Lecture 9: MIMD Architectures

- Introduction and classification
- Symmetric multiprocessors
- NUMA architecture
- Clusters

Introduction

- A set of general purpose processors is connected together.
- In contrast to SIMD processors, MIMD processors can execute different programs on different processors.
 - Flexibility!
- By 90s, SIMD lost ground, since general purpose microprocessors are now very cheap and powerful.
 - MIMD machines could be built from commodity (off-the-shelf) microprocessors.
- A variant of this, called **single program multiple data streams** (SPMD) executes the same program on different processors.
 - Avoid complexity of general concurrent programming.
 - A programming model rather than an architecture concept!
SIMD vs MIMD

- SIMD computers require less hardware than MIMD computers (single control unit).
- SIMD processors are specially designed, and tend to be expensive and have long design cycles.
- Not all applications are naturally suited to SIMD processors.
- Conceptually, MIMD computers cover SIMD need.
 - Having all processors executing the same program (SPMD).
 - SPMD can be built from inexpensive off-the-shelf components with relatively little effort.

MIMD Processor Classification

- **Centralized Memory**: Shared memory located at centralized location — consisting usually of several interleaved modules — the same distance from any processor.
 - Symmetric Multiprocessor (SMP)
 - Uniform Memory Access (UMA)
- **Distributed Memory**: Memory is distributed to each processor — improving scalability.
 - **Message Passing Architectures**: No processor can directly access another processor’s memory.
 - **Hardware Distributed Shared Memory (DSM)**: Memory is distributed, but the address space is shared.
 - Non-Uniform Memory Access (NUMA)
 - Software DSM: A level of OS built on top of message passing multiprocessor to give a shared memory view to the programmer.
MIMD with Shared Memory

- Tightly coupled, not scalable.
- Typically called Multi-processor.

MIMD with Distributed Memory

- Loosely coupled with message passing, scalable
- Typically called Multi-computer.
Shared-Address-Space Platforms

- Part (or all) of the memory is accessible to all processors.
- Processors interact by modifying data objects stored in this shared-address-space.

- UMA (uniform memory access) = the time taken by a processor to access any memory word in the system is identical.
- NUMA, otherwise.

Message-Passing Platforms

- These platforms comprise of a set of processors and their own (exclusive) memory.
 - Clustered workstations
 - Non-shared-address-space multi-computers
- These platforms are programmed using (variants of) send and receive primitives.
- Libraries such as MPI (Message Passing Interface) and PVM (Parallel Virtual Machine) provide such primitives.
Multi-Computer Systems

- A multi-computer system is a collection of computers interconnected by a message-passing network.
 - Clusters.

- Each processor is an autonomous computer
 - having its own local memory, and
 - communicating with each other through the message passing network.

- Can be easily built with commodity microprocessors.

MIMD Design Issues

- Design issues related to an MIMD machine are very complex, since it involves both architecture and software issues.
- The most important issues include:
 - Processor design
 - Physical organization
 - Interconnection structure
 - Inter-processor communication protocols
 - Memory hierarchy
 - Cache organization and coherency
 - Operating system design
 - Parallel programming languages
 - Application software techniques
Lecture 9: MIMD Architectures

- Introduction and classification
 - Symmetric multiprocessors
- NUMA architecture
- Clusters

Symmetric Multiprocessors (SMP)

- A set of similar processors of comparable capacity.
- All processors can perform the same functions (symmetric).
- Processors are connected by a bus or other internal connection.
- Processors share the same memory.
 - A single memory or a pool of memory modules
- Memory access time is (approximately) the same for each processor.
- All processors share access to I/O.
 - Either through the same channels or different channels giving paths to the same devices
- Controlled by an integrated operating system:
 - Providing interaction between processors
 - Interaction at job, task, file and data element levels
SMP Advantages

- High performance
 - If similar work can be done in parallel (e.g., scientific computing).
- Good availability
 - Since all processors can perform the same functions, failure of a single processor does not stop the system.
- Support incremental growth
 - Users can enhance performance by adding additional processors.
- Scaling
 - Vendors can offer range of products based on different number of processors.
SMP based on Shared Bus

- Advantages:
 - Simplicity.
 - Flexibility — Easy to expand the system by attaching more processors.

- Disadvantages:
 - Performance limited by bus bandwidth.
 - Each processor should have local cache
 - To reduce number of bus accesses
 - Can lead to problems with cache coherence
 - Should be solved in hardware (to be discussed later).

Shared Bus – Pros and Cons
Multi-Port Memory SMP

- Direct access of memory modules by several processors.
- Better performance.
 - Each processor has dedicated path to memory module
- Hardware logic required to resolve conflicts.
 - Permanently designated priorities to each memory port.
- Can configure portions of memory as private to one or more processors
 - Increased security.
- Write through cache policy necessary to alert other processors of memory updates.
Operating System Issues

- An SMP OS manages processor resources so that the user perceives a single system.
- It should appear as a single-processor multiprogramming system.
- In both SMP and uniprocessor, multiple processes may be active at one time.
 - OS is responsible for scheduling their execution and allocating resources.
- A user may construct applications that use multiple processes without regard to whether a single processor or multiple processors will be available.
- OS supports reliability and fault tolerance
 - Graceful degradation.

IBM S/390 Mainframe SMP
S/390 - Key Components

- Processor unit (PU)
 - CISC microprocessor
 - Frequently used instructions hard wired
 - 64k L1 unified cache with 1 cycle access time
- L2 cache
 - 384k
- Bus switching network adapter (BSN)
 - Includes 2M of L3 cache
- Memory card
 - 8G per card

Lecture 9: MIMD Architectures

- Introduction and classification
- Symmetric multiprocessors
 - NUMA architecture
- Clusters
Memory Access Issues

- Uniform memory access (UMA), as in SMP:
 - All processors have access to all parts of memory.
 - Access time to all regions of memory is the same.
 - Access time for different processors is the same.

- Non-uniform memory access (NUMA)
 - All processors have access to all parts of memory.
 - Access time of processor differs depending on region of memory.
 - Different processors access different regions of memory at different speeds.

Motivation for NUMA

- SMP has practical limit to number of processors.
 - Bus traffic limits to between 16 and 64 processors.
 - A multi-port memory has limited number of inputs.
- In clusters each node has its own memory.
 - Applications do not see large global memory.
 - Coherence maintained by software not hardware (slow speed).
- NUMA retains SMP flavour while giving large scale multiprocessing.
 - e.g. Silicon Graphics Origin NUMA machine (3000 Series Server) has 1024 MIPS processors (≥ 1 TFLOPS peak performance!).
- Objective is to provide a transparent system-wide memory while permitting multiprocessor nodes each with its own bus or internal interconnection system.
A Typical NUMA Organization

- Each node is, in general, an SMP
- Each node has its own main memory
- Each processor has its own L1 and L2 cache

Nodes are connected by some networking facility
- Each processor sees a single addressable memory space
 - Each location has unique system-wide address
A Typical NUMA Organization

- Memory request order:
 - L1 cache (local to processor)
 - L2 cache (local to processor)
 - Main memory (local to node)
 - Remote memory (going through the int. network)

- All is done automatically and transparent to the processor.
 - With very different access time!

NUMA — Pros and Cons

- Effective performance at higher levels of parallelism than SMP.
- However, performance can break down if too much access to remote memory. This can be avoided by:
 - Designing better L1 and L2 caches to reduce memory access.
 - Need good temporal locality of software.
 - If software has good spatial locality, data needed for an application will reside on a small number of frequently used pages.
 - The can be initially loaded into the local memory.
 - Enhancing VM by including in OS a page migration mechanism to move a VM page to a node that is frequently using it.
- NUMA does not transparently look like a SMP.
 - Software changes needed to move OS and applications from SMP to NUMA.
 - Page allocation, process allocation and load balancing are needed.
Lecture 9: MIMD Architectures

- Introduction and classification
- Symmetric multiprocessors
- NUMA architecture
- Clusters

Loosely Coupled MIMD - Clusters

Cluster: A set of computers connected over a high-bandwidth local area network, and used as a parallel computer.

- A group of interconnected whole computers
- Work together as a unified resource
- Give illusion of being one machine
- Each computer called a node
 - A node can also be a multiprocessor itself, such as an SMP.
- Message passing for communication between nodes

- NOW — Network of Workstations, homogeneous cluster.
- Grid — Computers connected over a wide area network.
Cluster Benefits

- Absolute scalability
 - Cluster with a very large number of nodes.
- Incremental scalability
 - A user can start with a small system and expand it as needed, without having to go through a major upgrade.
- High availability
 - Fault tolerance by nature.
- Superior price/performance
 - Can be built with cheap commodity nodes.

Cluster Configurations

The simplest classification of clusters is based on whether the nodes share access to disks.

- Cluster with no shared disk.
 - Interconnection is by high-speed link
 - LAN — may be shared with other non-cluster computers
 - Dedicated interconnection facility
Cluster Configurations (Cont’d)

- Shared-disk cluster
 - Still connected by a message link
 - Disk subsystem directly linked to multiple computers
 - Disks should be made fault-tolerant
 - To avoid single point of failure in the system.

Operating System Design Issues

- Failure management:
 - Fault tolerant
 - Fail-over
 - Switching applications and data from failed system to alternatives.
 - Fail-back
 - Restoration of applications and data to original system, after the problem is fixed

- Load balancing:
 - Middleware needs to recognize that processes may switch between machines.
 - Automatically include new computers in scheduling
Parallelizing Computation

How to make a single application executing in parallel on a cluster:

- **Paralleling compiler**
 - Determines at compile time which parts can be executed in parallel.

- **Parallelized application**
 - Application written from scratch to be parallel.
 - Message passing to move data between nodes.
 - Hard to program.
 - Best end results.

- **Parametric computing**
 - If a problem is repeated execution of algorithm on different sets of data.
 - e.g. simulation using different scenarios.
 - Needs effective tools to organize and run.

Cluster Computer Architecture

Sequential applications

Parallel applications

Parallel programming environment

Cluster Middleware
(Single system image and availability infrastructure)

PC/workstation
Comm SW
Net. Interf. HW

PC/workstation
Comm SW
Net. Interf. HW

PC/workstation
Comm SW
Net. Interf. HW

High-Speed Network/Switch
Cluster Middleware Support

- **Unified image to user** – provide user with single system image.
- **Single file hierarchy** – user sees a single hierarchy of file directories
- **Single control point** – default workstation use for cluster management
- **Single virtual networking** – any node can access any other point in cluster, even though the actual configuration may consist of multiple interconnected networks
- **Single job management system** – a user can submit a job without specifying any computer to execute the job.
- **Check-pointing** – periodically save the process states as intermediate results, to allow rollback recovery after a failure.
- **Process migration** – to enable load balancing.

Cluster vs. SMP

- Both provide multiprocessor support to high demand applications.
- Both available commercially
 - SMP for longer time
- **SMP:**
 - Easier to manage and control
 - Closer to single processor systems
 - Scheduling is the main difference
 - Less physical space
 - Lower power consumption
- **Clustering:**
 - Superior incremental and absolute scalability
 - Superior availability
 - High degree of redundancy
Google Cluster of PCs

- Problem to solve
 - Search queries
 - Tens of thousands per second from many different users.
 - A typical search query leads to
 - Read hundreds of megabytes of data located in many locations.
 - Tens of billions of CPU cycles

- Solution
 - Cluster of commodity PCs
 - More than 15,000 nodes.
 - Rather than a smaller number of high-end servers.
 - Parametric computing
 - Same algorithm (PageRank to determine the relative importance of a web page).
 - Different sets of data.

Serving a Google Query

- User enters search query
- DNS (Domain Name System) lookup
 - Several clusters available worldwide
 - To handle catastrophic failures (earthquakes, power failures)
 - Selection of cluster
 - Closest (smallest roundtrip time) to the user
- Browser sends HTTP request
- Load balancer selects a web server
 - Hardware based
- Query execution
 - Use inverted index to fine and locate the relevant documents
- Web server returns result
Summary

- Two most common MIMD architectures are symmetric multiprocessors and clusters.
 - SMP is an example of tightly coupled system with shared memories.
 - Cluster is a loosely coupled system with distributed memories.
- More recently, non-uniform memory access (NUMA) systems are also becoming popular.
 - More complex in terms of design and operation.
- Several organization styles can be also integrated into a single system.