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Outline 

Systems Engineering
Introduction and Background

SysML
a UML profile for systems engineering
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equation-based object-oriented language

ModelicaML
Modelica vs. SysML
a UML profile for Modelica based on SysML

Eclipse
Integrated Environments for Modelica
Short Demo of ModelicaML Eclipse Environment



Systems Engineering

Introduction and Background
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System engineers

Requirements owner System designer System analyst Verification & Validation

Logistics & Operation Glue engineer Customer interface Co-ordinator

Technical manager Information manager Process engineer Classified ads engineer

S. Sheard,”12 Systems Engineering roles”, Proc of INCOSE 1996
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Observation

For a domain engineer complexity can be 
bounded to a single engineering domain

For a systems engineer complexity lies in 
the interactions between multiple 
systems/domains

Multiple technologies
Inter-technology interference
Multiple components
Complex interfaces
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Modeling Process
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Process over lifecycle
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Simplified process view
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Process to manage complexity
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Challenges in the life of a Systems Engineer

Specification ambiguity

Specification coherency

Information availability

Traceability

Verification and validation
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Systems Engineering Deliverables

SE deliverables
Specifications
System design
Analysis and trade-off
Test plans
etc.

Evolution
Document-based > Model-based
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Why model-based development?

Advantages
Improved communication
More rigorous and precise, less ambiguous, less 
defects
More complete representation
Less maintenance cost
Easier to preserve the competence

Disadvantages
May stand for a high learning curve

due to new methods and notations (such as SysML)
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What is UML?

“The Unified Modeling Language is a visual language for 
specifying, constructing and documenting the artifacts of 
systems.” (OMG UMG 2.0 Superstructure Specification)

Object-oriented, visual modeling language
= notation (language, representation) + semantics (meaning)
UML is a language, not a method

De-facto standard
Software Engineering: Applications and components
Human activity systems: Industry sector, enterprises, business 
processes

Brief history (most important versions)
1.0 1997, 1.4 2001, 2.0 2003
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UML diagram concept

UML is defined around a 
number of diagram types

Each with a specific purpose 
and a specific symbol set
Each symbol has a well 
defined meaning (semantics)

Diagram elements are not 
tied to a specific diagram 
type

Allows for smart 
combinations of views on a 
system within a single 
diagram

ud Use Case Model

S
ys

te
m

D
ri

ve
r

Car

Start up sequence

Driver

Turn on ignition

Activate start engine

Ignition message

Monitor engine
revolutions

Provides input
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UML Mechanisms for Extensions

The language UML is defined using a language/toolbox 
named MOF

MOF  =  Meta Object Facility
UML is defined to allow extensions to the semantics of 
language elements

Stereotypes: Modification to original element semantics, 
potentially with an associated attribute set (as defined by tagged 
values)
Tagged values:  A name-value combination that is used to define 
properties of an element

The stereotype concept is used extensively within SysML 
to define the language elements of interest to Systems 
Engineers

Any number of stereotypes can be applied to a base UML objects

Extensions for a specific purpose can be summarized
in a “UML profile”
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SystemSystemSystem
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SysML Scope

Adheres to the Systems Engineering 
tradition to model a system in terms of

Requirements
Functionality
Architecture
Verification



SysML

A visual modeling language 
for Systems Engineering



21

System Modeling Language (SysML™)

Designed to provide simple but powerful 
constructs for modeling a wide range of systems 
engineering problems

Effective in specifying requirements, structure, 
behavior, allocations, and constraints on system 
properties to support engineering analysis

Intended to support multiple processes and 
methods such as structured, object-oriented, etc.
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What is SysML?

A graphical modeling language for Systems Engineering
a UML Profile that represents a subset of UML 2 with 
extensions

Supports the specification, analysis, design, 
verification, and validation of systems that 
include hardware, software, data, personnel, 
procedures, and facilities.

Supports model and data interchange via XMI and 
the evolving AP233 standard.
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What is SysML?

Is a visual modeling language that provides
Semantics = meaning
Notation = representation of meaning

Is not a methodology or a tool
SysML is methodology and tool independent
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SysML Vendors

Commercial
Artisan (Studio)
EmbeddedPlus (SysML Toolkit)

3rd party IBM vendor
No Magic (Magic Draw)
Sparx Systems (Enterprise Architect)
IBM / Telelogic (Tau and Rhapsody)
Visio SysML template

Open Source based on Eclipse
TopCased and Papyrus
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SysML vs. UML

from OMG SysML tutorial
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SysML vs. UML

A UML model can be sufficiently detailed 
for creation of products out of the model

A SysML model is just an abstraction of the 
final system to be delivered

Production drawings etc. will reside in 
other tools/environments
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SysML Diagrams
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SysML pillars
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SysML Diagram Frames

A SysML Diagram 
represents a model element
must have a Diagram Frame

Diagram context defined in the header
Diagram kind (act, bdd, ibd, sd, etc.)
Model element type (package, block, activity, etc.)
Model element name
User defined diagram name or view name



SysML

Specifying System Architecture
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SysML – Structure Diagrams

Used to specify System Architecture
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SysML Blocks

«block» stereotype provides a common root for 
user-defined or domain-specific hierarchies of 
system component types

Hardware
Software
Data
Procedure
Facility
Person

Blocks provide the backbone of the “system 
hierarchy” or “system of systems” architecture 
which drives much of modern systems engineering

Blocks do not represent the parts view/product 
structure of a product

Rather it is an abstraction of the system under specification



33

Block Views

Block definition diagram
Composition may be handled to any number of 
levels within a single diagram

Using the white diamond aggregation relationship

Based on the UML class diagram

Internal block diagram
Composition is captured in a single level per 
diagram 
Interfaces are captured explicitly
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About blocks

Based on UML Class from UML Composite Structure
Eliminates association classes, etc.

Differentiates value properties from part properties
Block interfaces

Service port – traditional SW service architecture
Flow port – for continuous or discrete signals

Block definition diagram describes the relationship among 
blocks (e.g., composition, association, classification)

Internal block diagram describes the internal structure of 
a block in terms of its properties and connectors

Requirements and Behavior can be allocated to blocks
Block subtypes may be created using stereotypes or 
through classification
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Block views

Definition of ”building”
blocks
Capture properties
Can be used in multiple 
contexts
Block relationships

A ”part” indicate the usage of a 
particular block
Interfaces are visible
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Blocks, Parts, Ports, Connectors & Flows
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Port types

Standard (UML) port
The port indicate the existence of a service 
interface which external blocks may call (as in 
software)
Interaction is as defined for the individual 
operation made available through the interface

Flow ports
Specifies what can flow in or out of a component
Has a specified direction and content

May be bi-directional
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Port types
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Internal Block Diagram Example
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Allocation

SysML provides 3 mechanisms for representing 
the allocation of functional or physical elements 
to other physical elements

Via Swimlanes in activity diagrams
Elegant

Via the addition of a separate compartment in 
the block structure
Via relationships directly on diagrams
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Allocation example



SysML

Parametric Constraints



43

Parametric Constraint

Used to express constraints between quantifiable properties (aka non-
functional characteristics) of assemblies and their decomposition

Reusable
Non-causal (i.e. declarative statement of the invariant without specifying 
dependent/independent variables)

Defined as a stereotype 
Expression: text string specifies the constraint
Expression language can be formal (e.g. MathML, OCL …) or informal
Computational engine is defined by applicable analysis tool and not by 
SysML

Usage
Used in the context of a SysML assembly
Notation: parametric diagram distinguishes the parametric constraints 
from other parts of a containing assembly
Properties of parts connected to parameters of relation
Value binding connector declares that parameter and property are bound 
to the same value
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Defining Constraints
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Defining variable binding 
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Parametric Diagram showing Vehicle Performance Par.

Rounded rectangles are parametric constraints
Rectangles are properties (parameters)
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SysML Properties

SysML Extension for Property, to address:
Quantity - Values, Units, and Dimensions
Probability Distribution
Example for a vehicle that weighs 1000 pounds with a 
uniform probability distribution:

New predefined data types
Real
Complex
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Trade-off & Parametrics

Parametric relation can be used to support 
evaluation of alternatives (trade-off analysis)

Alternatives represented by different models
Objective function specified as a parametric 
relationship in terms of:

Criteria, weighting
Probability distributions can be applied to properties
Used to optimize based on measures of effectiveness

Can be represented in typical table format

Methods for trade-offs are not part of SysML



SysML

Specifying Behavior
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Behavior Diagrams
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Activity Diagrams and State Machine Diagrams



SysML

Specifying Requirements
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Information management in UML/SysML

All design elements will reside in exactly 
one package
But can be used on many different 
diagrams

Each diagram is located in a package

A design element is defined by all UML 
artifacts related to the element

Regardless of diagram distribution
The complete picture may be distributed over 
multiple diagrams



54

Potential package structures
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What is a requirement?

Obviously any element in SysML 
specification is expressing some kind of 
requirement on a system
In SysML’s terminology a requirement is a 
textual statement
No assumptions are made on the 
introduction of Requirement elements in 
the process
Other model element can be used to 
identify requirements 
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SysML Diagram Taxonomy

A requirement is a cross-cutting construct
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SysML Requirements Overview

SysML provides the following features

Representation of requirements
Representation of individual requirements
Requirement composition
Requirements can be sub-classed using specialization

Requirement relationships
derive relationship between derived and source requirements
satisfy relationship between design models and requirements 
verify relationship between requirements and test cases
generalized trace relationship between requirements and other 
model elements
rationale for requirements traceability, satisfaction, etc

Alternative graphical, tabular and tree representations
Supported by the standard, but currently not implemented in any 
tools
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Requirement Representation

Requirement is a stereotyped class
Multiple stereotypes can be combined

Possible to combine a requirement and safety critical stereotype to 
form attribute set for a safety critical requirement

A requirement object has two mandatory attributes:
Id
Text

Possible to add new attributes
A class object is created for each individual requirement

«requirement»

id#
1.1

txt
The system shall transport up to 15 passengeres 
and 1000 kg of cargo under all weather conditions

::No leisure traffic restriction::Capacity
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Requirement composition

Composition structure can be of arbitrary depth
«requirement»

id#
1.2

txt
The system shall not impose restrictions on boat traffic

No restriction to boat traffic

«requirement»

id#
1.2.1

txt
The system shall not impose restrictions on 
commercial traffic

::User requirements::No restriction to boat
traffic::No restriction to commercial traffic

«requirement»

id#
1.2.2

txt
The system shall not impose restrictions on 
leisure traffic

::User requirements::No restriction to boat
traffic::No restriction to leisure traffic
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Predefined requirement relationships

derive relationship between derived and source 
requirements

The derived requirement is mandated by the source 
requirement(s)

satisfy relationship between design models and 
requirements 

Identified model element(s) are in existence because of the 
identified requirement

verify relationship between requirements and test cases
A verification case may verify one or more requirements, or 
Multiple cases may be defined for verification of a single 
requirement

generalized trace relationship between requirements and 
other model elements

For identification of relationships other than those identified 
above
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Derive relationship example

Seat width
«Requirement»

ID = 6.0.1

Individual 
t h ll

Seat belts
«Requirement»

ID = 6.0.2

3-point seat 
b lt h ll

«derive»

Seating
«Requirement»

ID = 1.2

The vehicle 
shall seat 5 
adults

«derive»

«derive»

«derive»
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Managing requirements

Packages – UML concept for grouping 
elements for some purpose can be used to 

Separating requirements with different origins
Grouping requirements into packages is 
independent to grouping on diagrams

Nested packages supported
A single requirement may appear on 
multiple requirements diagrams but resides 
in a single package
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Requirement relationships
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Linking to verification

req burnish

«requirement»
NHTSASafetyRequirements

[Speed=80]

Initial
condition

[count < 200]

[count=200]

Adjust
brake

Accelerate Maintain

Brake

[IBT=100 or
d >= 2 km]

<<verify>>

sm Burnish test «testCase »

«requirement»
Burnish

Text =”..”
ID = 157.135

Text =”(a) IBT…"
ID = S7.1
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SysML Requirements Evaluation

Requirements use a lot of diagram real-
estate

Approach does not scale up – unable to 
efficiently handle projects with several 
hundreds of requirements
The traditional (graphical) UML view does not 
lend itself well to requirements representation

A tabular view would be more appropriate (as used 
in traditional requirements management tools)

Requirements modeling is performed on 
class  definition basis

Each requirement is actually a new class 
object
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Workarounds

Distribute requirements over multiple 
diagrams

Create diagram exclusively for allocation 
and traceability

Risk for loosing overview

Perform requirements management in 
separate tool

Do the traceability in SysML
Difficult to maintain consistency



SysML

Verification
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Principles

Develop a model that defines the verification 
conditions and procedure

Excellent for software where tests can be run within 
the tool
Not necessary applicable when the model shall depict 
a real world condition 

Primary application for systems verification is the 
capture of the verification procedure

Can not completely replace the traditional verification 
documentation

At the present SysML does not support the 
representation realized system elements

Not possible to represent the configuration and exact 
properties of a unit under test
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Verification case development

Any set of model elements can be used to 
define the verification environment for a 
requirement
The verification procedure can be captured 
in detail
Textual elements can be captured using 
requirement objects with extra stereotypes
Verification cases may be stored in 
dedicated packages
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SysML Support for verification

Case 
definition

Traceability to 
requirements

Verification
configuration

capture

Verification
report

Verification
environment
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Definition of verification case

req burnish

«requirement»
NHTSASafetyRequirements

[Speed=80]

Initial
condition

[count < 200]

[count=200]

Adjust
brake

Accelerate Maintain

Brake

[IBT=100 or
d >= 2 km]

<<verify>>

sm Burnish test «testCase »

«requirement»
Burnish

Text =”..”
ID = 157.135

Text =”(a) IBT…"
ID = S7.1



SysML

Application in the development process
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Applying SysML in the development process

SysML is process independent
Any use is per definition correct
Model fidelity will increase over time 

SysML does not define a strict top down 
modeling method

Multiple viewpoints are supported via packages
Viewpoint integration must be considered 

Which diagrams apply for a specific viewpoint?
What are the relationships between identified 
viewpoints

The complete system specification will not 
be available in a single diagram
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SysML in the design process

Requirements
Requirement Diagrams

Behavior
Activity Diagrams
Sequence Diagrams
State Machine Diagrams
Use Case Diagrams

Architecture
Block Diagrams
Parametric Diagrams
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Model management

Tools often have links to standard version 
management systems 

Individual elements can be under version 
control

Configuration control (of hierarchical 
structures) is typically not supported
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Integration into the document centric paradigm

All system relevant information does not lend 
itself to modeling

Traditional documents will still exist
For good or bad we know how to manage 
documents

Readability
CM support

SysML tools typically have 
Report generators
Links to requirements management tools, e.g., DOORS

Need to add textual element to create fully 
readable documents
All information on a system will not reside in the 
SysML tool



SysML

Summary
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SysML – the good

It is here, it is available
Support from multiple vendors
Broad user base
It is UML – but simpler
Excellent software engineering integration

Most SysML implementations are actually on 
top on UML tools

XMI, promise for data portability 
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SysML – the bad (1)

It is an adoption of UML
Ad hoc implementation

Contrived activity diagram semantics
Inherited from UML

Manual management of allocation 
relationships

Minimal verification support
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SysML – the bad (2)

Problem
The user must to manage all allocation relationships manually
Leads to cluttered diagrams

The elegant solution
Automatic management of relationships
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SysML – the bad (3)

How do I capture the product verified?

req burnish

«requirement»
NHTSASafetyRequirements

[Speed=80]

Initial
condition

[count < 200]

[count=200]

Adjust
brake

Accelerate Maintain

Brake

[IBT=100 or
d >= 2 km]

<<verify>>

sm Burnish test «testCase »

«requirement»
Burnish

Text =”..”
ID = 157.135

Text =”(a) IBT…"
ID = S7.1

Verification support



82

SysML Adoption Strategies

Minimal cost
Use SysML notation in Powerpoint or Visio

Hybrid MBSE
Use SysML tool to model key elements of a 
specification/design 
But maintain document paradigm for 
deliverables

True MBSE
Full SysML adoption

The Alternative
Use existing SE tool with proprietary notation
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SysML – positive aspects

SysML is far better than PowerPoint!
Can be highly valuable for highlighting core 
elements of a specification
Is perfectly suited for modeling of Software 
intensive systems

Tight coupling to UML outweighs negative aspects 
identified herein

Is the future
We must just ensure that SysML is modified and 
extended over time such that the core problems are 
addressed!

Integrated configuration and change management support
Connection to the complete system lifecycle
Connection to domain engineering disciplines
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SysML Conclusions

SysML is an admirable product considering
Its ancestry
The limited resources used in its creation

There are a number of weak areas in the language as 
outlined in this presentation
The overarching problem is that SysMLs failure to address 
the core issues

Through life traceability
Configuration management

This is a problem inherited from the UML framework
And not addressed in contemporary SE tools

These problems are challenges for development system 
vendors to overcome

With guidance and assistance from the user community



SysML

Evaluation Summary
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Tool Usability

SysML and UML tools have different target groups
Systems engineers will probably not gain from code 
generation and all related functionality 
Systems engineers will probably not modify the 
underlying notation
Systems engineers will probably not modify the tool to 
fit the problem

Tool vendors need to simplify the user interfaces
minimize actions and manipulations for using the tool
hide the extension mechanisms
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An ideal Vision ...

A development environment that allows for 
maintaining an overall traceability from the initial 
ideas to the realized product

Traceability ...
... from requirements to the realized product
... from and to software and hardware elements
... across different variants of a product line
... across different configurations
... across time (history)
... between every individual element
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... and the reality

The creators of SysML have been driven by 
a less ambitious vision

i.e. more realistic vision
SysML lacks support for versions & 
configurations
SysML has limited support for specific 
individuals

an individual realized product
SysML has a clear heritage of software 
development language
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Risks

UML tool vendors have good understanding for 
software-related system development

but lack understanding for SE in a broader perspective

There is a risk that the future development of 
SysML (tools) will be predominantly influenced by 
software engineering

And increased resources on “code refactoring” do not 
deliver any value to systems engineers

Systems Engineers risk to become yet another 
customer of tools that are basically domain-
specific

e.g. the lack of integrated support for configuration 
management



Modelica

An equation-based object-oriented 
language for modeling and simulation 

of physical systems
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Why Modeling & Simulation?

Increase understanding of complex systems
Design and optimization
Virtual prototyping 
Verification

Build more complex systems
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Robotics
Automotive
Aircrafts
Satellites
Biomechanics
Power plants
Hardware-in-the-loop, 
real-time simulation
etc

Modelica – General Formalism to Model Complex Systems
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Kinds of Mathematical Models

Dynamic vs. Static models 

Continuous-time vs. Discrete-time dynamic 
models

Quantitative vs. Qualitative models
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Dynamic vs. Static Models

A dynamic model includes time in the model
A static model can be defined without

involving time

time

Resistor voltage – static system

Capacitor voltage - dynamic

Input current
pulse
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Continuous vs. Discrete-Time Dynamic Models

Continuous-time models may evolve their variable 
values continuously during a time period

Discrete-time variables change values a finite
number of times during a time period

time

Continuous

Discrete
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Principles of Graphical Equation-Based Modeling

Each icon represents a physical component i.e. Resistor, 
mechanical Gear Box, Pump

Composition lines represent the actual  physical 
connections i.e. electrical line, mechanical connection, 
heat flow

Variables at the interfaces describe interaction with other 
component

Physical behavior of a component is  described by 
equations 

Connection

Component 1

Component 3

Component 2
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q qd

iRefqRef

qdRef

Srel = n*transpose(n)+(identity(3)- n*transpose(n))*cos(q)-
skew(n)*sin(q);
wrela = n*qd;
zrela = n*qdd;
Sb = Sa*transpose(Srel);
r0b = r0a;
vb = Srel*va;
wb = Srel*(wa + wrela);
ab = Srel*aa;
zb = Srel*(za + zrela + cross(wa, wrela));

Application Example – Industry Robot

Courtesy of Martin Otter
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GTX Gas Turbine Power Cutoff Mechanism

Hello 

Courtesy of Siemens Industrial Turbomachinery AB

Developed 
by MathCore 
for Siemens



Modelica
The Next Generation Modeling 

Language



100

Stored Knowledge

Model knowledge is stored in books and human 
minds which computers cannot access

“The change of motion is proportional 
to the motive force impressed “
– Newton
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The Form – Equations

Equations were used in the third millennium 
B.C.
Equality sign was introduced by Robert Recorde
in 1557

Newton still wrote text (Principia, vol. 1, 1686)
“The change of motion is proportional to the motive force impressed ”

CSSL (1967) introduced a special form of “equation”:
variable = expression
v = INTEG(F)/m

Programming languages usually do not allow equations!



102

Modelica – The Next Generation Modeling Language

Declarative language
Equations and mathematical functions allow acausal
modeling, high level specification, increased 
correctness

Multi-domain modeling
Combine electrical, mechanical, thermodynamic, 
hydraulic, biological, control, event, real-time, etc...

Everything is a class
Strongly typed object-oriented language with a 
general class concept, Java & Matlab like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, nonproprietary
Efficiency comparable to C; advanced equation 
compilation, e.g. 300 000 equations
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Object Oriented Mathematical Modeling

The static declarative structure of a 
mathematical model is emphasized

OO is primarily used as a structuring concept

OO is not viewed as dynamic object creation and 
sending messages

Dynamic model properties are expressed in a 
declarative way through equations.

Acausal classes supports better reuse of modeling 
and design knowledge than traditional classes
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What is acausal modeling/design?
Why does it increase reuse?

The acausality makes Modelica library 
classes more  reusable than traditional 
classes containing assignment statements 
where the input-output causality is 
fixed.

Example: a resistor equation:
R*i = v;

can be used in three ways:
i := v/R;
v := R*i;
R := v/i;

Modelica Acausal Modeling
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Brief Modelica History

First Modelica design group meeting in fall 1996
International group of people with expert 
knowledge in both language design and 
physical modeling
Industry and academia

Modelica Versions
1.0 released September 1997
2.0 released March 2002
2.2 released March 2005
3.0 released September 2007

Modelica Association established 2000
Open, non-profit organization
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Courtesy 
MathCore 
Engineering AB

Graphical Modeling Using Drag and Drop Composition
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Graphical Modeling - Drag and Drop Composition
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A DC motor can be thought of as an electrical circuit 
which also contains an electromechanical component

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
ElectroMechanicalElement EM(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, EM.n);
connect(EM.p, DC.n);
connect(DC.n,G.p);
connect(EM.flange,load.flange);

end DCMotor

load 

EM 
DC 

G 

R L 

Multi-Domain (Electro-Mechanical) Modelica Model



109

Automatic transformation to ODE or DAE for simulation:

(load component not included)

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:
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Translation of Models to Simulation Code

Modelica Model

Flat model

Sorted equations

C Code

Executable

Optimized sorted
equations

Modelica 
Model

Modelica 
Graphical Editor

Modelica
Source code

Translator

Analyzer

Optimizer

Code generator

C Compiler

Simulation

Modelica 
Textual Editor
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A Simple Rocket Model

( )abs

thrust mass gravityacceleration
mass

mass massLossRate thrust
altitude velocity
velocity acceleration

− ⋅
=

′ = − ⋅

′ =
′ =

class Rocket "rocket class"
parameter String name;
Real mass(start=1038.358);
Real altitude(start= 59404);
Real velocity(start= -2003);
Real acceleration;
Real thrust;  // Thrust force on rocket
Real gravity; // Gravity forcefield
parameter Real massLossRate=0.000277;

equation
(thrust-mass*gravity)/mass = acceleration;
der(mass)  = -massLossRate * abs(thrust);
der(altitude) = velocity;
der(velocity) = acceleration;

end Rocket;

new model
declaration 
comment

parameters (changeable 
before the simulation)

name + default value

differentiation with 
regards to time

mathematical 
equation (acausal)

floating point 
type

start value

thrustapollo13

mg

Rocket
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Celestial Body Class

class CelestialBody
constant Real    g = 6.672e-11;
parameter Real    radius;
parameter String  name;
parameter Real    mass;

end CelestialBody;

An instance of the class can be 
declared by prefixing the type 
name to a variable name

...
CelestialBody moon;
...

A class declaration creates a type name in Modelica

The declaration states that moon is a variable 
containing an object of type CelestialBody
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Moon Landing

class MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;

protected
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;

public
Rocket         apollo(name="apollo13");
CelestialBody  moon(name="moon",mass=7.382e22,radius=1.738e6);

equation
apollo.thrust = if (time < thrustDecreaseTime) then force1

else if (time < thrustEndTime) then force2
else 0;

apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;
end MoonLanding;

( )2..
...

radiusmoonaltitudeapollo
massmoongmoongravityapollo

+
⋅

=

only access 
inside the class

access by dot 
notation outside 
the class

altitude
CelestialBody

thrust
apollo13

mg

Rocket
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Simulation of Moon Landing

simulate(MoonLanding, stopTime=230)
plot(apollo.altitude, xrange={0,208})
plot(apollo.velocity, xrange={0,208})

50 100 150 200

5000

10000

15000

20000

25000

30000
50 100 150 200

-400

-300

-200

-100

It starts at an altitude of 59404 
(not shown in the diagram) at 
time zero, gradually reducing it 
until touchdown at the lunar 
surface when the altitude is zero

The rocket initially has a high 
negative velocity when approaching 
the lunar surface. This is reduced to 
zero at touchdown, giving a smooth 
landing
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Inheritance

record ColorData
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real   green;

end ColorData;

class Color
extends ColorData;

equation
red + blue + green = 1;

end Color;

keyword 
denoting 
inheritance

Data and behavior: field declarations, equations, and 
certain other contents are copied into the subclass 

restricted kind 
of class without 
equations

parent class to Color

child class  or 
subclass

class ExpandedColor
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end ExpandedColor;
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Inheriting definitions

Inheriting 
multiple different 
definitions of the 
same item is an 
error

Inheriting multiple 
identical 
definitions results 
in only one 
definition

record ColorData
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real   green;

end ColorData;

class ErrorColor
extends ColorData;
parameter Real blue = 0.6; 
parameter Real red = 0.3; 

equation
red + blue + green = 1;

end ErrorColor;

Legal! 
Identical to the 
inherited field blue

Illegal!
Same name, but 
different value
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Inheritance of Equations

class Color
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end Color;

Color is identical to Color2
Same equation twice leaves 
one copy when inheriting

Color3 is overdetermined
Different equations means 
two equations!

class Color3  // Error!
extends Color;

equation
red + blue + green = 1.0;
// also inherited: red + blue + green = 1;

end Color3;

class Color2  // OK!
extends Color;

equation
red + blue + green = 1;

end Color2;
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Multiple Inheritance

Multiple Inheritance is fine – inheriting both geometry and color

class Point
Real x;
Real y,z;

end Point;

class Color
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end Color;
multiple inheritance

class ColoredPointWithoutInheritance
Real x;
Real y, z;
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real green;

equation
red + blue + green = 1;

end ColoredPointWithoutInheritance;

Equivalent to

class ColoredPoint
extends Point;
extends Color;

end ColoredPoint;
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Multiple Inheritance cont’

Only one copy of multiply inherited class Point is kept
class Point

Real x;
Real y;

end Point;

Diamond Inheritance
class VerticalLine

extends Point;
Real vlength;

end VerticalLine;

class HorizontalLine
extends Point;
Real hlength;

end HorizontalLine;

class Rectangle
extends VerticalLine;                
extends HorizontalLine;

end Rectangle; 
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Software Component Model

A component class should be defined independently of the
environment, very essential for reusability

A component may internally consist of other components, i.e. 
hierarchical modeling

Complex systems usually consist of large numbers of 
connected components

Component

Interface

ConnectionComponent

Connector
Acausal coupling

Causal coupling
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Connectors and Connector Classes

Connectors are instances of connector classes

v + 

i 

pin 

s  

f 

flange 

connector Pin 
Voltage       v;
flow Current  i;

end Pin;

Pin pin;

connector class

keyword flow
indicates that currents 
of connected pins 
sum to zero.

electrical connector

an instance pin
of class Pin

connector Flange 
Position      s;
flow Force    f;

end Flange;

Flange flange;

connector class

mechanical connector

an instance flange
of class Flange
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The flow prefix

Two kinds of variables in connectors:
Non-flow variables potential or energy level 
Flow variables represent some kind of flow

Coupling
Equality coupling, for non-flow variables
Sum-to-zero coupling, for flow variables

The value of a flow variable is positive when the current 
or the flow is into the component

v 

+ i 

pin 
positive flow direction:
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Translational Position Force Linear momentum
Mechanical.

Translational

Electrical Voltage Current Charge Electrical.
Analog

Physical Connector

Classes Based on Energy Flow

Domain 
Type

Potential Flow Carrier Modelica 
Library

Rotational Angle Torque Angular 
momentum

Mechanical.
Rotational

Magnetic Magnetic 
potential

Magnetic 
flux rate Magnetic flux

Hydraulic Pressure Volume flow Volume HyLibLight

Heat Temperature Heat flow Heat HeatFlow1D

Chemical Chemical 
potential Particle flow Particles Under 

construction

Pneumatic Pressure Mass flow Air PneuLibLight
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connect-equations

 
pin1 pin2

+ + 

i i 

v v 

connect(connector1,connector2)

Connections between connectors are realized as equations in Modelica

The two arguments of a connect-equation must be references to 
connectors, either to be declared directly within the same class or be 
members of one of the declared variables in that class

pin1.v = pin2.v;
pin1.i + pin2.i =0;

Pin pin1,pin2; 
//A connect equation
//in Modelica:
connect(pin1,pin2); Corresponds to
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Connection Equations

1 2 3 nv v v v= = =K

pin1.v = pin2.v;
pin1.i + pin2.i =0;

Pin pin1,pin2; 
//A connect equation
//in Modelica
connect(pin1,pin2); Corresponds to

Each primitive connection set of nonflow variables is 
used to generate equations of the form:

Each primitive connection set of flow variables is used to generate 
sum-to-zero equations of the form:

1 2 ( ) 0k ni i i i+ + − + =K K

connect(pin1,pin2); connect(pin1,pin3); ... connect(pin1,pinN); 
Multiple connections are possible:
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Acausal, Causal, and Composite Connections

Two basic and one composite kind of connection in Modelica
Acausal connections 
Causal connections, also called signal connections
Composite connections, also called structured 
connections, composed of basic or composite 
connections

connector OutPort 
output Real signal;

end OutPort

connector class
fixed causality
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Common Component Structure

The base class TwoPin has 
two connectors p and n for 
positive and negative pins 
respectively

 
p

p.i

p.v

n.i 

n.v 
n

i 

ii + -TwoPin  

electrical connector class

partial model TwoPin  
Voltage     v   
Current     i   
Pin p;
Pin n;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;   
// TwoPin is same as OnePort in
// Modelica.Electrical.Analog.Interfaces

positive pin
negative pin

partial class 
(cannot be 
instantiated) connector Pin 

Voltage       v;
flow Current  i;

end Pin;
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Electrical Components

model Resistor ”Ideal electrical resistor”
extends TwoPin;
parameter Real R;

equation
R*i = v;

end Resistor;

model Inductor ”Ideal electrical inductor”
extends TwoPin;
parameter Real L ”Inductance”;

equation
L*der(i) = v;

end Inductor;

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

model Capacitor ”Ideal electrical capacitor”
extends TwoPin;
parameter Real C ;

equation
i=C*der(v);

end Capacitor;
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Electrical Components cont’

model Source  
extends TwoPin;
parameter Real A,w;

equation
v = A*sin(w*time);

end Resistor;

p.i n.i

p.v n.v

v(t)

+

p.ip.v

model Ground  
Pin p;

equation
p.v = 0;

end Ground;
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Resistor Circuit

R2 R1

R3 

n p p n

p ni3

i2i1

v1 v2

v3

R1.p.v = R2.p.v;
R1.p.v = R3.p.v;
R1.p.i + R2.p.i + R3.p.i = 0;

model ResistorCircuit
Resistor R1(R=100);
Resistor R2(R=200);
Resistor R3(R=300);

equation
connect(R1.p, R2.p);
connect(R1.p, R3.p);

end ResistorCircuit;

Corresponds to
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• Modelica Standard Library (called Modelica) is a 
standardized predefined package developed by 
Modelica Association

It can be used freely for both commercial and 
noncommercial purposes under the conditions of 
The Modelica License.

Modelica libraries are available online including 
documentation and source code from 
http://www.modelica.org/library/library.html

Modelica Standard Library - Graphical Modeling

http://www.modelica.org/library/library.html
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Modelica Standard Library cont’

Blocks Library for basic input/output control blocks
Constants Mathematical constants and constants of nature
Electrical Library for electrical models
Icons Icon definitions
Math Mathematical functions
Mechanics Library for mechanical systems
Media Media models for liquids and gases
SIunits Type definitions based on SI units according to ISO 31-1992
Stategraph Hierarchical state machines (analogous to Statecharts)
Thermal Components for thermal systems
Utilities Utility functions especially for scripting

Modelica Standard Library contains components from various 
application areas, with the following sublibraries:
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Modelica.Blocks

This library contains input/output blocks to build up block 
diagrams.

 Library 
Continuous 

 Library

Interfaces

 Library

NonLinear

 Library

Math

 Library 
Sources 

Example:

 Library

Discrete 
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Modelica.Electrical

Electrical components for building analog, digital, and 
multiphase circuits

Library

Analog

Library

MultiPhase

Library

Digital

V1

V2

I1

R1

R2

R3

R4

C1

C4

C5

C2

C3

Gnd1

Gnd9

Gnd3

Gnd2

Gnd6

Gnd7 Gnd8 Gnd5

Gnd4

Transistor1 Transistor2

Examples:

Library

Machines
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Modelica.Mechanics

Package containing components for mechanical systems

Subpackages:

Rotational 1-dimensional rotational mechanical 
components
Translational 1-dimensional translational 
mechanical components
MultiBody 3-dimensional mechanical components
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Connecting Components from Multiple Domains

model Generator
Modelica.Mechanics.Rotational.Accelerate ac;
Modelica.Mechanics.Rotational.Inertia iner;
Modelica.Electrical.Analog.Basic.EMF emf(k=-1);
Modelica.Electrical.Analog.Basic.Inductor ind(L=0.1);
Modelica.Electrical.Analog.Basic.Resistor R1,R2;
Modelica.Electrical.Analog.Basic.Ground G;
Modelica.Electrical.Analog.Sensors.VoltageSensor vsens;
Modelica.Blocks.Sources.Exponentials ex(riseTime={2},riseTimeConst={1});

equation
connect(ac.flange_b, iner.flange_a); connect(iner.flange_b, emf.flange_b);
connect(emf.p, ind.p); connect(ind.n, R1.p); connect(emf.n, G.p);
connect(emf.n, R2.n); connect(R1.n, R2.p); connect(R2.p, vsens.n);
connect(R2.n, vsens.p); connect(ex.outPort, ac.inPort);

end Generator;

R1

R2

ind

emf

G

ex ac iner vsen

Electrical
domain

Mechanical
domain

Block
domain

1

2

• Block domain

• Mechanical domain

• Electrical domain
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DCMotor Multi-Domain (Electro-Mechanical)

A DC motor can be thought of as an electrical circuit 
which also contains an electromechanical component.

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
EMF emf(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, emf.n);
connect(emf.p, DC.n);
connect(DC.n,G.p);
connect(emf.flange,load.flange);

end DCMotor;

load 

emf 
DC

G 

R L 



ModelicaML

A UML profile for Modelica
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ModelicaML - a UML profile for Modelica

Supports modeling with all Modelica constructs i.e. restricted 
classes, equations, generics, discrete variables, etc.

Multiple aspects of a system being designed are supported
system development process phases such as requirements analysis, 
design, implementation, verification, validation and integration.

Supports mathematical modeling with equations (to specify 
system behavior). Algorithm sections are also supported.

Simulation diagrams are introduced to configure, model and 
document simulation parameters and results in a consistent 
and usable way.

The ModelicaML meta-model is consistent with SysML in 
order to provide SysML-to-ModelicaML conversion and back.



140

SysML vs. Modelica

SysML
Pros

Can model all aspects of complex system design
Cons

Precise behavior can be described but not simulated 
(executed)

Modelica
Pros

Precise behavior can be described and simulated
Cons

Cannot model all aspects of complex system design, 
i.e. requirements, inheritance diagrams, etc
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ModelicaML - Purpose
Targeted to Modelica and SysML users

Provide a SysML/UML view of Modelica for 
Documentation purposes
Language understanding
Better software engineering 

To extend Modelica with additional design 
capabilities (requirements modeling, inheritance 
diagrams, etc)

To support translation between Modelica and SysML 
models via XMI
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ModelicaML - Overview
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ModelicaML – Package Diagram
The Package Diagram groups logically connected user 
defined elements into packages. 
The primarily purpose of this diagram is to support the 
specifics of the Modelica packages.
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ModelicaML – Class Diagram 
ModelicaML provides 
extensions to SysML in order 
to support the full set of 
Modelica constructs. 

ModelicaML defines unique 
class definition types 
ModelicaClass, 
ModelicaModel, 
ModelicaBlock, 
ModelicaConnector, 
ModelicaFunction and 
ModelicaRecord that 
correspond to class, 
model, block, 
connector, function and 
record restricted Modelica 
classes. 

Modelica specific restricted 
classes are included because 
a modeling tool needs to 
impose their semantic 
restrictions (for example a 
record cannot have equations, 
etc).

Class Diagram defines Modelica 
classes and relationships between 
classes, like generalizations, 
association and dependencies
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ModelicaML - Internal Class Diagram

Internal Class Diagram shows the internal 
structure of a class in terms of parts and 
connections
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ModelicaML – Equation Diagram

behavior is specified using Equation Diagrams
all Modelica equations have their specific diagram:

initial, when, for, if equations
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ModelicaML – Simulation Diagram

Used to model, configure and document simulation 
parameters and results
Simulation diagrams can be integrated with any Modelica 
modeling and simulation environment (OpenModelica)



Eclipse

Integrated Environments for Modelica
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Generating Editors

EMF – Eclipse Modeling 
Framework
GMF – Graphical 
Modeling Framework
The UML2 Eclipse meta-
model implementation
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Eclipse environment for ModelicaML
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Requirements Modeling

Requirements
can be modeled 
hierarchically
can be traced
can be linked with 
other ModelicaML 
models
can be queried
with respect of 
their attributes and 
links (coverage)
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Requirements Modeling in Eclipse
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Creating Modelica projects (I)

Creation of Modelica 
projects using 
wizards
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Creating Modelica projects (II)

Modelica project
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Creating Modelica packages

Creation of Modelica 
packages using 
wizards
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Creating Modelica classes

Creation of Modelica 
classes, models, etc, 
using wizards
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Code browsing

Code Browsing for
easy navigation within 
Modelica files. 
Automatic update on 
file save.
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Error detection (I)

Parse error 
detection on 
file save
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Error detection (II)

Semantic error 
detection on 
compilation
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Code assistance (I)

Code Assistance on 
imports
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Code assistance (II)

Code Assistance on 
assignments
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Code assistance (III)

Code Assistance on 
function calls



163

Code indentation

Code 
Indentation
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Code Outline and Hovering Info

Code Outline for
easy navigation within 
Modelica files

Identifier Info on 
Hovering
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Eclipse Debugging Environment

Type 
information 
for all 
variables

Browsing of 
complex data 
structures
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Conclusions

Conclusions
Eclipse environment supporting ModelicaML

Supports Requirements Engineering
Transformation between ModelicaML and Modelica
Extends Modelica with additional design capabilities 
(requirements modeling, inheritance diagrams, etc)
Supports translation between Modelica and SysML

Future Work
Finalize the ModelicaML Eclipse environment
Better integrate Modelica with SysML
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Demo

Short Demo

Modelica Development Tooling (MDT)
http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/

OpenModelica Project
http://www.OpenModelica.org

http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/
http://www.openmodelica.org/
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End

Thank You!
Questions?

Modelica Development Tooling (MDT)
http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/

OpenModelica Project
http://www.OpenModelica.org

http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/
http://www.openmodelica.org/
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Encoding Requirements in Modelica

Using annotations
Pros: directly supported by Modelica
Cons: 

can be present only at specific places
is hard to keep track of them

type RequirementStatus = 
enumeration(Incomplete, Draft, Started);

annotation(
Requirement(
id="S5.4.1", 
level=0,
status=RequirementStatus.Incomplete,   
name="Master Cylinder Efficacy", 
description="A master cylinder…"));
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Using restricted class: requirement
Pros: 

direct Modelica support for requirements
hierarchies of requirements supported by inheritance
easy linking with 

Cons: 
Modelica specification needs to be extended

type RequirementStatus = 
enumeration(Incomplete, Draft, Started);

requirement R1 
String name="Master Cylinder Efficiency";
String id="S5.4.1";
Integer level=0;
RequirementStatus status= 

RequirementStatus.Incomplete;
String description=”A master cylinder 

shall have…”;
end R1;

Encoding Requirements in Modelica

requirement R2
extends R1;
String name"Loss Of Fluid";
String id="S5.4.1a";

...
end R2;

model BreakSystem
annotation(satisfy=R1);

...
end BreakSystem;


	Tutorial on SysML, Modelica, �Eclipse and ModelicaML
	Outline 
	Systems Engineering
	System engineers
	Systems Engineering
	Example
	Observation
	Modeling Process
	Process over lifecycle
	Simplified process view
	Process to manage complexity
	Challenges in the life of a Systems Engineer
	Systems Engineering Deliverables
	Why model-based development?
	What is UML?
	UML diagram concept
	UML Mechanisms for Extensions
	SysML Scope
	SysML Scope
	SysML
	System Modeling Language (SysML™)
	What is SysML?
	What is SysML?
	SysML Vendors
	SysML vs. UML
	SysML vs. UML
	SysML Diagrams
	SysML pillars
	SysML Diagram Frames
	SysML
	SysML – Structure Diagrams
	SysML Blocks
	Block Views
	About blocks
	Block views
	Blocks, Parts, Ports, Connectors & Flows
	Port types
	Port types
	Internal Block Diagram Example
	Allocation
	Allocation example
	SysML
	Parametric Constraint
	Defining Constraints
	Defining variable binding 
	Parametric Diagram showing Vehicle Performance Par.
	SysML Properties
	Trade-off & Parametrics
	SysML
	Behavior Diagrams
	Activity Diagrams and State Machine Diagrams
	SysML
	Information management in UML/SysML
	Potential package structures
	What is a requirement?
	SysML Diagram Taxonomy
	SysML Requirements Overview
	Requirement Representation
	Requirement composition
	Predefined requirement relationships
	Derive relationship example
	Managing requirements
	Requirement relationships
	Linking to verification
	SysML Requirements Evaluation
	Workarounds
	SysML
	Principles
	Verification case development
	SysML Support for verification
	Definition of verification case
	SysML
	Applying SysML in the development process
	SysML in the design process
	Model management
	Integration into the document centric paradigm
	SysML
	SysML – the good
	SysML – the bad (1)
	SysML – the bad (2)
	SysML – the bad (3)
	SysML Adoption Strategies
	SysML – positive aspects
	SysML Conclusions
	SysML
	Tool Usability
	An ideal Vision ...
	... and the reality
	Risks
	Modelica
	Why Modeling & Simulation?
	Modelica – General Formalism to Model Complex Systems
	Kinds of Mathematical Models
	Dynamic vs. Static Models
	Continuous vs. Discrete-Time Dynamic Models
	Principles of Graphical Equation-Based Modeling
	Application Example – Industry Robot
	GTX Gas Turbine Power Cutoff Mechanism
	Modelica
	Stored Knowledge
	The Form – Equations
	Modelica – The Next Generation Modeling Language
	Object Oriented Mathematical Modeling
	Modelica Acausal Modeling
	Brief Modelica History
	Graphical Modeling Using Drag and Drop Composition
	Graphical Modeling - Drag and Drop Composition
	Multi-Domain (Electro-Mechanical) Modelica Model
	Corresponding DCMotor Model Equations
	Translation of Models to Simulation Code
	A Simple Rocket Model
	Celestial Body Class
	Moon Landing
	Simulation of Moon Landing
	Inheritance
	Inheriting definitions	
	Inheritance of Equations
	Multiple Inheritance
	Multiple Inheritance cont’
	Software Component Model
	Connectors and Connector Classes
	The flow prefix
	Physical Connector
	connect-equations
	Connection Equations
	Acausal, Causal, and Composite Connections
	Common Component Structure
	Electrical Components
	Electrical Components cont’
	Resistor Circuit
	Modelica Standard Library - Graphical Modeling
	Modelica Standard Library cont’
	Modelica.Blocks
	Modelica.Electrical
	Modelica.Mechanics
	Connecting Components from Multiple Domains
	DCMotor Multi-Domain (Electro-Mechanical)
	ModelicaML
	ModelicaML -  a UML profile for Modelica
	SysML vs. Modelica
	ModelicaML - Purpose
	ModelicaML -  Overview
	ModelicaML – Package Diagram
	ModelicaML – Class Diagram 
	ModelicaML - Internal Class Diagram
	ModelicaML – Equation Diagram
	ModelicaML – Simulation Diagram
	Eclipse
	Generating Editors
	Eclipse environment for ModelicaML
	Requirements Modeling
	Requirements Modeling in Eclipse
	Creating Modelica projects (I)
	Creating Modelica projects (II)
	Creating Modelica packages
	Creating Modelica classes
	Code browsing
	Error detection (I)
	Error detection (II)
	Code assistance (I)
	Code assistance (II)
	Code assistance (III)
	Code indentation
	Code Outline and Hovering Info
	Eclipse Debugging Environment
	Conclusions
	Demo
	End
	Encoding Requirements in Modelica
	Encoding Requirements in Modelica

