Course Goals

Efficient solving of optimization problems

- **Algorithms**
 - Basic algorithms analysis (complexity)
 - Abstract Data Types: abstract formulation of commonly used data-processing operations
 - Data structures: commonly used techniques of representing data in computer memory
 - Standard solutions for commonly used problems: sorting, searching, selection

- **Optimization**
 - Combinatorial optimization problems
 - Their complexity analysis
 - Classification of such problems and efficient algorithms for their solution

The components

- **Algorithms**
 - 7 Lectures
 - 1 Lab IDA; register in WebReg this week

- **Optimization**
 - 14 Sessions including lectures and problem solving
 - 2 Labs MAI

- **Own studies**: 202 hours!
 - Base groups
 - Scenarios (Vinjetter)
 - **Integration Lab**: Data Structures in Optimization techniques, solved in base groups

Exams

- **Written exam**
 - problems on algorithms and on optimization
 - allowed material: the books at home page

- **Oral exam**
 - An optimization problem distributed in advance
 - An algorithm is to be developed (pseudocode)
 - Individual oral presentation of the solution to 3 teachers; 15 min + discussion

Register today for **December** or **January**

Scenarios/Vinjetter

Published at the homepage

- describe situations for using techniques taught in this course
- are to be used for discussions in base groups
- Scenario 3 is the base for the **Integration Lab** addressing both algorithms and optimization.
Selected Literature

Algorithms
- Lewis, Denenberg: *Data Structures & Their Algorithms*, 1991 (out of print)
- On-line collection of problems and solutions (TDDB57) linked at home page

Optimization
- Kaj Holmberg: *Kombinatorisk optimiering med linjärprogrammering (kompendium 2005)*