Introduction to assignment 2
and socket programming

TDTS06: Computer Networks
Carl Magnus Bruhner
September 2020

LINKOPING
II.“ UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Lesson agenda

« General lab assignment information
« Assignment 2

« HTTP & Proxy

 Socket programming

* Questions

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

General lab assignment information

« Assignment 1 should be finished as soon as possible

« Assignment 2 takes time, and has a soft deadline September 25. It has changed
since last year, but the concepts are very simliar the same.

 Assignment 3 is the same type as the first, and shouldn’t take too much time.

« Assignment 4 needs a bit more time than 1 & 3, so don’t put it off. A Python
version is in the making, but might not be available in time (and might be buggy).

« Semi-hard deadline and last time to demonstrate easily is the day of your last lab
session (October 14 or 15, depending on your lab group)

* Check with the TA if you plan to use languages other than those prescribed!

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Assighment 2 — what will we do?

« Learn about HTTP, TCP/IP and WWW
» Learn socket programming and web proxies
 Build a simple proxy to alter content

Application

|

Socket layer

v

TCP

Y

P

v

Ethernet

l

NIC

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

What is WWW?

« It is a world-wide system of interconnected servers which distribute a special
type of document.

« Documents are marked-up to indicate formatting (Hypertexts).

e This idea has been extended to embed multimedia and other content within the
marked-up page.

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

What is HTTP?

« HTTP is WWW's application layer protocol.

« HyperText Transfer Protocol (HTTP) to transfer HyperText Markup Language
(HTML) pages and embedded objects.

« Works on a client-server paradigm.
* Needs reliable transport mechanism (TCP).

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

HTTP

Router

Client

LINKOPING
II." UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

HTTP

Note: HTTP server always runs on port 80

Router

Client

LINKOPING
II." UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming 9

HTTP

Note: HTTP server always runs on port 80

Note: Client can use any unrestricted port
Generally >1024

Router

Client

LINKOPING
II." UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Proxy

 Acts as intermediary between client and server.

Ask Bob what What is
the current time is the current time

C —>™ —>
Alice Proxy Bob
v u

Bob says the The time
time is 7pm is 7pm

O @ @

10

LINKOPING
II." UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Benefits of a proxy

» Hide your internal network information (such as host names and IP addresses).
* You can set the proxy to require user authentication.

» The proxy provides advanced logging capabilities.

* Proxy helps you control which services users can access.

 Proxy-caches can be used to save bandwidth.

11

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming 12

HTTP with proxy

Note: HTTP server always runs on port 80

Proxy listens on a port (>1024) and talks to server on
another (>1024)

Note: Client can use any unrestricted port
Generally >1024

i\\
N
|

Router

Client

LINKOPING
II." UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

What is a port?

« A port is an application-specific or process-specific software construct serving as
a communications endpoint.

« The purpose of ports is to uniquely identify different applications or processes
running on a single computer and thereby enable them to share a single physical
connection to a packet-switched network like the Internet.

13

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Ports continued

 Port only identifies processes/applications.
« With regard to the Internet, ports are always used together with IP.

* Notation 192.168.1.1:80

11

IP address Transport protocol port
UDP/TCP

14

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Socket programming

» These are software constructs used to create ports and perform operations on
them.

« We will talk about these types of sockets:
« Datagram socket

e Stream socket
e SSL sockets

15

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Datagram sockets

« They are connectionless

* Do not guarantee in order delivery
« No form of loss recovery

« No congestion control

* No flow control

« Datagram sockets use UDP

16

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Stream sockets

« Connection oriented sockets

 In order and guaranteed delivery
 Error identification and recovery
« Congestion control

* Flow control

« Stream sockets use TCP protocol

« SSL sockets are similar to stream sockets, but include functions to handle
encryption

17

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming Server fgsE
O] R 25 ifa

Socket

Important socket calls

socket Cent st
o bind Socket
listen

EBIEAR
establishing connection
3-way handshake

et J°

BPIREXEN G EIIRES
' client sending data
ﬁ server receiving data
nd

accept

connect
RREEEENIEZ PR
v client receiving data

ding dat
) Send Recy w< server sending data

* recv
ec i EPInEEERMAELEDARZE

1 client sending a end message
CloseSocket g C

LINKOPING
II.“ UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Socket programming calls

* socket()
« Takes as input
« Address family (=AF_INET)
» Socket type (=SOCK_STREAM)
« Returns
A socket object

19

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Socket programming calls

* bind()
« Takes as input
« address/port tuple (for AF_INET)
« What does this do?
« Associate the socket with an address/port tuple

20

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Socket programming calls

e listen()
« Takes as input

« Backlog (max queue of incoming connection)
 This must run at the server side to listen to incoming connection

21

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Socket programming calls

« connect()
« Takes as input
« Address/port tuple
« What does this do?

« Attempts to setup a connection with the other end

22

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Socket programming calls

« accept()
« Takes as input
e Returns
 conn - a new socket object
 address - address/port tuple
« Reads through the backlog and picks one from the list to connect to it.
* Runs at the server side

23

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming 24

Socket programming calls

 send()
« Takes as input
* Message
e Returns
« Number of bytes sent

 Send is always best effort. If it cant send the whole message, the value returned is
smaller.

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Socket programming calls

* recv()
« Takes as input
« Max buffer length
e Returns
* bytes object representing the data received

25

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Socket programming calls

* close()
« Takes as input

 Marks the socket as closed

26

II LINKOPING
[UNIVERSITY

TDTSO06 Introduction to lab 2 & socket programming

Socket programming resource

« Helpful guide linked from the assignment text:
Beej’s Guide to Network Programming

« Based on C, but can be used as a foundation for
other languages

Beej's Guide to

NETWORK PROGRAMMING
Using Internet Sockets

27

LINKOPING
II." UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Assignment 2 introduction

* You are to develop a “Fake News” proxy that can modify the content sent from
the server before returning to the browser.

* “Smiley” from “Stockholm” should be altered to “Trolly” from “Linkoping”
« Images of Smiley should be altered to troll images

28

II LINKOPING
[UNIVERSITY

TDTSO06 Introduction to lab 2 & socket programming 29

Assignment 2 description

» Socket programming is the key

 Build a proxy to which a user can connect to

« The proxy connects to the server on the user's behalf (recollect how proxy works)
» Proxy receives the response from the server

« Alters any occurrences of Smiley and Stockholm

« Redirects the (potentially) altered content to the user

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Assignment 2 requirements

« Handles simple HTTP GET interactions between client and server
o Alters any text occurrences of “Smiley” and “Stockholm”
« Replaces any images of Smiley

 Uses at least one TCP socket
« Imposes no limit on the size of the transferred HTTP data
 Uses only basic libraries (e.g. not “HttpURLConnection” Java class)

« Works with all web browser and systems (HTTP only)

30

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Browser configuration

 Proxy listens on a particular port

Connection Settings

—Configure Proxies to Access the Internet
" No proxy
" Auto-detect proxy settings for this network
" Use system proxy settings

¢+ Manual proxy configuration:

| 127.0.0.1

HTTP Proxy: I Port: | 3490:i
™ Use this proxy server for all protocols

SSL Proxy: I Port: | Oﬂ

FTP Proxy: I Port: I 0::'

SOCKS Host: | Port: I ojl

{" SOCKSv4 (% SOCKS v5
No Proxy for:

Example: .mozilla.org, .net.nz, 192.168.1.0/24
¢~ Automatic proxy configuration URL:

OK I Cancel Help

Proxy's port number

Make sure it is blank

31

LINKOPING
UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

HTTP basics

« Recollect lab 1. It contains things that you need in lab 2.
« HTTP request

* Get
« Syn, SynAck, Ack

Transmission Control Protocol, Src Port: 50139 (50139), Dst Port: http (80), Seq: 1, Ack: 1, Len: 276
-l Hypertext Transfer Protocol
GET /vod/final_1.3.f4m HTTP/1.1\r\n

Host: 130.236.182.199\r\n
Connection: keep-alive\r\n
User-Agent: Mozilla/5.0 (windows NT 6.1) ApplewebKit/537.36 (KHTML, like Gecko) Chrome/37.0.2062.103 safari/537.36\r\n
Accept-Encoding: gzip,deflate,sdch\r\n
Accept-Language: en-US,en;q=0.8,ms;qg=0.6\r\n
\r\n
[Full request URI: http://130.236.182.199/vod/final_1.3.f4m]

32

II LINKOPING
[UNIVERSITY

TDTSO06 Introduction to lab 2 & socket programming

HTTP basics

« HTTP response
« OK

Transmission Control Protocol, Src Port: http (80), Dst Port: 50139 (50139), Seq: 4381, Ack: 277, Len: 1215
[4 Reassembled TCP Segments (5595 bytes): #248(1460), #249(1460), #251(1460), #252(1215)]

- Hypertext Transfer protocol
HTTP/1.1 200 OK\F\R

Date: Sun, 07 Sep 2014 10:06:36 GMT\r\n
Server: Apache/2.2.17 (unix) DAV/2\r\n

Content-Length: 5354\r\n
Last-Modified: Tue, 04 Feb 2014 12:25:40 GMT\r\n

Keep-Alive: timeout=15, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/xml\r\n

\r\n

33

LINKOPING
II." UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

HTTP basics

« HTTP 1.0 vs HTTP 1.1
« Many differences (compare RFC:s)
 For this assignment:
« Connection: close
« Handshake-Get-response-OK-Teardown
« Connection: keep-alive
« Handshake-Get-response-OK-wait-Get-response
« What should you use for the proxy?

34

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

How to handle connections

« With connection: keep-alive, the connection is kept open. You are responsible to
figure out when the response is completed.

« With connection: close, the server closes the connection after the response is
sent.

« How can you enforce connection: close on HTTP 1.1?

35

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

General overlay

Client |Server

side |side T

Proxy
Client

LINKOPING
II." UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

General overlay

Server side: listens on a port, accepts, receives, forwards to client side

Client |Server
side side
Proxy

Client

37

LINKOPING
UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

General overlay

Client |Server
side side
Proxy

Client side: connects to the server, send request, receive response,
Forwards to server side

Client

38

LINKOPING
UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Content altering

* Need to be able to filter both based on URL and content.

 In which of the two halves of the proxy will you implement altering based on
URL?

 In which of the two halves of the proxy will you implement content altering?
« How to actually do content altering?

39

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Content altering

» Response from the server comes in segments

« Remember TCP segmentation?

« Reconstruct the message in a temporary buffer

* No dynamic sizing of buffer, chose a value and stick with it
* Do not type-cast non-text data!

« Then run content altering only on the text message

40

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Text vs other binary data

« What is the requirement for filtering with regard to binary data?
« Only that you have to be smart in handling any data type

« What will happen if you attempt to reconstruct an image or video and filter it?
 Solutions?

41

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Text vs binary data

» Content-type header
 Differentiate content type
o Alter/don't alter
» Send request directly or alter before

Transmission Control Protocol, Src Port: http (80), Dst Port: 50139 (50139), Seq: 4381, Ack: 277, Len: 1215
[4 Reassembled TCP Segments (5595 bytes): #248(1460), #249(1460), #251(1460), #252(1215)]
-l Hypertext Transfer Protocol
HTTP/1.1 200 oK\r\n
Date: Sun, 07 Sep 2014 10:06:36 GMT\r\n
Server: Apache/2.2.17 (Unix) DAV/2\r\n
Content-Length: 5354\r\n
Last-Modified: Tue, 04 Feb 2014 12:25:40 GMT\r\n
Keep-Alive: timeout=15, max=100\r\n
Connection: Keep-Alive\r\n
Ccontent-Type: text/xml\r\n
\ri\n

42

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Debugging advice

« Stick to simple web pages initially

* Debug incrementally

« Check and double check request string for formatting and completeness
 Source of many errors like 'server closed connection unexpectedly’

« If developing on own computers, use Wireshark to debug. Can save a lot of time!

43

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Debugging advice

« HTTP vs HTTPS
» Requirements do not ask for a proxy which works with HTTPS
« If the browser allows selective proxy, enable for HTTP only
 Restrict yourselves to simple sites and basic test cases

44

II LINKOPING
[UNIVERSITY

TDTSO06 Introduction to lab 2 & socket programming 45

Debugging advice

« Header manipulation
« First thing to check at a proxy is the URL that it sends out to the server

e It might require different manipulations based on the site. Be sure that you
test for all sites mentioned in the test scenario

« If you change some fields in the header, the packet length has to be changed
or brought back to the original length

II LINKOPING
[UNIVERSITY

TDTS06 Introduction to lab 2 & socket programming

Debugging advice

« Read all the instructions, even though its lengthy
* Develop incrementally

 Look at the debugging checklist

« Experiment with Wireshark

« Document the limitations of your proxy

46

II LINKOPING
[UNIVERSITY

Questions?

carbr307 @student.liu.se (subject “TDTSO06 [...]”)

www.liu.se

LINKOPING
II.“ UNIVERSITY

