
TDTS06: Computer Networks

Instructor: Niklas Carlsson

Email: niklas.carlsson@liu.se

Notes derived from “Computer Networking: A Top
Down Approach”, by Jim Kurose and Keith Ross,
Addison-Wesley.

The slides are adapted and modified based on slides from

the book’s companion Web site, as well as modified slides
by Anirban Mahanti and Carey Williamson.

1

mailto:niklas.carlsson@liu.se

Pure P2P architecture
 no always-on server

 arbitrary end systems
directly communicate

 peers are intermittently
connected and change IP
addresses

 Three topics (in slides):
 File sharing

 File distribution

 Searching for information

 Case Studies: Bittorrent
and Skype

peer-peer

2

P2P: centralized directory

original “Napster” design

1) when peer connects, it
informs central server:
 IP address

 content

2) Alice queries for “Hey
Jude”

3) Alice requests file from
Bob

centralized
directory server

peers

Alice

Bob

1

1

1

1 2

3

3

P2P: problems with centralized directory

centralized
directory server

peers

Alice

Bob

1

1

1

1 2

3

4

 file transfer is
decentralized, but
locating content is
highly centralized

P2P: problems with centralized directory

centralized
directory server

peers

Alice

Bob

1

1

1

1 2

3

5

 single point of failure

 performance bottleneck

 copyright infringement:
“target” of lawsuit is
obvious

 file transfer is
decentralized, but
locating content is
highly centralized

Query flooding: Gnutella

 fully distributed
 no central server

 public domain protocol
 many Gnutella clients

implementing protocol

6

7

overlay network: graph

 edge between peer X
and Y if there’s a TCP
connection

 all active peers and
edges form overlay net

 edge: virtual (not
physical) link

 given peer typically
connected with < 10
overlay neighbors

Gnutella: protocol

Query

QueryHit

Query

QueryHit

File transfer:
HTTP

 Query message
sent over existing TCP
connections
 peers forward
Query message
 QueryHit
sent over
reverse
path

Scalability:
limited scope
flooding

8

Hierarchical Overlay

 between centralized
index, query flooding
approaches

 each peer is either a
group leader or assigned
to a group leader.

 group leader tracks
content in its children

ordinary peer

group-leader peer

neighoring relationships

in overlay network

9

10

P2P Case study: Skype

 inherently P2P: pairs
of users communicate.

 proprietary
application-layer
protocol (inferred via
reverse engineering)

 hierarchical overlay
with Supernodes
(SNs)

 Index maps usernames
to IP addresses;
distributed over SNs

Skype clients (SC)

Supernode
(SN)

Skype
login server

11

NAT/firewall problems …

 Problem when both
Alice and Bob are
behind “NATs”.
 NAT prevents an outside

peer from initiating a call
to insider peer

 Solution:

12

Peers as relays

 Problem when both
Alice and Bob are
behind “NATs”.
 NAT prevents an outside

peer from initiating a call
to insider peer

 Solution:
 Using Alice’s and Bob’s

SNs, Relay is chosen
 Each peer initiates

session with relay.
 Peers can now

communicate through
NATs via relay

13

14

Structured p2p systems

15

Distributed Hash Table (DHT)

DHT = distributed P2P database

Database has (key, value) pairs;
 key: ss number; value: human name

 key: content type; value: IP address

 Peers query DB with key
 DB returns values that match the key

 Peers can also insert (key, value) peers

16

DHT Identifiers

Assign integer identifier to each peer in range
[0,2n-1].
 Each identifier can be represented by n bits.

 Require each key to be an integer in same range.

 To get integer keys, hash original key.
 eg, key = h(“Led Zeppelin IV”)

 This is why they call it a distributed “hash” table

17

How to assign keys to peers?

 Central issue:
 Assigning (key, value) pairs to peers.

 Rule: assign key to the peer that has the
closest ID.

 Convention in lecture: closest is the closest
successor of the key.

 Ex: n=4; peers: 1,3,4,5,8,10,12,14;
 key = 13, then successor peer = 14

 key = 15, then successor peer = 1

18

1

3

4

5

8
10

12

15

Circular DHT (1)

 Each peer only aware of immediate successor
and predecessor.

 “Overlay network”
19

Circle DHT (2)

0001

0011

0100

0101

1000
1010

1100

1111

Who’s
responsible
for key 1110 ?

I am

O(N) messages
on avg to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

20

Circular DHT with Shortcuts

 Each peer keeps track of IP addresses of predecessor,
successor, short cuts.

 Reduced from 6 to 2 messages.
 Possible to design shortcuts so O(log N) neighbors,

O(log N) messages in query

1

3

4

5

8
10

12

15

Who’s
responsible
for key 1110?

21

22

Example: Chord Routing [see
paper for details instead]
 A node s’s ith neighbor has the ID that is equal to

s+2i or is the next largest ID (mod ID space), i≥0

 To reach the node handling ID t, send the message
to neighbor #log2(t-s)

 Requirement: each node s must know about the next
node that exists clockwise on the Chord (0th
neighbor)

 Set of known neighbors called a finger table

23

Chord Routing (cont’d)

i Finger
table for
node 67

0 72

1 72

2 72

3 86

4 86

5 1

6 32

1

8

32

87
86

72

67

Closest
node
clockwise
to

67+2i mod
100

24

Chord Routing (cont’d)
 A node s is node t’s neighbor if s is the closest node to t+2i mod H

for some i. Thus,
 each node has at most log2 N neighbors

 for any object, the node whose range contains the object is reachable
from any node in no more than log2 N overlay hops

(each step can always traverse at least half the distance to the ID)

 Given K objects, with high probability each node has at most
 (1 + log2 N) K / N in its range

 When a new node joins or leaves the overlay,
O(K / N) objects move between nodes

i Finger
table for
node 67

0 72

1 72

2 72

3 86

4 86

5 1

6 32

1

8

32

87
86

72

67

Closest
node
clockwise
to

67+2i mod
100

Peer Churn

 Peer 5 abruptly leaves
 Peer 4 detects; makes 8 its immediate successor;

asks 8 who its immediate successor is; makes 8’s
immediate successor its second successor.

 What if peer 13 wants to join?

1

3

4

5

8
10

12

15

•To handle peer churn, require
each peer to know the IP address
of its two successors.
• Each peer periodically pings its
two successors to see if they
are still alive.

25

26

Chord Node Insertion
 One protocol addition: each node knows its closest counter-

clockwise neighbor

 A node selects its unique (pseudo-random) ID and uses a
bootstrapping process to find some node in the Chord

 Using Chord, the node identifies its successor in the
clockwise direction

 An newly inserted node’s predecessor is its successor’s
former predecessor 82

1

8

32

67

87
86

72

pred(86)=72

Example: Insert 82

27

Chord Node Insertion (cont’d)

1

8

32

67

87
86

72

82

 First: set added node s’s fingers correctly
 s’s predecessor t does the lookup for each distance of 2i

from s

i Finger
table for
node 82

0 86

1 86

2 86

3 1

4 1

5 32

6 67

Lookup(86) = 86

Lookup(90) = 1

Lookup(98) = 1

Lookup(14) = 32

Lookup(46) = 67

Lookup(84) = 86

Lookup(83) = 86

Lookups from node 72

28

Chord Node Insertion (cont’d)
 Next, update other nodes’ fingers

about the entrance of s (when
relevant). For each i:
 Locate the closest node to s

(counter-clockwise) whose 2i-finger
can point to s: largest possible is
s - 2i

 Use Chord to go (clockwise) to
largest node t before or at s - 2i

• route to s - 2i, if arrived at a larger
node, select its predecessor as t

 If t’s 2i-finger routes to a node
larger than s

• change t’s 2i-finger to s
• set t = predecessor of t and repeat

 Else i++, repeat from top

 O(log2 N) time to find and update
nodes

1

8

32

67

87
86

72

82 82-23

23-finger=86
82 23-finger=86

82

23-finger=67 X
X

e.g., for i=3

29

File Distribution: Server-Client vs P2P

Question : How much time to distribute file
from one server to N peers?

us

u2 d1 d2

u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload

bandwidth

ui: peer i upload

bandwidth

di: peer i download

bandwidth

30

File distribution time: server-client

us

u2 d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F
 server sequentially

sends N copies:
 NF/us time

 client i takes F/di

time to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
i

Time to distribute F
to N clients using

client/server approach

31

File distribution time: P2P

us

u2 d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F
 server must send one

copy: F/us time

 client i takes F/di time
to download

 NF bits must be
downloaded (aggregate)
 fastest possible upload rate: us + Sui

dP2P = max { F/us, F/min(di) , NF/(us + Sui) }
i

32

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e P2P

Client-Server

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

33

34

BitTorrent-like systems

 File split into many smaller pieces
 Pieces are downloaded from both seeds and downloaders
 Distribution paths are dynamically determined

 Based on data availability

Arrivals

Departures

Downloader

Downloader

Downloader

Downloader

Seed

Seed

Download time

Seed residence

time

Torrent
(x downloaders; y seeds)

35

File distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

peer

 P2P file distribution

36

Background
Peer discovery in BitTorrent

 Torrent file
 “announce” URL

 Tracker
 Register torrent file

 Maintain state information

 Peers
 Obtain torrent file

 Announce

 Report status

 Peer exchange (PEX)

 Issues
 Central point of failure

 Tracker load
Swarm = Torrent

37

Background
Peer discovery in BitTorrent

 Torrent file
 “announce” URL

 Tracker
 Register torrent file

 Maintain state information

 Peers
 Obtain torrent file

 Announce

 Report status

 Peer exchange (PEX)

 Issues
 Central point of failure

 Tracker load
Swarm = Torrent

38

Background
Multi-tracked torrents

 Torrent file
 “announce-list” URLs

 Trackers
 Register torrent file

 Maintain state information

 Peers
 Obtain torrent file

 Choose one tracker at random

 Announce

 Report status

 Peer exchange (PEX)

 Issue
 Multiple smaller swarms

SwarmTorrent
SwarmTorrent

39

Background
Multi-tracked torrents

 Torrent file
 “announce-list” URLs

 Trackers
 Register torrent file

 Maintain state information

 Peers
 Obtain torrent file

 Choose one tracker at random

 Announce

 Report status

 Peer exchange (PEX)

 Issue
 Multiple smaller swarms

SwarmTorrent
SwarmTorrent

40

Background
Multi-tracked torrents

 Torrent file
 “announce-list” URLs

 Trackers
 Register torrent file

 Maintain state information

 Peers
 Obtain torrent file

 Choose one tracker at random

 Announce

 Report status

 Peer exchange (PEX)

 Issue
 Multiple smaller swarms

SwarmTorrent
SwarmTorrent

41

Download using BitTorrent
Background: Incentive mechanism
 Establish connections to large set of peers

 At each time, only upload to a small (changing) set of
peers

 Rate-based tit-for-tat policy
 Downloaders give upload preference to the downloaders

that provide the highest download rates

Highest download rates

Optimistic unchoke

Pick top four

Pick one at random

42

Download using BitTorrent
Background: Piece selection

 Rarest first piece selection policy
 Achieves high piece diversity

 Request pieces that
 the uploader has;
 the downloader is interested (wants); and
 is the rarest among this set of pieces

Peer 1:

Peer N :

Peer 2:

… …

Pieces in neighbor set:

1 2 3 k K

1 2 3 k K

1 2 3 k K

1 2 3 k K

(1) (2) (1) (2) (2) (3) (2)
… …

… …

… …

from

to

43

44

