible, be independent of the storage format. This
can be achieved with the help of a plugin system that translates the edited
content into the markup language used internally.

For some type of articles, it should be possible to use templates that either
suggest a certain format, or requires a certain format. This can be used to
enhance the common look and feel, and also the quality of the content. One
example is book reviews, if an editor wants to write a book review, he can choose
a book review template, and then certain information that is mandatory, like
author’s name, title and ISBN should be present.

16

3.8.1 Smart tags

There are certain types of information that needs to be dynamic, the front page
might want to list the total number of articles in the wiki. This functionality
could be constructed with the help of special tags that are replaced at request
time with content.

3.8.2 Multilanguage support

The internet has truly become global, but still there is often limited support for
non-western languages. The content should be saved as UNICODE preferably
using 16 bits per character. The markup language should support right to left
languages, and other features required for true multilingual support.

3.9 Search and queries

The articles should be searchable both on article name and meta tags, and on
the whole content of the article. For the whole article search it is possible to use
an external search engine like Google, but preferably there should be an onsite
free text search function.

The free text search and the article name search have to use indexes to speed
up searching. Using regular expressions or other methods to search each article
does not scale, and even if it was used by many early wikis it is not an option
today for anything than very small wikis.

3.10 Spam and vandalism protection

Spam and vandalism can be a major problem for some wikis. There are multi-
ple type of spam, and different types of vandalism. A wiki engine should have
features to minimize the amount of spam and vandalism. The notification fea-
tures of a wiki are very useful here. The better the notification features are, the
quicker an editor can revert the article to an older version without the spam or
vandalism.

3.11 Extensibility

It is probably not possible to create a wiki engine that incorporates features for
every possible usage scenario, instead the wiki engine should have good support
for plugins that can enhance or replace the functionality in the wiki.

17

Chapter 4

Document formats

Even thus a wiki could contain text without any markup, even the first wiki
engines supported a limited set of markup tags. Markup can be divided into two
categories, structural markup and layout markup. Structural markup defines
the structure of a document, such as headings and paragraphs. Layout markup
defines how the content should look, for example that a specific paragraph should
be italic. The markup tags can look very different from one document format
to another which becomes a problem when content should be moved from one
system to another.

This chapter deals with different types of wiki markup, the current situation
and methods that are used. It defines a set of requirements that a new wiki
markup language should be able to handle and discusses existing wiki and none
wiki markups to get a good foundation to use when formulating a new XML
wiki markup language.

4.1 Current situation

Today, most wikis use a markup language called wiki text. It was designed to
be written by hand and to be edited inside an HTML textarea element. The
markup is simple to write since it is made up of normal characters, but it has
evolved to handle complex documents containing tables and text formatting and
has lost much of its original simplicity.

As the wiki concept became more and more popular, different wiki engines
started to emerge and the wiki text tags were extended with new ones to support
more advanced features. There was no overall standardization, which resulted
in a large set of incompatible wiki text dialects. This is an obstacle for wiki
contributors that contribute with content to different wikis using different di-
alects, since they have to know every specific dialect to be able to write in such
markup.

4.1.1 Different dialects of wiki text

The wiki text dialects are not 100% compatible with each other, even worse,
different dialects uses the same markup elements for different things. This is a
well known problem, and there are many efforts underway to find a solution to

18

this. The large number of existing documents should ideally be converted into
a new standardized wiki text language in a more or less automatic way.

Instead of using one common wiki text language, there are proposals to at
least define a common interchange language that every wiki should be able to
import and export from.

The fact that more and more wikis accept a subset of HTML tags and even
CSS attributes will put a lot of demands on a common wiki text language that
is a superset of all existing wiki text dialects.

A superset language is not an optimal solution to the problem, since it
would create an even more bloated wiki text standard. Instead wiki text should
look back to its origins. The first wiki engine implementation, done by Ward
Cunningham in 1995, was described as

the simplest online database that could possibly work (Leuf and
Cunningham, 2001)

There have been a lot of improvements in the programming tools and in the
browsers since 1995. There is a need to ask the question: What is the simplest
online database that could possibly work today?

There are some parts of existing wikis that are not done in the simplest
possibly way with the technology and standards that exist today.

Wiki text - a proprietary, non-standard markup language with lack of, or very
relaxed, validation. The limited validation can create ambiguous output,
and the resulting (X)HTML code can be non conformant to the (X)HTML
standards.

Transform language - wiki text have no standardized transform language
into HTML or any other format. Most wiki engines use a general purpose
scripting language for the transformations.

Text area editing - this is still the only option for browsers on platforms
with limited resources, like on a mobile phone or a PDA. On desktop
computers, the most popular browsers are Mozilla Firefox and Internet
Explorer. Both these browsers have support for rich text editing, which
gives the user a what you see is what you get (WYSIWYG) experience,
or at least, what you see is nearly what you get. This is not to imply that
text area editing does not have it benefits over rich text editing, but they
are optimal for each set of user groups. Just as an HTML Editor is good
for some users, and Notepad is good for some HTML gurus.

Object orientation - most wiki engines are written in scripting languages that
are loosely typed and the implementations are often not object oriented,
making them hard to extend and maintain.

Configuration - usually the configuration of a wiki engine is a mix of modifying
configuration files and often layout changes has to be made in the scripting
code.

4.1.2 HTML and XHTML

There are some wiki engines that allow the user to directly specify (X)HTML
(HTML or XHTML) markup. This can be as an extension to wiki text, for ex-

19

ample everything wrapped inside a starting and ending <html> tag is interpreted
as (X)HTML markup, or the (X)HTML can be the only markup language.

The power of (X)HTML is the large number of elements and in combination
with CSS it is possible to specify almost any layout. This flexibility has its price,
the documents will very easily not share a common look and feel, since it is so
easy for an editor of an article to specify their style preference. The markup
will probably shift its focus from structure markup into layout markup.

The mix of (X)HTML and wiki text can create markup that is quite complex,
see the markup example from part of Wikipedia’s English main page. Notice the
mix of wiki text markup, html elements, attributes and CSS style properties.

<div style="padding-bottom: .3em; margin: 0 .5em .5em">
{{Main Page banner}}

</div>
{| cellspacing="3" |- valign="top" |width="55%"
class="MainPageBG" style="border: 1px solid #ffc9c9;
color: #000; background-color: #fff3f3"|

<div style="padding: .4em .9em .9em">
===Today’s featured article===
{{Wikipedia:Today’s featured article/
{{CURRENTMONTHNAME}} {{CURRENTDAY}}, {{CURRENTYEAR}}}}

(Wikipedia: Main page, 2005-11-13)
There are major security concerns with allowing the user to specify (X)HTML

markup. Filters that remove potential harmful code have to be implemented.
Examples of harmful code are blocks or attributes with JavaScript, that either
exploits some browser bug to get access to a user’s local file system or redirect
the user to some other page containing advertisement etc. The (X)HTML could
also contain object elements, asking the user to install some plugin that could
contain a virus, spyware or adware.

The public wikis that allow (X)HTML must have this type of filter, and
there might be many none obvious way of embedding harmful code into a page.

One way of limiting the above problems with lack of common look and
feel and security issues is to only enable a subset of (X)HTML elements and
attributes. If the wiki is using XHTML this could be accomplished with a
relatively simple XSL-stylesheet that strips disallowed elements and attributes
away from the document. If the wiki is using HTML, then it is not possible to
use XSL, instead there need to be a custom implemented parsing filter.

XML wikis

No commonly used wiki implementation is using XML to both edit and view the
pages. The Open Wiki engine supports traditional wiki text editing, but trans-
lates the results and saves it internally as XML. The pages are then transformed
on the fly with XSLT, either server side or client side. The implementation is
written in 100% classic ASP. (Open Wiki: Xml Formatting, 2005-11-13)

4.2 Markup Requirements

The first step in defining a new markup language is to identify the requirements.
The requirements will probably vary greatly between different types of wiki

20

usage. Some overall requirements are defined in this section.

Well formed and valid - an edited article should be parsed to make sure that
the markup is well formed and valid and the errors should be clearly re-
ported to the user. This is often not ensured in wiki text implementations.

Rich presentation - the markup should include a minimal set of tags to spec-
ify layout, and the focus should be on tags specifying structure. There
should be tags specifying structure that enable the document to be pre-
sented in a visual interesting way.

Easy editing - the language should be easy to read, both for a human and for
the computer. The markup should both be possible to edit by hand and
with the help of an editor.

Extensible - wiki sites contains a large variety of different topics, and it should
be easy to add extra tags to extend the functionality. If possible, the tags
should be added in such a way that a wiki without the extension should
still be able to parse and display the content in a default way.

Media neutral - today, most wiki sites are read from the screen, but as dis-
cussed in other chapters it would sometimes be good to enable flexible
high quality output to paper, and with the increased use of mp3-players
and better text-to-speech engines, wiki content should also be possible to
be transformed to audio files.

Standardized - the markup should become a standard, used by many differ-
ent wiki engines. The markup should be easy to transform into another
markup language.

Fast presentation - the markup should enable quick transformation into (X)HTML.

Internalization - UTF-16 should be used, to support as many languages as
possible. The markup should be able to express structure in any language.

4.3 Existing popular markup languages

There are many ways to markup data, most of them are proprietary, and used
by only one or a few applications. The trend is to use markup that specify
structure instead of layout, here is a quick review of some of them.

4.3.1 LaTeX

This thesis is written in LATEX, it is a format designed for manual editing, to be
used to write articles, reports, books and letters. It has extensive support for
math formulas.

A report for example, is divided into chapter, sections, subsection and sub-
subsections. There are tags for specifying lists, quotations, different font sizes
etc. LaTeX can easily be extended by loading additional packages and existing
tags can be redefined. The LaTeX source is often transformed to postscript or
PDF.

21

One useful feature is the ability to easily write comments in the document,
that are not visible when transformed to postscript of PDF.

An example of LaTeX markup:

\documentclass[a4paper]{report}
\usepackage[latin1]{inputenc}
\title{Collaborative web content management\\- Wiki and beyond}
\author{Mattias Beermann}
\date{\today}
\begin{document}
\maketitle

\chapter{Introduction}
The basic idea behind the wiki concept is simple...
\section{History}
...

\end{document}

4.3.2 DocBook

DocBook is an XML markup language designed to be used for technical docu-
mentation. It started as an SGML application, but today most documents are
written using XML.

It is standardized and maintained by the DocBook Technical Committee at
OASIS.

Many open source project use DocBook for their documentation, some of
them are the Linux Documentation Project, the Linux Kernel and GNOME.

There are DSSSL and XSL stylesheets to transform DocBook files to HTML,
PDF, RTF and many other formats.

The XML format can be edited in a normal text editor, but there are many
editors, both free and commercial, that have support for DocBook. (Wikipedia:
DocBook, 2005-11-14)

An example of DocBook markup:

<book id="cwcm">
<title>Collaborative web content management</title>
<chapter id="chap1">
<title>Introduction</title>
<para>The basic idea behind the wiki concept is simple...</para>
<sect1 id="sec-history">
<title>History</title>
<para>...</para>

</sect1>
</chapter>

</book>

4.3.3 (X)HTML

HTML is the markup language used to specify web pages. The first draft was
published in June 1993. HTML is an acronym for Hypertext markup language,

22

and it was HTML that made internet what it is today.
The language has very relaxed rules, especially the first versions of HTML

were very forgiving for syntax errors. This lead to problems since different
browsers handled the syntax errors in different ways. Each browser vendor
added new features to the language that just their browser could support.

The language was standardized by W3C, which made the language stricter
and added support for new functionality. HTML 3.2 was published in January
14, 1997, HTML 4.0 in December 18, 1997 and HTML 4.01 in December 24,
1999. On May 15, 2000 ISO HTML based on HTML 4.01 Strict became an
ISO/IEC international standard.

The HTML standard used a mix of elements and attributes specifying struc-
ture and layout. This lead to the development of CSS, that was designed to
specify layout separated from the HTML markup. (Wikipedia: HTML, 2005-
11-14)

The introduction of XML, lead to an XHTML 1.0 standard that was confor-
mant to XML rules. XHTML was a great step towards wider adoption of CSS
since many of the layout elements were deprecated.

The Extensible Hypertext Markup Language (XHTML) is a family
of current and future document types and modules that reproduce,
subset, and extend HTML, reformulated in XML. XHTML Family
document types are all XML-based, and ultimately are designed to
work in conjunction with XML-based user agents. (W3C: HTML
Home Page, 2005-11-14)

Currently the XHTML 2.0 specification is in progress, with the seventh
public draft published on 27 May 2005. The XHTML 2.0 specification is much
stricter than any previous version and includes a smaller set of elements and
is not backward compatible as its earlier versions. (W3C: HTML Home Page,
2005-11-14)

An example of HTML markup:

<html>
<head><title>Collaborative web content management</title></head>
<body>
<h1>Introduction</h1>
<p>The basic idea behind the wiki concept is simple...</p>
<h2>History<h2>
<p>...</p>

</body>
</html>

An example of XHTML 2.0 markup:

<html>
<head><title>Collaborative web content management</title></head>
<body>
<h>Introduction</h>
<p>The basic idea behind the wiki concept is simple...</p>
<section>
<h>History</h>

23

<p>...</p>
<section>

</body>
</html>

4.3.4 XML

The XML markup language is a general purpose markup language with its
roots in the SGML-standard. XML is an abbreviation for Extensible Markup
Language. It is a W3C recommendation as of 1998.

The design goals for XML as specified by W3C were:

• XML shall be straightforwardly usable over the Internet.

• XML shall support a wide variety of applications.

• XML shall be compatible with SGML.

• It shall be easy to write programs which process XML documents.

• The number of optional features in XML is to be kept to the absolute
minimum, ideally zero.

• XML documents should be human-legible and reasonably clear.

• The XML design should be prepared quickly.

• The design of XML shall be formal and concise.

• XML documents shall be easy to create.

• Terseness in XML markup is of minimal importance.

(W3C: Extensible Markup Language 1.0, 2005-11-14)
XML is basically a set of rules of how to define a specific markup language.

It states that all elements should begin with a < and end with a >. An element
must have a name, and may have one or several attributes. Elements must be
properly nested, they can not overlap. The syntax looks very similar to HTML.
It is up to the developer to specify what element names and attributes to use,
this can be formalized into a document type definition (DTD), XML Schema or
some other schema language.

An XML document is considered well formed if it follows the rules of the
XML syntax and if the document also follows the rules specified in the related
DTD and XML Schema, it is considered valid.

One large advantage with the XML format is that the parser must not read
a document that is not well formed, avoiding different interpretations between
implementations as have been a huge problem with HTML.

XML has quickly become a very successful standard that is widely used to
store information and to exchange information between applications. A large
group of related standards have contributed to the success of XML.

There are parsers available for XML content in most languages, and they
often implement the XML Document object model, a W3C specification that
specifies an API to parse and modify XML documents. There are also other
APIs used to process XML documents.

24

An example of an XML document:

<document>
<heading>Introduction</heading>
<paragraph>The basic idea behind the wiki concept is simple...</paragraph>
<section>
<heading>History</heading>
<paragraph>...</paragraph>

</section>
</document>

The rest of this chapter discusses how XML can be used to express wiki
content.

4.4 WXML - a wiki XML markup language

Each markup language has its design goals and uses. To use an existing markup
language to markup wiki content is possible, both LATEX, DocBook and (X)HTML
should work, but not in an optimal way since they were not designed for wiki
content.

There is no reason to invent everything again, instead the best ideas from
other markup languages should be used and combined into a markup language
for wiki content using XML markup.

The language should have support for extensibility and should try to ease
the transition from wiki text to the wiki xml markup language (WXML).

The language should be simple to use and offer a stable and lightweight base
that different wiki engines can extend upon.

The wiki XML markup language designed in this thesis is an experimental
language that can be used to test a wiki implementation using XML for editing,
storage and presentation. To design a language that can be replace wiki text and
become a standard requires cooperation between the developers of the largest
wiki engines and from the wiki community. This chapter provides a prototype
that only includes the very basics.

The following sections will use a simplified but similar definition to the one
used in the XHTML 2.0 recommendation. (W3C: XHTML 2.0 Draft, 2005-11-
15)

4.4.1 Style

Different XML vocabularies use different styles, this is mostly a matter of per-
sonal preference but it has some other implications. The element names can be
all uppercase letters (<LAYOUTMASTERSET>), which is uncommon. A more com-
mon approach is to use mixed casing, either Pascal casing where all words starts
with an uppercase letter (<LayoutMasterSet>), or camel casing, where all words
starts with an uppercase letter except the first word (<layoutMasterSet>). The
XSL family of standards all use lowercase letters, words are separated with a
dash (<layout-master-set>). Pascal and camel casing are often used in pro-
gramming languages’ coding conventions, but for this XML vocabulary the XSL
style is used, due to the good readability.

25

The elements and attributes will be in English, implementations specifically
targeted at some other language should still use English element and attribute
names, but might expose translated element and attribute names when the
document is manually edited.

Some standards, like XHTML and DocBook use abbreviated names, the
names becomes faster to manually write, and requires less storage space and
faster retrieval, but considering that most structure based markups have a ma-
jority of text compared to element and attribute data, this is not a major
benefit. If an XML vocabulary uses abbreviations there has to be some rule
specifying how the abbreviations should be constructed, DocBook uses <para>
and XHTML <p>, and these standards only abbreviate some names and not all.
One of the design goals of XML was: Terseness in XML markup is of minimal
importance. The WXML will use no abbreviations, instead the element and
attribute names will be written in full, this is also in line with the XSL family of
standards. This has the benefit that an editor writing the XML markup man-
ually always know it is the full name that is used and does not have to think
about if it is p, or para, or some other abbreviated form.

4.4.2 Modularization of XHTML

XHTML shares some of the same problems that a wiki markup language will
face. The XHTML standard has been carefully designed and developed, and
solutions and ideas should be copied from that standard whenever possible.
This has two advantages, there is no need to reinvent solutions to the same
set of problems and developers that know XHTML will quickly understand the
WXML language.

The problem XHTML faces is that some devices does not implement support
for the whole XHTML standard, instead they only implement a subset of it, and
some devices needs extra functionality not provided in the XHTML standard.
The same problems exist with a general purpose wiki language and the same
solution should be possible to use, in XHTML it is called Modularization of
XHTML.

Modularizing XHTML provides a means for product designers
to specify which elements are supported by a device using standard
building blocks and standard methods for specifying which building
blocks are used. These modules serve as points of conformance for
the content community. The content community can now target the
installed base that supports a certain collection of modules, rather
than worry about the installed base that supports this or that per-
mutation of XHTML elements. (W3C: Modularization of XHTML
1.0 - Second Edition (Working draft), 2005-11-14)

The XML elements and attributes are grouped into modules. A certain
implementation can specify which modules it supports. This is a simple and
effective way of creating a modular and extensible design. The interested reader
can read the whole specification for more information.

26

4.4.3 Metadata and article markup

There are two distinct parts, one is the wiki article markup, the content of the
article, and then there is the metadata about the article. The metadata can
contain information about editors, when the article was edited, the license used
and other properties.

4.4.4 Core modules

To preserve one of the key principles with the wiki concept, less is more, the
required core modules should be kept to a minimum, to enable small and simple
implementations. The modules are loosely defined in the same way as XHTML
2.0. (W3C: XHTML 2.0 Draft, 2005-11-15)

Document module

Elements Content Model
wxml metadata, article
metadata title
title PCDATA*
article (Heading | Structural)*

Structural module

Elements Content Model
heading PCDATA*
section (PCDATA | Flow)*
paragraph (PCDATA | Text | List)*

The content model for this module defines some content sets:

Heading: heading

Structural: List | paragraph | section

Flow: Heading | Structural | Text

Text module

Elements Attributes Content Model
emphasize (PCDATA | Text)*
link href (PCDATA | Text)*
quote (PCDATA | Text)*

The content model for this module defines a content set:

Text emphasize | link | quote

27

List module

Elements Content Model
unordered-list item+
ordered-list item+
item (PCDATA | List)*
definition-list entry+
entry term, definition+
term PCDATA*
defintion (PCDATA | List)*

The content model for this module defines a content set:

List unordered-list | ordered-list | defintion-list

Wiki text module

To be able to slowly phase in WXML, it should be possible to specify wiki text
markup inside a WXML document. A module designed for backward compat-
ibility could be used. To convert existing wiki text markup to WXML, the
markup is automatically transformed into WXML, tags that has no correspon-
dent element in WXML should use elements from the Wiki text module.

When a document is edited by hand, the editor should be notified that the
article contains elements that are deprecated and that they should be removed
if possible.

Links

The link functionality provided in WXML is so far very limited. The current link
element is just to provide basic functionality until something better is added.
The XLink standard contains a lot of information about different types of links.
The XLink recommendation has existed since 17 June 2001 but has so far not
been widely implemented. It is not sure that XLink provides the functionality
needed for wiki linking needs, but some of the ideas presented in that standard
could be useful. (W3C: XML Linking Language 1.0, 2005-11-15)

4.4.5 Example of a WXML document

This is a simple example of a WXML document:

<wxml>
<metadata>
<title>Collaborative web content management</title>
</metadata>
<article>
<heading>Introduction</heading>
<paragraph>The basic idea behind the wiki concept is simple...</paragraph>
<section>
<heading>History</heading>
<paragrpah>...</paragraph>

</section>
</article>

</wxml>

28

4.5 Transformation of XML documents

XML is very easy to transform into other representations, either by writing code
that uses XML DOM or some other parser to read one document and output
another one, or to use the XSL stylesheet language.

The extensible stylesheet language (XSL) family consists of three parts.
They are the extensible stylesheet language transformations (XSLT), XML Path
Language (XPath) and XSL formatting objects (XSL-FO).

XSLT is used to describe a set of transformations that converts one XML
vocabulary into another XML vocabulary. It is also possible to transform XML
documents into HTML and text documents.

XPath is used to address and access various parts of an XML document. It is
used in XSLT to specify the XML elements and nodes that should be accessed.

XSL-FO is an XML vocabulary used for describing formatting semantics.
With XSLT an XML document can be transformed into the XSL-FO vocabu-
lary and then for example turned into PDF. (W3C: The Extensible Stylesheet
Language Family, 2005-11-14)

4.5.1 Overview of XSLT

XSLT is one of the standards that have made XML so popular. XSLT defines
an XML vocabulary that is a very powerful tool to describe both simple and
complex transformations between different XML vocabularies. The syntax can
at first glance look very verbose and even complicated but it is easy to learn the
basics of it, and it quickly becomes a very handy tool for transforming XML
documents.

Input XML document:

<document>
<title>Foo</title>
<paragraph>Baz</paragraph>
<paragraph>Bar</paragraph>

</document>

The above document should be transformed to a HTML document that
should look like:

<html>
<head><title>Foo</title></head>
<body>
<h1>Foo</h1>
<p>Baz</p>
<p>Bar</p>

</body>
</html>

This could be accomplished by writing a small program that reads the source
XML document into an XML DOM object, and then some logic that outputs
the resulting HTML document. A SAX parser could be used to read the source

29

document, and event listeners added to the sax parser contains logic to output
the resulting document or the following XSLT-stylesheet could be used.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match=’/document’>
<html>
<head><title><xsl:value-of select=’title’/></title></head>

<body>
<h1><xsl:value-of select=’title’/></h1>
<xsl:apply-templates select=’paragraph"’/>
</body>
</html>
</xsl:template>

<xsl:template match="’paragraph"’>
<p><xsl:value-of select="’."’/></p>
</xsl:template>

</xsl>

This is an example of a very simple XSLT-stylesheet, using just two tem-
plates, it is possible to have many templates, for loops, if statements and other
types of logic. The syntax of XSLT enables a good XSLT developer to quickly
write advanced transformations.

An XSLT stylehseet can contain include statements to other XSLT stylesheets,
enabling a flexible way to reuse existing stylesheets.

30

Chapter 5

Wiki article editing

Most wiki engines use a HTML textarea element to display the wiki text. There
is sometimes a toolbox with buttons for inserting code for various frequent tags.
This type of editor requires only standard HTML and works in almost any
browser. The toolbox is optional, it requires basic JavaScript functionality.

To enable editing of long articles, wiki engines often provides the option to
either edit the whole article or just a section of it. The section choice makes it
much easier to just change a few lines.

Some wiki text dialects that allow a mix of HTML, CSS and wiki text enables
an author to write very confusing code that requires HTML knowledge, CSS
knowledge and wiki text knowledge. This creates a large barrier for people
without this knowledge. It should be noted that most articles are only using a
few basic wiki text commands. This basic set of commands are able to express
most of the structure needed in most articles.

There are some wiki engines using WYSIWYG editing, often these wikis use
HTML instead of wiki text as the storage language.

There are three major solutions to enable editing of a wiki articles using
XML markup:

• Textarea XML editing

• Wiki text editing and conversion to XML before the article is saved.

• WYSIWYG XML editing

5.1 Textarea XML Editing

A wiki article written using XML markup can be edited in the same way as
wiki text is edited, in an HTML textarea element. This works in all browsers
supporting the HTML textarea element.

A toolbox can be provided that inserts the different elements.
XML needs to be well formed, all tags have to be closed, and the nesting

of elements needs to be correct. This is something the author has to be aware
of and make sure to follow. There are also some characters that need escaping,
the most common is the & symbol, which has to be specified as &.

The XML document should also be well formed, that is, it should conform
to an XML DTD or schema, this is another problem with manual editing.

31

The well formness check and validity check can be made at the client by
loading the content of the textarea into the browser’s XML DOM implementa-
tion, and show the parsing errors to the user. But the majority of error messages
will be too technical for most users, and even if the implementation will be very
simple, it will not give a good editing experience for authors that are not aware
of the XML standard.

An experimental wiki engine could use this type of editing to begin with,
since it is implementable in just a few lines of code.

5.2 Wiki text editing

The wiki article specified in XML could be transformed with XSLT into wiki
text. The wiki text could be edited, using the HTML textarea method. Since
the wiki text has limited well formness constrains and validity constrains, it is
easier for the author to write acceptable wiki text markup. The large numbers
of existing contributors to wiki sites using wiki text are accustomed to this
method, and to them the underlying storage format should not matter.

The problem is to parse the wiki text back to XML and enforce the stricter
rules. This parser has to be able to fix common wiki text well formness problems,
and for more complex cases, give feedback to the author, to inform him or her
where the problem is.

5.3 WYSIWYG XML editing

The most usable type of editing for the majority of users is probably one based
on a WYSIWYG editing. The wiki article is displayed in the same way, or in a
similar way, as when the article is read. The author can directly edit the text
and use toolbars to format the text and get instant feedback of how it will look.
This is very similar to how most word processing programs works.

For a more experienced author, there can be the option to switch to source
code view where he can view and edit the XML code directly.

5.4 Experimental implementation

One part of this thesis was to create an experimental WYSIWYG editor for
editing XML data in Internet Explorer 6.0 and Mozilla Firefox 1.0.

5.4.1 HTML WYSIWYG editors

There are many HTML WYSIWYG editors, some of the uses are for content
management systems, e-mail composing and blog writing. There are two types,
the most common type uses the HTML editing features provided by the browser,
and adds a graphical user interface in the form of toolboxes and menus. Usually
an image upload feature is also provided.

The other type is a component, often in Flash, Java or ActiveX, that provides
the HTML editing features. This method has the benefits of having a richer
programming language to use, and that the developer can specify exactly how
the editor should work. The drawback is that it is often quite a lot of code that

32

is required, and that the user might have to install the component and allow it
to run locally on their computer. (htmlArea, 2005-11-15)

5.4.2 Different approaches

The experimental implementation was written using the editing functionality
available using JavaScript and DHTML. There are three different approaches:

An editor from the ground up - the editor could be written from the ground
up using JavaScript and DHTML without using the editing features pro-
vided by the browser. This is the most flexible solution, but also the one
that probably requires the most lines of code. The lack of features in the
browser would probably make some operations like, cut, copy, and paste
hard or impossible. The text cursor has to be faked, using an image,
text navigation would probably also be very hard to implement, there
are a lot of commands that a user expects to work, page up, page down,
ctrl+left, ctrl+right, all would have to be implemented in JavaScript. It
is very doubtful if it is possible to write a full featured implementation
in this way due to the limit set of features and properties exposed by the
browsers.

contentEditable = true This is not supported yet by Mozilla Firefox, but it
works in Internet Explorer 6.0. This property can be set on almost any
element of an HTML page, making the content editable and enabling a
text cursor. To add HTML elements, these have to either be pasted, or
inserted with the help of JavaScript code.

designMode = ’on’ This property is set on document level, and enables the
whole document to be edited. To limit the editable portion, an IFRAME
is often used to wrap the editable document. The document containing
the IFRAME provides the logic for menus and toolbars.

The implementation use contentEditable for Internet Explorer, since it pro-
vided some better functionality, and designMode in Mozilla Firefox.

5.4.3 Lack of XML support

The designMode editing allows editing of HTML content, not of XML content.
Ideally the browsers should support editing of XML documents, and enforce the
DTD/Schema of the document. The XML document could be formatted with
CSS to look similar to the final page.

Since this is not the case, a workaround had to be found. The solution
used was to transform the XML document into XHTML, and using the class
attribute to specify the original XML element name.

To transform the document back to WXML, the edited document is parsed,
and the WXML elements are created based on the class attributes.

5.4.4 Cut and paste

Cut and paste functionality is a must have in an editor. An author must be
able to move content from one place in an article to another. The copied text
should preserve the original formatting when possible.

33

Mozilla Firefox has no on paste event. It took a lot of effort and time to
work around this issue, by carefully monitoring the text cursor, it is possible to
detect a paste, since the text cursor position will change. The pasted content
has to be selected, also a hard task using the functions provided by Mozilla,
and the pasted content could contain HTML code from a normal HTML page,
containing tags that are not allowed in the WXML. These tags must be removed.

If some text is selected, and then the user paste something, there needs to be
logic that makes sure the resulting document is a well formed and valid WXML
document.

5.4.5 DTD/Schema awareness

Most of the editing features are provided by the browser, but since they are not
XML aware there needs to be a lot of code making sure that the document stays
valid at all time, no matter what the user does.

With the limited set of features provided by the browser, this is not an easy
task.

The user should only be able to insert valid elements at the current position,
thus the toolbox needs to be updated based on the current position in the
document.

The code that provides this functionality, and other validation dependent
code, can be written in two ways, either it is written for one set of WXML
modules, or it is written in a more general way that reads a DTD or Schema
and based on that allows or disallows certain actions. It is probably very hard to
make it fully schema aware, due to the large set of features found in the Schema
language, instead a simplified schema that is sufficient for WXML modules could
be used.

5.4.6 Browser issues

The limited set of features provided made the developing experience very slow
and hard. The implementation was written to work in both Mozilla Firefox and
Internet Explorer. They share some of the same objects, but very often the
code has to take different paths dependent on the browser. This is one example
of the different code needed to support both browsers:

var kxml;
if (window.DOMParser) {
var parser = new DOMParser();
kxml = parser.parseFromString("<content>" + this.textarea.value +
"</content>", "text/xml");

}
else if (window.ActiveXObject) {

kxml = new ActiveXObject("Microsoft.XMLDOM");
kxml.async = false;
kxml.loadXML("<content>" + this.textarea.value + "</content>");

}

The window.ActiveX function is provided by Internet Explorer and win-
dow.DOMParser by Mozilla Firefox. The above example demonstrates the cor-
rect way to detect browser differences. The correct way is to test if the feature

34

exists, if it does, then it is used. Some developers write code that get the type
and version of the browser, and use that to decide which code to run. Both
ways work but if for example Safari implements a feature in the same way as
Mozilla, then it will just work with the above code but if the browser type and
version statement had been used, the code has to be modified to also add the
Safari case.

The development quickly becomes trial and error, since most functions are
poorly documented, and cross browser issues are common, it is very common to
write one or a few lines, test, try something else, test again, and repeat until it
works.

The implementation that was written to evaluate the XML editing possibil-
ities was written in around 500 lines of JavaScript code. The implementation
showed that there seems to be ways to work around most issues, and that copy
and paste can be made to work in both Internet Explorer and Mozilla Firefox
but with a lot of complicated code. This feature was not found to be imple-
mented in any of the HTML editors reviewed before the implementation was
done, so that was considered a success for this implementation.

The DTD/Schema awareness were never implemented, due to time con-
straints, but this part should not be limited by lack of browser features, since
it is mostly about writing JavaScript code that takes care of all the logic.

5.4.7 Future work

The implementation showed that it is probably possible to write a pretty good
WYSIWYG wiki XML editor using JavaScript that has support for both Mozilla
Firefox and Internet Explorer. The implementation also showed that this re-
quires much more time and work than originally thought.

Future work should focus on DTD/Schema awareness, and to provide an
editing experience that is as similar as possible compared to modern word
processors. The problem of ensuring that the edited document stays valid during
the editing can not be underestimated.

5.5 Multiple required editors

The textarea XML editing is very simple to implement, and would probably be
the first editing mode that an XML wiki engine should implement. It enables
developers, and contributors, to write and edit articles. The lack of usability is
made up by the easy implementation.

The wiki text editing is important to make the large number of existing
contributors that know wiki text to feel comfortable. One important feature to
make an XML wiki popular is to enable automatic import of content from wiki
text, thus there needs to be an import module that can convert wiki text to
XML. This import module could easily be modified to also support wiki text
editing and then transform the result back to XML.

The WYSIWYG XML editing feature is the best alternative, it would give
existing wiki text contributors a new better editing experience, and at the same
time it would make it easier for new contributors to edit and create new articles.

A wiki engine evolves, and should have a plugin system, enabling different
editing modes. The textarea XML editing mode should be used for hardcore

35

users, and to be used before any other mode is available. The wiki text editing
enables the wiki editing experience to be similar to existing wiki engines, making
a transition easier. The WYSIWYG XML editing is a feature that should be
implemented when it is possible to create such functionality in an efficient way.

36

Chapter 6

Architecture and design
considerations

The first wiki engines were simple hacks that were designed to be as simple as
possible. The focus was on a rich enough feature set, performance was not a
major concern. This was sufficient then, but today one of the largest and most
popular web sites on the internet, Wikipedia (wikipedia.org), ranked number
38, is a wiki running on the MediaWiki engine (Alexa - Global Top 500, 2005-
11-05). Wikipedia has large problems to keep up with the ever increasing traffic
and data growth.

This chapter discusses best practices for creating a software architecture
and design that has both high performance and good scalability. For more
information the interested reader can read the book Improving .NET Appli-
cation Performance and Scalability (Meier, Vasireddy, Babbar, and Mackman,
2004) for a vast amount of information related to improving .NET framework
performance and scalability.

There are multiple ways to architect and design both client and server side
applications. For client applications performance is often not a problem since
the application is run by one user on a dedicated machine. The opposite is true
for a server application, which has to handle many simultaneous users, creating
a large load on the server machine.

There is always a tradeoff between designing for performance and scalabil-
ity compared to designing for simplicity and manageability. Depending of the
expected use of the application, it is not always motivated to design for maxi-
mum performance since the complexity increases and thereby the development
cost. If the application is scalable, it can be better to spend money on increased
server hardware performance or on multiple servers than to optimize the code.

This chapter will focus on the requirements on implementing a wiki engine
with high performance and good scalability and at the same time trying to keep
the implementation simple and easy to manage and understand.

Performance and scalability is not something that can be put on at the end of
a project, it has to be taken into account during the whole software development
lifecycle.

If you’re very lucky, performance problems can be fixed after the
fact. But, as often as not, it will take a great deal of effort to get

37

your code to where it needs to be for acceptable performance. This
is a very bad trap to fall into. At its worst, you’ll be faced with a
memorable and sometimes job-ending quote: ’This will never work.
You’re going to have to start all over.’ - Rico Mariani, Architect,
Microsoft

6.1 Performance objectives

The expected workload on a wiki engine running a large wiki site is too large
to enable a single server solution, instead the focus should from the beginning
be to achieve as good performance as possible, and to enable the application to
scale out to multiple servers.

6.1.1 Wikipedia.org as a performance example

Wikipedia is running on the MediaWiki server software, a wiki engine written
specifically for Wikipedia. The implementation is written in PHP, using MySql
as database backend. Wikipedia runs MediaWiki on Apache web servers running
Linux. This is usually referred to as a LAMP setup, Linux, Apache, MySql and
PHP.

In February 2003, the database was roughly 4 GB, excluding images and
multimedia, in August 2003 around 16 GB, this continued to grow and in April
2004 the database had grown to 57 GB with a growth rate at above 1 GB a week.
In October 2004, the database had reached 170 GB. (Wikipedia: Technical FAQ,
2005-11-05)

All texts on Wikipedia are licensed under the GNU Free Documentation
License, and thereby it’s free to use under the condition stated in the license.
Complete database dumps are available for download, and there are some web
sites that bring Wikipedia content into their own site, for example answers.com
and yahoo.com.

Hardware

The hardware used to run Wikipedia consist of roughly 89 machines in Florida,
5 near Paris, 11 in Amsterdam and 23 provided by Yahoo. In 2004, they got 39
new servers, and in 2005 88 new servers. The machines can be divided into four
categories, database servers, web servers, Squid servers and others. (Wikimedia
servers, 2005-11-05)

The main database server stores all articles in a MySql database. The disks
are RAID 10 and RAID 1, with battery backed up cache. This is to ensure
that no data is lost in case of disk failure or power failure. The server has 8
GB of RAM, 5.8 GB of these are used for database caching, giving a hit rate
of over 99%. The high hit rate is probably due to the fact that most rows in
the database contain old pages, which are not as frequently accessed. There are
also slave database servers.

The web servers are running MediaWiki on Apache, using Turck MMCache
to speed up PHP execution. All web servers have the same software configura-
tion.

The Squid servers run the Squid proxy and web cacher server software. Fre-
quently requested pages will reside in the Squid servers’ cache, and thus they

38

can serve the request directly and do not have to access the web server. They
have a cache hit rate of around 78% percent, thereby greatly offloading the
Apache servers. This is particularly useful when there is a large share of request
to a specific page. For example, say that some large web site, such as a popular
newspaper has a link to a specific page on the wiki, then the Squids can take
care of all those requests. The Squid servers are configured to do load balancing
on the Apache servers, the request to the Squid servers are balanced by round
robin DNS. Wikipedia started to use Squid servers in February 2004.

The other category, are machines that handles general purpose tasks, such
as mail, DNS and similar tasks.

The interested reader can see live stats of the total number of requests to
the Squid servers at http://noc.wikimedia.org/stats.php. The number of peak
requests per second is usually around 5000.

6.2 Deployment scenarios

Wiki technology can be used to edit and present a large number of different
types of information. The quick editing enables one or multiple users to quickly
do changes and keep the information up to date. The information is published
at once, and an archived item is automatically generated.

This versatility and simplicity creates a wide range of possible uses for wiki
engines. The information that is written to a wiki can be an unstructured text,
or confirm to a specific set of rules. The wiki concept is still young and we have
only seen the beginning of all possible uses and extensions.

A wiki engine could be deployed in many ways, and the architecture and
design should ideally be so flexible that a single implementation can cover all,
or most of them. Today wikis are mostly used for public web sites publishing
information about a single topic, or as an encyclopedia. The wiki engine is
installed for one dedicated wiki site on a general purpose web server.

6.2.1 Wiki on a stick

USB sticks has become very popular, they come in a large variety of different de-
signs and memory sizes. They are often used to transfer files such as documents
and images from one computer to another. There is no technical problem with
installing programs on a USB stick, in fact it is possible to install for example
a Linux distribution and boot a computer from the stick. A memory stick is
small enough to always be around, so why not design a wiki engine that can
be run from a stick? This type of wiki could be used as a personal information
manager, to keep notes, address information, and web links and so on.

What specific requirements does this make on the wiki engine?

• Easy XCOPY installation

• Zero configuration

• As few dependencies as possible

• Able to scale from local use to server mode

• Small disk and memory footprint

39

Easy XCOPY installation

The installation needs to be as simple as possible. Most wiki engines of today
are not easy to install. The implementation could be packed together with a
standard XSL-skin, images etc into a single executable file. The wiki engine is
installed by just copying this single file onto the stick.

Zero configuration

The default configuration should cover most uses, and to run the engine all the
user has to do is to run the exe-file from the stick. The wiki engine is started, an
icon in the task tray in Windows XP, or similar area in other operating systems
is used to indicate that the wiki server is running. Right clicking on this icon
brings up a menu that has options to shutdown the wiki server, to go to the wiki
server’s homepage and to a configuration page. The application listen for http
requests on localhost, port 80, thus the exe implements a minimal web server,
similar to the server bundled with Microsoft Visual Web Developer 2005. The
default configuration should be a safe mode, where only requests from the local
computer is possible.

Dependencies

Everything required to run the wiki engine should be included in the single
exe-file. There should not be any external dependencies on installed programs.
This rules out the option of using a relational database as backend, instead the
simplest possible backend should be used, that is the file system. All active
pages and archived pages are stored as XML-files on the stick. This makes it
easy to share pages between different users, since they can share a page, or a set
of pages by either copying them into another wiki stick, or by emailing them.
Backup could be done just by copying the xml-files to a safe location.

Scaling

There should be an option to configure the wiki engine to listen for remote
request and thereby act as a web server for request from the internet. The wiki
on a stick implementation could then be used as a wiki internet site. If the user
then decides that better performance is required, there should be an easy way
to move the xml wiki files into a relational database.

Footprint

The wiki on a stick implementation should be designed to require little memory
and disk space. It should also be designed for a limited number of request per
seconds, thus there is no need for caching of pages etc.

Implementation details

Most of the code of wiki on a stick can be shared with the full blown wiki engine
implementation. The parts that are different are mostly the lack of relation
database storage and disabling or at least simplification of caching features to
decrease memory usage.

40

Even thus the default installation should have zero configuration, wiki on a
stick should have most of the features of the full version, for example customized
XSL-templates and images.

6.2.2 Personal wiki server

This is one notch above the Wiki on a stick implementation, the feature set
should be similar, but it should include caching and have support for relational
database storage. The performance with a relation database as backend will be
much better than using the file system.

The wiki engine should either be run with the same included mini web server
as the wiki on a stick implementation, or be installed as a windows service
running in the background with no user interface except by http. The wiki
engine should also be possible to be hosted by a web server.

6.2.3 Wiki hosting

A wiki engine configured to only allow logged in users to edit content can be
used as a content management system for personal or company web sites. It is
hard to draw a line between the wiki concept, the blog concept and web content
management systems, they all share a lot of the same features and as each one
is becoming more and more advanced they overlap more and more in feature
set.

Blogging have become very popular during the last year, one reason for this
is the easy and free creation of a blog at blog providers such as blogger.com. It
is a simple registration process and a few minutes later you have your own blog
where you can publish information.

Wikis have so far not been used in this way, but in a few years time there
will probably be services like this for starting your own wiki. This creates a new
set of demands on the wiki engine. Instead of one wiki site hosted on a server
with hundred of thousands pages, there will be hundred of thousands wiki sites
on a server with a small number of pages each, maybe in the hundred. The
caching strategy has to be designed to perform well in both these situations.
Configurations and stylesheets have to be cached in a way that gives the best
performance possible, without using the cache to store resources on wiki sites
that are seldom accessed.

The different wiki sites hosted on a server needs to have their own configu-
ration, their own XSL templates.

The database storage has also to be designed to handle multiple sites, prefer-
ably by storing all pages in the same database using shared tables. Advanced
relational database servers supports horizontal partitioning where the load can
be split between different disks and even different servers.

6.2.4 Summary

A state of the art wiki engine that both supports deployment on an USB stick
and on a wiki hosting server requires an architecture and design that scales well.
The support of complex hosting environments should ideally be implemented
in such a way that the implementation still enables developers to add exten-

41

sions without having to care about if the extension will be used in a hosting
environment or on a stick.

The wiki engine should be a framework, providing simple interfaces that
extensions can use, without having to care about different caching scenarios.
This type of services should the framework handle.

6.3 Client scenarios

There are many different types of clients used to access web content, everything
from Internet Explorer on the Windows platform, to WAP based browsers on
a mobile phone. Wiki pages are usually heavy on information in text form, the
layout is mostly there to enhance structure instead of layout. This makes wiki
content ideal to be transformed into formats and layouts that are optimized for
each client type. The use of XML as storage format enables easy transformations
with XSLT. The type of clients that is used to access web pages will probably
become more and more diverse. The wiki engine should have support to deliver
content to all or at least most type of clients. Client can be categorized into
three categories:

• Fat clients

• Thin clients

• Special purpose clients

6.3.1 Fat client

Internet Explorer and Mozilla Firefox are examples of fat clients. They have sup-
port for (X)HTML, CSS, XML parsing, XSL transformations and JavaScript.

The transformation of the wiki markup into XHTML is usually performed
on the server. This transformation takes up server processor resources. Since
the fat client can perform this task, it is better to do this step on the client when
it is supported. This results in quicker response times, since the server needs
to do less for each request, the transfer rate increases if the XML document is
more compact than the resulting XHTML document witch should normally be
the case. The offloading of this step from the server will enable more requests
per seconds.

A single XML document can be transformed into many different HTML
representations, depending on which set of XSL transformations that is applied
to it. A user should be able to choose between different layout themes. This has
the disadvantage that if HTML responses are cached at the server then multiple
HTML documents might be cached representing the same wiki page, but with
different layouts. If the wiki engine instead serves wiki XML markup, then the
cached entries does not depend on the layout, resulting in a better utilized cache
and a better cache hit ratio.

Today most sites using XML for content storage perform the transformation
on the server, this is simpler since the type of client does not need to be taken
into account, and there are no problems with XSLT implementation differences
between different browser vendors.

42

AJAX

Asynchronous JavaScript and XML usually specified with the acronym AJAX
is a programming model that is becoming more and more popular in advanced
web pages.

A user action that normally would require the whole web page to be reloaded
in the browser is replaced with an asynchronous JavaScript call that requests
the new data from the server and uses the response to replace the part of the
web page that needs to be updated. This enables a richer and more responsive
user experience. The request and response is usually in the form of an XML
document but can be in any form. (Wikipeida: AJAX, 2005-11-05)

A wiki implementation could use AJAX to:

• Request new wiki pages

• Switch to edit mode

• Provide interactive help during editing

Request new wiki pages

The traditional web navigation model requests a whole new page when the user
clicks on a link. There is usually some content that exist on every page on a
given site. This is usually the menu, copyright notice and some layout elements
that give the pages a common look and feel. For every request the markup
specifying this content is resent, this is a waste of bandwidth and results in
longer response times.

An alternative to this traditional web navigation model is to use AJAX,
one HTML page is requested from the server, and this HTML page contains
JavaScript code that handles all subsequent requests from this client session.

When the user clicks on a link, the JavaScript request the corresponding
XML document from the wiki server, when the client receives the request, the
XML document is parsed and transformed with XSLT, and the result will replace
the page content of the old page. The menu and other elements are not changed.
The initial HTML page is in fact a browser in itself, a browser of XML wiki
content, using the browser as a rendering engine.

Switch to edit mode

The AJAX enabled page should cache the latest XML response, thus if the
user choose to edit the page, it is just a matter of transforming the latest XML
response with an XSL template designed for editing. No request has to be made
to the server, enabling very quick and convenient switching to edit mode.

Provide interactive help during editing

During the editing of a wiki page, AJAX technology could be used to assist the
user, it could suggest links to other wiki pages, a type of intelligence for wiki
editing. It could also spell check the text, and inform the user if there is an
editing conflict.

43

6.3.2 Slim clients

Not all browsers have support for XML and XSL transformations, some browser
runs on hardware with very limited processor and memory resources. An alter-
native representation is required for this category of clients, the functionality
should be the same when possible but the user interface has to adapt.

Normal XHTML navigation or WML should be used, the layout of the page
should be adapted to the clients screen sizes. Editing is done in a XHTML
textarea, editing the Wiki XML directly. The user experience is not as rich,
especially during editing, but probably these devices will mostly be used to
read the content, and if edits are done, they will probably be on a small scale.

6.3.3 Wiki web service

A web service is a software system enabling machine to machine interaction over
a network. Usually either the SOAP protocol is used where both the request and
response are XML messages, or the simpler REST approach where the request
is an URL and the response is an XML message. (Wikipeida: Web service,
2005-11-06)

Web services enables different systems to interchange information in a plat-
form and programming language independent way. One example of a web ser-
vice is Amazon.com that has a rich set of interfaces to access almost all the
content on their website through either SOAP or REST. In the REST case, the
request URL specifies the query, for example you could ask Amazon for the title
and price of all books written by a specific author. (Amazon: Web services,
2005-11-06)

Yahoo and Answers.com incorporates Wikipedia information into their site,
this is now probably done by mirroring the Wikipedia database, but it could be
performed in real time using web services.

An IT-related company could for example on their website have a dictionary
of computer terms, and instead of writing their own definitions, they could
request an XML formatted document from a wiki using web services, and format
that document into their own layout.

The wiki service could be used not only by other web sites but also by
applications. One example of this is a text editing program that could use a
wiki web service on a public wiki dictionary to request synonyms.

The AJAX DHTML browser and editor discussed above would be a wiki
web service consumer, requesting XML wiki documents and perform their own
transformations.

Because machine to machine requests can easily create large amounts of
traffic, care have to be taken both at the wiki web service end, to be able to
control the number of request from a particular consumer, and the consumer
should probably implement some caching strategy for frequently accessed data.
Amazon web services requires each consumer to be registered and to use an
identifying ID for each request. Amazon limits the number of request for a
specific ID to one per second.

44

6.3.4 Search robots

The free text search functions on wikis are often quite limited, instead Google
or some other search engine is used to get the information. The high number
of links between pages, and from other sites to a wiki site, is favorable in the
search engine ranking of pages, and often Wikipedia and other wiki sites are
returned near the top of the search result.

It is probably not a good idea to index all pages contained in a wiki, the
discussion and archived pages should be excluded from the indexing.

The wiki engine should detect search robots and serve pages optimized for
good page ranking and easy indexing.

6.4 Programming language

The technologies and ideas in this chapter is mostly programming language
neutral, but to be able to architect and design for optimal performance the
strength and weaknesses of the implementation language have to be taken into
consideration.

PHP

Most wiki engines today, including MediaWiki, are implemented in PHP. PHP is
an open source server side scripting language. This acronym has had different
meanings, from the beginning it stood for Personal Home Page but today’s
official meaning is the recursive acronym PHP Hypertext Preprocessor.

PHP is widely adopted and is one of the most popular server side scripting
languages, in May 2003, almost 13 million domains were using PHP. The large
set of free and open source libraries that is included in PHP is a major advantage
for PHP compared to many other scripting languages. It has built in support
for XML and XSLT.

The latest version, PHP 5, has enhanced support for object oriented pro-
gramming, and has support for reference type objects, private and protected
member variables, abstract, private and protected methods, and abstract classes.
It also has support for interfaces and cloning.

There is no native support for Unicode, but this is planned for either version
5.5 or 6.0.

PHP is a dynamically typed language, variables do not have to be declared.
This is often something appreciated by beginner programmers, but as the com-
plexity increases it often something that makes debugging harder. (Wikipedia:
PHP, 2005-11-06)

6.4.1 Java

Java is a reflective, object oriented programming language developed by Sun
Microsystems. It is popular to use for large enterprise systems, but can scale
down to desktop applications and mobile phones. Java programs are platform
independent and require the Java Virtual Machine to run.

The five primary goals in the creation of the java language were:

• It should use the object-oriented programming methodology.

45

• It should allow the same program to be executed on multiple computer
platforms.

• It should contain built-in support for using computer networks.

• It should be designed to execute code from remote sources securely.

• It should be easy to use and borrow the good parts of older Object Ori-
ented languages like C++.

The latest version of Java, 5.0 has support for generics, class and method
metadata, enumerations and includes an integrated XML parser and XSLT
processor. (Wikipedia: Java programming language, 2005-11-06)

6.4.2 C#

Microsoft developed C# as part of the .NET platform. C# has strong similar-
ities with C++ and Java. According to some people it is a direct copy of Java,
but there are many differences. Microsoft studied the firs years of Java usage
and create a language that took the best parts from Java, and redesign the parts
that programmers did not like with Java. C# compiled code is running on the
.NET platform, which theoretically is platform independent.

C#, VB.NET and other .NET languages all share the same framework
library, the .NET Framework. The .NET framework includes support for a
large number of usage scenarios, and has extensive support for XML and XSLT
processing.

The 2.0 version of the .NET framework and C# has just been released at
the time of writing. The 2.0 version has support for generics, and includes a lot
of performance enhancement, especially in the XML area.

There are several open source projects that are creating their own im-
plementations of the ECMA-334 C# specification and the .NET Framework.
(Wikipedia: C Sharp, 2005-11-06)

Mono

Mono is an open source project, led by Novell, to create a set of .NET compatible
tools, including a C# compiler, the Common Language Runtime and the .NET
Framework. Mono enables .NET application to be run on Linux, Solaris, Max
OS X, Windows and UNIX. The project was announced in July 19, 2001 and
three years later, Mono 1.0 was released. The current stable version is 1.1.9.2.
(Mono, 2005-11-06)

The major parts of the .NET framework are complete but there are still
many areas not yet complete for full compliance with MS .NET Framework.

DotGNU

DotGNU is another open source implementation of the .NET platform including
the C# language. It is sponsored by GNU project, which is supported by the
Free Software Foundation. (DotGNU, 2005-11-06)

46

6.4.3 Performance

It is hard to compare different computer languages when it comes to perfor-
mance, often the tests are written by, or sponsored by the company behind the
language that wins the test. It is vital that the tests when implemented in each
language are as optimized as possible.

Java Pet Store is a blueprint application developed by Sun to showcase best
practices. The same application was later implemented in C#. The C# imple-
mentation required just 3 484 lines of code, while the Java implementation had
14 273 lines of code. This is an indication that the .NET Framework library sup-
ports web applications better than the Java library. The .NET implementation
was around twice as fast as the Java implementation, and the .NET implemen-
tation scaled better when the number of concurrent users increased. (VeriTest,
2005-11-06)

The wiki implementation will greatly use XML, thus the performance of the
XML parsing is of vital importance. Sun conducted XML benchmarks between
JVM 1.4 and .NET 1.1 using their own benchmark application XML Mark.
The result of this benchmark was that Sun concluded that the Java platform
significantly outperformed the .NET platform.

Microsoft has released new benchmarks using .NET 2.0, and they have also
fixed two issues with the original XML Mark version, that missed to serialize the
XML Test document to disk when using Java, and that did not use an optimal
way of getting elements in the .NET implementation.

The benchmark shows that the XML support in version 2.0 of the .NET
Framework has been greatly enhanced, the performance when using the XML
DOM to parse an XML document is threefold better in 2.0 compared to 1.1,
and about the double compared to Java JVM 1.5. When using a SAX parsing
model, .NET 2.0 is also significantly faster than Java. (MSDN: Comparing XML
Performance, 2005-11-06)

6.4.4 Choice of programming language

There are multiple factors to take into account when choosing an implementa-
tion language. PHP is a script based language, and loosely typed, and besides
since the MediaWiki software already exists implemented in PHP, the choice is
between Java and C#.

The following factors were considered:

• Performance

• Rich XML support

• Libraries

• Future development

Performance wise C# seems to have the edge over Java, both the XML
benchmark and the web application benchmark shows that C# is able to handle
a larger user load and still serve more requests per seconds than Java.

Both Java and C# have rich support for XML. The Apache Foundation has a
free XSL-FO processor for Java, this enables XML documents to be transformed
to PDF and SVG (Apache: FOP, 2005-11-06). This could be very useful for

47

some of the features previously discussed. There are XSL-FO processors for
.NET, but at the moment all of these seem to be commercial.

Both Java and C# have large libraries, Java has the advantage of more free
software support, .NET has the advantage of usually simpler interfaces as can
be seen by the required line of codes for the Java Pet Store implementation.

Java is multiplatform, java server applications can be run on a large number
of different hardware platforms and operating systems. The .NET platform is
also multiplatform, but so far the support for other platforms is heavily under
development.

C# was chosen as the development language for the experimental wiki im-
plementation described in this thesis, and the rest of this chapter will sometimes
contain C# specfic considerations.

There are not many current wiki implementations written in C#, thereby it
is interesting to create one, and if this wiki implementation sometimes will be
released under an open source license, it will probably get more attention than
another PHP or Java wiki implementation.

6.5 Storage system

The storage system must be flexible and scale from small personal wikis with
megabytes of data, to large wikis with several hundred gigabytes of data.

Traditionally small systems have used the file system for storage, this works
well for small amounts of information. It is simple, it works with Wiki on a
stick and content, in the form of individual XML files, can easily be shared and
backups are done by just copying the files. Depending on what file system the
disk is using, different technical limitations have to be taken into consideration.

A large wiki site, with several hundred of gigabytes of content requires a
more robust and flexible storage system. The storage system must be able to
fulfill the following requirements:

• Storage of XML documents

• Quick access to document based on key

• Support for scale up, and scale out

• Data integrity

• Backup

The only storage system that supports all these requirements is a state of the
art relational database with XML support. There are many different database
vendors, and the implementation should be designed in such a way that it is
easy to change the database layer of the application, and thereby enable a
change of the database engine without any required change to other parts of the
implementation.

6.5.1 Performance of database servers

There is a non-profit corporation called TPC that define transaction processing
and database benchmarks. There are different set of benchmark depending

48

on which type of application that is simulated. There is also different ways
to present the result, the most interesting is to look at the price/performance
ratio. There are two different popular benchmarks, TPC-C and TPC-H, both of
them have Microsoft SQL Server at the top of the price to performance charts.
(TPC.org, 2005-11-06)

6.5.2 MS SQL Server 2005

There is a new version of MS SQL Server that is just released, it is the 2005
version, succeeding the widely used 2000 version. The new version includes key
enhancements to data management in the following areas:

• Manageability

• Availability

• Scalability

• Security

(Microsoft SQL Server 2005 Product Overview, 2005-11-06)

Manageability

The support for managing large databases with hundred or thousands of tables
and stored procedures are greatly increased with the new SQL Server Man-
agement Studio. All administrative tasks can be done through this integrated
management console.

Availability

MS SQL Server 2005 has better support for database mirroring, failover clus-
tering and database snapshots. These are technologies that should be used in a
large wiki server setup to minimize downtime.

Scalability

Large tables can be horizontally partitioned into file groups. This enables for
example old pages that are not so frequently accessed to be stored in another
file group that can reside on slower and cheaper disks. The database will still
be functional even if not all the file groups are available, so in a restore scenario,
the active data could first be restored, and when the wiki site is up and running,
the restore could continue with archived pages that are not necessary for normal
page viewing.

MS SQL Server 2005 has support for 64-bit Itanium2 and x64 systems. The
server can thus address larger amount of RAM.

Security

The largest enhancement to security is that the default installation is a secure
configuration with all optional features disabled. It has also support for native
encryption, using a key infrastructure.

49

Different editions

Microsoft SQL Server 2005 is released in several different editions, the SQL
Server 2005 Express is a free desktop edition, it support almost all of the fea-
tures, but is locked down in terms of processor and memory, supporting 1 GB
of RAM and a maximum database size of 4 GB and only one processor.

The Express Edition is great to use for small installations and for devel-
opment of SQL Server applications without a license to any of the none free
editions.

Since the editions work in the same way, the application does not need to be
changed when scaling up from the Express Edition to the Enterprise Edition.

XML Support

The most important new feature for a wiki implementation in Microsoft SQL
Server 2005 is the native support for an XML data type. In earlier versions an
XML document had to be stored as a binary large object or as a text data type,
but with version 2005 a column can be declared to have the XML data type.

XQuery, or rather a subset of the XQuery standard is used to request specific
data from an XML column. Special indexes can be defined on XML columns to
enhance query performance.

This enables some of the logic to be moved from the business tier into the
database tier. This is a new feature and there will probably take some time
before best practices are established on how to utilize XML data inside a rela-
tional database. Until otherwise proven, care should be taken to not over utilize
these features.

Choice of database servers

There are other database servers having similar support to XML as Microsoft
SQL Server 2005, but due to previous familiarity and developing experience by
the author on Microsoft SQL Server 2000, and due to the fact that it is known
as a high performing relational database server and that it has a free express
edition that can be used on personal wiki sites, the choice for a database server
to use for the wiki implementation in this thesis is Microsoft SQL Server 2005.

6.6 Performance versus simplicity

There is always a tradeoff between performance and simplicity. Simple system
can sometimes be efficient but in the case of server applications good perfor-
mance is often depending on good caching strategies making the implementation
more complex.

The support for wiki hosting, that is, multiple wiki sites should be able to
run on the same server process and to have the same database as storage is also
a design decision that greatly increases the complexity.

The design and development have to be influenced by the performance and
scalability goals at every point, but the optimization should be where it gives the
largest payback, to optimize functions that are seldom used is not important,
instead the focus should be on the most frequent operations.

The processing pipeline should be flexible but still very effective.

50

The .NET framework documentation is mostly about how the different fea-
tures should be used, not very much is mentioned about the performance dif-
ference between different design choices. Some parts are obvious, like using the
right data structures, but when it comes to different types of XML processing,
what parsing methods to use etc, then there are two ways to find out the opti-
mal solution. The first one is to code all alternatives, and then try them out,
collecting benchmarks, and then choose the method that was the quickest. This
is a very slow method, and can be error prone if the benchmarks are conducted
under conditions that differ from the real server usage. Another way is to study
the source code, often a method can accept many types of different inputs, say
a stream or a XML DOM document, by reading the source code it is sometimes
possible to see ways to increase the performance.

The source code of the commercial version of .NET is not available, there
is one other version released by Microsoft that has publicity available source
code. But since this version is not guaranteed to be the same as the commercial
version, it is much better to use a reflector tool.

6.6.1 Reflector for .NET

Lutz Roeder has written a reflector tool for .NET. It has an integrated class
browser and IL, Visual Basic, Delphi and C# decompilers. The reflector tool
can be used on all managed code in the .NET Framework, enabling anyone to
exactly see how a class is implemented. (Lutz Roeder, 2005-11-06)

This is helpful when dealing with poorly documented code, or when the
programmer wants to know specific details about the implementation. The
callee graphs are useful to find class dependencies and to get a good overview
of what other classes uses a specific class.

6.7 Scale out versus Scale up

There are two different ways to scale an application:

• Scale up

• Scale out

6.7.1 Scale up

Scale up is basically to beef up the server, by adding more memory, more proces-
sors, larger disks and more network adapters. The application should be run
and metrics should be gathered to find out what resource the application is
bound by. If the CPU processing power is the bottleneck, then more CPU’s
should be added and so on.

This is usually the easiest way to scale an application, it is simple, as long
as the application is multithreaded it will use the extra processors, and it can
be a cost effective way to scale an application.

There is still the problem of one point of failure, if the server goes down, the
application goes down. (Meier et al., 2004, chap. 3)

51

6.7.2 Scale out

Scale out is to add more servers, instead of running the application on a sin-
gle box, it is distributed on several boxes. Depending on the architecture of
the application, it might be enough with one shared database server between
multiple web servers. If the database is the bottleneck, the database could be
partitioned over several database servers, or distributed to several servers with
replication. (Meier et al., 2004, chap. 3)

6.7.3 Loosely coupled and layered design

By using a clean, loosely coupled, layered design it’s much easier to scale out
than with tightly coupled layers. Web applications usually have two very distinct
layers, the web server part, and the database server, this is one natural layer
boundary.

Stateless components scales out better than statefull, since they do not have
any in process-state across requests. This makes it easy to deploy the application
in a web server and to use a simple load balancing solutions between the different
web servers.

Microsoft and others give the following recommendations for good applica-
tion scalability:

• Design for loose coupling

• Design for high cohesion

• Partition application functionality into logical layers

• Use early binding where possible

• Evaluate resource affinity

(Meier et al., 2004, chap. 3)

6.8 Design patterns

Software engineering contains tasks and problems that are similar between dif-
ferent projects, instead of reinventing new solutions each time, best practices
arises and these best practices has been formalized as design patterns. A design
patterns is a general solution to a common problem. By using well know design
patterns in an implementation, other developers can quickly understand how
the application is structured. Design patterns are often published in books and
on web sites. A design pattern is no hard set of rule that has to be implemented
in a certain way, instead it is more of a guide, and the pattern can be adapted
to fit the particular need.

6.8.1 Adapter pattern

The adapter pattern is a very common pattern, the book Larman (2002) defines
it as:

Adapter

52

Context/Problem: How to resolve incompatible interfaces, or provide a stable
interface to similar components with different interfaces?

Solution: Convert the original interface of a component into another interface,
through an intermediate adapter object.

One frequent use of the adapter pattern is to create a stable interface between
the business layer and the database layer, enabling the implementation to switch
between different database layers without any code changes in the business layer.

6.8.2 Provider pattern

Microsoft has as part of the .NET Framework 2.0 defined a pattern called the
provider pattern. The provider pattern is designed to solve three problems:

• Fixed choices

• Fixed internal behaviors

• Fixed data schema

(Howard, 2005-11-07)

Fixed choices

APIs usually contain a fixed number of choices, one API could have support to
store data in a SQL Server database or in the file system, but if the user wants
to store the data in an Access database? Often the only solution is to not use
that API and instead reimplement the functionality in a custom class.

Fixed internal behaviors

The internal behavior of an API is usually fixed, sometimes it is possible to
inherit from the class and override specific members, but often the developer
can not control the API to use a custom class instead of the default class,
especially if it is a class used inside the API.

Fixed data schema

Often the database or xml schema is fixed in an API, if the developer wants to
save the information into an existing database table, there is no way to specify
a custom mapping.

The usual fix

The usual way to come around the above problems, is to not use a published API,
instead the developer implements their own API, having the features required.
This has the drawback of a lot of extra work, instead of just changing the few
things that need to be changed, the whole API is reimplemented. There is
also an advantage to use published API since they are well known to other
developers, making it easier for other to change your code.

53

A better solution

Microsoft faced the above problems with many of their APIs, the solution they
came up with was called the provider pattern.

The pattern itself is exceedingly simple and is given the name
”provider” since it provides the functionality for an API. Defined,
a provider is simply a contract between an API and the Business
Logic/Data Abstraction Layer. The provider is the implementation
of the API separate from the API itself. (Howard, 2005-11-07)

What does this mean? Basically, the developer can specify in a configuration
file, what classes the API should use internally. The Microsoft provider pattern
specification, has a long list of requirements, all providers should inherit from
one specific ProviderBase class, and have a set of required properties. The
interested reader can read the Microsoft definition of their provider pattern for
more information.

6.9 Caching

The use of good caching strategies can greatly improve the performance of
a server application. It is important to cache the right data. Data that is
inexpensive to create should not be cached, instead the focus should be on
application wide data and data that is used by multiple users that are expensive
to create or retrieve. For data that is requested very often, even caching data for
just a few seconds can greatly enhance performance. A web site with thousands
of hits per second, will probably have a few pages that are much more frequently
accessed than others, even if these few pages, like the first home page, have data
that often change, there is probably a good idée to cache the response and use
that for the next seconds of requests, even if that means some user will get an
out of date version of the page, a page that is a few seconds old, will probably
not be a big problem.

The cached data should be in the appropriate form, avoid if possible to cache
data in a form that needs to be further reprocessed.

6.9.1 Database cache dependency

Microsoft .NET Framework 2.0 and Microsoft SQL Server 2005 has support for
database cache dependency. This means that the application will be notified
when the cached data is changed in the database. This enables the application
to remove data from the cache when it has become changed in the database, or
to repopulate the cache with the new data.

6.9.2 IIS and ASP.NET

Both Microsoft Internet Information Server and ASP.NET has support for sev-
eral advanced caching strategies. This can be used to cache the whole response
of a specific URL, or to cache the parts of a page that is static between requests.
Using these features will create a dependency on the Microsoft ASP.NET im-
plementation and on IIS.

54

6.10 CSS stylesheets

The output of the wiki engine will result in an XHTML document, the transfor-
mation take place on the server for clients that do not support XML and XSL
transformation. The XHTML standard is much more about defining structure
than HTML was, elements that before defined layout, such as the font tag have
been removed and instead CSS stylesheets should be used to specify the layout.

CSS stylesheets can greatly change the visual appearance of an XHTML
page without any changes to the XHTML code. One good example of this is
the website http://www.csszengarden.com/ that contains a large set of layouts
based on the same XHTML code, but with different CSS stylesheets.

To make CSS as useful as possible it is important to write XHTML code
that is CSS friendly, to specify class, and ID attributes on elements.

In a wiki hosting scenario, where thousands of wiki sites are hosted on the
same server, CSS might offer a rich enough functionality to customize the dif-
ferent sites visual appearance.

6.11 XSL stylesheets

XSL can be used to transform the XML wiki documents into XHTML. XSL or
more specific XSL Transformations, were designed for the purpose of transform-
ing an XML document into another XML document. The wiki engine should be
able to serve content to different types of clients. For each specific client type,
a set of XSL stylesheets can be used.

It should also be possible to have different skins, or layout themes, that the
user or administrator can choose from. These skins should be shareable between
different wikis hosted on the same server, and ideally only one copy should be
kept in the stylesheet cache.

The .NET Framework 2.0 adds support for compiled XSLT stylesheets with
the class XslCompiledTransform. The execution times are on average 4 times
better than the old XslTransform implementation.

The Load() method reads the stylesheet and creates an abstract syntax tree.
The abstract syntax tree is then compiled to an assembly. The Transform()
method builds an XML tree for the input document, if the input document
was specified as a class implementing IXPathNavigable, the CreateNavigator
method is called and use the returned navigator as it’s document input cache.

There are various methods to retrieve the result of the information, they are
all explained in detail in the MSDN blog by Dubinets and Lapunov (2005-11-07).

6.12 Preprocess

The access pattern to a wiki engine contains a majority of read request compared
to edit request. The most common request is to read the latest version of a
specific document. The document can contain XML elements that are replaced
by dynamic content. There should be support to create extensions that for
example parses the content of an <isbn>0-87773-860-2</isbn> element and
get the related book information from a web service like Amazon. This kind of
active content does not need to be evaluated on a per request basis, instead this
information can be cached. Different information can be cached for different

55

amounts of time until it becomes out of date. The book title is an example
of data that never will be changed and can thus be cached indefinitely. An
element like <stock-quote>MSFT</stock-quote>, that should be replaced by
the current trade quote of the Microsoft stock, can not be cached for a long time
until the data is out of date. As discussed earlier, even if the duration of the
caching is short it can enhance the performance greatly for frequently requested
pages.

All transformations and data operations that are not unique to a certain
request should if possible be cached and the result reused for the following
requests. This caching can take place at the web server level, or at the database
level.

6.12.1 Web server level caching

If the information is cached on the web server level, the same information will
be cached on several web servers in a web farm environment. This offloads the
database server since it will not be accessed, but if the dynamic data is expensive
to get, or if the web servers do not have the resources to cache the data for a
long period of time, due to memory constraints, it will put a big workload on
the web servers. This type of expensive data to get, or process, and that can
be cached for a longer time than the web servers can cache the date, are good
candidates for database level caching.

6.12.2 Database level caching

The previous ISBN example is a good example for data that is better cached on
the database level, since the title does not change, the title should be cached at
the database level. The title will only be requested once, and then stored in the
database. When the web servers process this document, the ISBN is already
replaced by the title and no further action on this element needs to be done.
Database level caching is no substitute for web server level caching, the web
servers should still cache the transformed result (in XHTML) of the request,
and use that for following requests.

6.13 Database optimization

Microsoft SQL Server 2005 has support for a large array of tools and technologies
to optimize data access.

This section will only go through some basic optimization techniques, data-
base optimization is a too large subject to cover in detail here, some further
information can be found in the implementation chapter, but the interested
reader should get in depth information from a book specialized on this topic.

6.13.1 Table layout

The layout of the tables should as much as possible follow at least the first three
normal forms, but sometimes it is necessary to break against these rules to get
better performance. The table layout used to store the XML wiki document
will be simple, and thereby it is not that important to create a non-redundant
data structure, instead the focus should be on performance.

56

A large part of the data in the database will consist of archived pages, that
are only accessed when a user request an old version of a document. To increase
cache hit ratio in the database, the active pages should be saved in a different
table than the archived pages. Thus the data pages saved in SQL server will
have a higher probability to contain frequently accessed documents.

6.13.2 Indexes

Indexes are used to speed up data lookup, instead of having to scan through
all the rows in a table, different types of indexes are used, greatly enhancing
the performance. Microsoft SQL Server 2005 contains a tool to analyze a set
of database queries and suggest the optimal set of indexes. The primary key or
keys in the tables should be chosen to be as small as possible to enable dense
indexes.

6.13.3 Stored procedures

To archive the best query performance and a good layered design, stored pro-
cedures should be used for all queries against the database. This enables the
server to cache query plans, and also enables the database administrator to
change and tune queries without having to change the application.

6.13.4 XML Storage

To test the performance of storing XML data in different data types, a set of
benchmark tests were implemented in C#, the test were run against Microsoft
SQL Server 2005 Express Preview, running on a Virtual PC with 512 MB of
RAM.

The benchmark program run each test first once, to populate the cache at
the SQL Server, then three runs that were timed, and an average execution time
was calculated. The test retrieved random rows from a table with 10 000 rows,
the XML documents retrieved were about 14 KB each.

The queries were in the form of stored procedures, two different return types
were tested, either as an output parameter, or as a scalar value (a recordset
returning just one value).

The datatypes that were tested were NVARCHAR(MAX), VARBINARY(MAX) and
XML. The first run of the benchmarking produced these results:

XML 36,5 seconds

NVARCHAR(MAX) 42,5 seconds

VARBINARY(MAX) 41,6 seconds

The result between returning the result as an output parameter or as a scalar
value did not differ and thus only the output parameter result is presented. The
interesting fact is that the XML column was the quickest. The XML datatype
is not internally saved as a long text string, instead it is saved in an optimized
way for queries. It is strange that the request time is quicker than for a string.
This was tested on the preview version, using .NET Framework beta 2, so the
result could differ on the final released version.

57

When examining the benchmark, it was discovered that the XML datatype
stripped the whitespace in the XML document, thus returning 13 945 bytes,
instead of 14 328 bytes, could this difference in size explain the better perfor-
mance? The benchmark program was changed to strip the whitespace before
the insertion into the database, creating return values of equal length for all
column data types. The results were still the same.

During the benchmarking, the file IO was the bottleneck. The benchmark
application was changed to select the same row over and over again, ensuring
that the relevant data page was in the database server’s memory cache. The
new benchmark returned the following results:

XML 17,9 seconds

NVARCHAR(MAX) 20,9 seconds

VARBINARY(MAX) 21,2 seconds

The result this time was almost twice as fast as the two previous runs, a clear
indication that the disk was the bottleneck in the two previous benchmarks.
For some reason the XML column is still the quickest, it is hard to find an
explanation to this, but the important thing to notice is that it is at least as
quick as storing it as a binary object or as a text string. Since the XML datatype
enables XML indexes and XQuery and seems to have better performance, there
is no reason to not use the XML datatype.

6.13.5 Replication

Replication enables data from one server to be copied to another server. Dif-
ferent kinds of replication can be configured, the simplest is to have one master
database that is used to do all the changes to the data, they are then copied over
to slave databases that are only used for retrieval of data. A more advanced,
and more failsafe setup involves merge replication, where data is send in both
directions between servers. This introduces problems of merge conflicts, and
precautions have to be made to solve this.

Preferable the database design should from the beginning support different
types of replication.

58

Chapter 7

Implementation

The wiki engine implementation has the code name KuaiWiki. Kuai is Mandarin
and means fast, quick, quick-witted, ingenious, sharp or straightforward. This
chapter describes some details of the implementation.

7.1 Prototype in .NET Framework 1.1

The first step was to implement a prototype to learn more about the problems
related to a wiki engine. The prototype was developed in .NET Framework
1.1 and C#. The prototype was designed to be very flexible and used a list of
delegates. A delegate is similar to a function pointer in C++. The delegates
were executed in turn, and the result from one delegate was the input to the
next delegate in the list. The idea was to create a pipeline that easily could
be extended, and where steps easily could be changed. The list of delegates
was created based on a configuration file that contained assembly names, class
names and the method to call.

It soon become very obvious that even if this design allowed great flexibility
that it needed more structure, not every feature was possible to fit into a flat
pipeline.

The database returned multiple XML documents for each request, at least
two, one containing the article and one containing what links here data. The
what links here data is a list of the articles that have links pointing to the current
article. The what links here data was selected by a database query that selected
all links each time an article was requested. These two XML documents had
to be merged, and interception elements, which will be described later, were
replaced with their related data. The retrieval of several XML documents for
one article was found to be an easy way to get the information that was needed,
but two database queries are slower than one. It was decided to change this part
of the prototype to the implementation version, to enable more logic to reside
in the database, and to preprocess as much as possible, thus it would only be
necessary to return one XML document from the server for each article request.

The prototype had served its purpose, the lessons learned while developing
it lead to a new design used in the implementation.

59

7.2 .NET Framework 2.0

During the development of the prototype, the .NET Framework 2.0 beta 2 and
Visual C# 2005 Express Beta 2 were released. After some initial testing, it
was decided that the implementation should be written in .NET Framework 2.0
using the new features found in C# 2.0.

The new features that were most interesting for a wiki implementation were:

Generics - also called parameterized types or parametric polymorphism. This
has some similarities to C++ templates. Anders Hejlsberg the lead C#
architect explains the implementation details in an article at
http://www.artima.com/intv/generics.html

New collection classes - the new collection classes uses the generics feature.
It is possible to define collections containing objects of a specific type,
thereby the casting from type Object to the specific type is no longer
required.

Improved performance - Microsoft has focused on improving the perfor-
mance throughout the framework.

Better XML support - a new XslCompiledTransform class that greatly in-
creases the performance for XSL transformations.

7.2.1 SQL Server 2005

A preview of Microsoft SQL Server 2005 was also released during this time, and
after some testing it was decided to use the new XML features and design the
wiki engine primarily for Microsoft SQL Server 2005.

7.3 Modified provider pattern

The KuaiWiki implementation contains around 60 classes, most of these classes
implement a modified provider pattern. Instead of specifying in the code the
classes that should be used, the implementation looks in a configuration file.

One example of this is the page source functionality found in KuaiWiki.
There is an abstract class called PageSource that specifies two methods, TryOutput
and TryInput. The KuaiWikiMainPageSource inherits from the abstract PageSource
and provides implementations for the TryOutput and TryInput methods.

There is also a HelloPageSource, this is a simple class that returns different
Hello World! messages. This class is designed to test different features in the
framework. The HelloPageSource also inherits from the abstract PageSource
and implements its methods.

The configuration file contains the following XML fragment:

<PageSources>
<PageSource active="true" assembly="KuaiWiki"

class="KuaiWiki.PageSources.HelloPageSource">
<Message>Hello Config!</Message>

</PageSource>

60

<PageSource active="true" assembly="KuaiWiki"
class="KuaiWiki.PageSources.KuaiWikiMainPageSource">

<Connection>Server=192.168.1.1,1433;UserID=Kuai;
Password=f3d20v;Database=KuaiWiki</Connection>

<SiteId>1</SiteId>
<Interceptors>
<Interceptor active="true" assembly="KuaiWiki"
class="KuaiWiki.Interceptors.Interceptor"/>

</Interceptors>
</PageSource>

</PageSources>

The configuration fragment above specifies two page sources, the HelloPageSource
and the KuaiWikiMainPageSource. Both the assembly name and the full type
name are specified, enabling the classes to reside in another namespace and
another assembly.

Both page source elements have an active attribute that can either be true
or false, if it is false the element is ignored. When the implementation needs
the page source objects, the above XML fragment is sent as an argument to
the WebConfig class that contains the logic to parse and instantiate the correct
objects.

The reflection feature in C# makes this very easy, and requires just a few
lines of code:

public object GetInstance(XmlElement xmlElement) {
string assemblyName = xmlElement.GetAttribute("assembly");
string className = xmlElement.GetAttribute("class");

Type type = Type.GetType(className + ", " + assemblyName);
MethodInfo method = type.GetMethod("GetInstance",
BindingFlags.Static | BindingFlags.Public);

if (method == null) {
throw new NotSupportedException(
"Missing GetInstance: " + type.FullName);

}
object[] parameters = new object[] { this, xmlElement };
return method.Invoke(null, BindingFlags.Default, null,
parameters, null);

}

The classes are required to have a static method GetInstance that accepts
parameters of the type WebConfig and XmlElement. The WebConfig is the class
that instantiated the object, this is used to get access to various system wide
properties. The XmlElement object contains the configuration that this spe-
cific object instance should use. In the above HelloPageSource configuration
example, this is the <Message>Hello Config!</Message> data.

The KuaiWikiMainPageSource has a more advanced configuration section,
where the connection string to the database is specified together with the SiteId,
but it also contains the Interceptors element which contains information about
another class implementing the modified provider pattern. This pattern, not

61

only enables to initialize classes based on information in the configuration file,
but it also allows nested providers. This is a major improvement compared to
the first prototype implementation.

The modified provider pattern allows configuration information specified as
XML elements, and also provides nested providers. If a developer creates a
new version of the KuaiWikiMainPageSource class, he can compile that into a
new assembly, and publish it on the internet. A KuaiWiki administrator, can
download the assembly and change the line:

<PageSource active="true" assembly="KuaiWiki"
class="KuaiWiki.PageSources.KuaiWikiMainPageSource">

Into:

<PageSource active="true" assembly="ImprovedKuaiWiki"
class="KuaiWiki.PageSources.KuaiWikiMainPageSource">

And the KuaiWiki engine will use the KuaiWikiMainPageSource class from
the ImprovedKuaiWiki assembly. The new class will still be using the same
Interceptor class as before.

7.4 Processing steps

An HTTP request is received by the web server, this request is after some initial
processing passed on to the KuaiWiki engine. The result of the processing is
usually a returned XHTML or XML document but can also be a binary stream.

Many steps need to be performed, and they vary depending on the type of
request.

The wiki engine accepts requests to the static method
KuaiWiki.Process(Request request, Stream result). Internally this method
uses the singleton pattern to send all requests to the same instance of the
KuaiWiki class, for an overview of the processing, see figure 7.1.

Request KuaiWiki.Process

WebConfig

ServerConfig

Pipeline

PageSources

Intercepting-
XmlReader

XPathNavigable-
ConverterOutput

Figure 7.1: Overview of KuaiWiki processing

62

Most classes are designed to be stateless and to be multithreading safe. This
results in better performance, since the objects does not need to be created and
garbage collected for each and every request.

7.4.1 Request class

The Request class contains all the information that KuaiWiki needs to process
a request. It contains URL information and HTTP post data. The class is used
instead of the System.Web.HttpContext class that is part of the .NET Frame-
work. This is to be independent on any classes in the System.Web namespace.
This enables the implementation to be run from any web server that can call a
.NET class. It also enables easy debugging, since a Request object can easily
be created in the code, whereby a HttpContext object is hard to create due to
the arguments to its constructor.

The Request class contains properties that are specific to KuaiWiki, and
enables quick and efficient parsing of the request URL.

Possible improvements

The Request class does not yet contain logic to handle file uploading and cook-
ies. There are also some web server properties that could be useful to be able
to access. This could be added in a later release.

7.4.2 WebConfig

The KuaiWiki class uses a ServerConfig object to get a WebConfigFactory
object. The WebConfigFactory has one purpose, to cache and create WebConfig
objects.

The WebConfig object contains the entire configuration specific to a certain
wiki web. In a hosting scenario, one KuaiWiki engine can host multiple wiki
webs, and each of them have their own WebConfig object that is created based
on the information in the related wiki web configuration file.

Possible improvements

The current version always use FileWebConfigFactory, this should be config-
urable with the same provider pattern as used elsewhere, but the configuration
information should come from a configuration file related to the current Kuai-
Wiki instance. There is an abstract class WebConfigFactory that is used by the
rest of the code, so it is only ServerConfig that needs to be changed. A wiki
hosting scenario could have thousands of wikis, and it would then be better to
have a SqlWebConfigFactory that gets the configuration files from a database.

FileWebConfigFactory does not implement any caching of WebConfig ob-
jects. The WebConfig class is designed to be stateless and multithreading safe
and can thereby easily be cached.

7.4.3 Pipeline

The WebConfig object creates a Pipeline object, the type of the object is
specified in the configuration file.

63

<KuaiWiki>
<Pipelines>
<Pipeline active="true" assembly="KuaiWiki"
class="KuaiWiki.Pipelines.StandardPipeline">
...

This enables the possibility to change one of the most fundamental parts
of the KuaiWiki engine. To test the performance of two different Pipeline
implementations, two wiki web configurations could be created , were the only
difference is the Pipeline object. A web server benchmarking tool could then
be used to test the performance. This requires no changes to the KuaiWiki
engine.

The StandardPipeline class performs three major steps:

1. The data provided in the Request object is sent to the TryInput method
on all PageSource objects. The request could for example be to add a
new article to the database.

2. The TryOutput method is called on the PageSource objects, if the method
returns true, the pipeline continues to the next step, if it return false, the
next PageSource object is called.

3. The output is transformed to XHTML.

public override void Process(
Request request,
WebConfig config,
Stream result)

{
for (int i = 0; i < _pageSourceList.Length; i++) {

_pageSourceList[i].TryInput(request, config);
}

Output output = new Output(result);

for (int i = 0; i < _pageSourceList.Length; i++) {
if (_pageSourceList[i].TryOutput(request, output, config)) {

break;
}

}

if (!output.IsValid) {
_errorHandler.Report(500, "Error...", output.OutputStream);

}

if (output.XmlStream != null) {
_xmlConverter.Convert(output.XmlStream, request, output);

}

if (output.XmlString != null) {
_xmlConverter.Convert(output.XmlString, request, output);

64

}

if (output.XPathNavigable != null) {
_xPathNavigableConverter.Convert(request,
output.XPathNavigable, output.OutputStream);

}

if (output.OutputStream.Position == 0) {
_errorHandler.Report(500, "Erro...", output.OutputStream);

}
}

The Output class accepts four types of data:

XML String - a string containing an XML document.

XML Stream - a Stream containing an XML document.

IXPathNavigable - an object implementing IXPathNavigable.

OutputStream - a Stream of bytes directly returned to the client without any
further processing. This is useful for returning binary files such as images
to the client.

The classes inheriting PageSource has the option of returning data in any
of these four types.

Evaluation

The Pipeline class and the implementation in StandardPipeline were changed
several times until this simple but efficient design was chosen. It is possible to
design PageSource classes that return none wiki content, and this is something
that can be useful as an extension mechanism for more advanced dynamic pages
not supported in the KuaiWikiMainPageSource.

One example is user registration that could have its own class inheriting
from PageSource that contains the required logic to register and login a user.

Possible improvements

• The StandardPipeline should have better error handling.

• The PageSource abstract class could be changed to just include the
TryOutput method. The TryInput method could be specified with an
interface, thus only classes mark with the TryInput interface needs to be
processed in the TryInput loop.

• There is currently no caching in this step, page level caching should be
incorporated here, or inside the PageSource classes.

65

7.4.4 KuaiWikiMainPageSource

The KuaiWikiMainPageSource class handles request for wiki articles. The ma-
jority of all request will use this PageSource. The Request class contains prop-
erties to extract prefix, action and some other properties related to a request.
The KuaiWikiMainPageSource requires that the prefix is kuaiwiki.

public override bool TryOutput(
Request request,
Output output,
WebConfig config)

{
if (request.Prefix != "kuaiwiki") {

return false;
}

...

The most common action is to request the latest version of a specific article.
This functionality exists in the GetDocument method. Below is the complete
code of that method, it demonstrates the recommended use of SqlConnection
and the use of stored procedures with output parameters.

protected string GetDocument(
int siteId,
string path,
string suffix)

{
using (SqlConnection connection = new SqlConnection(_connectionString)) {

SqlCommand command = connection.CreateCommand();
command.CommandType = CommandType.StoredProcedure;
command.CommandText = "GetDocument";
command.Parameters.Add("@SiteId", SqlDbType.Int).Value = siteId;
command.Parameters.Add("@Path", SqlDbType.NVarChar).Value = path;
command.Parameters.Add("@Suffix", SqlDbType.NVarChar).Value = suffix;
SqlParameter parameterDocument =
command.Parameters.Add("@Document", SqlDbType.Xml);

parameterDocument.Direction = ParameterDirection.Output;
SqlParameter parameterIsCompiled =
command.Parameters.Add("@IsCompiled", SqlDbType.Bit);

parameterIsCompiled.Direction = ParameterDirection.Output;

connection.Open();
command.ExecuteNonQuery();

string document = parameterDocument.Value is DBNull ?
null : (string)parameterDocument.Value;

if (document != null &&
((bool)parameterIsCompiled.Value) == true) {
return document;

}

66

else if (document != null) {
return UpdateCacheDocument(document);

}
else {

return null;
}

}
}

The method is very simple since some of the logic resides in the stored pro-
cedure. The returned document should in most cases be a compiled document
that is directly sent to the next step in the pipeline.

7.4.5 InterceptHandler

Most wiki engines has support for dynamic content, this can either be as simple
as returning the current date or a complex function that might use a web ser-
vice to get stock quotes. KuaiWiki enables dynamic content by using a delegate
called InterceptHandler. Delegates of this type is added to an Interceptor
class and associated with a fully qualified XML name. The wiki XML docu-
ment parser checks if there is any associated InterceptHandler for each ele-
ment name parsed. If there is an associated InterceptHandler, the delegate
is invoked, the parameters to the delegate are the current XmlReader object,
Request object and a DateTime output parameter.

public delegate object InterceptHandler(
XmlReader xmlReader,
Request request,
out DateTime expiryDate);

The method that the delegate invokes processes the content of the XML
element and returns a result that is either an XmlReader or a string. The
result is then replacing the original element. The result can contain nested
dynamic elements to an arbitrary depth. The expiryDate parameter is used to
control the amount of time that the dynamic result is valid and is used in the
caching algorithm.

7.4.6 InterceptingXmlReader

The InterceptingXmlReader class is used to parse the XML into an XPathDocument.
The XPathDocument is the preferred class to use as input to XSL transforma-
tions.

The InterceptingXmlReader was one of the hardest classes to implement.
There are different ways to intercept dynamic elements. The simplest approach
is to load the XML into the XmlDocument class, which provide a W3C XML
DOM implementation. The SelectNodes method can be used to select elements
based on an XPath expression. For each dynamic element name SelectNodes is
used to get those elements, and then they are replaced with the result from the
delegate. This is a very quick and easy way to implement the requested feature,
but it has several drawbacks. For each dynamic element name, there has more
or less to be one SelectNodes call containing an XPath expression of the form

67

//element-name where element-name is the name of the element to search for.
This requires the XmlDocument to walk through all the nodes in the document
and see if any of them have the specified name. This is a slow operation and
is required for all element names, thus the performance would be dependent on
the number of dynamic element names that is supported.

The InterceptingXmlReader uses a different approach. The class imple-
ments the XmlReader abstract class. This class contains over 80 methods
and properties, and some of them are abstract. The XPathDocument class
was studied, with the help of Lutz Roeder’s reflector tool, and the conclusion
was that only a few of the 80 methods are actually used by XPathDocument.
Since InterceptingXmlReader was only designed to be used together with
XPathDocument, only the limited set of methods were implemented.

InterceptingXmlReader is a wrapper around a stack of XmlTextReader
classes. The XML string or stream returned by the PageSource object is feed
into an initial XmlTextReader object that to begin with is the only reader in
the stack. When the Read method is called, the next node of the XmlReader on
top of the stack is checked to see if it is a dynamic element, if it is the related
delegate is invoked. If the returned result is a string, it is returned as a text
node, if the returned result is an XmlReader, it is pushed onto the stack. The
following Read method calls will use this XmlReader. When the Read method
reaches the end of an XmlReader, that XmlReader is removed from the stack.

This might seems like an easy implementation, but there are many properties
and special cases that need to be handled.

Possible improvements

Microsoft released new documentation of the XmlReader and related classes
during the development of KuaiWiki. The documentation contains some new
recommendations, and describes some features that were not known at the time
of the implementation of InterceptingXmlReader.

The new recommendations and functions should be studied to see if it pos-
sible to enhance the performance or simplify the implementation.

The XmlReader uses a NameTable object to cache attribute and element
names. The new documentation contains some memory related warnings to
this class that has to be considered.

It might be possible to use the NameTable class to lookup elements that
are dynamic which is something that could enhance the performance. (MSDN:
Reading XML with the XmlReader, 2005-11-17)

7.4.7 xPathNavigableConverter

The last step of the pipeline is to convert the XPathDocument into XHTML by
using XSL stylesheets. Loading an XSL file and create a XslCompiledTransform
is an expensive operation. Thus the XslCompiledTransform should be cached.
In a wiki hosting scenario, it is very likely that many wiki webs will use the
same skin, and the cached XslCompiledTransform should be shared between
different WebConfig objects. One skin can exist of multiple XSL stylsheets that
are combined into one.

The StandardXslFactory implements this caching functionality, and make
sure that each skin is only instantiated once and placed in the cache.

68

An XSL transform can take a collection of variables that can be accessed
from the stylesheet to modify the output. Some parts of stylesheets should
be able to be modified with variables to avoid changes to the stylesheet. The
variables are specified in the configuration file related to the specific wiki web.

Example of section from the configuration file:

<skin name="Strict">
<xsl href="Strict.xslt">
<variable name="copyright">
Mattias Beermann <date/>

</variable>
</xsl>
<xsl href="Base.xslt"/>

</skin>

The above section defines a skin called Strict. The skin consists of two XSL
stylesheets that should be combined, Strict.xslt and Base.xslt. The Strict.xslt
stylesheet defines one variable named copyright, it should be set to the value
of Mattias Beermann and the current date. The <date/> element has to be
replaced with the current date. The same functionality as used when parsing
the wiki XML documents is used to replace the element with its dynamic value.
The result is cached based on the ExpiryDate, just as with wiki XML documents.

Possible improvements

The xPathNavigableConverter implementation does not cache the transforms
in an optimal way. The implementation can be improved, and could also contain
functions related to CSS stylesheets.

There is no logic that defines which stylesheet should be used, the KuaiWiki
engine should choose the appropriate stylesheet based on the browser.

7.5 Database

The database has been designed for optimal performance and to be able to scale.
All data is saved in UNICODE, which are 16-bits compared to the normal 8-
bits required for each character. This doubles the storage requirements for most
languages, but has the major benefit of being able to handle all languages with
the same codepage.

The database design is still young and future work would be to test the
performance with a large number of documents to detect bottlenecks and poor
design.

7.5.1 Table layout

Three tables are used:

Archive.Document - contains all documents in the wiki. An XML wiki doc-
ument contains all required information about the document. The table
columns SiteId, DocumentId and Version contain extracted data from the
wiki document. The reason for extracting these XML values into columns

69

is to enhance query performance, since most queries to this table will be
to request a certain version of an article that belongs to a SiteId. A clus-
tered index is defined on these columns. The DocumentId is of the type
uniqueidentifier, that is the same as a GUID, a global unique 16 byte id.
Using an int datatype would create a denser index and thereby better
query performance, but the GUID simplifies importation of documents
from another wiki, since they are globally unique. The uniqueidentifier is
also better to use when replicating values between different servers.

Cache.Document - this table contains a cached compiled version of the latest
version of all wiki documents in the archive. Some of the dynamic infor-
mation in the document have been processed and saved, thus there is no
need to reprocess this information until it expires. This should result in
better performance, especially for dynamic content that is expensive to
get and that can be cached for a long duration. The table contains four
columns, DocumentId, Document, ExpiryDate and CachedDate.

The DocumentId column is the clustered primary key.

The most frequently accessed version of a document is the latest version.
These reside in the relative small table Cache.Document compared to the
much larger Archive.Document table that contains all versions of the doc-
uments.

The smaller size of Cache.Document enables smaller indexes and since it
is so frequently accessed, most of the table will reside in the memory cache
on the SQL Server, thus enabling better query performance.

Cache.Path - this table contains mappings between a DocumentId and the
related suffix, path, alias and site. The suffix is used to group documents
into different namespaces. The articles reside in one namespace, and the
discussion pages in another.

There is a clustered primary key on the columns SiteId, Path and Suffix.

Possible improvements

The indexes on the tables are carefully chosen, but should be tested on a large
wiki site using the query optimization features in Microsoft SQL Server 2005.
There is a possibility that the clustered indexes might create performance prob-
lems when inserting documents since the rows in the database are physically
ordered by the clustered index.

The table layout should be tested and verified in a replicated environment,
ensuring that the table layout works in most replication scenarios.

There are some functions that access individual elements inside the XML
documents, these tasks can benefit from XML indexes, and it would be interest-
ing to test the performance of XML indexes compared to extracting the values
into a column or another table.

7.5.2 Stored Procedures

Stored procedures are used for all access to the database tables. The stored
procedures adds one extra layer of flexibility, they can be changed without
having to do any changes to the C# code of KuaiWiki.

70

The stored procedures are designed to minimize the number of calls between
the KuaiWiki server and the database. For article requests, it is mostly only
one database call that has to be made. When an article is inserted, extraction
of what links here data and other such tasks are or should be performed in the
database. If this was performed in the KuaiWiki engine, several calls have to
be made to the database server, creating a larger load on the database server.

Only two of the many stored procedures are described in this section.
The most straightforward method is to select the compiled document, return

it to the KuaiWiki engine, check if it has expired and if it has, call a new
procedure that selects the archived version of the document. This would require
two database calls.

The GetDocument stored procedure is constructed to return the compiled
document if it has not expired, otherwise the uncompiled version is returned.
By moving the logic into the stored procedure, one database call is eliminated,
resulting in better network and database server utilization .

CREATE PROCEDURE GetDocument
@SiteId int,
@Path nvarchar(200),
@Suffix nvarchar(20),
@Document XML OUT,
@IsCompiled bit OUT

AS
DECLARE @DocumentId uniqueidentifier

-- Try to get the compiled document.
SELECT

@Document =
CASE
WHEN ExpiryDate > GETDATE() THEN Document
ELSE NULL

END,
@DocumentId = Cache.Document.DocumentId

FROM
Cache.Document
INNER JOIN Cache.Path ON Cache.Path.DocumentId =
Cache.Document.DocumentId

WHERE
Cache.Path.SiteId = @SiteId
AND
Cache.Path.Path = @Path
AND
Cache.Path.Suffix = @Suffix

IF @Document IS NOT NULL
BEGIN
SET @IsCompiled = 1
RETURN

END

71

-- The compiled document has expired or there was no match.
SET @IsCompiled = 0

IF NOT @DocumentId IS NULL
BEGIN
-- There was at least a match. Use the Guid to get the
-- latest uncompiled version of the document.
SELECT TOP 1

@Document = Document
FROM
Archive.Document

WHERE
DocumentId = @DocumentId

ORDER BY
Version DESC

IF @Document IS NOT NULL
BEGIN
RETURN

END
END

The InsertDocument stored procedure is another example of moving some
of the business logic into the stored procedure, and thereby avoiding several
database calls. The steps performed are:

1. Calculate the version of the new document based on the documents in the
archive with the same document id.

2. Insert the document into the archive.

3. Insert or update the cached version of the document.

CREATE PROCEDURE InsertDocument
@SiteId int,
@Document xml,
@CachedDocument xml,
@ExpiryDate datetime

AS
DECLARE @DocumentId uniqueidentifier
DECLARE @Version int

-- Get the DocumentId
SET @DocumentId = @Document.value(
’/kuai[1]/document[1]/@id’, ’uniqueidentifier’)

-- Get the Version
SELECT

@Version = MAX(Version) + 1
FROM
Archive.Document

72

WHERE
DocumentId = @DocumentId

-- Insert the Document into archive
INSERT Archive.Document
VALUES (@SiteId, @DocumentId,
ISNULL(@Version, 1), @Document)

-- Insert/update the cached document into the cache
IF EXISTS(SELECT * FROM Cache.Document
WHERE DocumentId = @DocumentId)

BEGIN
UPDATE Cache.Document
SET Document = @Document, ExpiryDate = @ExpiryDate,
CachedDate = GETDATE()

WHERE DocumentId = @DocumentId
END
ELSE
BEGIN
INSERT Cache.Document
VALUES (@DocumentId, @Document,
@ExpiryDate, GETDATE())

END

7.5.3 Triggers

Triggers can also be used to move some logic into the database. The trigger
Cache.PathAndAliases updates the Path table when a cached document is in-
serted, updated or deleted.

The steps performed are:

1. Delete old paths and aliases.

2. Insert the paths that the new documents contained.

3. A document can have multiple aliases, for example an article about Bei-
jing, could have the path China/Beijing and the aliases China/Peking and
China/Beijing written using Chinese characters. The aliases are extracted
from the document, and inserted into the Path table with the help of the
XML features in Microsoft SQL Server 2005.

CREATE TRIGGER Cache.PathAndAliases
ON Cache.Document AFTER INSERT, UPDATE, DELETE

AS
-- Delete old paths and aliases
DELETE Path FROM Path INNER JOIN
(SELECT DocumentId FROM inserted UNION
SELECT DocumentId FROM deleted) AS Changed
ON Changed.DocumentId = Path.DocumentId

-- Insert new paths

73

INSERT Path SELECT
(SELECT TOP 1 Archive.Document.SiteId
FROM Archive.Document
WHERE Archive.Document.DocumentId =
inserted.DocumentId),

inserted.Document.value(
’/kuai[1]/@path’, ’nvarchar(max)’),

inserted.Document.value(
’/kuai[1]/@path-suffix’, ’nvarchar(max)’),

inserted.DocumentId,
0

FROM
inserted

-- Insert new aliases
INSERT Path SELECT

(SELECT TOP 1 Archive.Document.SiteId
FROM Archive.Document
WHERE Archive.Document.DocumentId = inserted.DocumentId),

alias.value(’.’, ’nvarchar(max)’),
inserted.Document.value(
’/kuai[1]/@path-suffix’, ’nvarchar(max)’),

inserted.DocumentId,
1

FROM
inserted CROSS APPLY
inserted.Document.nodes(’/kuai/aliases/alias/@path’)
AS T(alias)

When a document is inserted, updated or removed in the Cache.Document
table the what links here section of the document should be updated, and all
documents that are linked from the new document should also be updated. This
is performed with a trigger, one more example of how to avoid a lot of database
calls between the KuaiWiki engine and the database server, resulting in better
performance.

The steps performed are:

1. The inserted and updated documents have their what links here section
updated.

2. The documents inserted, updated and deleted, contains links to other
pages. These pages are modified to include an up to date what links here
section.

CREATE TRIGGER Cache.WhatLinksHere ON Cache.Document
FOR INSERT, UPDATE, DELETE

AS
-- Create WhatLinksHere for the inserted documents
UPDATE Cache.Document
SET
Cache.Document.Document = dbo.UpdateWhatLinksHere(

74

Cache.Document.Document,
Cache.Document.DocumentId)

FROM
Cache.Document
INNER JOIN inserted ON
inserted.DocumentId = Cache.Document.DocumentId

-- Update WhatLinksHere for documents that are linked to
-- from the inserted or deleted documents.
UPDATE Cache.Document
SET
Cache.Document.Document = dbo.UpdateWhatLinksHere(
Cache.Document.Document,
Cache.Document.DocumentId)

FROM
Cache.Document
INNER JOIN Cache.Path ON
Cache.Path.DocumentId = Cache.Document.DocumentId

INNER JOIN
(-- Select all hrefs in the modified documents.
SELECT insertedHref.value(’.’, ’nvarchar(max)’)
AS Path FROM inserted CROSS APPLY
Document.nodes(’/kuai/document//@href’)
AS T(insertedHref)

UNION
SELECT deletedHref.value(’.’, ’nvarchar(max)’)
AS Path FROM deleted CROSS APPLY
Document.nodes(’/kuai/document//@href’)
AS T(deletedHref)

) AS Href ON Href.Path = Path.Path
GO

Possible improvements

Both these triggers recreate all the data even if it has not changed. Increased
performance might be archived by first testing to see if the data needs to be
recreated, and only then recreate it.

The performance of the various XML query functions has not been evaluated.
It would be interesting to test the performance difference between different im-
plementations, both with using logic at the database server and in the KuaiWiki
engine.

7.5.4 Functions

In addition to stored procedures and triggers, it is also possible to define func-
tions. The Cache.WhatLinksHere trigger uses a function to update the what
links here section in the documents.

The steps performed are:

1. Delete the existing what-links-here element. It is the parent element for
all the links.

75

2. Create an empty what-links-here element.

3. Select and insert links to all Documents that has a link to @DocumentId

CREATE FUNCTION UpdateWhatLinksHere(
@Document xml,
@DocumentId uniqueidentifier)
RETURNS xml

AS
BEGIN
-- Delete old what-links-here element.
SET @Document.modify(’delete /kuai[1]/what-links-here’)

-- Create new what-links-here element.
SET @Document.modify(
’insert <what-links-here/> as last into /kuai[1]’

)

-- Select all Documents that has a link to @DocumentId
DECLARE DocumentCursor CURSOR FAST_FORWARD FOR
SELECT

Document.value(’kuai[1]/@path’, ’nvarchar(max)’)
FROM
Cache.Document CROSS APPLY
Document.nodes(’/kuai/document//@href’) AS T(href)

WHERE
href.value(’.’, ’nvarchar(max)’) IN
(SELECT Cache.Path.Path FROM Cache.Path
WHERE Cache.Path.DocumentId = @DocumentId)

OPEN DocumentCursor

-- A document containing a link to @Document
DECLARE @Path nvarchar(max)
FETCH NEXT FROM DocumentCursor INTO @Path
WHILE @@FETCH_STATUS = 0
BEGIN
SET @Document.modify(’insert
<link href="{sql:variable("@Path")}">
{sql:variable("@Path")}</link> as last into
(/kuai/what-links-here)[1]’)

FETCH NEXT FROM DocumentCursor INTO @Path
END

CLOSE DocumentCursor
DEALLOCATE DocumentCursor

RETURN @Document
END

The use of cursors should if possible be avoided due to performance reasons,

76

but in this case it seems unavoidable.

7.6 Future work

The KuaiWiki engine described here is designed for extensibility, performance
and scalability. Best practices have been used in the design, and great care has
been taken to ensure that no unnecessary processing takes place.

KuaiWiki is still in a pre-beta stage, and there are many features missing
that are crucial for using it. Future work would be to implement the basic
set of features required to make it work as a wiki engine. Then a large set of
documents, preferably importing a database dump from Wikipedia should be
used to test the performance and to tune the database design and the KuaiWiki
implementation.

Once the KuaiWiki engine and the database layout is proven to work effi-
ciently, all the caching features should be implemented, and the result before
and after should be studied and evaluated. It should probably be possible to
get web logs from Wikipedia and run the benchmarking based on real usage
scenarios.

At this stage the KuaiWiki engine would be ready for a first beta release. If
the implementation is proved to be stable, quick and usable, then the KuaiWiki
code could be released as an open source project or sold as a commercial product.

77

Chapter 8

Conclusion

8.1 Document formats

An XML vocabulary for wiki articles could solve many of the problems of wiki
text. The XML vocabulary presented in this thesis is the first step towards
a standardized XML vocabulary. By using the ideas presented and with the
help of wiki contributors and wiki implementers, a complete core wiki XML
vocabulary could be defined. This XML vocabulary could be used to store
and edit wiki content, and to be used as an interchange language between wiki
engines using different wiki text dialects. The wiki XML vocabulary should
be focused on structural markup, and not enable layout specific elements and
attributes.

It is important to focus on the core of the vocabulary, and provide methods
for extensibility and modularization. The same concepts used in the XHTML
2.0 draft recommendation could be used to achieve this.

The large number of existing well written and peer reviewed wiki articles
is a valuable resource. Using a standardized markup language is one way to
ensure that these articles can be read and easily presented in the future. The
strict validation and well formedness provided by XML is crucial to ensure easy
migration of articles from one wiki engine to another.

Wiki articles can not currently be easily transferred from one wiki text dialect
to another. By standardizing on one language, it becomes much easier to move
content from one wiki engine to another, creating a more competitive wiki engine
market.

8.2 WYSIWYG Editing

The current editing experience consists of HTML textarea editing of wiki text
articles. This requires the author to learn the specific wiki dialect used by that
wiki engine. Wiki text’s most commonly used markup elements are easy to
learn and quick to write, but some articles contains very complex markup that
sometimes is a mix of wiki text, HTML and CSS.

Wiki editing should be possible for almost anyone with the help of a browser
based WYSIWYG XML editor. The editor should be aware of the DTD/Schema

78

of the wiki XML vocabulary, and only allow valid markup. The editing experi-
ence will be similar to using a word processor application.

Many problems need to be solved before a good WYSIWYG XML editor
is possible. The limited set of features provided by the browsers, make most
operations hard to implement. A simple concept such as cut and paste becomes
a major problem due to the missing OnPaste event handler in Mozilla Firefox.

The developed experimental prototype highlighted some of these problems,
but also presented some workarounds.

Schema aware XML editors are uncommon, and creating one that is browser
based is not a task that should be underestimated, but it should be possible.

The design and architecture chapter described how AJAX technology could
be used to provide a wiki HTML application implemented in JavaScript and
DHTML, that enables page navigation that only requests the new article as
an XML document from the server. The XSL transformation take place in
the browser and only the article content area need to be updated. The user
should be able to switch from view mode to editing mode without having to
make a request to the server. By using AJAX in the described way, some of
the processing is moved from the wiki engine to the client, thus each request
will require less server processing time, enabling a larger number of requests per
second and at the same time provide a better user experience.

8.3 Wiki engine implementation

The wiki engine implementation, code named KuaiWiki, was used to test some
of the ideas presented in this thesis. The implementation was designed to use
XML, XSL transformations, and to be modular and have high performance and
scalability.

The use of a modified version of Microsoft’s provider pattern enables the wiki
engine to become a framework that can be used to explore different solutions.
Most parts of KuaiWiki can be replaced by other classes by making changes
to the configuration files. This should be very valuable when several different
implementations exist for one specific problem. By creating two configurations
that share everything except that part, it should be easy to conduct performance
benchmarking.

KuaiWiki was designed to be lightweight, to be able to run as a small stand-
alone server application, and to scale up to wiki hosting scenarios. Most wiki
engines requires a separate installation for each wiki web, the wiki engines that
have support for wiki hosting has often added this feature afterwards, creating
none optimal solutions. KuaiWiki was designed from the beginning to support
multiple wiki webs running on the same instance and supports specific configu-
rations for each web, even parts of the wiki engine can be changed due to the
modified provider pattern.

The XML features of Microsoft SQL Server 2005 were explored and it was
proved that some of the logic can be moved from the wiki engine to the database.
There is a balance between what should be done in the wiki engine and in the
database. Features that require little processing and a lot of data access should
reside in the database, features that require a lot of processing should reside
in the wiki engine. This is to ensure that one database server can serve many
wiki engines. This simplifies a scale out scenario were a two machine setup is

79

not enough, due to the fact that it is easier to scale out the wiki engine than to
scale out the database.

The InterceptingXmlReader class enables elements to be intercepted and
replaced with dynamic data. The implementation demonstrated that it is pos-
sible to only implement the subset of methods and properties of the abstract
XmlReader class that the XPathDocument class uses. By intercepting the ele-
ments at parse time, a costly XML DOM solution can be avoided, resulting in
better performance and less memory requirements.

The implementation proved that it is much harder to architect, design and
write a program that is optimized for performance and that enables the appli-
cation to scale out and up. The different caching features create a design that
is much more complex than without caching.

The .NET Framework documentation often lacks information about perfor-
mance. By using Lutz Roeder’s Reflector tool it was possible to examine how
the classes in the .NET Framework are implemented, and thereby the classes
could be used in a more optimized way.

The KuaiWiki implementation could be used to make further research about
how wiki engines should be designed, and how they can use XML and XSL
transformations. When the implementation has matured, it should go through
extensive benchmarking and profiling to optimize the implementation further.

8.4 The wiki concept

The wiki concept has existed for ten years, during this time there have been
many success stories. Wikipedia.org is one of them, a wiki web containing more
than one million articles, in a large number of languages. It provides an up
to date and peer reviewed encyclopedia that every person with internet access
can use and contribute to free of charge. Wikipedia and its sister projects are
growing faster and faster, and if spam and vandalism can be controlled, they
will probably continue to grow for a long time to come.

The simplicity of the wiki concept enables anyone to be a contributor. There
are many wikis specialized on one topic and as wiki hosting becomes more com-
mon and better, wiki sites might be as numerous as Blogging sites. A wiki site
can be used as an online collaborative management system, as the functionality
of wikis increase, they will probably be an alternative to traditional collabora-
tive management systems. Wiki sites are becoming a tool for companies to use
on their intranets to manage information.

Wiki sites will probably get better support for printing, enabling the user to
buy a printed book with a set of wiki articles. This could be very useful for the
Wikibooks projects. The accessibility features will probably improve, and the
improved text-to-speech technology could be used to enable users to download
audio-files of articles.

A simple and naive approach to create valuable content online has been
proved to work. The wiki concept will continue to evolve and this thesis has
provided some possible directions.

80

Bibliography

Alexa - Global Top 500. 2005-11-05.
http://www.alexa.com/site/ds/top sites?ts mode=global&lang=none.

Amazon: Web services. 2005-11-06.
http://www.amazon.com/gp/browse.html/103-9359605-
9669417?node=3435361.

Apache: FOP. 2005-11-06.
http://xmlgraphics.apache.org/fop/.

Lars Aronsson. Operation of a large scale, general purpose wiki website. 2002-
11-07.
http://aronsson.se/wikipaper.html.

DotGNU. 2005-11-06.
http://en.wikipedia.org/wiki/DotGNU.

Sergey Dubinets and Anton Lapunov. Migrating to xslcompiledtransform. 2005-
11-07.
http://blogs.msdn.com/xmlteam/archive/2005/09/30/475922.aspx.

FlexWiki: FlexWiki Features. 2005-11-11.
http://www.flexwiki.com/default.aspx/FlexWiki.FlexWikiFeatures.

FlexWiki: Wiki Federation Overview. 2005-11-12a.
http://www.flexwiki.com/default.aspx/FlexWiki/WikiFederationOverview.html.

FlexWiki: Wiki Federation Overview. 2005-11-12b.
http://ww.flexwiki.com/default.aspx/FlexWiki/WikiPageProperty.html.

Rob Howard. Provider model design pattern and specification, part 1. 2005-
11-07.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnaspnet/html/asp02182004.asp.

htmlArea. 2005-11-15.
http://www.htmlarea.com/.

Craig Larman. Applying UML and patterns. Prentice Hall PTR, 2002. ISBN
0-13-092569-1.

Bo Leuf and Ward Cunningham. The Wiki Way: Collaboration and Sharing on
the Internet. Addison-Wesley Professional, 2001. ISBN 020171499X.

81

Lutz Roeder. 2005-11-06.
http://www.aisto.com/roeder/dotnet/.

MediaWiki - Documentation: Introduction. 2005-11-11.
http://meta.wikimedia.org/wiki/Documentation: Introduction.

J.D. Meier, Srinath Vasireddy, Ashish Babbar, and Alex Mackman. Improving
.NET Application Performance and Scalability. Microsoft Press, 2004. ISBN
0735618518.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnpag/html/scalenet.asp.

Microsoft SQL Server 2005 Product Overview. 2005-11-06.
http://www.microsoft.com/sql/2005/productinfo/overview.mspx.

Mono. 2005-11-06.
http://www.mono-project.com.

MSDN: Comparing XML Performance. 2005-11-06.
http://msdn.microsoft.com/vstudio/java/compare/xmlperf/default.aspx.

MSDN: Reading XML with the XmlReader. 2005-11-17.
http://msdn2.microsoft.com/en-us/library/9d83k261(en-US,VS.80).aspx.

Open Wiki: Xml Formatting. 2005-11-13.
http://openwiki.com/ow.asp?OpenWiki

David Ornstein. Flexwiki posted to sourceforge.net. 2005-11-11.
http://blogs.msdn.com/dornstein/archive/2004/09/27/235042.aspx.

Susning.nu: Homepage. 2005-11-08.
http://susning.nu/.

TPC.org. 2005-11-06.
http://www.tpc.org.

VeriTest. 2005-11-06.
http://www.gotdotnet.com/team/compare/veritest.aspx.

W3C: Extensible Markup Language 1.0. 2005-11-14.
http://www.w3.org/TR/2004/REC-xml-20040204/.

W3C: HTML Home Page. 2005-11-14.
http://www.w3.org/MarkUp/.

W3C: Modularization of XHTML 1.0 - Second Edition (Working draft). 2005-
11-14.
http://www.w3.org/TR/2004/WD-xhtml-modularization-20040218/.

W3C: The Extensible Stylesheet Language Family. 2005-11-14.
http://www.w3.org/Style/XSL/.

W3C: XHTML 2.0 Draft. 2005-11-15.
http://www.w3.org/TR/2005/WD-xhtml2-20050527/.

82

W3C: XML Linking Language 1.0. 2005-11-15.
http://www.w3.org/TR/xlink/.

Wikimedia: About the Wikimedia Foundation. 2005-11-08.
http://wikimediafoundation.org/wiki/About Wikimedia.

WikiMedia: Enable TeX. 2005-11-12.
http://meta.wikimedia.org/wiki/Enable TeX.

Wikimedia: Home. 2005-11-08.
http://wikimediafoundation.org/wiki/Home.

WikiMedia: MediaWiki FAQ. 2005-11-12.
http://meta.wikimedia.org/wiki/MediaWiki FAQ.

Wikimedia: Our projects. 2005-11-08.
http://wikimediafoundation.org/wiki/Our projects.

Wikimedia servers. 2005-11-05.
http://meta.wikimedia.org/wiki/Wikimedia servers.

Wikipedia: C Sharp. 2005-11-06.
http://en.wikipedia.org/wiki/C Sharp programming language.

Wikipedia: DocBook. 2005-11-14.
http://en.wikipedia.org/wiki/DocBook.

Wikipedia: HTML. 2005-11-14.
http://en.wikipedia.org/wiki/Html.

Wikipedia: Java programming language. 2005-11-06.
http://en.wikipedia.org/wiki/Java programming language.

Wikipedia: Main page. 2005-11-13.
http://en.wikipedia.org/wiki/Main Page.

Wikipedia: PHP. 2005-11-06.
http://en.wikipedia.org/wiki/PHP.

Wikipedia: Susning.nu. 2005-11-08.
http://en.wikipedia.org/wiki/Susning.nu.

Wikipedia: Technical FAQ. 2005-11-05.
http://en.wikipedia.org/wiki/Wikipedia:Technical FAQ.

Wikipedia: Wiki. 2005-11-08.
http://en.wikipedia.org/wiki/Wiki.

Wikipeida: AJAX. 2005-11-05.
http://en.wikipedia.org/wiki/AJAX.

Wikipeida: Web service. 2005-11-06.
http://en.wikipedia.org/wiki/Web service.

WikiWikiWeb: Moin Moin. 2005-11-11.
http://c2.com/cgi/wiki?MoinMoin.

83

WikiWikiWeb: TikiWiki. 2005-11-11.
http://c2.com/cgi/wiki?TikiWiki.

WikiWikiWeb: Top Ten Wiki Engines. 2005-11-11.
http://c2.com/cgi/wiki?TopTenWikiEngines.

WikiWikiWeb: Twiki Clone. 2005-11-11.
http://c2.com/cgi/wiki?TwikiClone.

WikiWikiWeb: WakkaWiki. 2005-11-11.
http://c2.com/cgi/wiki?WakkaWiki.

WikiWikiWeb: Wiki Engines. 2005-11-11.
http://c2.com/cgi/wiki?WikiEngines.

84

