
Natural Semantics Based Tools for Semantic Web
With Application to Product Models

Thesis Proposal

Adrian Pop1

Programming Environments Laboratory (PELAB)
Department of Computer and Information Science (IDA)

Linköping University (LiU)

1 URL: http://www.ida.liu.se/~adrpo
 Email: adrpo@ida.liu.se

1 Background
Our research is a mix of several computer science
areas:
• Compilers and Debuggers for Programming

Languages
• Semantic Web and Description Logics
• Integrated Product Design using Modeling and

Simulation with Modelica

We apply results from programming languages in
the Semantic Web area and we would like to apply
the languages and tools of the Semantic Web area
in the Product Design and Modeling/Simulation
area. The thesis research is part of several research
projects, which are based in different research
areas.
 In the following we will briefly describe each
area in no particular order. We emphasize on the
connection between our research and the specific
area.

1.1 Integrated Product Design
In the area of model-driven product design using
modeling and simulation we focus on the
integration of Modelica language [6, 20] with
conceptual modeling [15] tools. The research is
part of the System Engineering & Computational
System Design (SECD) ProViking project.
 Modelica is an object-oriented language used for
modeling of large and heterogeneous physical
systems. For modeling with Modelica, commercial
software products such as MathModelica [5] or
Dymola [3] have been developed. Also open-

source projects like the OpenModelica Project [21]
are available.
 Designing products is a complex process.
Highly integrated tools are essential to help a
designer to work efficiently. Designing a product
includes early design phase product concept
modeling and evaluation, physical modeling and
simulation and finally the physical product
realization. For physical modeling and simulation
available tools provide advanced functionality.
However, the integration of such tools with
conceptual modeling tools is a resource consuming
process that today requires large amounts of
manual, and error prone work. Also, the number of
physical models available to the designer in the
product concept design phase is typically quite
large. This has an impact on the selection of the
best set of component choices for detailed product
concept simulation.
 To address these issues we have developed a
framework for product development based on an
XML meta-model [30] of Modelica and its
representation in an Modelica Database [31].
 To provide flexibility of the product design
framework we addressed the composition and
transformation of Modelica models in the
COMPOST framework [32].

1.2 Compilers and Debuggers for
Programming Languages

From this area we consider formal semantics of
programming languages. In particular the work on
Natural Semantics [24, 29], which is a formalism
for specifying many aspects of programming
languages i.e. type systems, dynamic semantics,

http://www.ida.liu.se/~adrpo
mailto:adrpo@ida.liu.se

translational semantics, static semantics, etc.
Natural Semantics is an operational semantics
derived from the Plotkin [22] structural operational
semantics combined with the sequent calculus for
natural deduction.
 Relational Meta-Language (RML) [28] is a
practical language for writing natural semantics
specifications. The RML language is compiled to
highly efficient C code by the rml2c compiler. In
this way large parts of a compiler can be
automatically generated from their Natural
Semantics specifications.
 RML was successfully used in our laboratory for
specifying and generating compilers from Natural
Semantics for Java, Modelica and other languages.
 However, in this thesis we are interested in
applying Natural Semantics to different languages
(OWL Lite/DL). Modification of the existing RML
language and compiler may be needed.
 In this area our research work extended the
Relational Meta-Language (RML) tool [28] with
tracing and debugging facilities.

As a crash course in Natural Semantics and
Relational Meta-Language (RML) we give an
example of a small expression (Exp) language and
its realization in Natural Semantics and RML.
 A specification in Natural Semantics has two
parts: declaration of syntactic and semantic objects
involved followed by groups of inference rules. In
our example language we have expressions build
from numbers. The abstract syntax of this language
is declared in the following way:

integers:

expressions:
 :: | 1 2 | 1 2 | 1* 2 | 1/ 2 |

v Int

e Exp v e e e e e e e e e

∈

∈ = + − −

The inference rules for our language are bundled
together in a judgment e v=> in the following
way:

1 1 2 2 v3=v1+v2
1 2 3

(1)

(2) e v e v
e e v

v v
=> =>

+ =>

=>

In RML, the Natural Semantics specification
presented above can be represented by the
following source code:

(* file exp1.rml *)
module exp1:
(* Abstract syntax of the language Exp1 *)
 datatype Exp = INTconst of int
 | ADDop of Exp * Exp
 | SUBop of Exp * Exp
 | MULop of Exp * Exp
 | DIVop of Exp * Exp
 | NEGop of Exp

end

relation eval: Exp => int

(* Evalu
relation eval: Exp => int =

ation semantics of Exp1 *)

 axiom eval(INTconst(ival))
 => ival (* eval of an integer node *)
 (* is the integer itself *)

 (* Evaluation of an addition node PLUSop
 * is v3, if v3 is the result of adding
 * the evaluated results of its children
 * e1 and e2. Subtraction, multiplication,
 * division operators have similar specs.
 *)

 rule eval(e1) => v1 &
 eval(e2) => v2 &
 int_add(v1,v2) => v3

 eval(ADDop(e1,e2)) => v3
 ...
end (* eval *)

The proof-theoretic interpretation is assigned to
this specification. We interpret inference rules as
recipes for constructing proofs. If we wish to prove
that there is a value such that 1 2 holds
for this specification. To prove this proposition we
need an inference rule that has a conclusion, which
can be instantiated (matched) to the proposition.
The only proposition that matches is proposition 2.

v v+ =>

1 1 2 2 1
1 2

v v v v
v

2v=> => = +
+ =>

To prove further we need to apply proposition 1
several times and we reach the conclusion.

1.3 Semantic Web and Description Logics
Semantic Web [10, 11] is a new wave of research
that provides a common framework that allows
data to be shared and reused between applications.
Semantic Web is trying to give the data on the web
a well-defined meaning in order to allow both
machines and humans to process it [16]. In order to

achieve such goal the Semantic Web has a layered
architecture as in Figure 1.

Figure 1: The Semantic Web layering

 At the bottom in top of Unicode and Uniform
Resource Identifiers (URI) is XML, namespaces
(NS) and XML-Schema. XML specifies a term list
with no relations. On top of XML comes Resource
Description Framework (RDF) [9] language to
define a simple datamodel for objects the relations
between them. RDF Vocabulary Description
Language (RDFS or RDF schema) [8] is a
vocabulary for describing properties and classes of
RDF resources. The Ontology layer uses languages
like the Web Ontology Language OWL [13] to add
more vocabulary for describing properties and
classes, typing of properties, relations between
classes, cardinality constraints, etc. OWL consists
of three sublanguages that provide increased
expressiveness with different computational
properties [14]:
• OWL Lite provides classification hierarchies

and very simple constraints
• OWL DL provides the maximum possible

expressiveness that still has computational
completeness and decidability. OWL DL has a
correspondence with Description Logics [1].

• OWL Full offers maximum expressiveness
with no computational guarantees.

On top of these ontology languages rules and logic
are present to add application behavior.

Description Logics [1] are a family of formalisms
for representing and reasoning with knowledge.
Description Logics is used to represent data and
knowledge of the relations between individual

objects and their grouping into classes. The
Description Logics reasoners [7, 23] make
deductions from a knowledge base of such
description of classes and individuals. These
deductions are targeted to detect inconsistencies, to
classify (organize) the classes into sub-class
hierarchies and to classify individuals under
appropriate concepts. The literature on Description
Logics and Semantic Web is huge and we do not
wish to enter into more detail here. We will
provide more insight in the Related Work section
and also in the Methodology section on what work
we are based upon and how do we extend this
work.

We are involved in this area with two projects:
1. Semantic Web For Products (SWEB). In this

project, our contribution will provide
pragmatic techniques and methodologies for
consistency checking of ontologies and their
corresponding documents.

2. European Network of Excellence on
“Reasoning on the Web with Rules and
Semantics (REWERSE)”. Our contribution in
this project comprises composition and typing
of rule-based languages for the web.

2 Problem Formulation
The focus of the thesis as short-term goal is to
provide lightweight, practical and efficient tool
implementations for Semantic Web languages. The
toolbox will include tools for consistency checking
of both ontologies and the data sets (documents)
that are conform to such ontologies.
 The long-term goal of this thesis is to integrate
all these technologies into a framework for model-
driven product design and development.

2.1 Detailed problem description
Short-term goal of the thesis. In the Semantic Web
for Products (SWEBPROD) project we employ
Semantic Web technologies for product
development. A key issue in this project is the
development of efficient lightweight tools for
ontology checking and processing. Our approach
in building such tools is to develop a Natural
Semantics specification of OWL Lite/DL
(Description Logics) in the Relational Meta-
Language (RML). This specification will be then

compiled to executable format using the Relational
Meta-Language (RML) compiler. Also, such
specifications can be debugged using the existing
RML debugger.
 A benefit of representing various reasoning tasks
using Natural Semantics is to have a clear proof-
theoretic view of how and from where certain
knowledge was inferred from the existing
knowledge base. The proof tree of each reasoning
task can be made available to the users by using
the output from the RML debugger.

Long-term goal of the thesis. The future research in
this thesis will focus on integrating Semantic Web
technologies with Product Design and also with
Modeling and Simulation tools. This will facilitate
model interchange between various modeling and
simulation tools and between product design tools.
Also, the use of already defined vocabularies
(vocabularies) for physical, mathematical,
biological and chemical domains could be use
when designing models.

3 Relevance
The main importance of providing such tools is to
automate and integrate methodologies and
techniques from various area of computer science.
 In the area of Semantic Web having tools based
on Natural Semantics specification will provide a
framework for:
• Experimentation with different semantics and

different algorithms for specific reasoning
tasks

• Proof-theoretic (deductive) explanations for
the variety of inferences performed by the
reasoning tasks

The benefits of using Semantic Web technologies
in product design tools or in modeling and
simulation tools are several:
• Support for library designers (classification of

classes, coherence checking, etc)
• Knowledge management through the design

phases (easy accessible data in machine
accessible form can be made available or can
be used in the various design phases of the
product development)

• Declarative query languages can be used to
search for specific models needed in the
conceptual design of products.

• Software information systems (SIS) could be
built to facilitate model understanding and
information finding.

4 Related Work
As related work in the area of Description Logic
and Semantic Web we use and extend several
research results: The idea of having a proof
explanation of the reasoning tasks has its root in
the work of McGuinness and Borgida [25-27]. The
implementation in RML of the Natural Semantics
specifications of Description Logics will be
adapted from [17]. Also, in order to proof our
concept we will perform comparisons with existing
OWL implementations [7].

There are few systems implemented that compile
or interpret Natural Semantics. One of these
systems is Centaur with its implementation of
Natural Semantics called Typol [19]. This system
is translating the inference rules to Prolog and is
several order of magnitude slower than RML [28].

In the area of Product Design our framework has
similarities with Schemebuilder [18]. However our
work is more oriented towards the design of
advanced complex products that require systems
engineering, and targeted to the simulation
modeling language Modelica, which to our
knowledge has more expressive power in the areas
of our research, than many tools for systems
engineering that are currently widely used. For
details on Systems Engineering, see [4].

Our RML-debugger employs source-code
instrumentation, which is the only portable and
elegant alternative for an optimizing compiler like
RML. Similar approach is used in debugging
Standard ML [33].

5 Results, research contributions
In this section we present our research
contributions as preliminary results and the
expected results for the future.

5.1 Preliminary results
The preliminary result consists of several articles,
which we briefly present in the next sections. Also,

we describe work not yet published and work in
progress.

5.1.1 ModelicaXML as an alternative
representation for Modelica

Adrian Pop, Peter Fritzson. ModelicaXML: A
Modelica XML representation with Applications,
in International Modelica Conference, 3-4
November, 2003, Linköping, Sweden.

In this paper we present a Modelica meta-model.
This meta-model is an alternative representation of
the Modelica language in XML format.
ModelicaXML is the structure of the Modelica
language after the parsing phase. We also have a
first look at using Semantic Web languages to
express some of the Modelica semantics.
 This representation provides more functionality
than a typical C++ class library implementing an
AST representation of Modelica:
• Declarative query languages for XML can be

used to query the XML representation.
• The XML representation can be accessed via

standard interfaces like Document Object
Model (DOM) [2] from practically any
programming language.

The usages of the ModelicaXML representation for
Modelica models, combined with the power of
general XML tools, ease the implementation of
tasks like:
• Analysis of Modelica programs (model

checkers and validators).
• Pretty printing (un-parsing).
• Translation between Modelica and other

modeling languages (interchange).
• Query and transformation of Modelica models.
Although ModelicaXML captures the structured
representation of Modelica source code, the
semantics of the Modelica language cannot be
expressed without implementing specific XML-
based tools. To address this issue we have
investigated the benefits of using languages
developed in the Semantic Web Community [11].
We believe that using such technology for
Modelica models would enable several
applications in the future:
• Models could be automatically translated

between modeling tools.

• Models could become autonomous (active
documents) if they are packaged together with
the operational semantics from the compiler,
and therefore, they could be simulated in a
normal browser.

• Software information systems (SIS) could
more easily be constructed for Modelica,
facilitating model understanding and
information finding. We consider adapting the
approach described in [34] to construct such a
SIS for Modelica.

• Model consistency could be checked using
already implemented Description Logic (DL)
reasoners (i.e. Fact or Fact++ [23]) or our
implementation. Using our implementation
will give us the freedom to experiment with
more language constructs and constraints.

• Certain models could be translated to and from
the Unified Modeling Language (UML) [12].

This preliminary work fits perfectly in the thesis
frame, being the middleware of our Product Design
framework.

5.1.2 Composition and transformation of
Modelica by using its ModelicaXML
meta-model

Adrian Pop, Ilie Savga, Uwe Assmann and Peter
Fritzson. Composition of XML dialects: A
ModelicaXML case study, in Software Composition
Workshop 2004, affiliated with ETAPS 2004,3
April, 2004, Barcelona.

This paper investigates how software composition
and transformation can be applied to domain
specific languages used today in modeling and
simulation of physical systems. More specifically,
we address the composition and transformation of
the Modelica language. The composition targets
the ModelicaXML dialect, which is the XML
representation of the Modelica language. By
extending the COMPOST concrete composition
layer with a component model for Modelica, we
provide composition and transformation of
Modelica.
 Transformation and composition of Modelica
models allows easy, automatic change of models to
fit context. Also, entire systems can be

automatically generated, configured and simulated.
Such result gives the framework for product design
a high flexibility and scalability.

5.1.3 An Integrated framework for model-
driven product design and development
using Modelica

Adrian Pop, Olof Johansson and Peter Fritzson. An
Integrated Framework for Model-Driven Product
Design and Development using Modelica, in
Conference on Simulation and Modeling,23-24
Septemeber, 2004, Copenhagen, submited.

This paper presents our work in the area of model-
driven product development processes. The focus
is on the integration of product design tools with
modeling and simulation tools. The goal is to
provide automatic generation of models from
product specifications using a highly integrated set
of tools. Also, we provide the designer with the
possibility of selecting the best design choice,
verified through (automatic) simulation of different
implementation alternatives of the same product
model. To have a flexible interaction among
various tools of the framework an XML
representation of the Modelica modeling language
called ModelicaXML is used. For efficient search
in a large base of simulation models the Modelica
Database was designed.
 As future work we want to explore the use of
ontologies for product concept design and for the
classification of the available component libraries.
For this purpose the languages developed by the
Semantic Web [11] community will be used.
Research efforts based on this standard are
integrating experience of many promising research
areas, for instance declarative rules, which still
lack a vendor neutral exchange formats for
industrial applications. The semantic web standard
lacks important functionality for quality assurance
and other necessary functionality, which today is
implemented in commercial products, but will
open up for sharing of important research results
with industry in collaborative environments.
 This framework is our test-bed for
experimenting novel techniques and methodologies
in conceptual design.

5.1.4 A debugger for Relational Meta-
Language

We have seen in the first section of this thesis
proposal a small example of RML specification.
 To provide debugging, the RML debugger takes
such specification (actually the AST of RML) and
adds instrumentation code in the left and right hand
side of a goal (term). This instrumentation code is
responsible for stopping is a breakpoint is set and
for displaying bounded variables in the goal about
to be executed. In this way, complete proof trees of
the inference rules that fired can be collected. Here
is not the place to enter into more detail. We intend
to publish a paper with a more detailed view on the
RML debugger and the techniques/methodologies
used in the implementation.

5.2 Expected results
Experimenting with existing and novel reasoning
techniques will improve the process management
sector by providing consistency checking,
searching and information retrieval facilities,
composition and interoperability, traceability and
comparison for all kind of documents.

 As a long-term result we foresee the integration
of reasoning tools in a knowledge-based platform
for product development.

6 Methodology
Strategy of approaching the problem:
In order to automatically build the tools that will
perform reasoning tasks on ontologies we have to
have to look into what reasoning services are
available in Description Logics (OWL Lite/DL)
systems. The basic reasoning tasks that a
Description Logics (OWL Lite/DL) system
supports are: subsumtion, incoherence checking,
disjointness, equivalence, classification, instance
checking, retrieval, and knowledge base
consistency. All these reasoning tasks can be
represented as rules in Natural Semantics as
described in [17, 25, 26]. We expect to encounter
some difficulties in adapting such Natural
Semantics specification to RML. To overcome
such difficulties the RML compiler will be
adapted.

 The RML debugger will be used to output traces
of proof-trees of the description logics (actually
OWL Lite/DL) reasoning tasks.
 The whole idea of having our own reasoning
tools is to provide more constraints than the actual
OWL languages encompass, by implementing
them directly in Natural Semantics.

Validity of the conclusion:
To validate our results we will compare our
approach with existing approaches [7, 23]. Also,
the tools will be validated in use-cases provided by
industrial partners involved in the research
projects.

7 Project Plan
In the first part of our research we focused on
developing an alternative meta-model for Modelica
(ModelicaXML). Also, we used this meta-model to
experiment with transformation and composition
of Modelica. As a case study we integrated the
ModelicaXML meta-model and Modelica
Database model into a framework for product
design and development.
 The next part of the research will have a slight
change of focus towards Semantic Web. We need
more insight and knowledge in the area to build
useful tools and methodologies that later can be
used in the research projects we are involved.

7.1 Detailed Plan

Date Task
2002-01 The beginning of PhD studies
2003-08 The ModelicaXML meta-model for

Modelica (paper accepted)
2004-03 Composition and transformation of

XML dialects: A ModelicaXML case
study (paper accepted)

2004-05 Release of the first version of RML
debugger (work in progress)

2004-05 An integrated framework for model-
driven product design and
development using Modelica (paper
submitted)

2004-06 RML prototype of basic reasoning
tasks in OWL Lite

2004-08 Evaluation of the RML prototype and

improvements (also improvements of
RML debugger based on feedback
from the OpenModelica project)

2004-10 Article on using RML to perform
reasoning

2004-12 Lic. thesis
2005-03 Integration of our toolbox with the

work of the partners involved in
current research projects.

2005-06 Research on novel methodologies to
improve product design.

2006-05 Experimenting with these new
methodologies in our framework for
product design.

2007-01 Thesis

8 References
1. Description Logics Website. Description

Logics, http://dl.kr.org/.
2. World Wide Web Consortium (W3C).

Document Object Model (DOM),
http://www.w3.org/DOM/.

3. Dynasim. Dymola, http://www.dynasim.se/.
4. INCOSE. International Council on System

Engineering, http://www.incose.org.
5. MathCore. MathModelica,

http://www.mathcore.se/.
6. Modelica: A Unified Object-Oriented Language

for Physical Systems Modeling, Language
Specification version 2.1, Modelica
Association, 2003,

7. World Wide Web Consortium (W3C). OWL
Implementations,
http://www.w3.org/2001/sw/WebOnt/impls.

8. World Wide Web Consortium (W3C). RDF
Vocabulary Description Language
(RDFS/RDF-Schema),
http://www.w3.org/TR/rdf-schema/.

9. Word Wide Web Consortium (W3C). Resource
Description Framework (RDF),
http://www.w3c.org/RDF.

10. World Wide Web Consortium (W3C).
Semantic Web, http://www.w3.org/2001/sw/.

11. Semantic Web Community Portal,
http://www.semanticweb.org/.

12. UML Website. Unified Modeling Language
(UML), http://www.uml.org/.

13. Word Wide Web Consortium (W3C). Web
Ontology Language (OWL),

http://dl.kr.org/
http://www.w3.org/DOM/
http://www.dynasim.se/
http://www.incose.org/
http://www.mathcore.se/
http://www.w3.org/2001/sw/WebOnt/impls
http://www.w3.org/TR/rdf-schema/
http://www.w3c.org/RDF
http://www.w3.org/2001/sw/
http://www.semanticweb.org/
http://www.uml.org/

http://www.w3.org/TR/2003/CR-owl-
features-20030818/.

14. World Wide Web Consortium (W3C). Web
Ontology Language (OWL) Overview,
http://www.w3.org/TR/owl-features/.

15. Mogens Myrup Andreasen. Machine Design
Methods Based on a Systematic Approach
(Syntesemetoder på systemgrundlag), Lund
Technical University, Lund, Sweden, 1980.

16. Tim Berners-Lee, James Hendler and Ora
Lassila. The Semantic Web, Scientific
American, May 2001.

17. Alex Borgida. From Type Systems to
Knowledge Representation: Natural
Semantics Specifications for Description
Logics., International Journal of Intelligent
and Cooperative Information Systems, March
1992: p. 93-126.

18. R.H. Bracewell, D.A.Bradley. Schemebuilder,
A Design Aid for Conceptual Stages of
Product Design, in International Conference
on Engineering Design, IECD'93 1993, The
Hague.

19. Thierry Despeyroux. TYPOL: a formalism to
implement natural semantics, INRIA, Sophia
Antipolis, 1988.

20. Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1,
Wiley-IEEE Press, 2003,
http://www.mathcore.com/drmodelica.

21. Peter Fritzson, Peter Aronsson, Peter Bunus,
Vadim Engelson, Levon Saldamli, Henrik
Johansson and Andreas Karstöm. The Open
Source Modelica Project, in Proceedings of
The 2th International Modelica
Conference,March 18-19, 2002, Munich,
Germany.

22. Plotkin G.D. A structural approach to
operational semantics, Århus University,
Århus, 1981.

23. Ian Horrocks. The FaCT System,
http://www.cs.man.ac.uk/~horrocks/FaCT/.

24. Gilles Kahn. Natural Semantics, in
Programming of Future Generation
Computers, Fuchi K. and Niva M., Editors,
1988, Elsevier Science Publishers: North
Holland. p. 237-258.

25. Deborah L. McGuinness. Explaining
Reasoning in Description Logics, Rutgers
University Thesis, New Brunswick, 1996.

26. Deborah L. McGuinness, Alex Borgida.
Explaining Subsumption in Description
Logics, in Fourteenth International Joint
Conference on Artificial Intelligence August
1995.

27. Deborah L. McGuinness, Paulo Pinheiro da
Silva. Infrastructure for Web Explanations, in
2nd International Semantic Web Conference
(ISWC2003),October, 2003, USA: Springer.

28. Mikael Pettersson. Compiling Natural
Semantics, Lecture Notes in Computer
Science (LNCS) 1549, Springer-Verlag, 1999,
http://www.ida.liu.se/~pelab/rml.

29. Mikael Pettersson. Compiling Natural
Semantics, Department of Computer and
Information Science, Linköping University,
Linköping, Dissertation No. 413, 1995.

30. Adrian Pop, Peter Fritzson. ModelicaXML: A
Modelica XML representation with
Applications, in International Modelica
Conference,3-4 November, 2003, Linköping,
Sweden.

31. Adrian Pop, Olof Johansson and Peter
Fritzson. An Integrated Framework for
Model-Driven Product Design and
Development using Modelica, in Conference
on Simulation and Modeling,23-24
Septemeber, 2004, Copenhagen, submited.

32. Adrian Pop, Ilie Savga, Uwe Assmann and
Peter Fritzson. Composition of XML dialects:
A ModelicaXML case study, in Software
Composition Workshop 2004, affiliated with
ETAPS 2004,3 April, 2004, Barcelona.

33. Andrew Tolmach, Andrew W. Appel. A
debugger for Standard ML, Journal of
Functional Programming, 1995, 5(2).

34. Christopher Welty. An Integrated
Representation for Software Development and
Discovery, 1996.

http://www.w3.org/TR/2003/CR-owl-features-20030818/
http://www.w3.org/TR/2003/CR-owl-features-20030818/
http://www.w3.org/TR/owl-features/
http://www.mathcore.com/drmodelica
http://www.cs.man.ac.uk/~horrocks/FaCT/
http://www.ida.liu.se/~pelab/rml

	Background
	Integrated Product Design
	Compilers and Debuggers for Programming Languages
	Semantic Web and Description Logics

	Problem Formulation
	Detailed problem description

	Relevance
	Related Work
	Results, research contributions
	Preliminary results
	ModelicaXML as an alternative representation for Modelica
	Composition and transformation of Modelica by using its Mode
	An Integrated framework for model-driven product design and
	A debugger for Relational Meta-Language

	Expected results

	Methodology
	Project Plan
	Detailed Plan

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

