TDTS10: Computer Architecture

Lesson 2022

Outline

- Lab organization and goals
- SimpleScalar architecture and tools
- Exercises

Organization

- Assistants
 - Group A, B: Mina Niknafs
 - Group C, D: Yungang Pan
- Web page
 - http://www.ida.liu.se/~TDTS10
 - Check the lab page!

Organization

- Sign up in Webreg, TODAY
- Deadline for handing in lab reports:

Lab 1	Nov. 24
Lab 2	Dec. 7
Lab 3	Dec. 20

• Rules: Read them!

Lab Schedule

Lab schedule for groups

A (by Mina) and C (by Yungang)

Date	Time	Location*	Type
Nov. 8	13:15- 15:00	S11(A), S14(C)	Lesson
Nov. 11	15:15- 17:00	SU04(A), SU02(C)	Lab
Nov. 18	15:15- 17:00	SU04(A), SU02(C)	Lab
Nov. 24	08:15- 10:00	SU15/16(A), SU13(C)	Lab
Dec. 1	08:15- 10:00	SU04(A), SU13(C)	Lab
Dec. 5	10:15- 12:00	SU04(A), SU02(C)	Lab
Dec. 12	10:15- 12:00	SU04(A), SU02(C)	Lab

*SU04(A) means that the students of group A should go to room SU04.

Lab schedule for groups

B (by Mina) and D (by Yungang)

Date	Time	Location*	Type
Nov. 8	13:15- 15:00	S11(B), S14(D)	Lesson
Nov. 10	10:15- 12:00	SU24(B), SU00(D)	Lab
Nov. 17	08:15- 10:00	SU15/16(B), SU13(D)	Lab
Nov. 22	13:15- 15:00	SU04(B), SU02(D)	Lab
Nov. 28	10:15- 12:00	SU04(B), SU02(D)	Lab
Dec. 9	15:15- 17:00	SU04(B), SU02(D)	Lab
Dec. 16	15:15- 17:00	SU04(B), SU02(D)	Lab

*SU04(B) means that the students of group B should go to room SU04.

Please only attend your own lab sessions (6 sessions)

Please check the lab location from these tables (available on webpage).

Examination

For each lab:

- 1. Demonstrate
 - Must be done during lab sessions
 - Both members must be present during demo
- 2. Report, Submitted via Teams

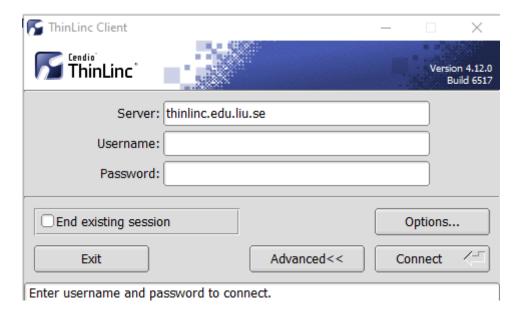
Labs

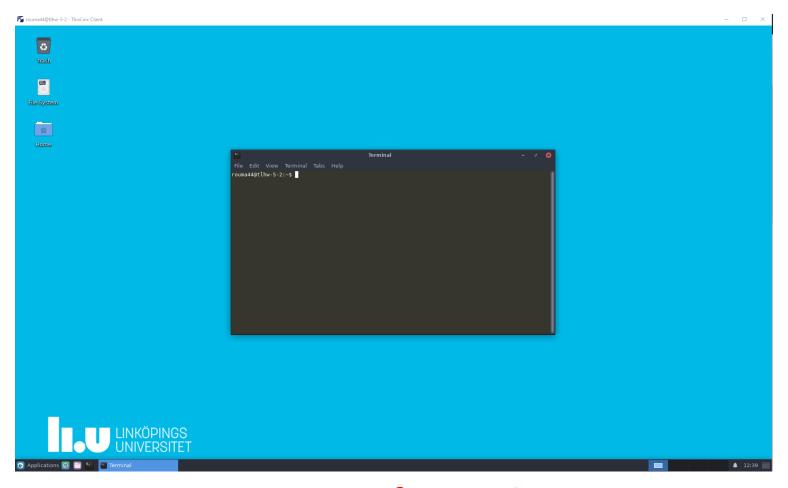
- Three labs:
 - 1. Cache Memories (2 lab sessions)
 - 2. Instruction Pipelining (2 lab sessions)
 - 3. Superscalar Processors (2 lab sessions)

Goals

- Obtain knowledge about computer organization and architecture
- Insights in various trade-offs involved in the design of a processor
- Become familiar with a set of tools necessary for evaluation of computer architectures

Remote


• Thinlinc client: thinlinc.edu.liu.se


• SSH client: ssh.edu.liu.se

ThinLinc

ThinLinc

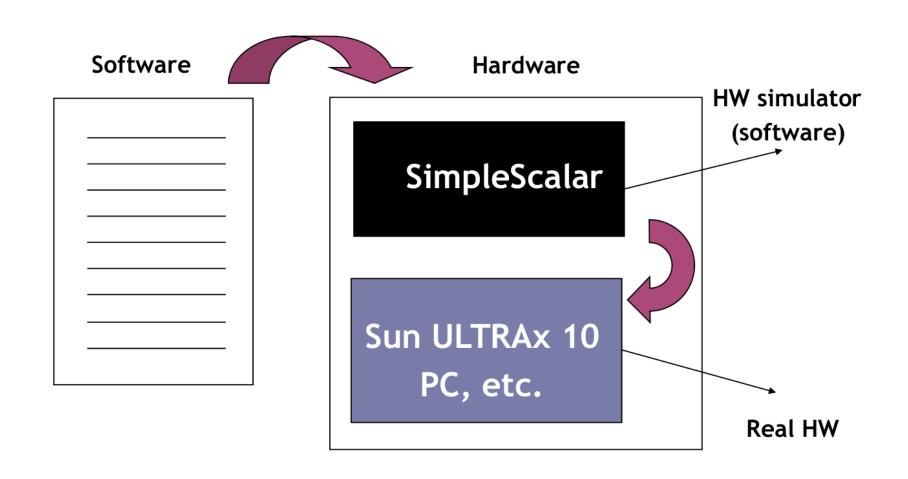
Press F8 for options

Backup subgroups on Teams

- Private Team for each subgroup
 - Can be used between lab partners
 - Upload your lab reports

Environment

- Linux
- Simulations are started from a command line (i.e., terminal)
 - To open a new terminal you can press ctrl+alt+t
- Get yourself familiarized with the terminal
 - Ask Google first
 - Ask your assistant
- Make sure you learn the basic commands (i.e., cd, ls, cp, ...)


Tool Setup

- Don't forget the instructions in lab0
- Instructions should be clear and easy to follow, but if you face difficulties
 - Don't get frustrated:)
 - Read again carefully (without skipping over the lines)
 - Consult your assistant

Outline

- Lab organization and goals
- SimpleScalar architecture and tools
- Exercises

Architecture Simulation

SimpleScalar: Literature

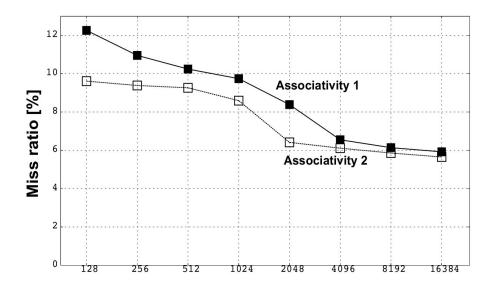
- "The SimpleScalar Tool Set, Version 2.0", by Doug Burger and Todd M. Austin
 - Very important preparation for the labs
 - This is your main reference for the tool!
- "User's and Hacker's guide", slides by Austin

SimpleScalar Architecture

- Virtual architecture derived from MIPS
 - Control (j, jr,..., beq, bne,...)
 - Load/Store (lb, lbu, ...)
 - Integer Arithmetic (add, addu, ...)
 - Floating Point Arithmetic (add.s, add.d, ...)
 - Miscellaneous (nop, syscall, break)

SimpleScalar Architecture (cont'd)

Several simulators


- Sim-fast: Fast, only functional simulation (no timing)
- Sim-safe: Sim-fast + memory checks

Won't use these two!

- Sim-cache: Sim-safe + cache simulation and various timing properties (simulation time, measured time, ...)
- Sim-cheetah: Simulation of multiple cache configurations
- Sim-outorder: Superscalar simulator

An Example

- Lab1, assignment 3
 - Dump the default configuration of sim-cheetah
 - Modify the configuration and simulate
 - Plot the results (e.g. OpenOffice, Gnuplot, Matlab, Excel)

Outline

- Lab organization and goals
- SimpleScalar architecture and tools
- Let's solve some exercises on the first lab!
 - Lesson exercises