Final Thesis

Trandating Natural Semanticsto
Meta-Modelica

by
Emil Carlsson
LI TH-IDA-Ex--05/073--SE

2005-10-17

Link&pings universitet
Department of Computer and Information Science

Final Thesis

Trandating Natural Semanticsto
Meta-M odelica

by
Emil Carlsson
LITH-IDA-EX--05/073--SE

2005-10-17

Supervisor: Adrian Pop
Examiner: Peter Fritzson

Abstract

The report describes the work associated with the analysis, design and imple-
mentation of the translator for natural semantics in Relational Meta-Language
(RML) to the new meta-programming language Meta-Modelica. It also con-
tains an introduction to the work associated with the development of the Mod-
elica language and also an introduction to meta-programming in Meta-
Modelica and RML.

Preface

This final thesis is part of the work associated with PELAB at the University of
Linkoping.

The translator, which is the result of this thesis will be used mainly to translate
the Modelica compiler from an implementation in RML to one in Meta-Mode-
lica.

I will also like to thank Peter Fritzson, my examiner and Adrian Pop, my
supervisor for all support and feedback.

iii

Table of Contents

Chapter 1 Introduction..............................
1.1 Background and Purpose i
1.2 Readinginstructions i ..
Chapter 2 Background............
2.1 Modelica ...t
21.1 The Modelica Language
212 Development..................
213 Extensionof Modelica..........................
2.2 Compiler/Parser concepts
221 Lexical Analysis
222 Syntax Analysisol
Chapter 3 Problem statement........................
3.1 RML / meta-programming,
32 RML-parser ...
33 ExtendedModelica..................
3.4 Implementation i
Chapter 4 Meta-programming...............ouuun....
4.1 Meta-programming concept i
42 RML .
421 Modules....... ...
422 Uniontypes,
423 TYPes. ..o 10
424 Lists........ 10
425 Relations il 11
426 Rules.......... ... i 11
427 Patterns i 11
428 Otherconstructs..................oooiiii.. 12
43 Meta-Modelica i 12
431 Packages........... oo ool 12
432 Types............. il 12
433 Lists. ... 12
434 Uniontype and Recordtypes.................... 13
43.5 Access Restrictions........................ ..., 14
43.6 Algorithm section using matchcontinue. 14
437 Casestatement 14
4.3.8 Functions as parameters 15

Table of Contents

439 Replaceabletypes................... 15

4.3.10 Simple Functions 15

Chapter 5 Implementation.......................... 17
5.1 Opverview of the translator structure 17
52 TheRML-parseroiiiiiiiiiiiiiiiiiiinn... 18
53 RML-unparser i 18
53.1 Elementsinlists 18

532 Parenthesis 19

533 Stringhandling...............o oL 19

54 Commenthandling i 19
541 Solution..............ol 20

55 RML toModelica translator 21
5,51 Translation of modules to packages 21

5.5.2 Translation of datatypes to uniontypes 22

5.5.3 Translation of relations to functions 22

5.5.4 Programdatabase 24

555 Identifiers i 25

5.5.6 Special generated types.............. 25

5.5.7 Generation of input and output variables 26

5.5.8 Generation of local variables 26

5.5.9 Translation of rules to case-statements........... 27

5.5.10 Functions as parameters....................... 27

5.5.11 Replaceabletypes................. 28

5.5.12 Simplified alghorithm section 28

5.5.13 Translationoptions 28

5514 Comments............. 28

5.5.15 External modules (functions)................... 29

5.6 Meta-Modelica Unparser, 29
Chapter 6 Conclusions 31
6.1 Meta-programming Knowledge 31
6.2 Testing 31
6.3 Futurework 31
AppendiX A. 35

vi

Table of Contents

Chapter 1 Introduction

1.1

1.2

This chapter gives an short introduction and clarification to the final thesis and
the report.

Background and Purpose

This report describes the background and work associated with implementa-
tion of a translator from the meta-programming language RML to the new
meta-programming language Meta-Modelica. The translator is a contribution
to the work associated with the research and development of the programming
language Modelica and Meta-Modelica that is developed and mantained by
researchers at PELAB (program enivironment lab) at ida, liu.

The translator will mainly be used to translate source code (RML) for the Mod-
elica compiler.

To clarify some things for the reader it shall be mentioned that the RML-lan-
guage which is used for the implementation of the translator is the same lan-
guage that is parsed and translated to Modelica. The RML-language is used to
modify the RML-language itself.

Reading instructions

To get an introduction to the background and the problem statement of the
tinal thesis it is recommended to read chapter 2 and 3. If the reader wants to get
information about what Modelica is all about chapter 2, contains short back-
ground information to the language.

For a more detailed and theroetical insight of the work of the final thesis chap-
ter 4 and 5 are recommended for reading. Conlsusion of the final thesis can be
found in the chapter 7.

Chapter 1: Introduction 1

1.2 Reading instructions

Chapter 1: Introduction

Chapter 2 Background

2.1

This chapter contains background information related to the final thesis.

The final thesis is based and related to the work and development of the pro-
gramming language Modelica and therefore this chapter contains background
and information related to the Modelica language.

The programming language that is mainly used in the final thesis and also
used in the implementation of the Modelica compiler is the meta-program-
ming language RML. For more information and an introduction to the lan-
guage of RML see chapter 4 about meta-programming.

Since compilers and parsers are strongly related to the work of the final thesis a
theoretical background on how and when they are used is given in this chap-
ter.

Modelica

This section gives some background information on the development and
maintenance of the Modelica language. It also gives an short introduction to
the language itself and ongoing extension with meta-programming concepts.

2.1.1 The Modelica Language

Modelica is a language used for modeling and simulation. The language is
designed for modeling of complex physical systems like electrical, mechanical,
hydraulical, thermodynamical model components. Examples of a typical phys-
ical systems that can be modeled in Modelica can be an engine, a cell phone, a
planar pendulum, etc.

Modelica is object-oriented and equation-based language. The language has
support for Component based design is ideally suited as an architectural
description language for complex physical systems. The language is strongly
typed has no side effects.

2.1.2 Development

The development, promotion and application of the Modelica language is held
by a non-profit organization called Modelica Association with has its seat in the
University of Linkdping, but is an international effort.

There exists an open source software for development with Modelica called
OpenModelica. Which is developed at PELAB.

There are also commercial software for modeling with Modelica like Dymola
and MathModelica.
2.1.3 Extension of Modelica

An extension of the Modelica Language is/was under development and
research during the year 2004/2005. The extension consist of several meta-pro-

Chapter 2: Background 3

2.2 Compiler/Parser concepts

2.2

gramming concepts added to the Modelica language. The extension of the lan-
guage is called Meta-Modelica.

Meta-programs are programs that have other programs as input and output.
Typical applications that make use of meta-programming are program genera-
tors, interpreters, compilers, static analyzers and type checkers. It’s very com-
mon that the compiler for a meta-programming language is implemented
using the language itself. This is also the goal for Modelica-language.

The meta-programming concept is more investigated in Chapter 4.

Compiler/Parser concepts

A compiler is simply explained a program that reads a program written in one
language and translates it to an equivalent program represented with another
language. The program that is read is called source program and the output
language is called target program.

source program target program

_— Compiler e —

Figure 1: A compiler.

The compiler works in one or more phases. Common phases for a compiler are
lexical analysis, syntactic analysis and semantic analysis. Other phases are
intermediate code generation, code optimization and code generation. Inter-
acting with all phases is error handling, which checks that the program are
syntactic and semantic correct.

& source code

Scanner

l token stream

Parser
intermediate
representation

Back end

i target language

Figure 2: Three pass compiler.

For the this final thesis a compiler with three phases is used. This is a simple
model of a compiler which is fully adequate for the final thesis. The compiler is

Chapter 2: Background

2.2 Compiler/Parser concepts

shown in figure 2. The first two phases, lexical and syntax analysis are
described in the next subsection to get the reader a short introduction to which
type of compiler is used in this final thesis and how such a compiler works.
This type of compiler is often referred to as a translator, and is referred as that
in the rest of the report.

The interested reader can read more about advanced and traditional compilers
in an appropriate book about compilers[3].

2.2.1 Lexical Analysis

In the lexical analysis, also called scanning, each character of the program is
identified and and sevreal characters are grouped together. Each group is
called a token. Identifiers, keywords and operators of the language are exam-
ples of tokens. Each token can be described with a pattern expressed with a
regular expression:

{digit} [0-9]*

Lexical analysis is often done with tools such as lex, flex and jflex.

2.2.2 Syntax Analysis

The syntax analysis or more commonly called parsing involves grouping the
tokens read by the scanner into grammatical phrases. These phrases is repre-
sented by a parse tree. An example of a parse tree is shown in figure 3 below.

assignment

identifier expression
a / +
expression expression
'l b
identifier nuT er
a 1
Figure 3: Parse tree fora 1= a + 1.

The phrases are grouped together with certain rules. Rules can be non-recur-
sive or recursive. An expression for example may be a number, an identifier or
another expression.

Syntax analysis is often specified using grammars which are interpreted with
tools such as bison and yacc in order to automatically generate parsers.

Chapter 2: Background 5

2.2 Compiler/Parser concepts

Chapter 2: Background

Chapter 3 Problem statement

3.1

3.2

3.3

3.4

This chapter describes the problem statement of the thesis. The problem con-
sists of several parts and they are all described here.

RML / meta-programming

One part of the work of the final thesis was to learn the language of RML and
the concepts of meta-programming. To perform operations on program-code
its preffered to use some kind of meta-programming language. RML is a meta-
programming language and was recommended for me to use in the thesis.
Thus, since RML is both the implementaion language and also the language to
translate from, it was of great importance to learn the whole meta-program-
ming language of RML. Ofcourse other meta-programming languages like
Haskell, OCAML and SML could be learned and used when processing the
code.

RML-parser

Another part of the thesis work is to construct a good parser for the RML-lan-
guage. To do modifications on RML-code an internal representation of the
code, that is easy to modity, is needed. This is most often achieved by using a
scanner and a parser (such as lex and bison) that creates an abstract syntax tree
(ast) to represent the original code. The ast should then be handled and pro-
cessed with a meta-language like RML.

Fortunatly there was already a parser, that was implemented by Leif Stensson
at ida, available at the time I started the thesis.

For me the work was to understand the implementation of the RML-parser,
make it work and adjust it for the needs of the thesis. One important task was
to ensure that the parser actually worked as expected.

Extended Modelica

Another part of the thesis work was to learn the Modelica language and its’
newly introduced extension with meta-programming concepts, since that was
the target-language of the translator.

The design and syntax of the Meta-Modelica was developed and changed dur-
ing the work of the final thesis. The work and implementation had to interact
and follow along with the development of the language.

Implementation

The main work of the final thesis was the implementation of the RML to Meta-
Modelica translator and the implementation of the RML-unparser. The
unparser was implemented mainly to ensure that the parser was parsing and

Chapter 3: Problem statement 7

3.4 Implementation

behaving as expected. If you want to do refactorings on the RML code, the
unparser can be used to present the refactored code in RML.

The implementation of the translator consist of several more or less difficult
subproblems. Example of such problems are generating variables, type decla-
rations, name conflics etc.

More of the implementation and the problems solutions are all described in
chapter 5.

Chapter 3: Problem statement

Chapter 4 Meta-programming

4.1

4.2

This chapter describes the concepts of meta-programming and gives a brief
overview of the meta-programming languages RML and Meta-Modelica,
which are used and processed within the final thesis.

Meta-programming concept

Meta-programming is mostly used to design and manipulate other languages.
The program you write takes another program, a so called object-program, and
performs changes on it. For example it could traverse the programs internal
structure (the abstract syntax tree) and return a modified structure of the pro-
gram. It is often used with a scanner and a parser that analysis the program
and builds up an internal structure of it.

A meta-programming language has a way to store a tree representation of a
program (ast). The tree may be recursive. The meta-programming language
has functionality that provides an easy way to manipulate those trees.

RML

RML is a meta-language and generator tool for Natural Semantics and has
been designed and developed by Mikael Petterson as his Ph.D. work.

The RML-language uses natural semantics to perform operations on data. The
language declares relations with rules. The rules consists of premises and a
conclusion, thus a form of natural semantics. The program tree (ast) or similar
is defined in structures called datatypes. The relations in RML is mainly used
to take datatypes as input, change or evaluate them, and return appropriate
output. The main constructs and functionality of RML is introduced in the fol-
lowing sections. For more detailed information and a complete guide of the
RML-language see the rml-guide[2].

42.1 Modules

RML uses a simple module system for information hiding and modularization.
Relations and type definitions with similar properties are grouped in the same
module. The constructs that may be contained in a module are datatypes, rela-
tions, type declarations and value definitions.

The module consists of one interface section and one implementation section,
which can be optional. All construct declared in the interface section are made
available for other modules, thus they are public.

4.2.2 Uniontypes

The structure and design of the ast(most often) is declared in RML with the
keyword datatype - which is a uniontype. The keyword is followed by a name
for the datatype. Each uniontype has one or more constructors consisting of a
constructor name and zero or more fields containing different types. Each vari-

Chapter 4: Meta-programming 9

4.2 RML

ant of the uniontype can be viewed as a recordtype and are separated with the
symbol |. If the recordtype contains more then one type they are separated
with the symbol *. It’s possible to refer to the datatype itself inside that record-
type, i.e recursion is supported. This is best shown with a code example like
the one below:

dat at ype Exp = |INT of int
| BINARY of Exp * BinOp * Exp
| UNARY of UnOp * Exp
| ASSIGN of Ildent * Exp
| IDENT of [Ident

dat at ype Bi nOp = ADD| SuB| ML | DV

NEG

dat at ype UnQp

The datatype declaration in the example above was inspired from the used by
standard ML (SML).

423 Types
The primitive types in RML are:

» char - representing a single character.

« string - representing a text string.

* int - a integer number.

« real - areal number.

* bool - a boolean value.

There are several primitive operations connected to each type. Like bool_or for

booleans. The primitive types can also be compared with each other with the
generic operator =.

Each type can have alternate names (aliases) introduced with type declara-
tions:

type ident = string.

The basic data structures in RML are lists, vectors and option. They are so
called parameterized types, which may take another type as parameter. They
are declared by writing the keyword list, vector or option after a type, e.g. i nt
| i st, which declares a list of integers.

424 Lists

A list can be matched and used in different ways and RML uses special lan-
guage symbols and syntax to refer to a list. This is how list can be used in a pat-
tern or expression:

« [el, e2] -alist with two elements. | i st (el, e2) has the same meaning.

« [] - empty list, keyword nil has the same meaning.

« elenent::|st orcons(el enent, | st) -concatenation, makes element
the first element in the list Ist.

10

Chapter 4: Meta-programming

4.2 RML

425 Relations

A relation in RML is used to match certain types or datatypes. The keyword
relation is followed by an identifier name. This is followed by an optional type
signature of the inputs and outputs of the relation, e.g (i nt => Exp). The
relation consist of one or more rules with same name as the relation.

There are several built-in relations in RML like int_add, int_sub, etc.

4.2.6 Rules
Each rule has a match expression that matches specific types or datatypes.

The rule also consist of several premises that has to be fulfilled to apply the
result. If a rule has no premises the rule can be defined as an axiom. Premises
are often other relations or predefined relations with a pattern result. The pat-
terns are used to bind variables to the result.

In the following example the call to the relation i nt _neg must succed in order
for the relation appl y_unop to succed. If it does the result is bound to variable
v2.

relation apply_unop: (UnQOp,int) =>int =

rul e int_neg(v) => v2

appl y_unop(NEG v) => v2
end

If the match-expression in the first rule matches, and all the premises in that
rule are fulfilled, the relation will succeed. The result of the rule will then be
passed on as the output for that relation. In the example above the value in the
variable v2 will be returned as result of the relation. If some premise fail, the
next rule will be checked for matching. If no rule succeed in a relation the
whole relation will fail. Rules can also be enforced to fail under certain pre-
mises. That is achieved by having the keyword fail as output to that rule.

4.2.7 Patterns

As mention above patterns are used to decide which rule will match(be
selcted) and to bind variables to a result. Patterns may contain the symbol _,
which is treated as a wildcard in the pattern, i.e it may match with anything. A
pattern may be a primitive type value, like a integer, a specific constructor
from a datatype or a list, vector or an option. Parts of lists can be matched with
special constructs and symbols described in section 4.2.4.

In the following example, the first rule in the relation rell will match if rell is
called with an empty list, a list with one integer and the value 23.

relation rell: (int list,int list,int) =>int =
axiomrel1([],el::[]1,23) => 0

end

Chapter 4: Meta-programming 11

4.3 Meta-Modelica

4.3

4.2.8 Other constructs

There are also other useful language constructs in RML. They are briefly
described here:
« Values - declaration and definition of constant values.

« With statement - imports another rml-file to a module, so it’s relations and
datatypes may be used in that module.

Meta-Modelica

Modelica is a large programming language and Meta-Modelica is the meta-
programming extension of it. Meta-Modelica has many similarities with RML
but also many differences. All variables used in Modelica has to be declared.
Each type has to be defined e.g. a list of integers. This section is mainly concen-
trated on the specific Meta-Modelica constructs and if the reader wants more
insight to the complete Modelica language the Modelica Book[1] is recom-
mended.

Patterns in Meta-Modelica are similar with the patterns from RML so they are
not described here.

4.3.1 Packages

Meta-Modelica is using packages for modularization and encapsulation of
data members. The package may consists of uniontypes, functions, import
statements, type declarations and definitions of constant variables.

4.3.2 Types
The predefines types in Meta-Modelica are:

« Integer, a integer number.

« String, a string of characters.

* Real, a real number.

» Boolean, a boolean value.

The parameterized types used in Meta-Modelica are arrays, option and lists.

The vector from RML is absent in Meta-Modelic and only arrays are used
instead.

When a parameterized type is going to be used type declaration for them are
needed. An example for how a list of integers is declared and used is given
here:

type IntegerlList = Ilist<lnteger>;
IntegerList int_list; /* int_list is alist of Integers */

4.3.3 Lists

List can be matched and used in the a similar way as in RML with special lan-
guage symbols and syntax to refer to a list. The main difference is that Meta-

12

Chapter 4: Meta-programming

4.3 Meta-Modelica

Modelica uses curly brackets instead of [], as list constructor. This is how list
may be used in a pattern or expression:

« {el, e2} -alist with two elements. | i st (el, e2) has the same meaning.
« {} - empty list, keyword nil has the same meaning.

« element::|st orcons(el enent, | st) -concatenation, make element
the first element in the list Ist.

4.3.4 Uniontype and Recordtypes

Declarations with the keyword uniontype are corresponding to RML's
datatypes. Each parametrized type, like lists, has to be declared with a type
declaration together with the uniontype. Each uniontype is composed of
recordtypes with each member declared as a variable. The recordtype is intro-
duced with the keyword record followed by an identifier. An example of a
uniontype is given below. This is the equivalent code with the one given in the
RML datatype example:

public
uniontype Exp
record | NT
I nt eger integer;
end | NT;
record Bl NARY
Exp expl,
Bi nQp bi nop2;
Exp exp3;
end Bl NARY;
record UNARY
UnQp unop;
Exp exp;
end UNARY;
record ASSI GN
| dent ident;
Exp exp;
end ASS| G\
record | DENT
| dent ident;
end | DENT;
end EXp;

public

uniontype Bi nQp
record ADD
end ADD;
record SUB
end SUB;
record MUL
end MJL;
record DIV
end Dl V;

end Bi nOp;

public
uniontype UnQp

Chapter 4: Meta-programming 13

4.3 Meta-Modelica

record NEG
end NEG
end UnOp;

435 Access Restrictions

In Modelica class-members may be publ i ¢ or pr ot ect ed. A public member
may be accessed by other packages that import that package. The protected
may not.

Constant values in Modelica, are declared with the keyword const .

4.3.6 Algorithm section using matchcontinue

In Meta-Modelica functions is used to perform operations on the data specifid
using uniontypes. These correspond to the relations in RML. The functions
begins with a declaration part that defines the input and output variables of
the function. The local variables used in the function also has to be declared
here.

protected function apply_unop
input UnQp i n_unop;
input | nteger in_integer;
output | nt eger out _i nteger;
algorithm
out integer: =
matchcontinue (i n_unop,in_integer)
local Val ue v;
case (NEE),v) then -v;
end matchcontinue;
end apply_unop;

Modelica uses different type of algorithms and equations. There are many dif-
ferent algorithms, the ones mainly used for meta-programming and Meta-
Modelica are simple algorithm and algorithm with match statements.

The match algorithm statements are similar to the rules in RML. But in Meta-
Modelica you may have different type of policies for the behavior of the rules.
The keywords match, matchcontinue and matchcondition introduces different
types of match policies.

Matchcontinue is the equivalent to the basic behavior of the rules in RML, that
is if the first rule fails, the next is tried. Match is the opposite and will not try
the next rule, it will fail immediately if a case fails. There are also other match
policies with special conditions, but I this is not described here cause they are
of less importance in this final thesis.

The match algorithm statement consists of one or more case-statements which
are described in the next section.
4.3.7 Case statement

The case-statement is equivalent to a rule in RML. The case-statement has a
match-expression followed by a Modelica style equation with equation state-

14

Chapter 4: Meta-programming

4.3 Meta-Modelica

ments. The equation statements are the premises of the case-statement, and
have to be fulfilled for the case-branch to succeed.

The case statement ends with the keyword t hen followed by an expression
which is the result of the casebranch. Like in RML a case statement can be
forced to fail, but here with a call to a built-in function called fail().

4.3.8 Functions as parameters

In RML you may have a relation as input or output to another relation. This
relation may then be called and used in the premises. In RML this is declared
using a signature like the one describing input and output of the relation. In
Meta-Modelica this is represented with a function type with input/output
variable declaration only. This function type name is then used to declare such
a function variable as input.

4.3.9 Replaceable types

In RML it is possible to use special types in relations that may be of any
type.These types are called polymorphic types. Maybe you want a list with ele-
ments of certain type, integers or strings. The functions may perform similar
operations on them but instead of declaringtwo different relations you may
use the replaceable types, shown in the example below.

This kind of replaceable types are supported in Modelica. The keyword
replaceable is used to introduce such a type:

replaceable type Type_a;

4.3.10 Simple Functions

When a function only has one case-statement that will always match it may be
written as a simple algorithm statement without the match-statement like the
example below:

protected function neg_i nt
input I nteger vli,;
output | nteger v2;

algorithm
v2 1= -vl;

end neg_int;

Instead of having the standard match continue-case-statement:

protected function neg_i nt
input I nteger in_v;
output | nteger out_v;
algorithm
out _v: =
matchcontinue(i n_v)
local v1;
case(vl) then -v1;
end matchcontinue;
end neg_int;

Chapter 4: Meta-programming 15

4.3 Meta-Modelica

16

Chapter 4: Meta-programming

Chapter 5 Implementation

5.1

This chapter contains the description of the implementation. First a general
overview of the translator tool is given and then each part is separately
described.

Overview of the translator structure

The program consists of several modules and program blocks. The main struc-
ture of the implementations building blocks are shown in figure 4.

l rdb file l RML source code

rdb-scanner Scanner

A A

rdb-parser Parser | RML Unparser f————3»

RML-AST RML source code
DB \/RML-AST

Translator

Meta-Modelica-AST

Y

Modelica
Unparser

l Meta-Modelica source code

Figur 4: Main structure of the RML to Meta-Modelica translator.

There is a scanner and a parser for the RML source code building a parse tree
for RML. There is also a RML Unparser in the program that may be used to
generate RML source code from the RML-AST.

There is also a scanner and parser for the special rdb-files that contains a pro-
gram database with information for each identifier in the RML source code.
More of how the database is used by the program can be read in section 5.5.4
on page 24.

The result of the two parsers is used as input for the translator which produces
a Meta-Modelica-AST that in the last step is unparsed with the Meta-Modelica
Unparser in order to generate the Meta-Modelica files.

The RML Unparser, the Translator and Modelica Unparser are all implemented
in the RML language. The parsers are using a classical bison implementation
and some kind of C-based lexer or clean C implementation for the scanners.

Chapter 5: Implementation 17

5.2 The RML-parser

5.2

5.3

The RML-parser

When the final thesis started a preliminary a parser was available for RML, but
had to be adjusted to be used for interaction with the RML-language. The
parser was written by Leif Stensson at ida and an introduction to the parser
was given when the final thesis started. Some parts of the parser were incom-
plete, but with help from Adrian Pop, the supervisor for this final thesis, the
parser has been completed.

The scanner used with parser is written in C and the parser was originally
written in yacc, but was easily converted to an implementation with bison. The
reason to why bison was used is because it is more up to date then yacc and is
also more widely used.

The scanner and parser are as mentioned fed with RML-source code and the
output is a resulting abstract syntax tree. This tree is actually formed using
datatype structures in RML. The other parts of the program can then easy pro-
cess this datatype. The design of this abstract syntax tree is given in a file called
absyn.rml and can be found in appendix A.

During the work with final thesis several parts were added and redesigned in
the parser, due to changes in the design of the RML-astes, to further improve
the parser and correct errors in it.

RML-unparser

The RML-unparser was implemented to get a visual view of how the parser
was building up the ast. An unparser is simply a module that traverses a
parse-tree and printing it to the screen or a text file. This can be done by pretty-
printing or not. The RML-unparser is using pretty printing to be easier for a
user to compare it with the original source code in RML.

The unparser for the rml-ast was straightforward to implement. An overview
of the more complicated and interesting parts of work with the implementa-
tion is given in the following subsections.

5.3.1 Elements in lists

When the unparser prints a list to the screen it prints every element to the
screen but has to make special considerations with the last element, because it
should not have a comma afterwards. In the example below it’s is shown how
this behaviors is implemented in the unparser.

relation dunmp_pattern_list =
rule print

dunmp_pattern_list([]) => ()
rule dunp_pattern(last)

dunp_pattern_list(last :: []) => ()

rule dunp_pattern(first) &

18

Chapter 5: Implementation

5.4 Comment handling

5.4

print ", " &
dunp_pattern_list(rest)

end

Many parts of the RML-ast are lists of various types, like pattern lists or
expression lists. In the example above it shown how a pattern list is unparsed.
The last element in the list is matched with rml cons and the nil which is the
empty list. The empty list is also matched to if the list happens to be empty.
The last rule is unparsing the first element and a comma and then calling the
relation recursively continuing unparsing the rest of the list.

5.3.2 Parenthesis

In RML you can skip the parenthesis on relation calls that have no arguments.
The parser treats this the same way as relation calls that have parenthesis. This
means that the same abstract syntax is built up in both cases. Thus, the call:

rel() =>b
and the call
rel =>0b

gets the same represention in the AST. When this is unparsed the unparser
prints the paranthesis for relation calls with no aguments. So all the relation
calls without paranthesis are represented with paranthesis in the unparsed
RML code. This may be used for automatic addition of paranthesis to relation
calls.

5.3.3 String handling

When unparsing strings all the characters in the string is checked to see if they
belong to escape/special characters like " \n", " \b", and " \t". Otherwise they
are printed with their positional effect directly to the output. In the implemen-
tation of the RML-unparser this behavior is realised by converting each charac-
ter to a char type and then check it’s ascii-value to see if it is one of these escape
characters. If so is the case, an extra \ is added to the character to escape the
effect. This escape handling is implemented with help of a relation called
handle_escape in the RML-unparser. The implementation of the relation is
present here:

EXAMPLE

Comment handling

Normal tokens, like identifiers and keywords, in a program are only allowed in
a restricted way. But the comments are allowed anywhere in the program code.
The solution to add comments everywere in grammar of the parser is not a
good solution as it makes the pareser and the grammar difficult to understand.
To allow it in some places is an improper restriction and if it’s not followed,
parsing errors will arise.

Chapter 5: Implementation 19

5.4 Comment handling

It is therefor better to implement the comment handlingoutside the traditonal
parsing techninque.

The original implementation of the parser did not have any support for the
comments. They were just collected in a buffer. As described in the in

section 5.1 on page 17 this is a problem that is tricky to handle, because there is
no good standard solution to this. The solution used in this final thesis is non-
general and only specialized for RML. The next section gives the solution used
in this final thesis.

5.4.1 Solution

The scanner is used to gather information about the comments. The comments,
their position and some additional information is stored in an array of struc-
tures, each containing this information. The structure is shown in the following
code-example:

struct Commentlnfo

{

i nt bound; /* is it a bound? (used to nark next datastructure) */
i nt firstline, firstcol; /* start position of this coment */

i nt | astline, lastcol; /* end position of this coment */

char buffer[LEXER_COMVENT _MAXLENGTH+100] ;

b

The array of such structures is then used to place the comments in the right
place in the AST while parsing. The structures in the rml-AST have containers
for optional comments. Depending on the position of a comment, it is placed
out in a suitable structure of the AST.

But there are other problems that arise when using this kind of array. The scan-
ner may not have come far enough when comments shall be placed in the ast.
Comments below a certain program element may not have been scanned yet
when we want to place them in the corresponding AST-structure. This may
result in some changes in the placement of the comments.

Another problem arise when we don’t know how far below a program element
we want to check for comments. The following comments may belong to the
next program element, or even the next after that. The positional information
could be used for help in comment analysis but this is hard for compact pro-
gram elements as datatypes. Therefore there are also variable bound in the
comment structure as shown in the code-example above. The scanner also
adds comment structures that acts if they are bounds, containing an empty
comment, to the array. When a bound is found we know that the following
comments are a part of another program element.

Since the comments are placed out in the RML-ast the comments in the trans-
lated Meta-Modelica-ast will be based on the ones from in the RML-ast.

20

Chapter 5: Implementation

5.5 RML to Modelica translator

5.5 RML to Modelica translator

The main work of the implementation and the objective for the final thesis was
the implementation of the translator from RML to Meta-Modelica. There were
many subproblems and things to think of when designing this translator.

Due to differences in the languages, there are sveral basic things to consider
and the translation is not that straightforward as it first may seem. Some things
that has to be dealt with are:

« Declaration of variables with correct types,

« Generation of type declarations. Checks so the type declarations are reused
and not declared more than once.

« Name collisions with modelica keywords, generated variable identifiers
and type identifiers.

« Placement and handling of comments and strings.

Since the translator is used to translate the Modelica compiler and the code has
to be understood by programmers it was desirable to make simple and read-
able code. Some things to be considered according to these requirements:

* Generate good and smart identifier names,

« Make code as simple as possible and keep the number of lines in the target
language as low as possible.

« Make code readable.
These problems are in more detail investigated in the next subsections.

The translator takes a RML-ast as input and gives an Meta-Modelica-ast as out-
put. The translator traverses the whole RML-ast step by step, analyzing every
construct and generating a new Meta-Modelica-ast with corresponding con-
struct in Meta-Modelica.

The translator also takes a program database with the information of every
identifier. How this is used is described in section 5.5.4. It also takes options
(command line paremters) that may be given to the translator, which are
detailed in section 5.5.13.

Interesting details about the implementation and the special data structures
used in the translator are discussed in the following subsections.

5.5.1 Translation of modules to packages

A module in RML is translated to a package in Meta-Modelica. In RML some
members of the module, like relations and so on, are declared in the interface
part and some in the definition part, as described in X. In Meta-Modelica the
interface vs. definition division is absent, but we need to keep track of which
members are in the interface, because those are then consequently going to be
publ i ¢ in Meta-Modelica and those who are not are going to be pr ot ect ed.
The decision for how we handle the public-protected attributes for functions is
described in section 5.5.3.

Chapter 5: Implementation 21

5.5 RML to Modelica translator

5.5.2 Translation of datatypes to uniontypes

When translating a datatype to a uniontype special types must be generated if
needed and each variable in a record must be declared with a suitable gener-
ated name. Otherwise the translation is pretty straightforward. The datatype
name is used as uniontype name. Constructor names are used as recordnames.
The implementation of the special generated types is described in section 5.5.6.

The generation of variables for the members of the recordtypes was realited
tirst by using simple names like x1,x2 etc., but there was a need for smarter
names, based on the types and even better, generated from the comments.
Since many of the elements in the datatypes have a comment that describes the
element with one word this description can successfully be used to generate a
suitable variable name. This is implemented in the translator and only used
when the comment consists of one word with less than 15 characters. Such
strategy was later proven to give good results in the final translation. In the
case where the comments are absent, the name of the variable/component is
generated from the type names.

The following datatype in RML:

(* The basic elenment type in Mdelica *)

dat at ype El enent = ELEMENT of bool (* final *)
* bool (* replaceable *)
* | nner Qut er (* inner/outer *)
* | dent (* Element name *)
* El ement Spec (* Actual el enent
speci fication*)
* string (* Source code file
*
)
int (Line number *)

* ConstrainC ass option (* only valid for
cl assdef and conponent *)

is translated to the following uniontype in Meta-Modelica:

uni ontype Element " - El enents
The basic element type in Mdelica "
record ELEMENT
Bool ean final "final ";
Bool ean repl aceabl e "repl aceable ";
I nnerQuter innerouter "inner/outer ";
| dent ident "Elenment name ";
El ement Spec el enent spec "Actual el enent specification”;
String string "Source code file ";
I nteger integer "Line nunber ";
Constrai nCl assOption constrainclassoption "only valid for cl assdef
and comnponent”;
end ELEMENT,;
end El enent;

5.5.3 Translation of relations to functions

When a RML relation is translated to a Meta-Modelica function we perform
several steps. Every RML structure is translated to the corresponding structure
in Meta-Modelica. Input and output variables are generated from the relation

22

Chapter 5: Implementation

5.5 RML to Modelica translator

signature and they are assigned suitable variable names. All local variables in
each rule have to be collected and declared with the correct type. Each rule is
then translated to corresponding Meta-Modelica code. A basic example of a
translated relation is presented below.

The following relation in RML:

relation eval: Exp => real =

axi om eval (RCONST(ival)) => ival (* eval of an integer node *)
(* is the integer itself *)

(* Evaluation of an addition node PLUSop is v3, if v3 is the result
of

* adding the evaluated results of its children el and e2

* Subtraction, multiplication, division operators have simlar
specs.

*)

rule eval(el) =>vl & eval(e2) =>v2 & real_add(vl,v2) => v3

eval (ADDop(el,e2)) => v3

rule eval(el) => vl & eval(e2) =>v2 & real _sub(vl,v2) => v3

eval (SUBop(el,e2)) => v3

rule eval(el) =>vl & eval(e2) =>v2 & real _ml (vl v2) => v3

eval (MJLop(el,e2)) => v3

rule eval(el) =>vl & eval(e2) =>v2 & real _div(vl,v2) => v3

rule eval(e) => vl & real _neg(vl) => v2 (*aa*)

eval (NEGop(e)) => v2 (*ss*)
end

is translated to the following function in Meta-Modelica:

public function eval Abstract syntax of the |anguage Expl
Eval uati on semantics of Expl "
i nput Exp in_exp;
out put | nteger out_integer;
al gorithm
out _integer: =
mat chcont i nue (i n_exp)

| ocal
I nteger ival,vl, v2;
Exp el, e2, e;

case (I NTconst(ival)) then ival;
the integer itself "

case (ADDop(el,e2)) " Evaluation of an addition node PLUSop is v3,
if v3is the result of

* adding the evaluated results of its children el and e2

eval of an integer node is

Chapter 5: Implementation 23

5.5 RML to Modelica translator

* Subtraction, multiplication, division operators have simlar
specs.
equati on
vl = eval (el)
v2 = eval (e2); then vl + v2;
case (SUBop(el,e2))
equati on
vl = eval (el)
v2 = eval (e2); then vl - v2;
case (MJLop(el, e2))
equati on
vl = eval (el)
v2 = eval (e2); then v1*v2;
case (Dl Vop(el,e2))
equati on
vl = eval (el)
v2 = eval (e2); then vl/v2;
case (NEGop(e))
equati on
vl = eval (e); then -vli;
end mat chconti nue;
end eval ;

Another aspect that must be decided for each function is if it is publ i ¢ or

pr ot ect ed. All relations that are declared in the interface in RML will be pub-
lic in Meta-Modelica. If a function is not present in the interface in RML it will
become protected in Meta-Modelica. Such selection has the consequence that
it’s needed to know which relations are declared in the interface when translat-
ing the implementation of the relations. When translating the interface a list
with identifiers of the relations that are present is built up. The list is then
checked when translating the implementation of each relation to decide wether
the functions should be public or protected.

5.5.4 Program database

The RML-compiler has special functionality for generating rdb-files, which
contains information of every identifier in a RML-file. The supervisor of this
final thesis, Adrian Pop, helped with the implementaion of a parser for these
rdb-files, in order to build up an internal program database for each rml-file.
The program database is used in the implementation of the translator for
retrieving the type of a specific variable. The reader is reffered to figure 4 for a
better understanding of the coupling between the translator and the RML com-
piler. The program database has information about all identifiers position and
their type. The data structures representing the program database have the fol-
lowing representation in RML:

(* start line/colum end |ine/colum *)
dat at ype RMLDbRange = RMLDB RANGE of int * int * int * int

dat at ype RMLDbEl emrent = RMLDB_VAR of string * (* filenane *)
RMLI dent * (* var nane *)
RMLDbRange * (* actual position *)
RMLDbRange * (* scope *)

24

Chapter 5: Implementation

5.5 RML to Modelica translator

RMLI dent * (* relation nane *)
RM.Type (* type *)

| RMLDB _REL of string * (* filenane *)
RMLI dent * (* relation nane *)

RMLDbRange * (* relation ident
position *)
RMLType (* relation type *)
| RMLDB_ TY of string * (* filenane *)
RMLI dent * (* type nane *)
RMLDbRange (* type position *)
| RMLDB _CTOR of string * (* filenane *)
RMLI dent * (* constructor
nane *)
RMLDbRange * (* position *)
RM.Type (* type *)

dat at ype RMLDb = RMLDB of RM.DbEl enent |i st

When looking up an identifier type in the program database the range and cor-
rect file is checked to ensure that the right variable information is retrieved.

5.5.5 Identifiers

All identifiers used in RML must be checked before they are used in Meta-
Modelica.

One thing that has to be checked is if the identifier is a standard Modelica key-
word. A RML-value with a list of all such Modelica identifiers is used when
translating. If a Modelica keyword is found a "_" is attached to the end of the
identifier to differentiate them from the keyword.

Another problem with the identifiers is to separate variables and constructors
of a datatype in expressions and patterns. The problem arise when the con-
structor do not have any arguments. The parser builds up the same ast element
for these two program elements. This is not a problem for the RML unparser,
but when a uniontype with no arguments is referred to in Meta-Modelica it
should have parentheses. We needed to separate these two patterns with help
from the program database. All identifiers which are data constructors or vari-
ables are checked against the program database to see if they are a constructor
or not. In this way we know if the translator is going to generate a variable or
datatype constructor reference.

5.5.6 Special generated types

As discussed in the analysis the parameterized types need separate type decla-
ration for each combination and they can not be declared again in the same
scope. A special structure called AlternativeTypeNames is used in the transla-
tor to keep track of which type is already declared. We present this datastruc-
tures below:

datatype AlternativeTypeNanes = ATYPES of Absyn.|ldent *
Absyn. I dent * bool

A list of AlternativeTypeNames is passed along to the relations in the transla-
tor and the list is consulted when it is needed to know if a special type is
already declared.

Chapter 5: Implementation 25

5.5 RML to Modelica translator

Thus, these types were implicitly created by the translator. But in RML one can
also have, explicit type declarations. In some occasions it could be nice to also
reuse these type declarations. The second element in AlternativeTypeNames
represent an alternative name for a declared type. During the implementation,
the design/choice for where to reuse the explicit types has changed.

To handle these new design decisions a special element, the third one in the
AlternativeTypeNames, was added to the structure of the declared types. The
element is a boolean which decide if the type is declared explicit or implicit.
When the list of declared types is checked in different situations it is easy to
choose if the explicit variable shall be excluded or not.

5.5.7 Generation of input and output variables

The signatures ofRML-relations declares what types are used as parameters
and results for a relation. In a similar way the Meta-Modelica functions declare
input and output variables. The type of each such variable can directly be
retrieved from the signatures. But in RML the siganture declaration part is
optional. When the signature is missing the translator has to look up the signa-
ture in the program database. The names for the input and output variables are
based on the name of the type. The only difference is that the letters are lower-
cased and the the input variables are prefixed with in_ and the output vari-
ables with out_. When name collision arise a number is added to each variable
among the input or output variables. This is shown in the table 1.

RML Meta-Modelica

rel ati on appl y_bi nop: protected function apply_bi nop
(BinOp,int,int) =>int = i nput Bi nOp i n_bi nopl;

i nput | nteger in_integer?2;
end i nput | nteger in_integer3;

out put I nteger out_integer;

end appl y_bi nop;

Table 1: Translation of input and putput types.

5.5.8 Generation of local variables

The local variables used in a RML relation need to be declared in the translated
Modelica function with the correct type. When translating a rule the variables
are kept in a special structure called TypeVarsElement. The structure has one ele-
ment representing a RML type and one element with a list of identifiers. The
structure is declared as follows:

dat at ype TypeVar skl enent = VTELEMENT of Absyn. RMLType *
Absyn. I dent |i st

26

Chapter 5: Implementation

5.5 RML to Modelica translator

The identifiers are kept in this structure because the local variables can not be
generated until we have translated /investigated the whole relation. Dupli-
cates...

All identifiers from a rule are first collected and then locked up in the PDB. A
special relation to update the TypeVarsElement and check the program data-
base is used. The relation checks wether the variable is already in the list of
TypeVarsElements and if it is it exits, otherwise it adds it to the correct element
in the TypeVarsElements. If an identifier is presented with the same name but
with different type, we need to generate that variable as local in that case-state-
ment. Therefore the update relation gives two outputs, one list of TypeVarsEle-
ment for the variables to be declared in the function and one for the ones to be
declared in the case statement. For each rule, the list for the variables to be
declared in the function are appended to a list that is passed along when trans-
lating the rules. When all rules are translated we can generate the local vari-
ables from the list of TypeVarsElements.

5.5.9 Translation of rules to case-statements

As discussed in section 4.2.6 the rules consists of premises and a conclusion
which are in turn built up with expressions and patterns. The expressions and
patterns are straightforward to translate to equivalent Meta-Modelica code.
The whole rule is translated to a case statement in Meta-Modelica. An example
of how this looks can be found in section 4.3.7.

However as mentioned there are also predefined relations in RML which must
be translated to equivalent functions in Meta-Modelica. For example RML has
relations for modifying vectors and arrays. In Meta-Modelica there are only
arrays so the vectors and vector operations must be transformed to array oper-
ations.

In Meta-Modelica it is also possible to transform the expressions which may
simplify the code. An example of such transformation is skipping the last
assignment to a variable, if that variable is going to be returned, and instead
return the assignment expression directly after the keyword t hen. An example
of this can be found in the translation of relation eval above, where the variable
v3 is skipped. The transformation is implemented in the translator, as a simple
check: if the return variable is the same as the last assignment variable is the
expression assigned to the variable is set in the return construct.

5.5.10 Functions as parameters

When translating a relation that has another relation as parameter some
aspects have to be considered. The corresponding Meta-Modelica way to
achieve such behavior is to define a function type with only input and output
variables declared. Such function needs a good name. In an early implementa-
tion the translator generated a function name based on input and output but
this generated very long function names in some cases. The final implementa-
tion uses names like FuncTypeX were X is a number to separate the functions if
there are more than one. The name of the input and output variables of these
functions are generated in the same way as input and output variables in nor-
mal functions described in X.

Chapter 5: Implementation 27

5.5 RML to Modelica translator

5.5.11 Replaceable types

The replaceable types in RML are translated to the corresponding code in
Meta-Modelica. The declaration and use for Meta-Modelica are described in X.
In RML the replaceable types are declared with a quote in the beginning. When
translating this from RML, Type_A is used as name if the name in RML was a.
When this is combined with parameterized types the translator puts V in front
of the generated special type’s name. This is because the name Type is used in
a Meta-Modelica to RML translator(adrian’s) to identify a replaceable type.

5.5.12 Simplified alghorithm section

When it is possible, the translator will the simplified algorithm section,
described in X, for functions. Such simplification is possible when a relation
has

« only identifiers as input or no inputs at all.
« only one case-statement.

The matchcontinue and case statement then skipped as shown in the example
in section 4.3.10.

5.5.13 Translation options

In the current implementation it is possible to give some options to the transla-
tor. There are only two options that may be given at the moment, but it easy to
add new options to the translator. A special datatype is used to store the
options and a list of such values is passed along in the translator:

dat atype TransOptions = | MP_PREFI X of string |ist
| DUMW_GENERATI ON

The list can then be queried at various occasions to ask if a certain option is set.
The datatype can also easily be extended with more options.

The two options that can be given to the translator at the moment are:

« Modelica prefixing. The packages that are imported can have a default
path which should be added to each import statement. Right now the
OpenModelica compiler path is used if no other path is set.

« Use generation of dummy variables for functions that have no input/out-
put variables.

5.5.14 Comments

When translating the comments from RML some processing is needed in order
to to better fit the Meta-Modelica language. Some of the processing are neces-
sary for the Meta-Modelica files to work and some is just for adjustment to
Meta-Modelica. For every comment each character is checked to see if there are
any parts that need to be translated. Here are some of the processing filters
applied to the comments when they are translated in the current implementa-
tion:

28

Chapter 5: Implementation

5.6 Meta-Modelica Unparser

5.6

« Escaping of doubleqoutes ". This is allowed in RML comments but not
inside Meta-Modelica comments so it is necessary to translate this with the
escape character \".

« The word relation in the comments is translated to word function.

« In RML * and spaces are more often used in the comments. These are
removed at appropriate places by the translator.

« Description of lists in RML are translated to list in Meta-Modelica, i.e.
[a,b,c] is translated to {a,b,c}.

5.5.15 External modules (functions)

In RML you can use external modules/programs implemented in C with an
interface declared in RML. For example an implementation in C. Such external
modules are denoted by only declaring the interface part in the RML-file.
There is a public relation in the translation module that checks if a RML file is
external. The relation is simply checking if the list of definitions is empty.

relation is_external =
axi omi s_external (Absyn.RM__FILE(, ,[],_))=> true
axi omis_external (_) => fal se

end

This check is done before translating a RML-ast. If we have a external module
all relations in the interface will be translated to external function declarations
like this example below:

Meta-Modelica Unparser

When translating the code to a parse tree in Meta-Modelica one needs to
unparse the AST to get a readable output. Thus the Meta-Modelica source
code. We started froma preliminary Modelica unparser implemented in the
Modelica-compiler. This unparser was used, adjusted and extended to pretty
print the Meta-Modelica code. The case, matchcontinue, patterns and union-
types constructs are some examples of what was added to complete the Meta-
Modelica unparser.

Chapter 5: Implementation 29

5.6 Meta-Modelica Unparser

30

Chapter 5: Implementation

Chapter 6 Conclusions

6.1

6.2

6.3

This chapter contains end conclusions and the result and correctness of the
generated Meta-Modelica code.

Meta-programming

The concepts of meta-programming and the two meta-programming lan-
guages Meta-Modelica and RML was succesfully learned during the thesis.

Testing

The testing of the correctness and the quality of the generated Meta-Modelica
code has been done by translating examples in RML. These examples are used
in the RML book[2] and are now translated and used in Meta-Modelica version
of that book.

Also the whole Modelica-compiler was translated and the result has been eval-
uated by Ph.D students at the University and by Peter Fritzson. From this
translation many errors and new design choices for the translator came up.
Now it is possible to compile the translated Meta-Modelica code and the code
is readable, very concise and easy to understand.

Future work

What has not been tested or evaluated is the performance of the translator.
Some improvment may be possible to speed up the translation. Now it take
aprox. 10 minutes to translate the whole Modelica compiler(about 45.000 rows
of code). This could be done faster. One thing that could speed up the transla-
tion time using tree’s instead of lists in larger lists like, pdb, atypes.

Chapter 6: Conclusions 31

6.3 Future work

32

Chapter 6: Conclusions

References

[1] Peter Fritzson: Principles of Object-Oriented Modeling and Simulation With
Modelica 2.1. 2004, Wiley-IEEE Press. 940 pages, ISBN:0-471-471631, Book home
page: http:/ /www.matchcore.com/drmodelica.

[2] Petef Fritzson: Efficient Language Implementation by Natural Semantics. 2005.

[3] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman: Compilers Principles, Techniques
and Tools. 1986, Addison Wessley Longman, ISBN: 0-201-10088-6.

33

34

Appendix A

(*

")
(**
* %
* %
* %
* %
* %
* %
* %
* %
* %
tio
* %
* %
* %
* %
and
* %
* %
* %
* %
* %
* %
* %
* %
* %

* %

nod

d

Copyri ght PELAB, Linkoping University
This file is part of Open Source Modelica (CSM.

CSMis free software; you can redistribute it and/or nodify

it under the terns of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any |later version

CSMis distributed in the hope that it will be useful

but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
GNU General Public License for nore details.

You shoul d have received a copy of the GNU General Public License
along with OpenModelica; if not, wite to the Free Software
Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307 USA

file: absyn. r n
nodul e: Absyn
description: Abstract syntax

RCS: $Id: absyn.rm,v 1.83 2004/12/08 12:26:33 petar Exp $

This file defines the abstract syntax for Mddelica in RM.. It nainly
contai ns datatypes for constructing the abstract syntax tree

(AST), relations for building and altering RVL. datatypes and a few rel a-
ns

for printing the AST.

absyn.rm's constructors are primarily used by the wal ker
(rmodeq/ absyn_bui | der/wal ker. g) which takes an ANTLR i nternal syntax tree

converts it into an RML abstract syntax tree.

When the AST has been built, it is normaly used by explode.rml in order to
build the scode (See explode.rm). It is also possile to send the AST do
the dunper (dunp.rm) in order to print it.

For details regarding the abstract syntax tree, check out the grammar in
t he Model i ca | anguage specification

)

ul e Absyn:

atatype Info = INFO of string * (* file *)
int * (* startline *)
int * (* startcolum *)

35

int * (* endline *)
i nt (* endcol umm *)

(** An identifier, for exanple a variable nane *)
type ldent = string
(** - Prograns, the top |level construct *)
(** A programis sinply a list of class definitions declared at top
** |evel in the source file, conmbined with a within statenent that
** jndicates the hieractical position of the program
**)
dat at ype Program = PROGRAM of Class list (* List of classes *)
* Wthin (* Wthin statenent *)
| BEG N DEFINITION of Path (* For split defi-

nitions*)
* Restriction (* Class restriction *)
* bool (* Partial *)
* bool (* Encapsul ated *)
| END _DEFINITION of lIdent (* For split defini-
tions *)

| COVP_DEFI NI TI ON of El enment Spec (* For split
definitions*)
* Path option (* insert into.
Defaul t, NONE *)
| | MPORT_DEFI NI TI ON of El enent Spec(* For split
definitions*)
* Path option (* insert into.
Defaul t, NONE *)
| RML_FILE of RMLIdent * RMLInterface list *
RMLDefs list * string |ist

(** Wthin statenents *)
datatype Wthin = WTH N of Path | TOP

(** - Oasses *)
(** A class definition consists of a nanme, a flag to indicate if this *)
(** class is declared as “partial', the declared class restriction, *)
(** and the body of the declaration. *)
dat at ype O ass = CLASS of |dent (* Nane *)
* bool (* Partial *)
* bool (* Final *)
* bool (* Encapsul ated *)
* Restriction (* Restricion *)
* O assDef (* Body *)

(** The "C assDef' type contains the definition part of a class *)

(** declaration. The definitionis either explicit, with a list of *)

(** parts (" public', “protected , “equationc' and “algorithm), or it *)

(** is a definition derived fromanot her class or an enuneration type. *)

(** For a derived type, the type contains the name of the derived class and
an optional *)

(** array dinension and a list of nodifications. An enuneration type contains
alist of *)

dat at ype O assDef = PARTS of O assPart |ist

* string option (* string coment *)

36

| DERI VED of Path
* ArrayDi m option (* *)
* ElenentAttributes
* ElementArg |ist

* Conment option (* comment *)
| DERI VED TYPES of Path (* ADDED*)
* Path |ist

* Conment option
| ENUMERATI ON of Enunliteral |ist
* Conment option (* conmment*)
| OVERLOAD of Path list (* function nanes

*)
* Conment option
(** EnunLiteral, which is a nane in an enuneration and an optional
Conmrent . *)
dat at ype Enuniiteral = ENUMLI TERAL of | dent (* Literal *)

* Conment option (* comment *)

(** A class definition contains several parts. There are public and *)

(** protected conponent declarations, type definitions and "~extends' *)

(** clauses, collectively called elenents. There are also equation *)

(** sections and al gorithm sections. The EXTERNAL part is used only by func-
tions *)

(** which can be declared as external C or FORTRAN functions. *)

dat atype C assPart = PUBLIC of Elenentlteml|i st
| PROTECTED of Elenentltemli st
| EQUATI ONS of Equationltemli st
| NI TI ALEQUATI ONS of Equationltem i st
| ALGORI THVB of Algorithmtemli st
| INITIALALGORI THVS of Algorithmtemli st
| EXTERNAL of External Decl * Annotation option

(** An elenent itemis either an el enent or an annotation *)
dat at ype El enent|tem = ELEMENTI TEM of El enent

| ANNOTATI ONl TEM of Annot ati on
(** An elenent itemis either an el enent or an annotation *)

(** - Elenments *)
(* The basic elenent type in Mdelica *)

dat at ype El enent = ELEMENT of bool (* final *)
* bool (* replaceable *)
* | nner Qut er (* inner/outer *)
* | dent (* Elemrent nanme *)
* El ement Spec (* Actual el enent
speci fication*)
* string (* Source code file
*
)
* int (* Line nunmber *)

* ConstrainClass option (* only valid for
cl assdef and conponent *)

(* Constraining type, nmust be extendes *)
type Constrai nCl ass = El enent Spec

37

(** An elenent is sonething that occurs in a public or protected
** gection in a class definition. There is one constructor in the
** " El ement Spec' type for each possible element type. There are
** class definitions (CLASSDEF'), “extends' clauses (EXTENDS')
** and conponent declarations (- COVWPONENTS').
* %
** As an exanple, if the elenent "extends TwoPin;' appears
** in the source, it is represented in the AST as
** “EXTENDS(| DENT(" TwoPin"),[])".
* %
)

dat at ype El enent Spec = CLASSDEF of bool (* replaceable *)

* Cl ass

| EXTENDS of Path * ElenmentArg |ist

| IMPORT of Inport * Comment option

| COMPONENTS of El ementAttributes (*1.1 con-

tai ns Araydi mal so. *)
* Path (* type nane *)
* Conmponentltem i st
(** One of the keyword inner and outer CAN be given to reference an inner or
out er conponent. Thus there are three disjoint possibilities. **)

dat atype InnerQuter = INNER | QUTER | UNSPECI FI ED

(* Inmport statenents, different kinds *)
dat at ype I nport = NAVED | MPORT of ldent * Path
| QUAL_I| MPORT of Path
| UNQUAL_I MPORT of Path

(* Collection of conponent and an optional comment *)
dat at ype Conponent|tem = COVPONENTI TEM of Conponent
* Conment option

(* Sone kind of Modelica entity (object or variable) *)
dat at ype Component = COVPONENT of | dent (* conponent nane *)
* ArrayDim (* Array dinensions, if
any *)
* Modification option (* Optional nodifica-
tion *)

(** Several conponent declarations can be grouped together in one *)
(** “Element Spec' by witing themon the same line in the source. *)
(** This type contains the infornmation specific to one conponent. *)
dat at ype Equationltem = EQUATI ONI TEM of Equation * Coment option

| EQUATI ONI TEMANN of Annot ati on

(** Info specific for an algorithmitem *)
datatype Al gorithmtem = ALGORI THM TEM of Al gorithm* Conment option
| ALGORI THM TEMANN of Annotation

(* I'nformati on on one (kind) of equation, different constructors for differ-
ent
ki nds of equations *)
dat at ype Equation = EQ | F of Exp (* Conditional expression
*
)
* Equationltem i st (* true branch *)
* (Exp * Equationltemlist) list (* elseif
branches *)
* Equationltem i st (* el se branch *)

38

| EQ EQUALS of Exp * Exp (* Standard
2-side egn*)

| EQ CONNECT of Conponent Ref * Conponent Ref (*
Connect stnt *)

| EQ FOR of Ident * Exp * Equationltemlist (*
For -1 oops *)

| EQ WHEN E of Exp (* Condition *)

* Equationltemlist (* Loop body *)

* (Exp * Equationltemlist) list (* else when
*)

| EQ NORETCALL of Ident * FunctionArgs (*
fcalls without return value *)

(* RML goals *)

| EQ LET of Pattern * Exp (* let pat = exp *)

| EQ STRUCTEQUAL of |dent * Exp (* ident =
exp *)

| EQ FAI LURE of Equation |ist (* not goal or
not (gl & g2 & g3) *)

| EQ CALL of Path * (* the nane of the
function to call, ex: eval Absyn.dunp etc *)
FunctionArgs * (* paraneters *)
Pattern (* result pattern *)

(** The "Algorithm type describes one algorithmstatenent in an *)
(** algorithmsection. |t does not describe a whole algorithm The *)
(** reason this type is naned like this is that the nane of the *)
(** grammar rule for algorithmstatenents is “algorithmi. *)
dat atype Al gorithm = ALG ASSI GN of Conponent Ref * Exp

| ALG TUPLE_ASSI GN of Exp (*tuple*)

* Exp (* val ue*)
| ALG IF of Exp

* Algorithmtemli st (* true branch
*)
* (Exp * Algorithmtemlist) list (*
el seif *)
* Algorithmtemli st (* else branch
*)
| ALG FOR of Ident * Exp * Algorithmtemli st
| ALG WHI LE of Exp * Algorithmtemli st
| ALG VWHEN_A of Exp
* Algorithmtemli st
* (Exp * Algorithmtemlist) list (* else-
when *)

| ALG NORETCALL of Conponent Ref * Functi onArgs
(* general fcalls wthout return value *)
| ALG MATCH of ConponentRef list * (*

option result := match ... end match *)

Exp * (* match expression of *)

Elementltemlist *(* |ocal decls *)

Case list (* case list + else in the end
with pat =[] *)

| ALG SI MPLEMATCH of Equationltem i st

dat at ype Case = CASE of Pattern list * (* patterns to be nmatched *)
Elementlitemlist * (* |local decls *)
ClassPart * (* equations [] for no equa-
tions: axions /change to Equati ons*)
Exp *(* to result *)

39

Conmrent option (*the conmment*)

(** Modelica+ Patterns **)
dat atype Pattern = MNW LDpat (* from RVLPAT_W LDCARD *)
| M.l Tpat of Exp (* from RM.PAT LI TERAL of RM.-
Literal *)
| MCONpat of Path (* from RMLLONG D of Ident *
| dent *)
| MBTRUCTpat of Path option * Pattern list (*
from RVMLPAT_STRUCT of RMLIdent option * RMLPattern list *)
| MBI NDpat of ldent * Pattern (* from RMLPAT_AS
of ldent * RMLPattern *)
| M DENTpat of lIdent * Pattern (* from
RMLPAT | DENT | dent *)

(** - Modifications *)

(** Modifications are described by the "Mdification' type. There *)
(** are two forns of nodifications: redeclarations and conponent *)
(** nodifications. *)

dat at ype Modification = CLASSMOD of ElenentArg list * Exp option

(* Wapper for things that nodify el ements, nodifications and redecl arations
*)
dat at ype El enent Arg = MODI FI CATI ON of bool * Each * Conponent Ref * Mbdifica-
tion option * string option
| REDECLARATI ON of bool * Each * El enent Spec
* ConstrainCl ass option

(** - Each attribute *)

(** The each keyword can be present in both MODI FI CATI ON' s and REDECLARA-
TION's. *)

dat at ype Each = EACH | NON_EACH

(** - Conmponent attributes *)
dat atype El enent Attributes = ATTR of bool (* flow *)
* Variability (* paraneter, constant
etc. *)
* Direction
* ArrayDim (*1.1%)

(* Dete *)
datatype Variability = VAR | DI SCRETE | PARAM | CONST

datatype Direction = INPUT | OQUTPUT | BID R

(** Conponent attributes are *)

(** properties of conponents which are applied by type prefixes. *)
(** As an exanple, declaring a conponent as "input Real x;' wll *)
(** give the attributes "ATTR([], fal se, VAR I NPUT)"'. *)

(** - Array dinmensions *)

type ArrayDim = Subscript |ist

(** Conponents in Mdelica can be scalar or arrays with one or nore *)
(** dinmensions. This datatype is used to indicate the dinensionality *)

40

(** of a conponent or a type definition. *)
(** - Expressions *)

dat at ype Exp = I NTEGER of int

REAL of real

CREF of Conponent Ref

STRI NG of string

BOOL of bool

Bl NARY of Exp * Operator * Exp (* Binary

operations, e.g. a*b *)

| UNARY of Operator * Exp (* Unary operations,
e.g. -(x) *)

| LBINARY of Exp * OQperator * Exp (* Logical
bi nary operations: and, or *)

| LUNARY of Qperator * Exp (* Logical unary
operations: not *)

| RELATION of Exp * Operator * Exp (* Rel a-
tions, e.g. a >= 0 *)

| 1FEXP of Exp * Exp * Exp * (Exp * Exp) list
(* If expressions *)

| CALL of Component Ref * FunctionArgs (* Func-
tion calls *)

| ARRAY of Exp list (* ARRAY consists of an
vector of the dinension sizes and an vector with the data.*)

| MATRI X of Exp list I|ist

| RANGE of Exp * Exp option * Exp (* Range
expressions, e.g. 1:10 or 1:0.5:10 *)

| TUPLE of Exp list (*PR *) (* Tuples used in
function calls returning several values *)

| END (* array access operator for |ast ele-
ment, e.g. a[end]:=1; *)

| CODE of Code (* Mbdelica AST Code construc-

tors *)
| RMLCALL of RMLIdent * Exp list
| RMLCONS of Exp * Exp
| RMLNIL
| RMLLI ST of Exp list (*addedfor []*)
| RMLLIT of RMLLiteral (* FIXED *)
| RML_REFERENCE of RM.I dent
| MBTRUCTURAL of Path option * Exp list (* returned from match
exps *)

(** The "Exp' datatype is the container of a Moddelica expression. *)

dat at ype Code = C TYPENAME of Path
| C _VARI ABLENAME of Conponent Ref
| C _EQUATI ONSECTI ON of bool * Equationltem i st
| C _ALGORI THVSECTI ON of bool * Algorithmtemli st
| C ELEMENT of El enent
| C_EXPRESSI ON of Exp
| C_MODI FI CATI ON of Mbdification
(** The ' Code' datatype is used for Meta-programming. It orgiginates fromthe
Code quotation. *)

dat at ype FunctionArgs = FUNCTI ONARGS of Exp list * NanedArg |i st

| FOR ITER FARG of Exp * ldent * Exp
(** The " FunctionArgs' datatype consists of a list of positional argunents *)
(** followed by a Iist of naned argunents (Mddelica v2.0) *)

41

dat at ype NanmedArg = NAMEDARG of |dent * Exp

(** The “~NanmedArg' datatype consist of an Identifier for the argunent and an

expressi on *)
(** giving the value of the argunent *)

dat atype Operator = ADD | SUB | MJL | DV | POW
| UPLUS | UM NUS
| RADD | RSUB | RMUL | RDV
| RUPLUS | RUM NUS
| AND | OR
| NOT

| LESS | LESSEQ | GREATER | GREATEREQ | EQUAL

| NEQUAL

| RLESS | RLESSEQ | RGREATER | RGREATEREQ |
REQUAL | RNEQUAL

(** - Subscripts *)

dat at ype Subscript = NOSUB

| SUBSCRI PT of Exp
(** The " Subscript' datatype is used both in array declarations and *)
(** conponent references. This nmight seemstrange, but it is *)
(** inherited fromthe granmar. The "NOSUB' constructor neans that *)
(** the dinension size is undefined when used in a declaration, and *)
(** when it is used in a conponent reference it neans a slice of the *)
(** whol e di nension. *)

(** - Conponent references and paths *)

dat at ype Component Ref = CREF_QUAL of ldent * (Subscript list) * Conponent Ref

| CREF_| DENT of Ildent * (Subscript list)

dat atype Path = QUALIFIED of lIdent * Path

| | DENT of I|dent
(** A conmponent reference is the fully or partially qualified nane of *)
(** a conponent. It is represented as a list of *)
(** identifier--subscript pairs. The type “Path', on the other hand, *)
(** is used to store references to class nanes, or nanmes inside *)
(** class definitions. *)

(** - Restrictions *)
dat at ype Restriction = R _CLASS
| R_MODEL
| R_RECORD
| R_BLOCK
| R_CONNECTOR
| R_TYPE
| R_PACKAGE
| R_FUNCTI ON
| R_ENUMERATI ON
| R_PREDEFI NED_I NT
| R_PREDEFI NED_REAL
| R_PREDEFI NED_STRI NG
| R_PREDEFI NED_BOOL
| R_PREDEFI NED_ENUM
| R_UNI ONTYPE
(* | RTYVAR *)
(** These constructors each correspond to a different kind of class *)

42

(**
(**
(**
(**
(**

(**

(**

declaration in Mdelica, except the last four, which are used *)
for the predefined types. The parser assigns each class *)

decl aration one of the restrictions, and the actual class *)
definition is checked for conformance during translation. The *)
predefined types are created in the "Builtin' nodule and are *)
assigned special restrictions. *)

Annot ati on *)

dat at ype Annotation = ANNOTATI ON of ElenmentArg |i st

(**

(**

An Annotation is a class_nodification. *)

Conmmrent *)

dat at ype Comment = COMVENT of Annotation option

* string option

(* External Decl *)
dat at ype External Decl = EXTERNALDECL of

| dent option * (* The nane of the external

function *)

string option * (* Lanugage of the external

function *)

Conponent Ref option * (* ouput paraneter as

return val ue*)

Exp list (* only positional arguments, i.e.

expression list*)

(* RML Stuff - work in progress *)
dat at ype RMLDat at ype = DATATYPE of RML.Type list * RMLIdent * DTMenber i st

dat at ype RMLDecl = RELATI ON | NTERFACE of RMLIdent * RMLType (*changed*)

| DATATYPEDECL of RM.Datatype * string |ist
| TYPE of RMLIdent * RMLType * string |ist
| WTH of string * string |ist
| VALI NTERFACE of RMLIdent * RMLType * string list
| VALDEF of RMLIdent * Exp * string list
| RELATI ON_DEFI NI TI ON of RMLIdent * RMLType option * RMLRul e

list * string list

| RVLDECLCOMMENT of string

dat at ype RMLComment = RMLCOWMMENT of string (*use instead of string ?*)

type RMLInterface
type RMLDefs

RM_.Decl
RM_.Decl

dat at ype RMLSi gnature = CALLSI GN of RMLType list * RM.Type |ist (*changed*)

dat at ype RMLType = RMLTYPE | NT

| RMLTYPE_STRI NG

| RMLTYPE_REAL

| RMLTYPE _TYCONS of RMLType list * RMLIdent (* added *)
| RMLTYPE_SI GNATURE of RM.Si gnature (* change*)

| RMLTYPE_TUPLE of RM.Type |i st

| RMLTYPE_TYVAR of RM.I dent

| RMLTYPE_USERDEFI NED of RM.Ident (*could use tycons *)

dat at ype RMLRul e = RMLRULE of RM.Ident *

RMLPattern * (* changed *)

43

*)

44

dat at ype RMLResul t

dat at ype

RMLGoal option*
RVMLResul t *
string |ist

= RMLNoResult of string list
| RMLResultExp of Exp list * string list(*should be exp*)
| RMLResultFail of string |ist

RMLGoal = RMLGOAL_NOT of RM.Goal
| RVLGOAL_AND of RM.Goal * RM.Goal
| RMLGOAL PAT of RMLPattern
| RMLGOAL LET of RMLPattern * Exp * string |ist
| RMLGOAL EQUAL of RMLIdent * Exp * string |ist
| RMLGOAL_RELATI ON of RMLIdent * Exp list * RMLPattern option

string |list(*added option*)

dat at ype

dat at ype

dat at ype

dat at ype

(* start
dat at ype

dat at ype

RMLPattern = (*RVLPAT_CALL of RM.Ident * RMLPattern |ist

| *) RMLPAT_W LDCARD

| RWMLPAT_LITERAL of RM.Literal

| RMLPAT_I DENT of RM.I dent

| RWMLPAT_AS of RM.Ident * RM_Pattern

| RVMLPAT_CONS of RMLPattern * RMLPattern

| RMLPAT_STRUCT of RM.lIdent option * RMLPattern |i st
| RWMLPAT_NIL

|

RMLPAT LI ST of RMLPattern list (*added for []-lists *)

RMLI dent

RWVLSHORTI D of ldent * Info
| RMLLONG D of ldent * |dent

RMLLi teral = RMLLIT_ | NTEGER of int

| RMLLIT_STRING of string

| RMLLIT_REAL of real

| RMLLI T_CHAR of int

DTMenber = DTCONS of RMLIdent * RMLType list * string list |ist

line/colum end |ine/colum *)
RMLDbRange = RMLDB RANGE of int * int * int * int

RMLDbEl enent = RMLDB VAR of string * (* filenanme *)
RMLI dent * (* var nanme *)
RMLDbRange * (* actual position *)
RMLDbRange * (* scope *)
RMLI dent * (* relation nane *)
RM.Type (* type *)
| RMLDB_REL of string * (* filenanme *)
RMLI dent * (* relation name *)
RMLDbRange * (* relation ident position

RMLType (* relation type *)

| RMLDB_TY of string * (* filenanme *)
RMLI dent * (* type nane *)
RMLDbRange (* type position *)

| RMLDB _CTOR of string * (* filenane *)
RMLI dent * (* constructor nanme *)
RMLDbRange * (* position *)

dat at ype RMLDb = RMLDB of RM.DbEl enent

end

RM_Type

list

(* type *)

45

46

	Final Thesis
	Translating Natural Semantics to Meta-Modelica
	by

	Emil Carlsson
	LITH-IDA-Ex--05/073--SE
	2005-10-17
	Final Thesis

	Translating Natural Semantics to Meta-Modelica
	by

	Emil Carlsson
	LITH-IDA-EX--05/073--SE
	2005-10-17
	Abstract
	Preface
	Table of Contents

	Chapter 1 Introduction
	1.1 Background and Purpose
	1.2 Reading instructions

	Chapter 2 Background
	2.1 Modelica
	2.1.1 The Modelica Language
	2.1.2 Development
	2.1.3 Extension of Modelica

	2.2 Compiler/Parser concepts
	2.2.1 Lexical Analysis
	2.2.2 Syntax Analysis

	Chapter 3 Problem statement
	3.1 RML / meta-programming
	3.2 RML-parser
	3.3 Extended Modelica
	3.4 Implementation

	Chapter 4 Meta-programming
	4.1 Meta-programming concept
	4.2 RML
	4.2.1 Modules
	4.2.2 Uniontypes
	4.2.3 Types
	4.2.4 Lists
	4.2.5 Relations
	4.2.6 Rules
	4.2.7 Patterns
	4.2.8 Other constructs

	4.3 Meta-Modelica
	4.3.1 Packages
	4.3.2 Types
	4.3.3 Lists
	4.3.4 Uniontype and Recordtypes
	4.3.5 Access Restrictions
	4.3.6 Algorithm section using matchcontinue
	4.3.7 Case statement
	4.3.8 Functions as parameters
	4.3.9 Replaceable types
	4.3.10 Simple Functions

	Chapter 5 Implementation
	5.1 Overview of the translator structure
	5.2 The RML-parser
	5.3 RML-unparser
	5.3.1 Elements in lists
	5.3.2 Parenthesis
	5.3.3 String handling

	5.4 Comment handling
	5.4.1 Solution

	5.5 RML to Modelica translator
	5.5.1 Translation of modules to packages
	5.5.2 Translation of datatypes to uniontypes
	5.5.3 Translation of relations to functions
	5.5.4 Program database
	5.5.5 Identifiers
	5.5.6 Special generated types
	5.5.7 Generation of input and output variables
	5.5.8 Generation of local variables
	5.5.9 Translation of rules to case-statements
	5.5.10 Functions as parameters
	5.5.11 Replaceable types
	5.5.12 Simplified alghorithm section
	5.5.13 Translation options
	5.5.14 Comments
	5.5.15 External modules (functions)

	5.6 Meta-Modelica Unparser

	Chapter 6 Conclusions
	6.1 Meta-programming
	6.2 Testing
	6.3 Future work
	References

	Appendix A

