
Introduction	to	assignment	2	
and	socket	programming
TDTS06:	Computer	Networks	
Carl	Magnus	Bruhner	
September	2020

TDTS06	Introduction	to	lab	2	&	socket	programming

Lesson	agenda
• General lab assignment information

• Assignment 2

• HTTP & Proxy

• Socket programming

• Questions

2

TDTS06	Introduction	to	lab	2	&	socket	programming

General	lab	assignment	information
• Assignment 1 should be finished as soon as possible
• Assignment 2 takes time, and has a soft deadline September 25. It has changed

since last year, but the concepts are very simliar the same.
• Assignment 3 is the same type as the first, and shouldn’t take too much time.
• Assignment 4 needs a bit more time than 1 & 3, so don’t put it off. A Python

version is in the making, but might not be available in time (and might be buggy).

• Semi-hard deadline and last time to demonstrate easily is the day of your last lab
session (October 14 or 15, depending on your lab group)

• Check with the TA if you plan to use languages other than those prescribed!

3

TDTS06	Introduction	to	lab	2	&	socket	programming

Assignment	2	–	what	will	we	do?
• Learn about HTTP, TCP/IP and WWW
• Learn socket programming and web proxies
• Build a simple proxy to alter content

4

TDTS06	Introduction	to	lab	2	&	socket	programming

What	is	WWW?
• It is a world-wide system of interconnected servers which distribute a special

type of document.
• Documents are marked-up to indicate formatting (Hypertexts).
• This idea has been extended to embed multimedia and other content within the

marked-up page.

5

TDTS06	Introduction	to	lab	2	&	socket	programming

What	is	HTTP?
• HTTP is WWW's application layer protocol.
• HyperText Transfer Protocol (HTTP) to transfer HyperText Markup Language

(HTML) pages and embedded objects.
• Works on a client-server paradigm.
• Needs reliable transport mechanism (TCP).

6

TDTS06	Introduction	to	lab	2	&	socket	programming

HTTP

7

Client

Server

Router

TDTS06	Introduction	to	lab	2	&	socket	programming

HTTP

8

Client

Server

Router

Note: HTTP server always runs on port 80

TDTS06	Introduction	to	lab	2	&	socket	programming

HTTP

9

Client

Server

Router

Note: HTTP server always runs on port 80

Note: Client can use any unrestricted port
Generally >1024

TDTS06	Introduction	to	lab	2	&	socket	programming

Proxy
• Acts as intermediary between client and server.

10

TDTS06	Introduction	to	lab	2	&	socket	programming

Benefits	of	a	proxy
• Hide your internal network information (such as host names and IP addresses).
• You can set the proxy to require user authentication.
• The proxy provides advanced logging capabilities.
• Proxy helps you control which services users can access.
• Proxy-caches can be used to save bandwidth.

11

TDTS06	Introduction	to	lab	2	&	socket	programming

HTTP	with	proxy

12

Client

Server

Router

Note: HTTP server always runs on port 80

Note: Client can use any unrestricted port
Generally >1024

Proxy

Proxy listens on a port (>1024) and talks to server on
another (>1024)

TDTS06	Introduction	to	lab	2	&	socket	programming

What	is	a	port?
• A port is an application-specific or process-specific software construct serving as

a communications endpoint.
• The purpose of ports is to uniquely identify different applications or processes

running on a single computer and thereby enable them to share a single physical
connection to a packet-switched network like the Internet.

13

TDTS06	Introduction	to	lab	2	&	socket	programming

Ports	continued
• Port only identifies processes/applications.
• With regard to the Internet, ports are always used together with IP.
• Notation 192.168.1.1:80

14

IP address Transport protocol port
UDP/TCP

TDTS06	Introduction	to	lab	2	&	socket	programming

Socket	programming
• These are software constructs used to create ports and perform operations on

them.
• We will talk about these types of sockets:

• Datagram socket
• Stream socket
• SSL sockets

15

TDTS06	Introduction	to	lab	2	&	socket	programming

Datagram	sockets
• They are connectionless
• Do not guarantee in order delivery
• No form of loss recovery
• No congestion control
• No flow control
• Datagram sockets use UDP

16

TDTS06	Introduction	to	lab	2	&	socket	programming

Stream	sockets
• Connection oriented sockets
• In order and guaranteed delivery
• Error identification and recovery
• Congestion control
• Flow control
• Stream sockets use TCP protocol
• SSL sockets are similar to stream sockets, but include functions to handle

encryption

17

TDTS06	Introduction	to	lab	2	&	socket	programming

Important	socket	calls
• socket
• bind
• listen
• accept
• connect
• send
• recv

18

TDTS06	Introduction	to	lab	2	&	socket	programming

Socket	programming	calls
• socket()

• Takes as input
• Address family (=AF_INET)
• Socket type (=SOCK_STREAM)

• Returns
• A socket object

19

TDTS06	Introduction	to	lab	2	&	socket	programming

Socket	programming	calls
• bind()

• Takes as input
• address/port tuple (for AF_INET)

• What does this do?
• Associate the socket with an address/port tuple

20

TDTS06	Introduction	to	lab	2	&	socket	programming

Socket	programming	calls
• listen()

• Takes as input
• Backlog (max queue of incoming connection)

• This must run at the server side to listen to incoming connection

21

TDTS06	Introduction	to	lab	2	&	socket	programming

Socket	programming	calls
• connect()

• Takes as input
• Address/port tuple

• What does this do?
• Attempts to setup a connection with the other end

22

TDTS06	Introduction	to	lab	2	&	socket	programming

Socket	programming	calls
• accept()

• Takes as input
• –

• Returns
• conn - a new socket object
• address - address/port tuple

• Reads through the backlog and picks one from the list to connect to it.
• Runs at the server side

23

TDTS06	Introduction	to	lab	2	&	socket	programming

Socket	programming	calls
• send()

• Takes as input
• Message

• Returns
• Number of bytes sent

• Send is always best effort. If it cant send the whole message, the value returned is
smaller.

24

TDTS06	Introduction	to	lab	2	&	socket	programming

Socket	programming	calls
• recv()

• Takes as input
• Max buffer length

• Returns
• bytes object representing the data received

25

TDTS06	Introduction	to	lab	2	&	socket	programming

Socket	programming	calls
• close()

• Takes as input
• –

• Marks the socket as closed

26

TDTS06	Introduction	to	lab	2	&	socket	programming

Socket	programming	resource
• Helpful guide linked from the assignment text:

Beej’s Guide to Network Programming
• Based on C, but can be used as a foundation for

other languages

27

TDTS06	Introduction	to	lab	2	&	socket	programming

Assignment	2	introduction
• You are to develop a “Fake News” proxy that can modify the content sent from

the server before returning to the browser.
• “Smiley” from “Stockholm” should be altered to “Trolly” from “Linköping”
• Images of Smiley should be altered to troll images

28

TDTS06	Introduction	to	lab	2	&	socket	programming

Assignment	2	description
• Socket programming is the key
• Build a proxy to which a user can connect to
• The proxy connects to the server on the user's behalf (recollect how proxy works)
• Proxy receives the response from the server
• Alters any occurrences of Smiley and Stockholm
• Redirects the (potentially) altered content to the user

29

TDTS06	Introduction	to	lab	2	&	socket	programming

Assignment	2	requirements
• Handles simple HTTP GET interactions between client and server
• Alters any text occurrences of “Smiley” and “Stockholm”
• Replaces any images of Smiley

• Uses at least one TCP socket
• Imposes no limit on the size of the transferred HTTP data
• Uses only basic libraries (e.g. not “HttpURLConnection” Java class)

• Works with all web browser and systems (HTTP only)

30

TDTS06	Introduction	to	lab	2	&	socket	programming

Browser	configuration
• Proxy listens on a particular port

31

127.0.0.1

Proxy's port number

Make sure it is blank

TDTS06	Introduction	to	lab	2	&	socket	programming

HTTP	basics
• Recollect lab 1. It contains things that you need in lab 2.
• HTTP request

• Get
• Syn, SynAck, Ack

32

TDTS06	Introduction	to	lab	2	&	socket	programming

HTTP	basics
• HTTP response

• OK

33

TDTS06	Introduction	to	lab	2	&	socket	programming

HTTP	basics
• HTTP 1.0 vs HTTP 1.1

• Many differences (compare RFC:s)
• For this assignment:

• Connection: close
• Handshake-Get-response-OK-Teardown

• Connection: keep-alive
• Handshake-Get-response-OK-wait-Get-response

• What should you use for the proxy?

34

TDTS06	Introduction	to	lab	2	&	socket	programming

How	to	handle	connections
• With connection: keep-alive, the connection is kept open. You are responsible to

figure out when the response is completed.
• With connection: close, the server closes the connection after the response is

sent.
• How can you enforce connection: close on HTTP 1.1?

35

TDTS06	Introduction	to	lab	2	&	socket	programming

General	overlay

36

Client

Server

Proxy

Server
side

Client
side

TDTS06	Introduction	to	lab	2	&	socket	programming

General	overlay

37

Client

Server

Proxy

Server
side

Client
side

Server side: listens on a port, accepts, receives, forwards to client side

TDTS06	Introduction	to	lab	2	&	socket	programming

General	overlay

38

Client

Server

Proxy

Server
side

Client
side

Client side: connects to the server, send request, receive response,
 Forwards to server side

TDTS06	Introduction	to	lab	2	&	socket	programming

Content	altering
• Need to be able to filter both based on URL and content.
• In which of the two halves of the proxy will you implement altering based on

URL?
• In which of the two halves of the proxy will you implement content altering?
• How to actually do content altering?

39

TDTS06	Introduction	to	lab	2	&	socket	programming

Content	altering
• Response from the server comes in segments
• Remember TCP segmentation?
• Reconstruct the message in a temporary buffer
• No dynamic sizing of buffer, chose a value and stick with it
• Do not type-cast non-text data!
• Then run content altering only on the text message

40

TDTS06	Introduction	to	lab	2	&	socket	programming

Text	vs	other	binary	data
• What is the requirement for filtering with regard to binary data?

• Only that you have to be smart in handling any data type
• What will happen if you attempt to reconstruct an image or video and filter it?
• Solutions?

41

TDTS06	Introduction	to	lab	2	&	socket	programming

Text	vs	binary	data
• Content-type header
• Differentiate content type

• Alter/don't alter
• Send request directly or alter before

42

TDTS06	Introduction	to	lab	2	&	socket	programming

Debugging	advice
• Stick to simple web pages initially
• Debug incrementally
• Check and double check request string for formatting and completeness
• Source of many errors like 'server closed connection unexpectedly'
• If developing on own computers, use Wireshark to debug. Can save a lot of time!

43

TDTS06	Introduction	to	lab	2	&	socket	programming

Debugging	advice
• HTTP vs HTTPS

• Requirements do not ask for a proxy which works with HTTPS
• If the browser allows selective proxy, enable for HTTP only
• Restrict yourselves to simple sites and basic test cases

44

TDTS06	Introduction	to	lab	2	&	socket	programming

Debugging	advice
• Header manipulation

• First thing to check at a proxy is the URL that it sends out to the server
• It might require different manipulations based on the site. Be sure that you

test for all sites mentioned in the test scenario
• If you change some fields in the header, the packet length has to be changed

or brought back to the original length

45

TDTS06	Introduction	to	lab	2	&	socket	programming

Debugging	advice
• Read all the instructions, even though its lengthy
• Develop incrementally
• Look at the debugging checklist
• Experiment with Wireshark
• Document the limitations of your proxy

46

www.liu.se

Questions?	
carbr307@student.liu.se	(subject	“TDTS06	[…]”)

