Graphs HT 2006 4.1

content:
- Basics, ADT Graph, Representations
 - [GT 13.1-2, LD 12.1, CL 22.1]
- Graph Searching
 - Depth-First Search
 - Breadth-First Search
 - Example graph problems solved with search
- Directed Graphs
 - [GT 13.4, LD 12.2, CL 22.4]

Basics
- Graph G = (V,E):
 - V a set of vertices;
 - E a set of pairs of vertices, called edges
 - Directed graph: the edges are ordered pairs
 - Undirected graph: the edges are unordered pairs
 - Edges and vertices may be labelled by additional info

Example: A graph with
- vertices representing airports; info airport code
- edges representing flight routes; info mileage
 (see [G&T])

ADT Graph
 Defined differently by different authors. (Goodrich & Tamassia):
- endVertices(e): an array of the two endvertices of e
- opposite(v, e): the vertex opposite of v on e
- areAdjacent(v, w): true iff v and w are adjacent
- replace(v, x): replace element at vertex v with x
- replace(e, x): replace element at edge e with x
- insertVertex(o): insert a vertex storing element o
- insertEdge(v, w, o): insert an edge (v,w) storing element o
- removeVertex(v): remove vertex v (and its incident edges)
- removeEdge(e): remove edge e
- incidentEdges(v): edges incident to v
- vertices(): all vertices in the graph; edges(): all edges in the graph

Representation of graphs (rough idea)
Graph (V,E) with vertices \{v_1, ..., v_n\} represented as:
- Adjacency matrix
 \[M[i,j] = 1 \text{ if } \{v_i,v_j\} \text{ in } E, \text{ and } 0 \text{ otherwise} \]
- Adjacency list
 for each \(v\), store a list of neighbors
Adjacency List Structure [G&T]

Example graph

- List of vertices
- Vertex objects
- Lists of incident edges
- Edge objects linked to respective vertices
- List of edges

Adjacency Matrix Structure [G&T]

Example graph

- Vertex objects augmented with integer keys
- 2D-array adjacency array

Graph Searching

The problem: systematically visit the vertices of a graph reachable by edges from a given vertex. Numerous applications:
- robotics: routing, motion planning
- solving optimization problems (see OPT part)

Graph Searching Techniques:
- Depth First Search (DFS)
- Breadth First Search (BFS)

DFS Algorithm

- Input: a graph G and a vertex s
- Visits all vertices connected with s in time $O(|V|+|E|)$

Procedure: DepthFirstSearch($G=(V,E), s$):
- for each $v \in V$ do
 - explored(v) ← false;
- $RDFS(G, s)$

Procedure: $RDFS(G, s)$:
- explored(s) ← true;
- previsit(s) {some operation on s before visiting its neighbors}
- for each neighbor t of s
 - if not explored(t) then
 - $RDFS(G, t)$
- postvisit(s) {some operation on s after visiting its neighbors}

Example (notation of [G&T])

- unexplored vertex
- visited vertex
- unexplored edge
- discovery edge
- back edge

Example (cont.)
Some applications of DFS

- Checking if G is connected
- Finding connected components of G
- Finding a path between vertices
- Checking acyclicity/finding a cycle
- Finding a spanning forest of G

Breadth First Search (BFS)

- Input: a graph G and a vertex s
- Visits all vertices connected with s in time $O(|V|+|E|)$ in order of increasing distance to s
- Apply Queue!

procedure BFS($G=(V,E), s$):
for each v in V do
 explored(v) ← false;
S ← MakeEmptyQueue();
Enqueue(S,s); explored(s) ← true;
while not IsEmpty(S) do
 t ← Dequeue(S)
 visit(t)
 for each neighbor v of t
 if not explored(v) then
 explored(v) ← true;
 Enqueue(S,v)

Some applications of BFS

- Checking if G is connected
- Finding connected components of G
- Finding a path of minimal length between vertices
- Checking acyclicity/finding a cycle
- Finding a spanning forest of G

Compare with DFS!
Directed Graphs

- **Digraphs**: edges are ordered pairs.
- Digraphs have many applications, like
 - Task scheduling
 - Route planning, …..
- Search algorithms apply, follow directions.
- DFS applications for digraphs:
 - Transitive closure but in \(O(n(m+n)) \)
 - Checking strong connectivity
 - Topological sort of a directed acyclic graph (DAG) (scheduling)

Transitive Closure

- Given a digraph \(G \), the transitive closure of \(G \) is the digraph \(G^* \) such that
 - \(G^* \) has the same vertices as \(G \)
 - if \(G \) has a directed path from \(u \) to \(v \) (\(u \neq v \)), \(G^* \) has a directed edge from \(u \) to \(v \)
- The transitive closure provides reachability information about a digraph

Strong Connectivity Algorithm

- Pick a vertex \(v \) in \(G \).
- Perform a DFS from \(v \) in \(G \).
 - If there’s a \(w \) not visited, print “no”.
- Let \(G' \) be \(G \) with edges reversed.
 - Perform a DFS from \(v \) in \(G' \).
 - If there’s a \(w \) not visited, print “no”.
 - Else, print “yes”.
- Running time: \(O(n+m) \).

DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering \(v_1, \ldots, v_n \) of the vertices such that for every edge \((v_i, v_j) \), we have \(i < j \)
- Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints
- Theorem
 - A digraph admits a topological ordering if and only if it is a DAG

Topological Sorting

Use modified DFS!

procedure \(\text{TopologicalSort}(G) \):
 - \(\text{nextnumber} \leftarrow |G| \)
 - for each vertex \(v \) in \(G \) do \(\text{explored}(v) \leftarrow \text{false} \)
 - for each vertex \(v \) in \(G \) do
 - if not \(\text{explored}(v) \) then \(\text{RDFS}(G,v) \)

procedure \(\text{RDFS}(G,s) \):
 - \(\text{explored}(s) \leftarrow \text{true} \)
 - for each neighbor \(t \) of \(s \)
 - if not \(\text{explored}(t) \) then \(\text{RDFS}(G,t) \)
 - \(\text{number}(s) \leftarrow \text{nextnumber} \)
 - \(\text{nextnumber} \leftarrow \text{nextnumber} - 1 \)

Topological Sorting Example
Topological Sorting Example