518

CHAPTER 14 / PROCESSOR STRUCTURE AND FUNCTION

i Result
cti nstruction
i il Fetch : —3 Execute [
(a) Simplified view
Wait New address Fﬂ)ﬂ
. | T
. i Result
i nstruction
Instruction i I 1 S Reur |
Discard

(b) Expanded view

Figure 14.9 Two-Stage Instruction Pipeline

one. Figure 14.9a depicts this approach. The pipgline has two mdepgm;l:n; isstii,:
The first stage fetches an instruction and bgffcr_s It.' When_the szc?[n :is Execming,
the first stage passes it the buffered instruction. While the second s ag\ IS e
the instruction, the first stage takes advantage Qf any upused memory Lyt cstoie
and buffer the next instruction. This is called instruction prefetch or fete e 1;;
Note that this approach, which involve_s instruction buffering, requntrese?o g
ters. In general, pipelining requires registers to store data l‘aeTween‘ $ ag : o
It should be clear that this process will 'speed up instruction 1CXE':C ;ﬂd
the fetch and execute stages were of equal dura[xo:?, th_e instruction cyi f éLme V\éowﬂl
be halved. However, if we look more closely at th1§ pipeline (F1gu-re 9b), w
see that this doubling of execution rate is unlikely for two reasons:

1. The execution time will generally be longer than the fetch time. Executlornt‘wi:l
involve reading and storing operands and the perfgrmance of some operatio t.
Thus, the fetch stage may have to wait for some time before it can empty its

buffer. . .

2. A conditional branch instruction makes the addres§ of the .next 11_15tru<}:1t10n t(;
be fetched unknown. Thus, the fetch stage must wait until it recewe§ the]?'exe
instruction address from the execute stage. The execute stage may then hav
to wait while the next instruction is fetched.

Guessing can reduce the time loss frorp the se.con'd reason. A s;lmplethrslfe:zhﬂiz
following: When a conditional branch instruction is pass;d on from e
the execute stage, the fetch stage fetches the next IHSlI'U.CllOl.I in melrfnt(;1 yb e
branch instruction. Then, if the branch is not taken, no tuncje is los‘t.. | e; hr .
taken, the fetched instruction must be discarded and anew instruction fetched. R
While these factors reduce the potential effectwenesg of_the tw?-sgage II:IJl gre
line, some speedup occurs. To gain further spgc‘dup, the plgellne_xnustr ! ?;:Sing
stages. Let us consider the following decomposition of the instruction p :

14.4 / INSTRUCTION PIPELINING 519

Fetch instruction (FI): Read the next expected instruction into a buffer.
* Decode instruction (DI): Determine the opcode and the operand specifiers.

Calculate operands (CO): Calculate the effective address of each source oper-

and. This may involve displacement, register indirect, indirect, or other forms
of address calculation.

¢ Fetch operands (FO): Fetch each operand from memory. Operands in regis-
ters need not be fetched.,

* Execute instruction (EI): Perform the indicated operation and store the result,
if any, in the specified destination operand location.

* Write operand (WO): Store the result in memory.

With this decomposition, the various stages will be of more nearly equal dura-
tion. For the sake of illustration, let us assume equal duration. Using this assump-
tion, Figure 14.10 shows that a six-stage pipeline can reduce the execution time for
9 instructions from 54 time units to 14 time units.

Several comments are in order: The diagram assumes that each instruction
goes through all six stages of the pipeline. This will not always be the case. For
example, a load instruction does not need the WO stage. However, to simplify the
pipeline hardware, the timing is set up assuming that each instruction requires all
six stages. Also, the diagram assumes that all of the stages can be performed in par-
allel. In particular, it is assumed that there are ho memory conflicts. For example,
the FI, FO, and WO stages involve a memory access. The diagram implies that all
these accesses can occur simultaneously. Most memory systems will not permit that,
However, the desired value may be in cache, or the FO or WO stage may be null.
Thus, much of the time, memory conflicts will not slow down the pipeline.

Time

Instruction 1 | 1 | p1 | Cco | FO El | WO

Instruction 2 FI | DI [CO|FO | EI |WO

Instruction 3 FI | DI | CO|FO | EI |wo

Instruction 4 FI | DI | CO|FO | EI WO

Instruction 5 FI | DI | CO | FO | E1I |woO
Instruction 6 FI | DI | CO | FO l*‘;l WO
Instruction 7 FI | DI | CO | FO | EI |WO

Instruction 8 FI [DI (CO | FO | EI | WO

Instruction 9 L FI | DI | CO|FO | EI |wo

Figure 14.10 Timing Diagram for Instruction Pipeline Operation

«*

