TDTS06: Computer Networks

Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Office: B:476 Office Hours: TBA

Notes derived from "*Computer Networking: A Top Down Approach"*, by Jim Kurose and Keith Ross, Addison-Wesley.

The slides are adapted and modified based on (among other things) slides from the book's companion Website, as well as modified slides by A. Mahanti and C. Williamson.

People

Examiner and lecturer

- Niklas Carlsson, Associate Professor
- Research area: Design, modeling, and performance evaluation of distributed systems and networks

Lab assistants

- Vengatanathan Krishnamoorthi, PhD student
- Johannes Schmidt, Postdoc
- Course Secretary
 - Madeleine Häger Dahlqvist
- Director of studies
 - Patrick Lambrix

Course Overview

Written exam

• Grads: 'fail', 3, 4, 5.

Four (4) mandatory lab assignments

- Must pass all four labs
- Eight lab opportunities
- Please register on webreg right away!!
 (deadline on Friday)

One (1) optional assignment

○ Up to 4 bonus marks for exam

- Eleven (11) lectures + one (1) exam prep.
- See website for more information ...

My expectations

Read textbook

- Good textbook, written by highly regarded researchers in the field
- Lots of content
- Not time to cover everything during lectures

Work hard

- Pay attention during lectures
- Make sure you understand the material
- Start assignments early (some will take time)
- Follow deadlines and office hours

What to expect? (What will be covered?)

- Design principles for computer networks
 Conceptual view of Internet architecture
- Design, resource, and performance tradeoffs
 - General working knowledge of protocols/applications
 - Detailed knowledge of selected protocols/applications
 - Some practical hands on experience
- Glimpse into the future of the Internet
 - Emerging trends and technologies

TDTS06 1-6

Roadmap (today's lecture)

- > What is a Computer Network?
- > Applications of Networking
- > Classification of Networks
- > Layered Architecture (and Protocols)
- > Network Core
- > Delay & Loss in Packet-switched Networks
- Structure of the Internet
- > Summary

E.g., https://www.youtube.com/watch?v=w42EsCDAhB4

□ So, what are computer networks?

<u>Computer Network?</u>

- "interconnected collection of autonomous computers connected by a communication technology"
- What is the Internet?
 - o "network of networks"
 - "collection of networks interconnected by routers"
 - "a communication medium used by millions"
 - Email, chat, Web "surfing", streaming media
- \Box Internet \neq Web

The "nuts and bolts" view of the Internet

The "nuts and bolts" view of the Internet

millions of connected computing devices called hosts or end-systems • PCs, workstations, servers • PDAs, phones, toasters running *network apps* communication links • fiber, copper, radio, satellite links have different capacities (*bandwidth*) routers: forward packets packet: piece of a message (basic unit of transfer)

TDTS06 1-12

<u>Roadmap</u>

- > What is a Computer Network?
- > Applications of Networking
- > Classification of Networks
- > Layered Architecture (and Protocols)
- > Network Core
- > Delay & Loss in Packet-switched Networks
- Structure of the Internet
- > Summary

Service/company landscape include

Applications: Example classes

Applications: Example classes

- File transfer
- Remote login (telnet, rlogin, ssh)
- World Wide Web (WWW)
- Instant Messaging (Internet chat, text messaging on cellular phones)
- Peer-to-Peer file sharing
- Internet Phone (Voice-Over-IP)
- Video-on-demand
- Distributed Games
- □ ... and many more to come/discuss ...

Applications (2)

end systems (hosts):

- run application programs
 e.g. Web, email, ftp
- o at "edge of network"

client/server model

- client host requests, receives service from always-on server
- e.g. Web browser/server; email client/server
- Client/server model has well-defined roles for each.

Applications (3)

□ peer-to-peer model:

- No fixed clients or servers
- Each host can act as both client and server at any time

Examples: Napster, Gnutella, KaZaA, BitTorrent

TDTS06 1-19

<u>Roadmap</u>

- > What is a Computer Network?
- > Applications of Networking
- > Classification of Networks
- > Layered Architecture (and Protocols)
- > Network Core
- > Delay & Loss in Packet-switched Networks
- Structure of the Internet
- > Summary

□ Internet is an example of an internetwork.

- Internetwork: interconnection of networks
- Subnetwork: a constituent of an internet
- Intermediate system: a device used to connect two networks allowing hosts of the networks to correspond with each other
 - Bridge
 - Router

A Classification of Networks

Wide Area Network (WAN)

Metropolitan Area Network (MAN)

Local Area Network (LAN)

- Wireless LAN (WLAN)
- Home Networks
- Personal Area Network (PAN)
- Body Area Network (BAN)

... and more (incl. sensor and ad-hoc) ...

Wide Area Network (WAN)

- Spans a large geographic area, e.g., a country or a continent
- A WAN consists of several transmission lines and routers
- Internet is an example of a WAN

Metropolitan Area Network (MAN)

"City sized": tens of kilometers

A Cable TV Network is an example of a MAN

Typically 500 to 5,000 homes

Cable Network Architecture: Overview

Cable Network Architecture: Overview

Local Area Network (LAN)

company/univ local area network (LAN) connects end system to edge router

Ethernet:

- shared or dedicated link connects end system and router (a few km)
- 10 Mbps, 100Mbps, Gigabit Ethernet
- widespread deployment: companies, univ, homeLANs
 LANs: chapter 5

Wireless Networks (WLANs)

shared *wireless* access
 network connects end system
 to router
 via base station or "access point"
 wireless LANs:
 802.11b (WiFi)
 To the

Wireless Networks (WLANs)

shared wireless access network connects end system to router

 via base station or "access point"
 wireless LANs:
 802.11b (WiFi)

wider-area wireless access
 provided by telco operator
 3G, 4G
 WAP/GPRS in Europe
 WiMax

Home networks

Typical home network components:

- ADSL or cable modem
- router/firewall/NAT
- Ethernet
- wireless access point

TDTS06 1-31

<u>Roadmap</u>

- > What is a Computer Network?
- > Applications of Networking
- > Classification of Networks
- > Layered Architecture (and Protocols)
- > Network Core
- > Delay & Loss in Packet-switched Networks
- Structure of the Internet
- > Summary

Protocols:

- The rules used for communication
- Proper, accepted, and expected behavior

<u>human protocols:</u>

- "What's the time?"
- "I have a question"
- Introductions

<u>human protocols:</u>

- "What's the time?"
- "I have a question"
- Introductions

network protocols:

- Machines rather than humans
- All communication activity in Internet governed by protocols

Introduction 1-35

Need:

Introduction 1-36
But first ... What's a protocol?

Need: ... specific msgs sent

Introduction 1-37

But first ... What's a protocol?

Need:

... specific msgs sent ... specific actions taken when msgs received, or other events

But first ... What's a protocol?

Need:

... specific msgs sent ... specific actions taken when msgs received, or other events

Network protocols:

- Define the order and format of messages exchanged
- Defines the actions to take in response to events (e.g., message arrivals, transmissions, losses, and timeouts)

TDTS06 1-40

Layered Architecture: Why?

Networks are complex with many pieces
 Hosts, routers, links, applications, protocols, hardware, software
 Can we organize it, somehow?

Layered Architecture: Why?

Networks are complex with many pieces

- Hosts, routers, links, applications, protocols, hardware, software
- □ Can we organize it, somehow?
- Let's consider a Web page request ...

Motivation Continued ...

Application Services	Application logic	Application Services
Communication Service	Reliable delivery	Communication Service
Network Services	Transfer "bits"	Network Services

Web Client

Web Server

TDTS06 1-43

Motivation Continued ...

Dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - Inverse reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in network technology doesn't affect rest of system
- Iayering considered harmful? (design vs implemention)

TDTS06 1-45

Layers, Protocols, Interfaces

Layers, Protocols, Interfaces

Networks organized as a stack of layers

- Offer services to the layer above it using a well-defined interface
 - programming language analogy: libraries hide details while providing a service)

• Reduces design complexity

- Protocols: Logical "horizontal" conversations at any layer (between peers)
- Data Transfer: each layer passes data & control information over the interfaces (between neighboring layers)

Layers, Protocols, Interfaces

TDTS06 1-48

Layered Architecture (cont'd)

A set of layers & protocols is called a Network Architecture.

- These specifications enable hardware/software developers to build systems compliant with a particular architecture.
 - E.g., TCP/IP, OSI

Layering: Design Issues

How many layers? What do they each do?

How to identify senders/receivers?

Addressing

Unreliable physical communication medium?

Error detection

Error control

Message reordering

□ Sender can swamp the receiver?

Flow control

Multiplexing/Demultiplexing

Reference Models

Reference Models

Internet protocol stack

application: supporting network applications

• FTP, SMTP, STTP

- transport: host-host data transfer
 TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 O PPP, Ethernet

physical: bits "on the wire"

	application	
n	transport	
m	network	
	link	
	physical	

The Application Layer

- Residence of network applications and their application control logic
- Applications typically sends <u>messages</u>
- Examples include:
 - HTTP (Hyper-Text Transfer Protocol)
 - FTP (File Transfer Protocol)
 - O Telnet
 - SMTP (Simple Mail Transfer Protocol)
 - DNS (Domain Name Service)

The Transport Layer

- Concerned with end-to-end data transfer between end systems (hosts)
- Transmission unit is called <u>segment</u>
- TCP/IP networks such as the Internet provides two types of services to applications
 - "connection-oriented" service Transmission Control Protocol (TCP)
 - "connectionless" service User Datagram
 Protocol (UDP)

The Network Layer

- End systems inject <u>datagrams</u> in the networks
- A transmission path is determined for each packet (routing)
- □ A "best effort" service
 - Datagrams might be lost
 - Datagrams might arrive out of order
- Analogy: Postal system

Internet protocol stack

application: supporting network applications

• FTP, SMTP, STTP

- transport: host-host data transfer
 TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 PPP, Ethernet

physical: bits "on the wire"

_		
	application	
r	transport	
m	network	
	link	
	physical	

Layering: logical communication

Layering: logical communication

Layering: physical communication

Layering: physical communication

TDTS06 1-70

<u>Roadmap</u>

- > What is a Computer Network?
- > Applications of Networking
- > Classification of Networks
- > Layered Architecture (and Protocols)
- > Network Core
- > Delay & Loss in Packet-switched Networks
- Structure of the Internet
- > Summary

mesh of interconnected routers

- mesh of interconnected routers
- the fundamental question: how is data transferred through net?

- mesh of interconnected routers
- <u>the</u> fundamental question: how is data transferred through net?
 - circuit-switching: dedicated circuit per call: telephone net
 - packet-switching: data sent thru net in discrete "chunks"

Alt. 1: Circuit-Switching

- End-to-end resources reserved for "call"
- Link bandwidth, switch capacity
- Dedicated resources with no sharing
- Guaranteed transmission capacity
- Call setup required
- "Blocking" may occur

Alt. 1: Circuit-Switching

- Capacity of medium exceeds the capacity required for transmission of a single signal
 - How can we improve "efficiency"? Let's multiplex.
- Divide link bandwidth into "pieces":
 - ofrequency division FDMA
 - otime division TDMA
 - code division CDMA (cellular networks)wavelength division WDM (optical)

Alt. 2: Packet-Switching

- source breaks long messages into smaller "packets"
- "store-and-forward" transmission
 - o packets share network resources
 - o each packet briefly uses full link bandwidth
- resource contention
 - aggregate resource demand can exceed amount available
 - o congestion: packets queue, wait for link use
 - o analogy: rush hour traffic in cities

- Resource sharing great for bursty traffic
 - E.g., Sequence of A & B packets does not have fixed pattern - *statistical multiplexing*.
 - In contrast: In TDM each host gets same slot in revolving TDM frame.

- Resource sharing great for bursty traffic
 - E.g., Sequence of A & B packets does not have fixed pattern - *statistical multiplexing*.
 - In contrast: In TDM each host gets same slot in revolving TDM frame.
- □ Is packet switching a "slam dunk" winner?

- Resource sharing great for bursty traffic
 - E.g., Sequence of A & B packets does not have fixed pattern - *statistical multiplexing*.
 - In contrast: In TDM each host gets same slot in revolving TDM frame.
- □ Is packet switching a "slam dunk" winner?
 - E.g., delay/loss and bandwidth guarantees ...

Packet-switching: store-and-forward

- Takes L/R seconds to transmit (push out) packet of L bits on to link or R bps
- Entire packet must arrive at router before it can be transmitted on next link: store and forward

delay = 3L/R

Example:

Packet-Switching: Message Segmenting

Now break up the message into 5000 packets Each packet 1,500 bits 1 msec to transmit packet on one link pipelining: each link works in parallel Delay reduced from 15 sec to 5.002 sec

Packet-switched networks: forwarding

datagram network:

- destination address in packet determines next hop
- routes may change during session (flexible?)
- no "per flow" state, hence more scalable

virtual circuit network:

- each packet carries tag (virtual circuit ID), tag determines next hop
- fixed path determined at *call setup time*
- path is not a dedicated path as in circuit switched (i.e., store & forward of packets)
- routers maintain per-call state
- datagram networks need per packet routing.

TDTS06 1-87

<u>Roadmap</u>

- > What is a Computer Network?
- > Applications of Networking
- > Classification of Networks
- > Layered Architecture (and Protocols)
- > Network Core
- > Delay & Loss in Packet-switched Networks
- Structure of the Internet
- > Summary

How do loss and delay occur?

packets *queue* in router buffers

- packet arrival rate to link exceeds output link capacity
- packets queue, wait for turn
- □ if queue is full, arriving packets dropped (Drop-Tail)

packet being transmitted (delay)

TDT506 1-89

Four sources of packet delay

□ 1. Processing delay:

- check bit errors
- determine output link

2. Queueing delay:

- time waiting at output link for transmission
- depends on congestion level of router

Delay in packet-switched networks

- 3. Transmission delay:
- R=link bandwidth (bps)
- L=packet length (bits)
- time to send bits into link = L/R

4. Propagation delay:

- d = length of physical link
- s = propagation speed in medium (~2x10⁸ m/sec)

Nodal processing delay

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- □ aL/R ~ 0: average queueing delay small
- □ aL/R -> 1: delays become large
- aL/R > 1: more "work" arriving than can be serviced, average delay infinite!

"Real" Internet delays and routes

- What do "real" Internet delay & loss look like?
- Traceroute program: provides delay measurement from source to router along end-to-end Internet path towards destination. For all *i*:
 - sends three packets that will reach router *i* on path towards destination
 - router *i* will return packets to sender
 - sender times interval between transmission and reply.

TDTS06 1-95

<u>Roadmap</u>

- > What is a Computer Network?
- > Applications of Networking
- > Classification of Networks
- > Layered Architecture (and Protocols)
- > Network Core
- > Delay & Loss in Packet-switched Networks
- Structure of the Internet
- > Summary

roughly hierarchical

- at center: "tier-1" ISPs (e.g., UUNet, BBN/Genuity, Sprint, AT&T), national/international coverage
 - treat each other as equals

Tier-1 ISP: e.g., Sprint

Sprint US backbone network

TDT506 1-98

□ "Tier-2" ISPs: smaller (often regional) ISPs

• Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

□ "Tier-3" ISPs and local ISPs

last hop ("access") network (closest to end systems)

a packet passes through many networks!

TDTS06 1-102

Introduction: Summary

Covered a "ton" of material!

- Internet overview
- What's a protocol?
- Network edge, core, access network
 - packet-switching vs. circuit-switching
- Internet/ISP structure
- Performance: loss, delay
- Layering and service models
- Internet history

Introduction: Summary

Covered a "ton" of material!

- Internet overview
- What's a protocol?
- Network edge, core, access network
 - packet-switching vs. circuit-switching
- Internet/ISP structure
- Performance: loss, delay
- Layering and service models
- Internet history

You now have:

- context, overview, "feel" of networking
- more depth, detail to follow!

Introduction: Summary

You now have:

context, overview, "feel" of networking

more depth, detail to follow!

Ohh, and the history ...

• ...

TDTS06 1-106

1961-1972: Early packet-switching principles

- * 1961: Kleinrock queueing theory shows effectiveness of packetswitching
- 1964: Baran packetswitching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

* 1972:

- ARPAnet public demonstration
- NCP (Network Control Protocol) first host-host protocol
- first e-mail program
- ARPAnet has 15 nodes

Internet History

1961-1972: Early packet-switching principles

* 1972;

- * 1961: Kleinrock queueing theory shows effectiveness of packetswitching
- 1964: Baran packetswitching in military part
- 1967: ARPAnet conceived by Advanced R search Projects Agence
- 1969: first aRPAnet node operational

- ARP- t public demonstration
- NCP (Network Control Protocol) first host-host protocol
- first e-mail program
- ARPAnet has 15 nodes

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- 1976: Ethernet at Xerox
 PARC
- late70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- 1976: Ethernet at Xerox
 PARC
- late70's: proprietary architectures: D. Cnet SNA XNA
- late 70's: switching treed length packets (ATM precursor)
- * 1979: ARPAnet has 200 nodes

Certains Kuhn's

- terne vorking principles:
 - minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IPaddress translation
- 1985: ftp protocol defined
- 1988: TCP congestion control

- new national networks:
 Csnet, BITnet,
 NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- * 1982: smtp e-mail protocol defined
- * 1983: DNS defined for name-ta-IRaddress translation
- * 1985: fit protocol defined
- 1988: TCP congestion control

 new national networks: Cnet, CTnet, NSFnet, Minitel
 10,000 hosts connected to confederation of networks

1990, 2000's: commercialization, the Web, new apps

- * early 1990's: ARPAnet decommissioned
- * 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- * early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web

late 1990's - 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

1990, 2000's: commercialization, the Web, new apps

- * early 1990's: ARPAnet decommissioned
- * 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- * early 1990s: Web
 - hypertext [Push 19 5, ivelson 1960's]
 - HTML, NTTP Barners-Lee
 - 1994: Mostic, later Netscape
 - late 1990's: commercialization of the Web

late 1990's - 2000's:

- more ller apps: instant nessaging, P2P file sharing
 - network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at
 Gbps

2010:

. . .

- ~750 million hosts
- voice, video over IP
- P2P applications: BitTorrent (file sharing) Skype (VoIP), PPLive (video)
- more applications: YouTube, gaming, Twitter, facebook, ...
- on-demand streaming
- wireless, mobility
- smart grid, sustainable ICT,

2010:

- ~750 million hosts
- voice, video over IP
- P2P applications: Sin Torrent (file sharing) Skype (VoIP), PPLive (video)
- more applications: YouTube, gaming, Twitter, facebook, ...
- on-demand streaming
- wireless, mubility

* smart grid, sustainable ICT,