
Computer Architecture
TDTS10

Erik Larsson
Department of Computer Science

Question 1
! Q: Why is the memory system of a computer organized as a

hierarchy? What are the basic elements of a memory
hierarchy? Illustrate with a figure

! A: The memory system is organized as a hierarchy as one
wants both fast memory access and large storage.

2

Question 2

! Q: Which is the optimal replacement algorithm for a cache
memory with direct mapping?

! A: There is no need of a replacement algorithm when you make
use of direct mapping

3

Question 3

! Q: What is the maximal possible memory fragmentation a
program itself can cause in a computer system where a
64Kbytes memory makes use of 2Kbytes frames/pages?

! A: First, when paging is used there is no external
fragmentation. There is internal fragmentation, and the worst
that can happen is that a single byte is needed. Hence,
2Kbytes-1byte is the largest possible fragmentation one can
get.

4

Question 4

! Q: Assume you have a USB memory stick attached to your
computer. After working with the files on the USB memory, a so
called friend simply removes the USB memory from the
computer. Now, how does your mood depend on the used
update policy (write through or write back)?

! A: If my USB is a write-back, data is only updated in the cache
and maybe not in the memory. Hence, my mood is towards
anger.

! If my USB is a write-through, data is always updated. Hence,
my mood is not changed if a so called friend removes the USB.

5

Question 5

! Q: What is the advantage of separate data and instruction
caches when it comes to performance in a non-pipelined
architecture?

! A: There is no advantage of having a separate data and
instruction cache as there is no memory access conflict when
there is no pipeline.

6

Question 6

! Q: How many cycles would the following sequence of
instructions take if they are executed in a 6-stage pipeline
(assume one cycle per stage in the pipeline (FI-fetch
instruction, DI-decode instruction, CO-calculate operand, FO-
fetch operands, EI-execute instruction, WO-write operand)
ADD R1, (R2)
ADD R2, R1

! A:

7

FI DI CO FO EI WO

FI DI CO FO EI WO

9

Question 7

! Q: What techniques exist to handle True Data Dependency?

! A: Stall or find alternative instruction

8

 ADD R1,R2
 MUL R1,R5
 SUB R1,#2
 BEZ TARGET
 SUB R4,R3
 MOVE R1,R6
 - - - - - - - - - - - - -
TARGET - - - - - - - - - - - - -

Question 8

! Consider the following sequence:
 ADD R1,R2 R1 <- R1 + R2
 SUB R4,R3 R4 <- R4 - R3
 MUL R1,R5 R1 <- R1 * R5
 SUB R1,#2 R1 <- R1 - 2
 BEZ TARGET
 MOVE R1,R6 R1 <- R6
 - - - - - - - - - - - - -
TARGET - - - - - - - - - - - - -

! Q: Transform this sequence for a machine
with delayed branching?

9

Question 9
! Q: What is the argument for RISC architecture when it comes to

closing the semantic gap between high-level languages and
machine code?

! A: Simplicity is a good way to go. Many HLL constructs can be
mapped to simple instructions. Only few complex instructions are
used, and they can be implemented as a sequence of simple
instructions. A simpler instruction set (equal length) makes the CPU
simpler; hence it can run faster. A load-store architecture reduces
pipe-line penalties. And a simpler architecture makes it possible to
squeeze in more registers, which is good as program analysis has
shown that:
! many operands are scalars; hence it is good to have a high number of

registers (it speeds up access to have operands in processor)
! CALL/RETURN is time consuming; a high number of registers can

increase performance as registers can be used to store CALL/RETURN
information

10

Question 10

! Assume that the program below is stored in the RAM memory.
Address Instruction/Data
0 LOAD R2, #10 R1=?, R2=10, PC=1
1 LOAD R1, #0 R1=0, PC=2
2 ADD R1,(R2) R1=5, PC=3
3 BR 5 PC=5
4 ADD R1, R2
5 MUL R1, R2 R1=50, R2, 10, PC=6
6 HLT
7 ADD R1, R2
8 SUB R2, #1
9 HLT
10 5
11 8
Q: What would the program counter, R1 and R2 contain after
execution of the program above?

11

Question 11

! Q: Is it possible, given the program above, to determine if it is a
RISC or CISC processor (motivate)?

! A: It is possible. This is not a RISC machine as there is one
instruction like: ADD R1, (R2). Instructions that access memory,
which is done by (R2) and also ALU (here through ADD) are not
allowed in RISC processors. RISC processors use Load-Store
concept. Therefore, this must be a CISC processor.

12

Question 12

! Q: For a RISC architecture with 16 registers where the
instruction length is 12 bits, how many operations is it possible
to have in a 2-address instructions scheme?

! A: 16 registers -> 4 bits are needed. If 2-address instruction
scheme is used, 4+4 bits are needed. Hence, there are
12-4-4=4 bits left. 4 bits enable 16 operations.

13

Question 13

! Q: Why make use of demand paging? How does it work?
! A: In demand paging, only pages that are needed are loaded

(instead of loading all pages for a program). The advantage is
that more programs can be loaded into the memory as each
program is only given a few pages.

14

www.liu.se

