
Tutorial on SysML, Modelica,
Eclipse and ModelicaML

Adrian Pop
Open Source Modelica Consortium

Programming Environment Laboratory
Linköping University

Erik Hertzog
Saab Aerosystems

ModProd’2009 2009-02-03

2

Outline

Systems Engineering
Introduction and Background

SysML
a UML profile for systems engineering

Modelica
modeling and simulation of physical systems
equation-based object-oriented language

ModelicaML
Modelica vs. SysML
a UML profile for Modelica based on SysML

Eclipse
Integrated Environments for Modelica
Short Demo of ModelicaML Eclipse Environment

Systems Engineering

Introduction and Background

4

System engineers

Requirements owner System designer System analyst Verification & Validation

Logistics & Operation Glue engineer Customer interface Co-ordinator

Technical manager Information manager Process engineer Classified ads engineer

S. Sheard,”12 Systems Engineering roles”, Proc of INCOSE 1996

5

Systems Engineering

Concept
Stage

Concept
Stage

Development
Stage

Development
Stage

Production
Stage

Production
Stage

Utilization
Stage

Utilization
Stage

Support
Stage

Support
Stage

Retirement
Stage

Retirement
Stage

Feasibility
Stage

Enabling
system

System of
Interest

Cooperating
system

Competing
system

System of
interest

Development
system

Production
system

Training
system

Disposal
system

Maintenance
system

Verification
system

End user
products
End user
products

6

Development
system

Concept

StageConcept

Stage

Development

Stage
Development

Stage

Productio
n

StageProductio
n

Stage

Utili
zatio

n

StageUtili
zatio

n

Stage

Support

StageSupport

Stage

Retir
ement

StageRetir
ement

Stage

Feasib
ilit

y

Stage

System of
interest

Development
system

Production
system

Training
system

Disposal
system

Maintenance
system

Verification
system

End user
products
End user
products

Example

7

Observation

For a domain engineer complexity can be
bounded to a single engineering domain

For a systems engineer complexity lies in
the interactions between multiple
systems/domains

Multiple technologies
Inter-technology interference
Multiple components
Complex interfaces

8

Modeling Process

Stakeholder
Requirements
Definition

Requirements
Analysis

Architectural
Design Integration

Verification

Transition
Process

Validation Operation

Maintenance

Disposal

Implementation

9

Process over lifecycle

Concept
Stage

Concept
Stage

Development
Stage

Development
Stage

Production
Stage

Production
Stage

Utilization
Stage

Utilization
Stage

Support
Stage

Support
Stage

Retirement
Stage

Retirement
Stage

Feasibility
Stage

Stakeholder
Requirements
Definition

Requirements
Analysis

Architectural
Design Integration

Verification

Transition
Process

Validation Operation

Maintenance

Disposal

Implementation

Stakeholder
Requirements
Definition

Requirements
Analysis

Architectural
Design Integration

Verification

Transition
Process

Validation Operation

Maintenance

Disposal

Implementation

Concept system

Feasibility system

Stakeholder
Requirements
Definition

Requirements
Analysis

Architectural
Design Integration

Verification

Transition
Process

Validation Operation

Maintenance

Disposal

Implementation

Development system

10

Simplified process view

Recognize

Analyze

Synthesize

Validate

Verify

Integrate

Problem

Specified solution Realized solution

Solved problem

11

Process to manage complexity

Recognise

Analyse

Synthesise

Validate

Verify

Integrate

Recognise

Analyse

Synthesise

Validate

Verify

Integrate

Recognise

Analyse

Synthesise

Validate

Verify

Integrate

Recognize

Analyze

Synthesize

Validate

Verify

Integrate

Problem Solved problem

12

Challenges in the life of a Systems Engineer

Specification ambiguity

Specification coherency

Information availability

Traceability

Verification and validation

13

Systems Engineering Deliverables

SE deliverables
Specifications
System design
Analysis and trade-off
Test plans
etc.

Evolution
Document-based > Model-based

14

Why model-based development?

Advantages
Improved communication
More rigorous and precise, less ambiguous, less
defects
More complete representation
Less maintenance cost
Easier to preserve the competence

Disadvantages
May stand for a high learning curve

due to new methods and notations (such as SysML)

15

What is UML?

“The Unified Modeling Language is a visual language for
specifying, constructing and documenting the artifacts of
systems.” (OMG UMG 2.0 Superstructure Specification)

Object-oriented, visual modeling language
= notation (language, representation) + semantics (meaning)
UML is a language, not a method

De-facto standard
Software Engineering: Applications and components
Human activity systems: Industry sector, enterprises, business
processes

Brief history (most important versions)
1.0 1997, 1.4 2001, 2.0 2003

16

UML diagram concept

UML is defined around a
number of diagram types

Each with a specific purpose
and a specific symbol set
Each symbol has a well
defined meaning (semantics)

Diagram elements are not
tied to a specific diagram
type

Allows for smart
combinations of views on a
system within a single
diagram

ud Use Case Model

S
ys

te
m

D
ri

ve
r

Car

Start up sequence

Driver

Turn on ignition

Activate start engine

Ignition message

Monitor engine
revolutions

Provides input

17

UML Mechanisms for Extensions

The language UML is defined using a language/toolbox
named MOF

MOF = Meta Object Facility
UML is defined to allow extensions to the semantics of
language elements

Stereotypes: Modification to original element semantics,
potentially with an associated attribute set (as defined by tagged
values)
Tagged values: A name-value combination that is used to define
properties of an element

The stereotype concept is used extensively within SysML
to define the language elements of interest to Systems
Engineers

Any number of stereotypes can be applied to a base UML objects

Extensions for a specific purpose can be summarized
in a “UML profile”

18

SystemSystemSystem

SysML Scope

Req
Analysis

Arch.
Design

Verific.,
Validation

SE processes, methods and artifacts

Domain-specific
methods (e.g. HW,

SW) are still
required

Domain-specific
methods (e.g. HW,

SW) are still
required

System

SubsystemSubsystem

Item 1Item 1 Item NItem N

SubsystemSubsystem

SysML can be
used on each
system level

SysML can be
used on each
system level

SoSSoS

Customer
needs

System solutions

Item 1Item 1 Item NItem N

Eval.
Alternat.

19

SysML Scope

Adheres to the Systems Engineering
tradition to model a system in terms of

Requirements
Functionality
Architecture
Verification

SysML

A visual modeling language
for Systems Engineering

21

System Modeling Language (SysML™)

Designed to provide simple but powerful
constructs for modeling a wide range of systems
engineering problems

Effective in specifying requirements, structure,
behavior, allocations, and constraints on system
properties to support engineering analysis

Intended to support multiple processes and
methods such as structured, object-oriented, etc.

22

What is SysML?

A graphical modeling language for Systems Engineering
a UML Profile that represents a subset of UML 2 with
extensions

Supports the specification, analysis, design,
verification, and validation of systems that
include hardware, software, data, personnel,
procedures, and facilities.

Supports model and data interchange via XMI and
the evolving AP233 standard.

23

What is SysML?

Is a visual modeling language that provides
Semantics = meaning
Notation = representation of meaning

Is not a methodology or a tool
SysML is methodology and tool independent

24

SysML Vendors

Commercial
Artisan (Studio)
EmbeddedPlus (SysML Toolkit)

3rd party IBM vendor
No Magic (Magic Draw)
Sparx Systems (Enterprise Architect)
IBM / Telelogic (Tau and Rhapsody)
Visio SysML template

Open Source based on Eclipse
TopCased and Papyrus

25

SysML vs. UML

from OMG SysML tutorial

26

SysML vs. UML

A UML model can be sufficiently detailed
for creation of products out of the model

A SysML model is just an abstraction of the
final system to be delivered

Production drawings etc. will reside in
other tools/environments

27

SysML Diagrams

28

SysML pillars

29

SysML Diagram Frames

A SysML Diagram
represents a model element
must have a Diagram Frame

Diagram context defined in the header
Diagram kind (act, bdd, ibd, sd, etc.)
Model element type (package, block, activity, etc.)
Model element name
User defined diagram name or view name

SysML

Specifying System Architecture

31

SysML – Structure Diagrams

Used to specify System Architecture

32

SysML Blocks

«block» stereotype provides a common root for
user-defined or domain-specific hierarchies of
system component types

Hardware
Software
Data
Procedure
Facility
Person

Blocks provide the backbone of the “system
hierarchy” or “system of systems” architecture
which drives much of modern systems engineering

Blocks do not represent the parts view/product
structure of a product

Rather it is an abstraction of the system under specification

33

Block Views

Block definition diagram
Composition may be handled to any number of
levels within a single diagram

Using the white diamond aggregation relationship

Based on the UML class diagram

Internal block diagram
Composition is captured in a single level per
diagram
Interfaces are captured explicitly

34

About blocks

Based on UML Class from UML Composite Structure
Eliminates association classes, etc.

Differentiates value properties from part properties
Block interfaces

Service port – traditional SW service architecture
Flow port – for continuous or discrete signals

Block definition diagram describes the relationship among
blocks (e.g., composition, association, classification)

Internal block diagram describes the internal structure of
a block in terms of its properties and connectors

Requirements and Behavior can be allocated to blocks
Block subtypes may be created using stereotypes or
through classification

35

Block views

Definition of ”building”
blocks
Capture properties
Can be used in multiple
contexts
Block relationships

A ”part” indicate the usage of a
particular block
Interfaces are visible

36

Blocks, Parts, Ports, Connectors & Flows

37

Port types

Standard (UML) port
The port indicate the existence of a service
interface which external blocks may call (as in
software)
Interaction is as defined for the individual
operation made available through the interface

Flow ports
Specifies what can flow in or out of a component
Has a specified direction and content

May be bi-directional

38

Port types

39

Internal Block Diagram Example

40

Allocation

SysML provides 3 mechanisms for representing
the allocation of functional or physical elements
to other physical elements

Via Swimlanes in activity diagrams
Elegant

Via the addition of a separate compartment in
the block structure
Via relationships directly on diagrams

41

Allocation example

SysML

Parametric Constraints

43

Parametric Constraint

Used to express constraints between quantifiable properties (aka non-
functional characteristics) of assemblies and their decomposition

Reusable
Non-causal (i.e. declarative statement of the invariant without specifying
dependent/independent variables)

Defined as a stereotype
Expression: text string specifies the constraint
Expression language can be formal (e.g. MathML, OCL …) or informal
Computational engine is defined by applicable analysis tool and not by
SysML

Usage
Used in the context of a SysML assembly
Notation: parametric diagram distinguishes the parametric constraints
from other parts of a containing assembly
Properties of parts connected to parameters of relation
Value binding connector declares that parameter and property are bound
to the same value

44

Defining Constraints

45

Defining variable binding

46

Parametric Diagram showing Vehicle Performance Par.

Rounded rectangles are parametric constraints
Rectangles are properties (parameters)

47

SysML Properties

SysML Extension for Property, to address:
Quantity - Values, Units, and Dimensions
Probability Distribution
Example for a vehicle that weighs 1000 pounds with a
uniform probability distribution:

New predefined data types
Real
Complex

48

Trade-off & Parametrics

Parametric relation can be used to support
evaluation of alternatives (trade-off analysis)

Alternatives represented by different models
Objective function specified as a parametric
relationship in terms of:

Criteria, weighting
Probability distributions can be applied to properties
Used to optimize based on measures of effectiveness

Can be represented in typical table format

Methods for trade-offs are not part of SysML

SysML

Specifying Behavior

50

Behavior Diagrams

51

Activity Diagrams and State Machine Diagrams

SysML

Specifying Requirements

53

Information management in UML/SysML

All design elements will reside in exactly
one package
But can be used on many different
diagrams

Each diagram is located in a package

A design element is defined by all UML
artifacts related to the element

Regardless of diagram distribution
The complete picture may be distributed over
multiple diagrams

54

Potential package structures

55

What is a requirement?

Obviously any element in SysML
specification is expressing some kind of
requirement on a system
In SysML’s terminology a requirement is a
textual statement
No assumptions are made on the
introduction of Requirement elements in
the process
Other model element can be used to
identify requirements

56

SysML Diagram Taxonomy

A requirement is a cross-cutting construct

57

SysML Requirements Overview

SysML provides the following features

Representation of requirements
Representation of individual requirements
Requirement composition
Requirements can be sub-classed using specialization

Requirement relationships
derive relationship between derived and source requirements
satisfy relationship between design models and requirements
verify relationship between requirements and test cases
generalized trace relationship between requirements and other
model elements
rationale for requirements traceability, satisfaction, etc

Alternative graphical, tabular and tree representations
Supported by the standard, but currently not implemented in any
tools

58

Requirement Representation

Requirement is a stereotyped class
Multiple stereotypes can be combined

Possible to combine a requirement and safety critical stereotype to
form attribute set for a safety critical requirement

A requirement object has two mandatory attributes:
Id
Text

Possible to add new attributes
A class object is created for each individual requirement

«requirement»

id#
1.1

txt
The system shall transport up to 15 passengeres
and 1000 kg of cargo under all weather conditions

::No leisure traffic restriction::Capacity

59

Requirement composition

Composition structure can be of arbitrary depth
«requirement»

id#
1.2

txt
The system shall not impose restrictions on boat traffic

No restriction to boat traffic

«requirement»

id#
1.2.1

txt
The system shall not impose restrictions on
commercial traffic

::User requirements::No restriction to boat
traffic::No restriction to commercial traffic

«requirement»

id#
1.2.2

txt
The system shall not impose restrictions on
leisure traffic

::User requirements::No restriction to boat
traffic::No restriction to leisure traffic

60

Predefined requirement relationships

derive relationship between derived and source
requirements

The derived requirement is mandated by the source
requirement(s)

satisfy relationship between design models and
requirements

Identified model element(s) are in existence because of the
identified requirement

verify relationship between requirements and test cases
A verification case may verify one or more requirements, or
Multiple cases may be defined for verification of a single
requirement

generalized trace relationship between requirements and
other model elements

For identification of relationships other than those identified
above

61

Derive relationship example

Seat width
«Requirement»

ID = 6.0.1

Individual
t h ll

Seat belts
«Requirement»

ID = 6.0.2

3-point seat
b lt h ll

«derive»

Seating
«Requirement»

ID = 1.2

The vehicle
shall seat 5
adults

«derive»

«derive»

«derive»

62

Managing requirements

Packages – UML concept for grouping
elements for some purpose can be used to

Separating requirements with different origins
Grouping requirements into packages is
independent to grouping on diagrams

Nested packages supported
A single requirement may appear on
multiple requirements diagrams but resides
in a single package

63

Requirement relationships

64

Linking to verification

req burnish

«requirement»
NHTSASafetyRequirements

[Speed=80]

Initial
condition

[count < 200]

[count=200]

Adjust
brake

Accelerate Maintain

Brake

[IBT=100 or
d >= 2 km]

<<verify>>

sm Burnish test «testCase »

«requirement»
Burnish

Text =”..”
ID = 157.135

Text =”(a) IBT…"
ID = S7.1

65

SysML Requirements Evaluation

Requirements use a lot of diagram real-
estate

Approach does not scale up – unable to
efficiently handle projects with several
hundreds of requirements
The traditional (graphical) UML view does not
lend itself well to requirements representation

A tabular view would be more appropriate (as used
in traditional requirements management tools)

Requirements modeling is performed on
class definition basis

Each requirement is actually a new class
object

66

Workarounds

Distribute requirements over multiple
diagrams

Create diagram exclusively for allocation
and traceability

Risk for loosing overview

Perform requirements management in
separate tool

Do the traceability in SysML
Difficult to maintain consistency

SysML

Verification

68

Principles

Develop a model that defines the verification
conditions and procedure

Excellent for software where tests can be run within
the tool
Not necessary applicable when the model shall depict
a real world condition

Primary application for systems verification is the
capture of the verification procedure

Can not completely replace the traditional verification
documentation

At the present SysML does not support the
representation realized system elements

Not possible to represent the configuration and exact
properties of a unit under test

69

Verification case development

Any set of model elements can be used to
define the verification environment for a
requirement
The verification procedure can be captured
in detail
Textual elements can be captured using
requirement objects with extra stereotypes
Verification cases may be stored in
dedicated packages

70

SysML Support for verification

Case
definition

Traceability to
requirements

Verification
configuration

capture

Verification
report

Verification
environment

71

Definition of verification case

req burnish

«requirement»
NHTSASafetyRequirements

[Speed=80]

Initial
condition

[count < 200]

[count=200]

Adjust
brake

Accelerate Maintain

Brake

[IBT=100 or
d >= 2 km]

<<verify>>

sm Burnish test «testCase »

«requirement»
Burnish

Text =”..”
ID = 157.135

Text =”(a) IBT…"
ID = S7.1

SysML

Application in the development process

73

Applying SysML in the development process

SysML is process independent
Any use is per definition correct
Model fidelity will increase over time

SysML does not define a strict top down
modeling method

Multiple viewpoints are supported via packages
Viewpoint integration must be considered

Which diagrams apply for a specific viewpoint?
What are the relationships between identified
viewpoints

The complete system specification will not
be available in a single diagram

74

SysML in the design process

Requirements
Requirement Diagrams

Behavior
Activity Diagrams
Sequence Diagrams
State Machine Diagrams
Use Case Diagrams

Architecture
Block Diagrams
Parametric Diagrams

75

Model management

Tools often have links to standard version
management systems

Individual elements can be under version
control

Configuration control (of hierarchical
structures) is typically not supported

76

Integration into the document centric paradigm

All system relevant information does not lend
itself to modeling

Traditional documents will still exist
For good or bad we know how to manage
documents

Readability
CM support

SysML tools typically have
Report generators
Links to requirements management tools, e.g., DOORS

Need to add textual element to create fully
readable documents
All information on a system will not reside in the
SysML tool

SysML

Summary

78

SysML – the good

It is here, it is available
Support from multiple vendors
Broad user base
It is UML – but simpler
Excellent software engineering integration

Most SysML implementations are actually on
top on UML tools

XMI, promise for data portability

79

SysML – the bad (1)

It is an adoption of UML
Ad hoc implementation

Contrived activity diagram semantics
Inherited from UML

Manual management of allocation
relationships

Minimal verification support

80

SysML – the bad (2)

Problem
The user must to manage all allocation relationships manually
Leads to cluttered diagrams

The elegant solution
Automatic management of relationships

81

SysML – the bad (3)

How do I capture the product verified?

req burnish

«requirement»
NHTSASafetyRequirements

[Speed=80]

Initial
condition

[count < 200]

[count=200]

Adjust
brake

Accelerate Maintain

Brake

[IBT=100 or
d >= 2 km]

<<verify>>

sm Burnish test «testCase »

«requirement»
Burnish

Text =”..”
ID = 157.135

Text =”(a) IBT…"
ID = S7.1

Verification support

82

SysML Adoption Strategies

Minimal cost
Use SysML notation in Powerpoint or Visio

Hybrid MBSE
Use SysML tool to model key elements of a
specification/design
But maintain document paradigm for
deliverables

True MBSE
Full SysML adoption

The Alternative
Use existing SE tool with proprietary notation

83

SysML – positive aspects

SysML is far better than PowerPoint!
Can be highly valuable for highlighting core
elements of a specification
Is perfectly suited for modeling of Software
intensive systems

Tight coupling to UML outweighs negative aspects
identified herein

Is the future
We must just ensure that SysML is modified and
extended over time such that the core problems are
addressed!

Integrated configuration and change management support
Connection to the complete system lifecycle
Connection to domain engineering disciplines

84

SysML Conclusions

SysML is an admirable product considering
Its ancestry
The limited resources used in its creation

There are a number of weak areas in the language as
outlined in this presentation
The overarching problem is that SysMLs failure to address
the core issues

Through life traceability
Configuration management

This is a problem inherited from the UML framework
And not addressed in contemporary SE tools

These problems are challenges for development system
vendors to overcome

With guidance and assistance from the user community

SysML

Evaluation Summary

86

Tool Usability

SysML and UML tools have different target groups
Systems engineers will probably not gain from code
generation and all related functionality
Systems engineers will probably not modify the
underlying notation
Systems engineers will probably not modify the tool to
fit the problem

Tool vendors need to simplify the user interfaces
minimize actions and manipulations for using the tool
hide the extension mechanisms

87

An ideal Vision ...

A development environment that allows for
maintaining an overall traceability from the initial
ideas to the realized product

Traceability ...
... from requirements to the realized product
... from and to software and hardware elements
... across different variants of a product line
... across different configurations
... across time (history)
... between every individual element

88

... and the reality

The creators of SysML have been driven by
a less ambitious vision

i.e. more realistic vision
SysML lacks support for versions &
configurations
SysML has limited support for specific
individuals

an individual realized product
SysML has a clear heritage of software
development language

89

Risks

UML tool vendors have good understanding for
software-related system development

but lack understanding for SE in a broader perspective

There is a risk that the future development of
SysML (tools) will be predominantly influenced by
software engineering

And increased resources on “code refactoring” do not
deliver any value to systems engineers

Systems Engineers risk to become yet another
customer of tools that are basically domain-
specific

e.g. the lack of integrated support for configuration
management

Modelica

An equation-based object-oriented
language for modeling and simulation

of physical systems

91

Why Modeling & Simulation?

Increase understanding of complex systems
Design and optimization
Virtual prototyping
Verification

Build more complex systems

92

Robotics
Automotive
Aircrafts
Satellites
Biomechanics
Power plants
Hardware-in-the-loop,
real-time simulation
etc

Modelica – General Formalism to Model Complex Systems

93

Kinds of Mathematical Models

Dynamic vs. Static models

Continuous-time vs. Discrete-time dynamic
models

Quantitative vs. Qualitative models

94

Dynamic vs. Static Models

A dynamic model includes time in the model
A static model can be defined without

involving time

time

Resistor voltage – static system

Capacitor voltage - dynamic

Input current
pulse

95

Continuous vs. Discrete-Time Dynamic Models

Continuous-time models may evolve their variable
values continuously during a time period

Discrete-time variables change values a finite
number of times during a time period

time

Continuous

Discrete

96

Principles of Graphical Equation-Based Modeling

Each icon represents a physical component i.e. Resistor,
mechanical Gear Box, Pump

Composition lines represent the actual physical
connections i.e. electrical line, mechanical connection,
heat flow

Variables at the interfaces describe interaction with other
component

Physical behavior of a component is described by
equations

Connection

Component 1

Component 3

Component 2

97

inertial
x

y

axis1

axis2

axis3

axis4

axis5

axis6
r3Drive1

1
r3Motor

r3ControlqdRef
1

S

qRef
1

S

k2

i

k1

i

qddRef cut joint

l

qd

tn

Jmotor=J

gear=i

spring=c

fr
ic

=R
v0

S
rel

joint=0

S

V
s

-

+
diff

-

+
pow er

emf

La=(250/(2*D*w
m

))
Ra=250

Rd2=100

C=0.004*D/w m

-

+
OpI

Rd1=100

Ri=10

Rp1=200

Rp
2=

50

Rd4=100

hall2

Rd
3=

10
0

g1

g2

g3

hall1

g4

g5

rw

qd q

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

Srel = n*transpose(n)+(identity(3)- n*transpose(n))*cos(q)-
skew(n)*sin(q);
wrela = n*qd;
zrela = n*qdd;
Sb = Sa*transpose(Srel);
r0b = r0a;
vb = Srel*va;
wb = Srel*(wa + wrela);
ab = Srel*aa;
zb = Srel*(za + zrela + cross(wa, wrela));

Application Example – Industry Robot

Courtesy of Martin Otter

98

GTX Gas Turbine Power Cutoff Mechanism

Hello

Courtesy of Siemens Industrial Turbomachinery AB

Developed
by MathCore
for Siemens

Modelica
The Next Generation Modeling

Language

100

Stored Knowledge

Model knowledge is stored in books and human
minds which computers cannot access

“The change of motion is proportional
to the motive force impressed “
– Newton

101

The Form – Equations

Equations were used in the third millennium
B.C.
Equality sign was introduced by Robert Recorde
in 1557

Newton still wrote text (Principia, vol. 1, 1686)
“The change of motion is proportional to the motive force impressed ”

CSSL (1967) introduced a special form of “equation”:
variable = expression
v = INTEG(F)/m

Programming languages usually do not allow equations!

102

Modelica – The Next Generation Modeling Language

Declarative language
Equations and mathematical functions allow acausal
modeling, high level specification, increased
correctness

Multi-domain modeling
Combine electrical, mechanical, thermodynamic,
hydraulic, biological, control, event, real-time, etc...

Everything is a class
Strongly typed object-oriented language with a
general class concept, Java & Matlab like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, nonproprietary
Efficiency comparable to C; advanced equation
compilation, e.g. 300 000 equations

103

Object Oriented Mathematical Modeling

The static declarative structure of a
mathematical model is emphasized

OO is primarily used as a structuring concept

OO is not viewed as dynamic object creation and
sending messages

Dynamic model properties are expressed in a
declarative way through equations.

Acausal classes supports better reuse of modeling
and design knowledge than traditional classes

104

What is acausal modeling/design?
Why does it increase reuse?

The acausality makes Modelica library
classes more reusable than traditional
classes containing assignment statements
where the input-output causality is
fixed.

Example: a resistor equation:
R*i = v;

can be used in three ways:
i := v/R;
v := R*i;
R := v/i;

Modelica Acausal Modeling

105

Brief Modelica History

First Modelica design group meeting in fall 1996
International group of people with expert
knowledge in both language design and
physical modeling
Industry and academia

Modelica Versions
1.0 released September 1997
2.0 released March 2002
2.2 released March 2005
3.0 released September 2007

Modelica Association established 2000
Open, non-profit organization

106

Courtesy
MathCore
Engineering AB

Graphical Modeling Using Drag and Drop Composition

107

Graphical Modeling - Drag and Drop Composition

108

A DC motor can be thought of as an electrical circuit
which also contains an electromechanical component

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
ElectroMechanicalElement EM(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, EM.n);
connect(EM.p, DC.n);
connect(DC.n,G.p);
connect(EM.flange,load.flange);

end DCMotor

load

EM
DC

G

R L

Multi-Domain (Electro-Mechanical) Modelica Model

109

Automatic transformation to ODE or DAE for simulation:

(load component not included)

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

110

Translation of Models to Simulation Code

Modelica Model

Flat model

Sorted equations

C Code

Executable

Optimized sorted
equations

Modelica
Model

Modelica
Graphical Editor

Modelica
Source code

Translator

Analyzer

Optimizer

Code generator

C Compiler

Simulation

Modelica
Textual Editor

111

A Simple Rocket Model

()abs

thrust mass gravityacceleration
mass

mass massLossRate thrust
altitude velocity
velocity acceleration

− ⋅
=

′ = − ⋅

′ =
′ =

class Rocket "rocket class"
parameter String name;
Real mass(start=1038.358);
Real altitude(start= 59404);
Real velocity(start= -2003);
Real acceleration;
Real thrust; // Thrust force on rocket
Real gravity; // Gravity forcefield
parameter Real massLossRate=0.000277;

equation
(thrust-mass*gravity)/mass = acceleration;
der(mass) = -massLossRate * abs(thrust);
der(altitude) = velocity;
der(velocity) = acceleration;

end Rocket;

new model
declaration
comment

parameters (changeable
before the simulation)

name + default value

differentiation with
regards to time

mathematical
equation (acausal)

floating point
type

start value

thrustapollo13

mg

Rocket

112

Celestial Body Class

class CelestialBody
constant Real g = 6.672e-11;
parameter Real radius;
parameter String name;
parameter Real mass;

end CelestialBody;

An instance of the class can be
declared by prefixing the type
name to a variable name

...
CelestialBody moon;
...

A class declaration creates a type name in Modelica

The declaration states that moon is a variable
containing an object of type CelestialBody

113

Moon Landing

class MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;

protected
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;

public
Rocket apollo(name="apollo13");
CelestialBody moon(name="moon",mass=7.382e22,radius=1.738e6);

equation
apollo.thrust = if (time < thrustDecreaseTime) then force1

else if (time < thrustEndTime) then force2
else 0;

apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;
end MoonLanding;

()2..
...

radiusmoonaltitudeapollo
massmoongmoongravityapollo

+
⋅

=

only access
inside the class

access by dot
notation outside
the class

altitude
CelestialBody

thrust
apollo13

mg

Rocket

114

Simulation of Moon Landing

simulate(MoonLanding, stopTime=230)
plot(apollo.altitude, xrange={0,208})
plot(apollo.velocity, xrange={0,208})

50 100 150 200

5000

10000

15000

20000

25000

30000
50 100 150 200

-400

-300

-200

-100

It starts at an altitude of 59404
(not shown in the diagram) at
time zero, gradually reducing it
until touchdown at the lunar
surface when the altitude is zero

The rocket initially has a high
negative velocity when approaching
the lunar surface. This is reduced to
zero at touchdown, giving a smooth
landing

115

Inheritance

record ColorData
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real green;

end ColorData;

class Color
extends ColorData;

equation
red + blue + green = 1;

end Color;

keyword
denoting
inheritance

Data and behavior: field declarations, equations, and
certain other contents are copied into the subclass

restricted kind
of class without
equations

parent class to Color

child class or
subclass

class ExpandedColor
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end ExpandedColor;

116

Inheriting definitions

Inheriting
multiple different
definitions of the
same item is an
error

Inheriting multiple
identical
definitions results
in only one
definition

record ColorData
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real green;

end ColorData;

class ErrorColor
extends ColorData;
parameter Real blue = 0.6;
parameter Real red = 0.3;

equation
red + blue + green = 1;

end ErrorColor;

Legal!
Identical to the
inherited field blue

Illegal!
Same name, but
different value

117

Inheritance of Equations

class Color
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end Color;

Color is identical to Color2
Same equation twice leaves
one copy when inheriting

Color3 is overdetermined
Different equations means
two equations!

class Color3 // Error!
extends Color;

equation
red + blue + green = 1.0;
// also inherited: red + blue + green = 1;

end Color3;

class Color2 // OK!
extends Color;

equation
red + blue + green = 1;

end Color2;

118

Multiple Inheritance

Multiple Inheritance is fine – inheriting both geometry and color

class Point
Real x;
Real y,z;

end Point;

class Color
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end Color;
multiple inheritance

class ColoredPointWithoutInheritance
Real x;
Real y, z;
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real green;

equation
red + blue + green = 1;

end ColoredPointWithoutInheritance;

Equivalent to

class ColoredPoint
extends Point;
extends Color;

end ColoredPoint;

119

Multiple Inheritance cont’

Only one copy of multiply inherited class Point is kept
class Point

Real x;
Real y;

end Point;

Diamond Inheritance
class VerticalLine

extends Point;
Real vlength;

end VerticalLine;

class HorizontalLine
extends Point;
Real hlength;

end HorizontalLine;

class Rectangle
extends VerticalLine;
extends HorizontalLine;

end Rectangle;

120

Software Component Model

A component class should be defined independently of the
environment, very essential for reusability

A component may internally consist of other components, i.e.
hierarchical modeling

Complex systems usually consist of large numbers of
connected components

Component

Interface

ConnectionComponent

Connector
Acausal coupling

Causal coupling

121

Connectors and Connector Classes

Connectors are instances of connector classes

v +

i

pin

s

f

flange

connector Pin
Voltage v;
flow Current i;

end Pin;

Pin pin;

connector class

keyword flow
indicates that currents
of connected pins
sum to zero.

electrical connector

an instance pin
of class Pin

connector Flange
Position s;
flow Force f;

end Flange;

Flange flange;

connector class

mechanical connector

an instance flange
of class Flange

122

The flow prefix

Two kinds of variables in connectors:
Non-flow variables potential or energy level
Flow variables represent some kind of flow

Coupling
Equality coupling, for non-flow variables
Sum-to-zero coupling, for flow variables

The value of a flow variable is positive when the current
or the flow is into the component

v

+ i

pin
positive flow direction:

123

Translational Position Force Linear momentum
Mechanical.

Translational

Electrical Voltage Current Charge Electrical.
Analog

Physical Connector

Classes Based on Energy Flow

Domain
Type

Potential Flow Carrier Modelica
Library

Rotational Angle Torque Angular
momentum

Mechanical.
Rotational

Magnetic Magnetic
potential

Magnetic
flux rate Magnetic flux

Hydraulic Pressure Volume flow Volume HyLibLight

Heat Temperature Heat flow Heat HeatFlow1D

Chemical Chemical
potential Particle flow Particles Under

construction

Pneumatic Pressure Mass flow Air PneuLibLight

124

connect-equations

pin1 pin2

+ +

i i

v v

connect(connector1,connector2)

Connections between connectors are realized as equations in Modelica

The two arguments of a connect-equation must be references to
connectors, either to be declared directly within the same class or be
members of one of the declared variables in that class

pin1.v = pin2.v;
pin1.i + pin2.i =0;

Pin pin1,pin2;
//A connect equation
//in Modelica:
connect(pin1,pin2); Corresponds to

125

Connection Equations

1 2 3 nv v v v= = =K

pin1.v = pin2.v;
pin1.i + pin2.i =0;

Pin pin1,pin2;
//A connect equation
//in Modelica
connect(pin1,pin2); Corresponds to

Each primitive connection set of nonflow variables is
used to generate equations of the form:

Each primitive connection set of flow variables is used to generate
sum-to-zero equations of the form:

1 2 () 0k ni i i i+ + − + =K K

connect(pin1,pin2); connect(pin1,pin3); ... connect(pin1,pinN);
Multiple connections are possible:

126

Acausal, Causal, and Composite Connections

Two basic and one composite kind of connection in Modelica
Acausal connections
Causal connections, also called signal connections
Composite connections, also called structured
connections, composed of basic or composite
connections

connector OutPort
output Real signal;

end OutPort

connector class
fixed causality

127

Common Component Structure

The base class TwoPin has
two connectors p and n for
positive and negative pins
respectively

p

p.i

p.v

n.i

n.v
n

i

ii + -TwoPin

electrical connector class

partial model TwoPin
Voltage v
Current i
Pin p;
Pin n;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;
// TwoPin is same as OnePort in
// Modelica.Electrical.Analog.Interfaces

positive pin
negative pin

partial class
(cannot be
instantiated) connector Pin

Voltage v;
flow Current i;

end Pin;

128

Electrical Components

model Resistor ”Ideal electrical resistor”
extends TwoPin;
parameter Real R;

equation
R*i = v;

end Resistor;

model Inductor ”Ideal electrical inductor”
extends TwoPin;
parameter Real L ”Inductance”;

equation
L*der(i) = v;

end Inductor;

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

model Capacitor ”Ideal electrical capacitor”
extends TwoPin;
parameter Real C ;

equation
i=C*der(v);

end Capacitor;

129

Electrical Components cont’

model Source
extends TwoPin;
parameter Real A,w;

equation
v = A*sin(w*time);

end Resistor;

p.i n.i

p.v n.v

v(t)

+

p.ip.v

model Ground
Pin p;

equation
p.v = 0;

end Ground;

130

Resistor Circuit

R2 R1

R3

n p p n

p ni3

i2i1

v1 v2

v3

R1.p.v = R2.p.v;
R1.p.v = R3.p.v;
R1.p.i + R2.p.i + R3.p.i = 0;

model ResistorCircuit
Resistor R1(R=100);
Resistor R2(R=200);
Resistor R3(R=300);

equation
connect(R1.p, R2.p);
connect(R1.p, R3.p);

end ResistorCircuit;

Corresponds to

131

• Modelica Standard Library (called Modelica) is a
standardized predefined package developed by
Modelica Association

It can be used freely for both commercial and
noncommercial purposes under the conditions of
The Modelica License.

Modelica libraries are available online including
documentation and source code from
http://www.modelica.org/library/library.html

Modelica Standard Library - Graphical Modeling

http://www.modelica.org/library/library.html

132

Modelica Standard Library cont’

Blocks Library for basic input/output control blocks
Constants Mathematical constants and constants of nature
Electrical Library for electrical models
Icons Icon definitions
Math Mathematical functions
Mechanics Library for mechanical systems
Media Media models for liquids and gases
SIunits Type definitions based on SI units according to ISO 31-1992
Stategraph Hierarchical state machines (analogous to Statecharts)
Thermal Components for thermal systems
Utilities Utility functions especially for scripting

Modelica Standard Library contains components from various
application areas, with the following sublibraries:

133

Modelica.Blocks

This library contains input/output blocks to build up block
diagrams.

 Library
Continuous

 Library

Interfaces

 Library

NonLinear

 Library

Math

 Library
Sources

Example:

 Library

Discrete

134

Modelica.Electrical

Electrical components for building analog, digital, and
multiphase circuits

Library

Analog

Library

MultiPhase

Library

Digital

V1

V2

I1

R1

R2

R3

R4

C1

C4

C5

C2

C3

Gnd1

Gnd9

Gnd3

Gnd2

Gnd6

Gnd7 Gnd8 Gnd5

Gnd4

Transistor1 Transistor2

Examples:

Library

Machines

135

Modelica.Mechanics

Package containing components for mechanical systems

Subpackages:

Rotational 1-dimensional rotational mechanical
components
Translational 1-dimensional translational
mechanical components
MultiBody 3-dimensional mechanical components

136

Connecting Components from Multiple Domains

model Generator
Modelica.Mechanics.Rotational.Accelerate ac;
Modelica.Mechanics.Rotational.Inertia iner;
Modelica.Electrical.Analog.Basic.EMF emf(k=-1);
Modelica.Electrical.Analog.Basic.Inductor ind(L=0.1);
Modelica.Electrical.Analog.Basic.Resistor R1,R2;
Modelica.Electrical.Analog.Basic.Ground G;
Modelica.Electrical.Analog.Sensors.VoltageSensor vsens;
Modelica.Blocks.Sources.Exponentials ex(riseTime={2},riseTimeConst={1});

equation
connect(ac.flange_b, iner.flange_a); connect(iner.flange_b, emf.flange_b);
connect(emf.p, ind.p); connect(ind.n, R1.p); connect(emf.n, G.p);
connect(emf.n, R2.n); connect(R1.n, R2.p); connect(R2.p, vsens.n);
connect(R2.n, vsens.p); connect(ex.outPort, ac.inPort);

end Generator;

R1

R2

ind

emf

G

ex ac iner vsen

Electrical
domain

Mechanical
domain

Block
domain

1

2

• Block domain

• Mechanical domain

• Electrical domain

137

DCMotor Multi-Domain (Electro-Mechanical)

A DC motor can be thought of as an electrical circuit
which also contains an electromechanical component.

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
EMF emf(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, emf.n);
connect(emf.p, DC.n);
connect(DC.n,G.p);
connect(emf.flange,load.flange);

end DCMotor;

load

emf
DC

G

R L

ModelicaML

A UML profile for Modelica

139

ModelicaML - a UML profile for Modelica

Supports modeling with all Modelica constructs i.e. restricted
classes, equations, generics, discrete variables, etc.

Multiple aspects of a system being designed are supported
system development process phases such as requirements analysis,
design, implementation, verification, validation and integration.

Supports mathematical modeling with equations (to specify
system behavior). Algorithm sections are also supported.

Simulation diagrams are introduced to configure, model and
document simulation parameters and results in a consistent
and usable way.

The ModelicaML meta-model is consistent with SysML in
order to provide SysML-to-ModelicaML conversion and back.

140

SysML vs. Modelica

SysML
Pros

Can model all aspects of complex system design
Cons

Precise behavior can be described but not simulated
(executed)

Modelica
Pros

Precise behavior can be described and simulated
Cons

Cannot model all aspects of complex system design,
i.e. requirements, inheritance diagrams, etc

141

ModelicaML - Purpose
Targeted to Modelica and SysML users

Provide a SysML/UML view of Modelica for
Documentation purposes
Language understanding
Better software engineering

To extend Modelica with additional design
capabilities (requirements modeling, inheritance
diagrams, etc)

To support translation between Modelica and SysML
models via XMI

142

ModelicaML - Overview

143

ModelicaML – Package Diagram
The Package Diagram groups logically connected user
defined elements into packages.
The primarily purpose of this diagram is to support the
specifics of the Modelica packages.

144

ModelicaML – Class Diagram
ModelicaML provides
extensions to SysML in order
to support the full set of
Modelica constructs.

ModelicaML defines unique
class definition types
ModelicaClass,
ModelicaModel,
ModelicaBlock,
ModelicaConnector,
ModelicaFunction and
ModelicaRecord that
correspond to class,
model, block,
connector, function and
record restricted Modelica
classes.

Modelica specific restricted
classes are included because
a modeling tool needs to
impose their semantic
restrictions (for example a
record cannot have equations,
etc).

Class Diagram defines Modelica
classes and relationships between
classes, like generalizations,
association and dependencies

145

ModelicaML - Internal Class Diagram

Internal Class Diagram shows the internal
structure of a class in terms of parts and
connections

146

ModelicaML – Equation Diagram

behavior is specified using Equation Diagrams
all Modelica equations have their specific diagram:

initial, when, for, if equations

147

ModelicaML – Simulation Diagram

Used to model, configure and document simulation
parameters and results
Simulation diagrams can be integrated with any Modelica
modeling and simulation environment (OpenModelica)

Eclipse

Integrated Environments for Modelica

149

Generating Editors

EMF – Eclipse Modeling
Framework
GMF – Graphical
Modeling Framework
The UML2 Eclipse meta-
model implementation

150

Eclipse environment for ModelicaML

151

Requirements Modeling

Requirements
can be modeled
hierarchically
can be traced
can be linked with
other ModelicaML
models
can be queried
with respect of
their attributes and
links (coverage)

152

Requirements Modeling in Eclipse

153

Creating Modelica projects (I)

Creation of Modelica
projects using
wizards

154

Creating Modelica projects (II)

Modelica project

155

Creating Modelica packages

Creation of Modelica
packages using
wizards

156

Creating Modelica classes

Creation of Modelica
classes, models, etc,
using wizards

157

Code browsing

Code Browsing for
easy navigation within
Modelica files.
Automatic update on
file save.

158

Error detection (I)

Parse error
detection on
file save

159

Error detection (II)

Semantic error
detection on
compilation

160

Code assistance (I)

Code Assistance on
imports

161

Code assistance (II)

Code Assistance on
assignments

162

Code assistance (III)

Code Assistance on
function calls

163

Code indentation

Code
Indentation

164

Code Outline and Hovering Info

Code Outline for
easy navigation within
Modelica files

Identifier Info on
Hovering

165

Eclipse Debugging Environment

Type
information
for all
variables

Browsing of
complex data
structures

166

Conclusions

Conclusions
Eclipse environment supporting ModelicaML

Supports Requirements Engineering
Transformation between ModelicaML and Modelica
Extends Modelica with additional design capabilities
(requirements modeling, inheritance diagrams, etc)
Supports translation between Modelica and SysML

Future Work
Finalize the ModelicaML Eclipse environment
Better integrate Modelica with SysML

167

Demo

Short Demo

Modelica Development Tooling (MDT)
http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/

OpenModelica Project
http://www.OpenModelica.org

http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/
http://www.openmodelica.org/

168

End

Thank You!
Questions?

Modelica Development Tooling (MDT)
http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/

OpenModelica Project
http://www.OpenModelica.org

http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/
http://www.openmodelica.org/

169

Encoding Requirements in Modelica

Using annotations
Pros: directly supported by Modelica
Cons:

can be present only at specific places
is hard to keep track of them

type RequirementStatus =
enumeration(Incomplete, Draft, Started);

annotation(
Requirement(
id="S5.4.1",
level=0,
status=RequirementStatus.Incomplete,
name="Master Cylinder Efficacy",
description="A master cylinder…"));

170

Using restricted class: requirement
Pros:

direct Modelica support for requirements
hierarchies of requirements supported by inheritance
easy linking with

Cons:
Modelica specification needs to be extended

type RequirementStatus =
enumeration(Incomplete, Draft, Started);

requirement R1
String name="Master Cylinder Efficiency";
String id="S5.4.1";
Integer level=0;
RequirementStatus status=

RequirementStatus.Incomplete;
String description=”A master cylinder

shall have…”;
end R1;

Encoding Requirements in Modelica

requirement R2
extends R1;
String name"Loss Of Fluid";
String id="S5.4.1a";

...
end R2;

model BreakSystem
annotation(satisfy=R1);

...
end BreakSystem;

	Tutorial on SysML, Modelica, �Eclipse and ModelicaML
	Outline
	Systems Engineering
	System engineers
	Systems Engineering
	Example
	Observation
	Modeling Process
	Process over lifecycle
	Simplified process view
	Process to manage complexity
	Challenges in the life of a Systems Engineer
	Systems Engineering Deliverables
	Why model-based development?
	What is UML?
	UML diagram concept
	UML Mechanisms for Extensions
	SysML Scope
	SysML Scope
	SysML
	System Modeling Language (SysML™)
	What is SysML?
	What is SysML?
	SysML Vendors
	SysML vs. UML
	SysML vs. UML
	SysML Diagrams
	SysML pillars
	SysML Diagram Frames
	SysML
	SysML – Structure Diagrams
	SysML Blocks
	Block Views
	About blocks
	Block views
	Blocks, Parts, Ports, Connectors & Flows
	Port types
	Port types
	Internal Block Diagram Example
	Allocation
	Allocation example
	SysML
	Parametric Constraint
	Defining Constraints
	Defining variable binding
	Parametric Diagram showing Vehicle Performance Par.
	SysML Properties
	Trade-off & Parametrics
	SysML
	Behavior Diagrams
	Activity Diagrams and State Machine Diagrams
	SysML
	Information management in UML/SysML
	Potential package structures
	What is a requirement?
	SysML Diagram Taxonomy
	SysML Requirements Overview
	Requirement Representation
	Requirement composition
	Predefined requirement relationships
	Derive relationship example
	Managing requirements
	Requirement relationships
	Linking to verification
	SysML Requirements Evaluation
	Workarounds
	SysML
	Principles
	Verification case development
	SysML Support for verification
	Definition of verification case
	SysML
	Applying SysML in the development process
	SysML in the design process
	Model management
	Integration into the document centric paradigm
	SysML
	SysML – the good
	SysML – the bad (1)
	SysML – the bad (2)
	SysML – the bad (3)
	SysML Adoption Strategies
	SysML – positive aspects
	SysML Conclusions
	SysML
	Tool Usability
	An ideal Vision ...
	... and the reality
	Risks
	Modelica
	Why Modeling & Simulation?
	Modelica – General Formalism to Model Complex Systems
	Kinds of Mathematical Models
	Dynamic vs. Static Models
	Continuous vs. Discrete-Time Dynamic Models
	Principles of Graphical Equation-Based Modeling
	Application Example – Industry Robot
	GTX Gas Turbine Power Cutoff Mechanism
	Modelica
	Stored Knowledge
	The Form – Equations
	Modelica – The Next Generation Modeling Language
	Object Oriented Mathematical Modeling
	Modelica Acausal Modeling
	Brief Modelica History
	Graphical Modeling Using Drag and Drop Composition
	Graphical Modeling - Drag and Drop Composition
	Multi-Domain (Electro-Mechanical) Modelica Model
	Corresponding DCMotor Model Equations
	Translation of Models to Simulation Code
	A Simple Rocket Model
	Celestial Body Class
	Moon Landing
	Simulation of Moon Landing
	Inheritance
	Inheriting definitions	
	Inheritance of Equations
	Multiple Inheritance
	Multiple Inheritance cont’
	Software Component Model
	Connectors and Connector Classes
	The flow prefix
	Physical Connector
	connect-equations
	Connection Equations
	Acausal, Causal, and Composite Connections
	Common Component Structure
	Electrical Components
	Electrical Components cont’
	Resistor Circuit
	Modelica Standard Library - Graphical Modeling
	Modelica Standard Library cont’
	Modelica.Blocks
	Modelica.Electrical
	Modelica.Mechanics
	Connecting Components from Multiple Domains
	DCMotor Multi-Domain (Electro-Mechanical)
	ModelicaML
	ModelicaML - a UML profile for Modelica
	SysML vs. Modelica
	ModelicaML - Purpose
	ModelicaML - Overview
	ModelicaML – Package Diagram
	ModelicaML – Class Diagram
	ModelicaML - Internal Class Diagram
	ModelicaML – Equation Diagram
	ModelicaML – Simulation Diagram
	Eclipse
	Generating Editors
	Eclipse environment for ModelicaML
	Requirements Modeling
	Requirements Modeling in Eclipse
	Creating Modelica projects (I)
	Creating Modelica projects (II)
	Creating Modelica packages
	Creating Modelica classes
	Code browsing
	Error detection (I)
	Error detection (II)
	Code assistance (I)
	Code assistance (II)
	Code assistance (III)
	Code indentation
	Code Outline and Hovering Info
	Eclipse Debugging Environment
	Conclusions
	Demo
	End
	Encoding Requirements in Modelica
	Encoding Requirements in Modelica

