x-kernel Programmer’s Manual
(Version 3.3)

Network Systems Research Group
June 1997

Abstract

This report describes how to implement protocols in the x-kernel. It gives the x-kernel’s programming
interface, describes how to configure an x-kernel that contains a certain collection of protocols, and
demonstrates how to run and debug an x-kernel. The x-kernel can be run in two different environments:
(1) as a user program on top of Unix, and (2) as a network simulator on top of Unix. In both cases, the
Unix platforms currently supported include Solaris, OSF/1 (Digita Unix), and Linux. (The distribution
also includes source code for SUnOS and Irix from earlier releases, but these platforms are not supported
in the current release.) Protocols can be moved among the different environments without modification.
Thisdocument assumes that the reader isgenerally familiar with the x-kernel’ s object-based infrastructure
for implementing protocols.

Contents

1 Introduction

The x-kernel is an object-based protocol implementation framework It defines an interface that protocolsuse to invoke
operations on one another (this is called the Uniform Protocol Interface, or UPI), and a collection of libraries for
mani pul ating messages, participant addresses, events, associative memory tables (maps), and threads.

Version 3.3 represents are-engineering of most of the x-kernel libraries, a consolidation of the platforms on which
thex-kernel runs, and the addition of aprotocol simulation platform. Likethe previousversion, Version 3.3 completely
isolates the protocol from the underlying operating system. As aresult, protocol source code can be moved from one
platform to another without modification. However, there are several minor differences between the Version 3.2 and
3.3interfaces.

Sections 2 through 11 of this manua define the Uniform Protocol Interface and the libraries that make up the
x-kernel. Sections 12—14 then describe the procedures for configuring and running the x-kernel, and for releasing
protocols.

1.1 Other Sourcesof Information

This document isintended as areference manua for auser that isaready familiar with thex-kernel. There are several
other sources of information that you should look at to learn more about the x-kernel.

First, the x-kernel was originally described in a pair of research papers [2, 5]. These are a good place to start to
understand the motivation and design rational e behind the x-kernel.

Second, thisProgrammer’s Manua, whilethorough, issomewhat cryptic. 1t does not serve asatutoria that teaches
you how to write x-kernel protocols. For help in learning how to write x-kernel protocols, including examples from
several existing protocols, see[8]. Thistutorial borrowsliberally from[7], which providesan even morecomprehensive
discussion of protocol design and implementation.

Third, if you have just picked up the x-kernel and want to try it out without having to first learn everything thereis
to know about it, then [6] is a good place to begin. Once you have a version of the x-kernel that builds and runs, it is
much easier to start playing with the various features and options discussed in the Programmer’s Manual.

Fourth, the x-kernel can now be run as a network simulator rather than on top of areal network. This simulator,
called z-sim, provides a complete and realistic framework for developing, anayzing, and testing network protocols.
Information about how to configure and use z-sim can be found in [1].

Finally, variouscomponents of thex-kernel are described in detail inacollection of design documents. In particular,
[4] describes the implementation of the message library and [3] describes theimplementation of the map library. Note
that it is not necessary to understand how these components are implemented in order to write protocols; these reports
are intended for advanced users that want to know more about how the x-kernel isimplemented.

1.2 Acknowledgements

Many people at the University of Arizonaand elsewhere have contributed to the x-kernel. They include Andy Bavier,
Mats Bjorkman, Lawrence Brakmo, Peter Druschel, Norm Hutchinson, Hasnain Karampurwaa, Ed Menze, Sandra
Miller, David Mosberger-Tang, Erich Nahum, Sean O’ Madley, Hilarie Orman, Larry Peterson, Rich Schroeppel, David
Yates, and Andrey Yeatts. Many others have contributed protocols, as noted in the Appendix.

Our work with the x-kernel has been supported over the years by several different organizations and companies,
including the Nationa Science Foundation (through grants CCR-8811423, IRI-9015407, CCR-9102040, and NCR-
9204393), the Advanced Research Projects Agency (through contracts DABT63-91-C-0030, DABT63-94-C-0002, and
DABT63-95-C-0075), theNational Computer Security Center (through University research grant MDA904-92-C-515),
Sun Microsystems, and Digital Equipment Corporation, Intel, and Hewlett-Packard.

1.3 Our Address

Please let us know of any problems you encounter so that we can continue to improve the distribution. Our mail
addressis:

The x-kernel Project

Department of Computer Science
University of Arizona

PO BOX 210077

Tucson, AZ 85721-0077

We can be reached by electronic mail at:
xkernel-help@cs.arizona.edu

Because of limited resources we can’'t promiseto fix every problem, but we appreciateall comments. Also, wetypically
post messages about the x-kernel (including notices of future rel eases) to

xkernel-interest@cs.arizona.edu
Send mail to
xkernel-interest-request@cs.arizona.edu
to be added to to thismailing list. Finally, we are on the Web at

http://www.cs.arizona.edu/xkernel/

14 Copyright Notice

x-kernel
Copyright (c) 1996,1993,1991,1990 Arizona Board of Regents

Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby
granted without fee, provided that the above copyright appears in al copies, and that both the copyright and this
permission notice appear in supporting documentation, and that the name of the University of Arizonaor the Arizona
Board of Regents not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission. The University of Arizonamakes no representations about the suitability of this software for
any purpose. Itisprovided “asis’ without express or implied warranty.

The University of Arizona requests users of this software to return any improvements or extensions that they make,
and to grant the University of Arizonathe rightsto redistribute these changes.

2 Uniform Protocol Interface (UPI)

Each x-kernel protocol is encapsulated in a uniform protocol interface (UPI). The suite of protocols configured into
the system form a protocol graph and the collection of currently opened sessions (connections) form asession graph.
2.1 Type Definitions

2.1.1 Protocol and Session Objects

TheProtl and Sessn structuresare thefundamental objectsinthesystem. Most fieldsinthe Protl and Sessn structures
are not directly read or written by the programmer; those that are available to the programmer are so indicated in the
comments.

typedef struct protl {

char *name; /* the protocol name, e.g., “ethdrv” */

char *instName; /* the instance name, e.g., “SEQ” */

char *fullName; /* the name given in graph.comp, e.g., “ethdrv/SEQ” */
char *state; /* readable/writable */

Binding binding; /* readable/writable */

int id;

int *traceVar; /* readable */

/* pointers to protocols configured below this one */

int numdown; /* readable - total number in down list */
int downlistsz; /* size of downlist */

struct protl *downl[8]; /* first 8 in down list */

struct protl **downlist; /* overflow from down array */

/* interface functions */

XOpenFunc open;
XOpenEnableFunc openenable;
XOpenDisableFunc opendisable;
XOpenDisableAllFunc opendisableall;

XOpenboneFunc opendone;
XCloseDoneFunc closedone;
XDemuxFunc demux;

XCallDemuxFunc calldemux;
XControlProtIFunc controlprotl;

} *Protl;

typedef struct sessn {
char *state; /* readable/writable */
Binding binding; [* readable/writable */
int rent;

unsigned char idle;

/* pointers to open sessions below this one */

int numdown; /* readable - total number in down list */
int downlistsz; /* size of downlist */

struct sessn *down[8]; [* first 8 in down list */

struct sessn **downlist; /* overflow from down array */

/* interface functions */

XCloseFunc close;
XPopFunc pop;
XCallPopFunc callpop;
XPushFunc push;
XCallFunc call;

XControlSessnFunc controlsessn;
XGetParticipantsFunc getparticipants;
XDuplicateFunc duplicate;

[* pointers to protocols associated with this session */

struct protl *myprotl; /* session is an instance of this protocol */

struct protl *up; /* session was created by this protocol */

struct protl *hipType; /* session was created on behalf of this protocol */
} *Sessn;

If you think of the x-kernel asimplementing protocol and session graphs, then each Protl represents anode in the
protocol graph and each Sessn represents a node in the session graph. A protocol’sdown vector represents protocol
graph edges; it contains pointersto the Protls that are below the protocol in the graph. The same istruefor asession’'s
down vector. The fields myprotl and up in the Sessn structurelink a session to the protocolsthat own and created it,
respectively.

For historical reasons, there are some fields in the actual Protl and Sessn structures that aren’t shown in this
document. These fields should not be used, as they will eventually be removed.

212 EnableObjects

Protocol writers use Enable objects to remember xOpenEnable calls. Typicaly, a protocol saves a pointer to an
Enable object in its passive map, using mapBind. An Enable object has a field for reference counting. Calls to
xOpenEnable with identical participants (the calls are redundant with respect to session creation) must be reference
counted in order to properly handle xOpenDisable cals.

typedef struct xenable {
Protl hlp; [* upper protocol */
Protl hipType; /* upper protocol */
Binding binding; /* from mapBind */
int rent; /* use count */
}Enable;

2.1.3 Return Values

Most routines have a return value type of XkReturn, which is either XK_.SUCCESS or XK_FAILURE. Routines
that return type Protl or Sessn have a failure value of ERR_PROTL or ERR_SESSN, respectively. Some message
handling routinesusetype XkHandle (see Section 2.2.13). Severeerror conditionswill resultin consoleerror messages
and the termination of the x-kernel.

2.14 Function Types
The following function typedefs are used in the Protl and Sessn structures.

typedef struct sessn *(*XOpenFunc)(Protl, Protl, Protl, Part *);
typedef XkReturn (*XOpenEnableFunc)(Protl, Protl, Protl, Part *);
typedef XkReturn (*XOpenDisableFunc)(Protl, Protl, Protl, Part *);

typedef XkReturn

(*XOpenDisableAllFunc)(Protl, Protl);

typedef XkReturn (*XOpenDoneFunc)(Protl, Protl, Sessn, Protl);
typedef XkReturn (*XCloseDoneFunc)(Sessn);

typedef XkReturn (*XDemuxFunc)(Protl, Sessn, Msg *);

typedef XkReturn (*XCallDemuxFunc)(Protl, Sessn, Msg *, Msg *);
typedef int (*XControlProtIFunc)(Protl, int, char *, int);
typedef XkReturn (*XCloseFunc)(Sessn);

typedef XkReturn (*XPopFunc)(Sessn, Sessn, Msg *, void *);
typedef XkReturn (*XCallPopFunc)(Sessn, Sessn, Msg *, void *, Msg *);
typedef XkHandle (*XPushFunc)(Sessn, Msg *);

typedef XkReturn (*XCallFunc)(Sessn, Msg *, Msg *);

typedef int (*XControlSessnFunc)(Sessn, int, char *, int);
typedef Part *(*XGetParticipantsFunc)(Sessn);

typedef XkReturn (*XDuplicateFunc)(Sessn);

2.2 Protocol and Session Operations

This section definesthe operationsthat protocol sand sessionsinvokeon each other. In genera, each of these operations
invokes a corresponding operation in the target protocol or session. For example, an xOpen cal will result in the
invocation of a protocol-specific open routine, eg., udp_open. For each operation, we give the interface to both
the generic x-kernel operation and an example protocol-specific procedure that implements the generic operation.
Although nearly the same, the specification for the generic operation and the specification for the protocol-specific
routinetypically differ in that a self pointer is passed to the protocol-specific routine.

221 xOpen

ThexOpen functionisused by high-level protocol hip to actively open asession associated with low-level protocol llp
on behalf of high-level protocol hipType. Typically, hip and hipType refer to the same protocol (see Section 2.5.2).
The participants argument is a list of addresses for each participant in the communication. For this, and al cals
returning type Protl or Sessn, areturn value of ERR_PROTL or ERR_SESSN, respectively, indicates failure. This
must be checked by all callers before using the return value.

Notethat the high-level protocol will useitsself object asthefirst (and usually second) argument in xOpen, and the
lower-level protocol object as the third argument. The lower-level protocol’s open routinewill seeits own self object
as the first argument, and the high-level protocols as the second and third arguments. This reversal of argument order
preserves the convention that the current protocol’sself object is the first argument of the protocol -specific function.

Generic: Sessn xOpen(Protl hip, Protl hipType, Protl lip, Part *participants)
Specific: Sessn udp_open(Protl self, Protl hip, Protl hipType, Part *participants)

222 xOpenEnable

Used by high-level protocol hip to passively open asession associated with low-level protocol llp on behalf of high-level
protocol hipType. Aswith xOpen, hip and hipType usualy refer to the same protocol. A passive open indicates a
willingnessto accept connectionsinitiated by remote participants. A sessionisnot actually returned, but the low-level
protocol, by convention, “remembers’ thisenabling, and later calsthe high-level protocol’sxOpenDone operation to
complete the passive open. The participants argument isan ordered list of addresses of each participant for which the
communication has been enabled. In most cases, it containsonly asingleelement: the address of thelocal participant.
A return value of XK_FAILURE indicatesfailure.

The lower-level protocol generaly “remembers’ an invocation of its xOpenEnable operation by binding an
Enable object to the participant information using mapBind.

Generic: XkReturn xOpenEnable(Protl hip, Protl hipType, Protl lip, Part *participants)
Specific: XkReturn udp_openenable(Protl self, Protl hip, Protl hipType, Part *participants)

223 xOpenDisable

Used by high-level protocol hip to undo the effects of an earlier invocation of xOpenEnable. The hlp and hipType
arguments and the contents of the participants argument must be the same as the ones given to xOpenEnable.

Generic: XkReturn xOpenDisable(Protl hip, Protl hipType, Protl lip, Part *participants)
Secific: XkReturn udp_opendisable(Protl self, Protl hip, Protl hipType, Part *participants)

224 xOpenDisableAll

Used by high-level protocol hip to informlow-level protocol lip that al previous openEnables made by hip should be
removed.

Generic: XkReturn xOpenDisableAll(Protl hip, Protl lIp)
Specific: XkReturn udp_opendisableall(Protl self, Protl hip)

225 xOpenDone

Used by low-level protocol to inform a high-level protocol (hlp) that a session (session) has now been crested
corresponding to an earlier xOpenEnable on behalf of hipType.

Notethat the hipType argument isnot required in the generic call because that value was saved in the Sessn object
at thetime of the xOpenEnable call.

Generic: XkReturn xOpenDone(Protl hip, Protl lIp, Sessn session)

Specific: XkReturn udp-opendone(Protl self, Protl llp, Sessn session, Protl hipType)

2.26 xCloseDone

Used by alow-level protocol to inform the high-level protocol that the session it originally opened has been closed by
apeer participant.

Generic: XkReturn xCloseDone(Sessn session)
Specific: XkReturn udp_closedone(Sessn self)

227 xDemux

Used by low-level session lIs to pass message message to the high-level protocol that created it. The high-level
protocol demux routine should find the appropriate session, creating it if necessary, and xPop the message to the
session. See Section 2.3.2 for guidelines on when session cregtion is appropriate.

Generic: XkReturn xDemux(Protl hip, Sessn Ils, Msg *message)
Soecific: XkReturn udp_demux(Protl self, Sessn lls, Msg *message)

228 xCallDemux

This cal islike xDemux but provides an argument to contain a return message. Used with synchronous (RPC-like)
protocols.

Generic: XkReturn xCallDemux(Protl hip, Sessn lls, Msg *request, Msg *reply)
Specific: XkReturn udp_calldemux(Protl self, Sessn lls, Msg *request, Msg *reply)

229 xControlProtl

Used by one protocol to act upon another protcol (lip) for retrieving information or for setting processing parameters.
The operation code opcode identifies the action; buffer is a character buffer from which an argument is retrieved
and/or into which aresult is placed; and length is the length of the buffer. Returns an integer that indicates the length
in bytes of the information which was written into the buffer, or -1 to indicate an error. There are two “classes’ of
operations. standard ones that may be implemented by more than one protocol, and protocol-specific ones. A full
discussion of control operation codesisin Section 11.

Generic: int xControlProtl(Protl lp, int opcode, char *buffer, int length)
Specific: int udp_controlprotl(Protl self, int opcode, char *buffer, intlength)

2210 xClose

Decrements the reference count of a Sessn, caling the session’s close function only if the reference count is zero.
Generic: XkReturn xClose(Sessn session)
Soecific: XkReturn udp-_close(Sessn self)

2211 xPop

Used by a protocol to pass an incoming message up to session his for processing, and to indicate the lower-level
session from which the message was received (lIs). This cals the pop routine of the session hls and increments the
session reference count. Thiscall isinvoked by a protocol on one of its own sessions.

The hdr argument is passed directly to the protocol -specific routine. It istypically used to pass the header (which
the demux routine used to find the session) to the session’s pop routine.

Generic: XkReturn xPop(Sessn his, Sessn lls, Msg *message, void *hdr)

Specific: XkReturn udp_pop(Sessn self, Sessn lls, Msg *message, void *hdr)

2212 xCallPop

When a synchronous (RPC-like) protocol is demuxing a message to an asynchronous protocol,, xCallPop can be used
to alow the upper protocol to return amessage. This reply message may be the same one passed to the synchronous
protocol viaxCallDemux.

Generic: XkReturn xCallPop(Sessn hls, Sessn Ils, Msg *request, void *hdr, Msg *reply)
Specific: XkReturn udp_callpop(Sessn self, Sessn lIs, Msg *request, void *hdr, Msg *reply)

2213 xPush

Used by a high-level protocol that opened session Ils to pass a message down through that session. The return value
is an opaque handle on the message that was sent. This handle may be used to identify this message in subsequent
xControlProtl and xControlSessn operations. The message handle may aso take one of three specia values. a
return value of XMSG_NULL_HANDLE indicates a successful push to a protocol which does not generate handles,
XMSG_ERR_HANDLE indicates generd failure, and XMSG_ERR_WOULDBLOCK indicates that a session in
non-blocking mode would normally have blocked the push.

Generic: XkHandle xPush(Sessn lls, Msg *message)

Specific: XkHandle udp_push(Sessn self, Msg *message)

2214 xCall

Similar to xPush except that a reply message may be returned through the argument reply. Used with synchronous
(RPC-like) protocols. Because thelower protocol typically retains no state for the request message after xCall returns,
amessage handleis not returned. The message structure for the reply must be initialized (see Section 3.2.1).

Generic: XkReturn xCall(Sessn lls, Msg *request, Msg *reply)
Specific: XkReturn udp_call(Sessn self, Msg *request, Msg *reply)

2.2.15 xControlSessn

Used by one session to act upon another session (lIs) for retrieving information or for setting processing parameters.
The operation code opcode identifies the action; buffer is a character buffer from which an argument is retrieved
and/or into which aresult is placed; and length is the length of the buffer. Returns an integer that indicates the length
in bytes of the information which was written into the buffer, or -1 to indicate an error. There are two “classes’ of
operations: standard ones that may be implemented by sessions of more than one protocol, and protocol -specific ones.
A full discussion of control operation codesisin Section 11.

Generic: int xControlSessn(Sessn lIs, int opcode, char *buffer, int length)

Specific: int udp_controlsessn(Sessn self, int opcode, char *buffer, int length)

2216 xGetParticipants

Used by one session to retrieve the participant list of another session, lIs.
Generic: Part *xGetParticipants(Sessn Ils)
Soecific: Part *udp_getparticipants(Sessn self)

2217 xDuplicate

Incrementsthereference count of session. Thiscan beusedto create apermanent handleon session from atemporary
handle, or to create anew equivalent handle from an existing handle. For afull discussion of session reference counts,
see the x-kernel Tutorial [8].

Generic: XkReturn xDuplicate(Sessn session)

Secific: XkReturn udp_duplicate(Sessn self)

2.3 Graph Manipulation Operations

Unlikethe previousset of operations, which protocolsand sessionsinvoke on each other to open/close connectionsand
to send/receive messages, the operations defined in this section actually manipulate the protocol and session graphs;
i.e,, create nodes and edges. These operations are either caled by the x-kernel at start-up time to create and link
together protocol objects, or by protocolsat runtimeto create and link together session objects.

231 xCreateProtl

Called during system start-up for each protocol in the graph. The function func iscalled to initializea protocol object.
This function must have awell-known name derived from the concatenation of the protocol name and the string “_init”
(e.g., udp-init). Thisinitializationfunction generally alocates and initiadizesthe protocol state and fillsin theinterface
function pointers. Because function pointersare initialized to null functionsbeforefunc is called, only thosefunctions
actually used by the protocol need be defined.

The use of xCreateProtl outside of initialization—for example, to dynamically load new protocols—is not
supported at thistime.

10

Protl xCreateProtl(ProtlInitFunc func, char *name, char *instName, int *traceVar,
int downc, Protl *downv)

typedef void (*ProtlinitFunc)(Protl self)

2.3.2 xCreateSessn

Called by protocol llp to create a session that will handle data associated with a common source/destination pair.
Usually caled in response to an xOpen call, or because data has arrived with participants that match a previous
xOpenEnable call. By convention, aprotocol will only creste one session at atime for a source/destination pair, even
if there have been multiple xOpenEnable’s that would match incoming data.

The session isinitiaized using information found in protocolship, hipType and llp. The new session’s up pointer
isset to hlp (thisiswhere upward-bound messages through this session will be delivered). The count downc indicates
how many lower level sessions this session will use. An array of lower sessions themselves is passed as downv.
Sessions which use no lower sessions may pass zero for downc and NULL for downv. The initidization function
pointer func may be null; otherwise this function should fill in the interface function pointersin the Sessn structure.
These pointersare initialized to default (usually null) functions by the system initialization code.

Sessn xCreateSessn(SessnInitFunc func, Protl hip, Protl hipType, Protl lip,
int downc, Sessn *downv)

typedef void (*SessnlInitFunc)(Sessn self)

2.3.3 xDestroySessn

Destroys session objects. It istheinverse of xCreateSessn. Storage for session isfreed, and if the state pointer of
session isnon-null, itisalso freed.

XkReturn xDestroySessn(Sessn session)

2.34 xGetProtIByName

Returns a capability for (pointer to) a protocol object given its mnemonic name. See the discussion of graph.comp in
Section 12.

Protl xGetProtIByName(char *name)

235 xSetSessnDown

Sets the indexth member of self’'s down vector to be session. It increments the Sessn field numdown as a side
effect.

XkReturn xSetSessnDown(Sessn self, int index, Sessn session)

2.3.6 xGetProtIDown
Returnsthe indexth member of self’'sdown vector. ReturnsERR_PROTL if theindex is larger than the down vector.

Protl xGetProtIDown(Protl self, int index)

2.3.7 xGetSessnDown
Returnsthe indexth member of self’sdown vector. ReturnsERR_SESSN if theindex islarger than the down vector.

Sessn xGetSessnDown(Sessn self, int index)

11

238 xMyProtl
Returns the myprotl pointer of self.

Protl xMyProtl(Sessn self)

239 xSetUp

Resets the up pointer of session to hlp. The up pointer of a session isinitialized in xCreateSessn, so xSetUp is
only used for extraordinary manipulation of the session graph.

void xSetUp(Sessn session, Protl hip)

2310 xGetUp
Returns the up pointer of session.

Protl xGetUp(Sessn session)

2311 xHIpType
Returnsthe hipType argument that was used to create session.

Protl xHIpType(Sessn session)

2.4 Utility Operations
241 xlsProtl
Returnstrueif object isaprotocol; returnsfalse if object was either never initialized or has been badly clobbered.

bool xIsProtl(Protl object)

242 xlsSessn
Returnstrueif object isasession; returnsfaseif object was either never initiaized or has been badly clobbered.

bool xIsSessn(Sessn object)

243 xlsvalidProtl

A protocol created with xCreateProtl is kept in asystem map and removed when the protocol is destroyed. xIsValid-
Protl can be used to determine whether a random Protl handle (protocol) isin thismap and can thus be used safely.

bool xIsValidProtl(Protl protocol)

2.4.4 xlsvalidSessn
A session created with xCreateSessn iskept in a system map and removed when the session is destroyed. xIsValid-
Sessn can be used to determine whether arandom Sessn handle (session) isin thismap and can thus be used safely.

bool xIsValidSessn(Sessn session)

12

245 xPrintProtl
Displays some information about the state of protocol.

void xPrintProtl(Protl protocol)

246 xPrintSessn
Displays some information about the state of session.

void xPrintSessn(Sessn session)

25 UsageRules

This section has some protocol design rules that protocol writers should follow in order to develop “well-behaved”
protocolsthat interact properly with other protocol s with which they might be composed.

25.1 Initializinga Protocol

At system boot time, the x-kernel calls xCreateProtl for each protocol configured into the kernel (see Section 12).
xCreateProtl, in turn, calls the protocol’s init routine (where for a protocol named ‘yap’, this initialization routine
must be named yap_init). The work generally done by thisroutineisillustrated by an example protocol in the x-kernel
Tutorial [8].

252 hilpand hlpType

The operations xOpen, xOpenEnable, and xOpenDisable take two high-level protocols, hlp and hipType. hip is
the protocol to which the new lower session should route incoming messages. The lower protocol uses hipType to
determine which messages the new session should handle. For example, when eth_open is caled with IP as the
hipType, ETH knows that the new session will deal with packets that have the | P ethernet type. The lower protocol
typically determines the number that correspondsto hipType by usingitinacall to relProtNum (see Sections 4.3 and
12.3). The lower protocol passes hip and hipType down to xCreateSessn.

Most protocols use their self pointer as both hip and hipType when making these calls. Virtua protocols (see
below) are the exception.

253 Protocol Realms

Although the x-kernel defines a single interface for al protocols, not al protocols are created equal. Protocols can
be classified into different categories, which we call realms. Chances are, any protocol you write falsinto one of the
following realms. In some cases, the realm into which a protocol falls defines both arestricted subset of the interface
that the protocol implements, and the set of protocolswith which it may be composed.

Asynchronous Protocols

Most protocols (e.g., protocals like IP, TCP, and UDP) fall in this category. The x-kernel supports asynchronous
protocol s through the use of xPush, xPop and xDemux operations. Asynchronous protocolsare typically symmetric
in the sense that the protocols’ sessions process both incoming and outgoing messages. While it seems possible for
asynchronous protocol sto have asymmetri ¢ sessions (agiven session can handle only incoming or outgoing messages,
but not both), we have thus far been ableto make all our asynchronous protocol ssymmetric, and we strongly encourage
such designs. Knowing that any low-level protocols you may use are symmetric enhances your ability to compose
protocols and makes implementing a given protocol much easier.

13

Synchronous Protocols

These are RPC protocols. They are typicaly asymmetric in the sense that client-side sessions and the server-side
sessions are quite different. The x-kernel explicitly supports synchronous/asymmetric sessions through the use of
xCall, xCallPop and xCallDemux. Since synchronous protocols are asymmetric, xCall is used on the client side and
xCallPop and xCallDeumx are used on the server side.

Note that some protocols lie on the boundary between the synchronous and asynchronous reams. For example,
a protocol that implements RPC (as opposed to one that uses it) probably |ooks asynchronous from the bottom (i.e,
lower level protocols cal its xPop routine), but synchronous from above (i.e., higher level protocols cal its xCall
routine).

Control Protocols

These protocols support neither a xPush/xPop nor a xCall/xCallPop interface. Typically, only control operations
may be performed on these protocols. ARP and ICMPfall into this category.

2.5.4 Anchor Protocols

Anchor protocols sit either at the top or the bottom of a protocol stack and provide an interface between the x-kernel
and the system in which the x-kernel is embedded. Top-level anchor protocolslook like an x-kernel protocol from the
bottom, but provide an Application Programmer Interface to the x-kernel. Bottom-level anchor protocols (e.g., device
drivers) look like a protocol from the top, but typically interface with the lower levels of the surrounding system or
with network hardware.

Writing anchor protocols involves careful synchronization of externa threads with x-kernel threads and objects
(see Section 7.4.3).

255 Virtual Protocols

Virtual protocols occupy places in the protocol (and sometimes the session) graphs, but they neither produce nor
interpret network headers. They typically make decisions about how messages should be routed through the session
graph based on participantsin xOpen or on properties of messages, such as size.

The xOpen, xOpenEnable, and xOpenDisable routines of virtua protocols differ from those of conventional
protocols. A virtua protocol’simplementation of xOpen, for example, will usualy make an xOpen cdl to its lower
protocols using the hipType that was passed into the virtual protocol, but using its self pointer as hlp. This alows
arbitrary chains of virtua protocolsto insert their sessions between the upper and lower conventiona sessions while
still passing “type information” from the upper protocol to the lower protocol.

Note that virtua protocols can be either synchronous (support the xCall/xCallPop/xCallDemux interface) or
asynchronous (support the xPush/xPop/xDemux interface).

2.6 Default Operations

Since many protocols UPI operations look very similar, the x-kernel provides some library operations that do much
of the standard work of some of the operations. Many protocols can cal these default operations, or at the very least,
these default routines can serve as atemplate for writing the corresponding protocol-specific routine.

2.6.1 defaultOpenEnable

Bindskey to an Enable object with hlp and hipType. If a previousbinding exists for the given key and protocols, the
reference count of that Enable object will beincreased. defaultOpenEnable will fail if a previous binding exists for
thiskey that does not match the protocols.

XkReturn defaultOpenEnable(Map map, Protl hip, Protl hipType, void *key)

14

9T

Y(INN ‘d |y ‘dau”eA 1ssed< -sd) | [vo |ges IquadD } [Nk Jap ulinial

‘91e1S<-}19S = sdy 91leisd
}
(dy 1104d ‘}19s [101d) | Ive Iqes quadodeAk
uiniagyx d1lels

{
$(Royg ‘adAld |y ‘djy ‘dau oA Issed<-sd)a |ges quadD) |nejap uinial
“((419s ‘adALd [yunN101d (84186 = A8y
‘91e1s<-}19s = sd, 91eISd
‘hay Buo |
}

(dy 10ed ‘adA1d |y j104d ‘d|y j104d ‘}|98S |10.d)d |qes quadpdeA
uiniagdx odlleis

{
{(Roypp ‘adAld |y ‘d |y ‘dau oA Issed<-sd)a [geuguadD) |nejap uinial
f((419s ‘adALd ylunnoid 19 186 = Aoy
‘91ei1s<-}19s = sd, 9eisd
‘Ao Buo |
}

(dx 1ted ‘edAid|y j104d ‘d|y |30Jd ‘}|8S |10.d)d |qeuguadodel
uiniagix o2 11els

saunnod 3nejep busn :Tainbi4

ST

'suolesedo asay) Busn saunos ajgesip/ajgeua syl Aylidwis ybiw [0oo10id e Moy Jo ajduexe uesarisn||i T ainbi4
afesn 99¢
(swuedionted, 1ed
‘dilx poid ‘adALdly poid ‘diy poid ‘dew den ‘4jas poid)ajqesiquadoreniiAinessp unsyX
‘a|qeuguadoeniiiAlnesep snoineid e Jo 1084 8yl ssopun
s|qesiquedOenllIAlNeRp GO

(swedionsed, 1ed
‘djlx poid ‘edALdy poid ‘djy poid ‘dew depy ‘yas jjoid)ajqeugzuadorentiAine;ap uineyyx

"adA1d|y uo pa/ey| si dew anssed ay} eyl SSWINSSY “uoieedo al1nue ay) Jo 1IN0 syJeq ajqeuguadQlenliialneap
‘Ire) sajqeuguadOx asayl Jo Aue 4| j|as |ooojoud fenuia ayy 01 adALdly Joy sexded lAlpp 01 sjodoloid BMmo|
ay1 Busneo ‘(syuedionted Busn) dj Aede pakeulw)-||NU 3y} Ul [000104d BMO| Ydes uo pawioled si ajqeu3u
-adOx ue ‘ajqeuguadQynesap Aq pawJoyed Bulpuig ayy 01 uonippe u| 'sjoooloid enuUIA Ag pasn aq 01 peubisaQg

a|geuzwdOENUIANNERP 79T

(ox B1qRUT ‘A PIOA)(OUNS||YBI0ESIAx) PIOA JopadAl
(ouny osund|jvajgesi@ ‘diy poid ‘dew dep)|ivajgqesiquadonnesop uineyyX

"panowI S1113J0Jeq dew ay) ul 191qo ajqeus yoes Joy ded (4
a|qreuT ‘Asy) 8yl ylim pa|ed Si 1l ‘olez-uou si ouny | “djy j000104d Y1im dew ul punog sielgo ajgeud | serowey

IIvalgesiquedOlineep €92

(Aoxix pron ‘adA1dly poid ‘diy poid ‘dew de)sjqesiquadolnesep uinayx

*(192[qo 8|qeu 8y ulSaN feA Paes 8yl yokew 1,uop sjodoioid ays Ji Jo /8 UsAIb ay) 1oy S1s1xe Buiyiou
11 “B9) s 18[00 8|qeu] arudoidde ou J1ain|ke)suinPy ‘d|jqeuguadOlneap snoinaid e Jo 1994 ay) SSopun

a|gesiquedolnepp 29T

3 Messagelibrary

The message library provides a set of efficient, high-level operations for manipulating messages. The underlying
data structure that implements messages is optimized for fragmentati on/reassembly, and for adding/stripping headers.
Protocol programmers should manipul ate messages only with the operations documented here.

3.1 Type Definitions

Messages, which are the x-kernel’s abstract data type for network packets, are defined by the Msg structure. Loosely
speaking, this structure consists of a tree of buffers that collectively hold the bytes contained in the message. The
leftmost buffer in thistree is caled the header stack because it holds the headers that are pushed onto the front of a
packet. This data structureis fairly complex, however, and so we do not describe it in this document. The interested
reader isreferred to acompanion report [4]. In addition, thereis a MsgWalk structure that is used by msgWalkNext
to traverse the buffers that make up a message (see Section 3.3.12). This structureis aso defined in [4]. The fields of
neither structure should not be directly accessed by the protocol devel oper.

3.2 Constructor/Destructor Operations

These operations are used to create and destroy messages. Many of them are, for example, used by device drivers and
system call code that has to incorporate a data buffer into an x-kernel message.

Messages that are newly created “own” the header stack, and can writeinto that space efficiently using msgPush.
See Section 3.4 for more information about message stacks.

3.21 msgConstructEmpty

Initializes a message structure with a datalength set to zero. The user must provide a pointer to valid memory.

void msgConstructEmpty(Msg *message)

3.22 msgConstructBuffer

Copies data from a user buffer (buffer) into an uninitialized message structure. The message data area, of size
length, is alocated and a copy is performed. This constructor is used when the data buffer already exists. Use
msgConstructAllocate when you will not have the opportunity to fill the buffer until after it has been created.

void msgConstructBuffer(Msg *message, void *buffer, int length)

3.2.3 msgConstructAllocate

Allocates a data area of size length and associates the area with the uninitialized message structure message. A
pointer to the dataarea is returned. A device driver might use this constructor, handing the pointer to the device as a
place to put down an incoming packet.

char *msgConstructAllocate(Msg *message, int length)

3.24 msgConstructCopy

The uninitiaized message message will refer to the same data as original_msg. No data is copied. See dso
msgAssign.

void msgConstructCopy(Msg *message, Msg *original_msg)

17

3.25 msgConstructinplace

An uninitialized message structureis constructed with a direct reference to the buffer specified. A function appropriate
for freeing the buffer when the message is destroyed must be provided. The msgConstructinplace function is
recommended only for limited use, such as within device drivers.

void msgConstructinplace(Msg *message, char *buffer, int length, MsgCIPFreeFunc freefunc)
typedef void *MsgCIPFreeFunc)(void *, int);
326 msgDestroy

Logically frees message. Data portions of the deallocated message are freed if there are no other outstanding
references to them.

void msgDestroy(Msg *message)

3.2.7 msgRefresh

Allocates a data area of size length and associates the area with the initialized message structure message. Thisis
equivalent to (but can be faster than) doing a msgDestroy to message, followed by amsgConstructAllocate. This
function should be used only when message isvalid.

char *msgRefresh(Msg *message, int length)

3.28 msgAssign

The assignment of msg-2 to msg-1 means that msg_1 will refer to the same data that msg_2 currently pointsto. No
data copying isinvolved. Thisisequivaent to doing a msgDestroy to msg-1, followed by a msgConstructCopy.
Thisfunction should be used only when both messages are valid; copying to an uninitialized structure should be done
with msgConstructCopy.

void msgAssign(Msg *msg_1, Msg *msg-2)

3.3 Manipulation Operations

Protocol s manipul ate messages (e.g., add and strip headers, fragment and reassembl e packets) using the following set
of operations.

3.3.1 msgLength

Returns the number of bytes of datain message.

int msgLength(Msg *message)

3.3.2 msgTruncate

Truncates the datain message to the given length. An attempt to to reduce the length to less than zero will result in
no change to the message. No storageis freed as aresult of truncation. This operation is used to strip trailers from a
message.

void msgTruncate(Msg *message, int newLength)

18

3.3.3 msgBreak

Removes length bytes from the front of original_msg and assigns them to fragment_msg. No copyingisdone. This
operation is used to fragment amessage into smaller pieces. Both messages must be valid at the time of the call.

void msgBreak(Msg *original_msg, Msg *fragment_msg, int length)

3.34 msgJoin

Assigns (in the same sense as msgAssign) to new_msg the concatenation of message fragment1 to the front of
fragment2. This operation is used to reassemble fragments into a larger message. The first argument must be avalid
message. The arguments need not refer to distinct messages. One common use of msgJoin is to attach a fragment
to the end of alarger message, in which case the first two arguments are the same (the larger message) and the third
argument is the fragment.

void msgJoin(Msg *new_msg, Msg *fragment1, Msg *fragment2)

3.35 msgPush

Used to prepend space for a header to the front of a message. Returns a pointer to contiguous buffer of length bytes
that islogically attached to the front of message. Typically, a header isthen copied into this buffer.

char *msgPush(Msg *message, int length)

3.3.6 msgPop

Used to remove a header from the front of a message. Returns a pointer to a contiguous buffer of length bytes that
contains the data that was at the front of message and removes length bytes from the front of the message.

char *msgPop(Msg *message, int length)

337 msgPesk

Used to examine a header at the front of a message. Returns a pointer to a contiguous buffer of length bytes that
containsthe dataat the front of message. The message remains unchanged.

char *msgPeek(Msg *message, int length)

3.3.8 msgDiscard

Used to remove and discard aheader of length length from thefront of amessage. msgDiscard isfaster than msgPop
since it doesn’t have to worry about making the returned buffer contiguous.

void msgDiscard(Msg *message, int length)

339 msgSetAttr

Associates an attribute of length byteswith name and attaches it to message message. Setting an attribute overrides
any previous attribute with the same name. Message attributes are used to communicate ancillary properties of
messages from a protocol to a session, or between protocols.

The only name supported at this time is 0. Attempting to set an attribute with another name will result in an
XK_FAILURE return value.

XkReturn msgSetAttr(Msg *message, int name, void *attribute, int length)

19

3310 msyGetAttr

Retrieves an attribute previously attached to message message with name. If no attribute has been associated with
name, O will be returned.

void *msgGetAttr(Msg *message, int name)

3.3.11 msgWalklnit
Intializes the context cxt for message, as required by msgWalk.

void msgWalkInit(MsgWalk *cxt, Msg *message)

3.3.12 msgWalkNext

Walks the tree structure of buffers that hold the message data, and returns a pointer to the next chunk of datain the
message. Also sets length to the number of bytesin that chunk. Argument cxt maintains the context for the message
traversal, so that msgWalk knows how far through the treeit got on the last invocation.

char *msgWalkNext(MsgWalk *cxt, int *length)

3.3.13 msgWalkDone
Destroys the context cxt used by msgWalkNext.
void msgCleanUp(Msg *message)

3.3.14 msgCleanUp
Frees unnecessary resources allocated to message.

void msgCleanUp(Msg *message)

3.3.15 msgShow
Shows information about message. Only valid when compilingin DEBUG mode.

void msgShow(Msg *message)

3316 msgStats
Prints statistics about message. Only valid when compiling with OPTION_MSG_STATISTICS defined.
void msgStats(MsgWalk *message)

3.4 UsageRules

Thex-kernel coding conventionsdictate that messages shoul d be destroyed by thesame entity that originally constructed
them. Thus, the ethernet driver isresponsiblefor destroying messages after successfully delivering them upward, and
the top-level protocolsthat interface to user functions should destroy messages that have been successfully delivered
to their destination.

When a protocol passes a message to an adjacent protocol (viaxPush, xDemux, etc.) its view of the message
becomesinvalid. The contentsof themessage after such an operation depend on which lower headers were pushed onto
it. Should a protocol want to keep areference to the message (e.g., so it can later retransmit it) it must explicitly save
acopy using either the msgAssign or the msgConstructCopy operation before passing the message on to another
protocol.

20

Note that although a protocol which constructs a message invaidatesits view of the message by performing aUPI
operation involving that message, it is still responsible for destroying the message.

The stack ownershipis ahidden variablein the message library implementation that affects whether or not storage
is automatically allocated on msgPush operations. The stack ownership is affected by several message library
operations, particularly msgAssign, msgJoin, msgPeek, and msgConstructCopy. The user is referred to the
source code for the details of the ownership rules.

Message attributes passed between protocol sshould consist of exportabledata, i.e., not pointers. Adherenceto this
convention will ensure that the protocol can bein used in a multi-address space environment.

21

4 Participant Library

Participant lists identify members of a session and are used for opening connections. An upper protocol interested
in establishing a connection constructs a participant list and passes it to the lower protocol as a parameter of an open
routine. The lower protocol then extracts information from the participant list, possibly passing the participant list on
to itsown lower protocol.

Each participant inthelist contains aparticipant address stack, designed to facilitate agenera method of communi-
cating encapsulated address information between protocol layers. By using pointersto address information, one layer
can pass address information through alower layer without having the lower layer manipul ate the address information
at dl, not even by copying. The address information for each participant is kept as a stack of void * pointersto address
components and the lengths of each component. The component pointers are pushed or popped onto the stack by
utility functions.

4.1 Type Definitions

The participant data structure is used to collect addressing information for opening connections. A participant listis
defined to be an array of type Part, and a PartStack isthe main field in asingle Part. The fields of these structures
should not be directly accessed by the protocol devel oper.

#define PART_MAX_STACK 20

typedef struct {
struct {
void *ptr;
int len;
} arr[PART_MAX_STACK];
int top;
} PartStack;

typedef struct {

int len;
PartStack stack;
} Part;

4.2 Participant List Operations

The following operations provide a convenient interface that hides the PartStack data structure. However, the fact
that aparticipant list isreally an array of type Part isvisibleto the programmer.

421 partlnit

Initialize participant list participants of number entries.

void partlnit(Part *participants, int number)

422 partPush

Pushes address addr, pointing to length bytes, onto the stack of participant. A length of 0 indicates a “specia-
value” pointer (e.g., ANY_HOST) whose val ue as a pointer should be preserved across protection boundaries (and not
dereferenced). See Section 4.4.

void partPush(Part participant, void *addr, int length)

22

423 partPop
Pops an address off the stack of participant. ReturnsNULL if there are no more elements on the stack.
void *partPop(Part participant)

4.2.4 partStackTopBytel en

Returns the number of bytes pointed to by the top element of the stack of participants. ReturnsO if the stack element
was pushed with alength field of zero (i.e., a“ special-vaue’ pointer). Returns-1if there are no elements on the stack.

int partStackTopByteLen(Part participants)

425 partLength
Returns the number of entriesin participant list participants.

int partLength(Part *participants)

4.3 RelativeProtocol Numbers

Participant lists are used for passing addressing information between protocols. An additiona problem is how a
high-level protocol identifiesitself to alow-level protocol. In most conventiona protocols, alow-level protocol uses
a relative protocol number to identify the protocols above it; e.g., IP identifies UDP with protocol number 17 and
TCP as protocol number 6. However, protocolsthat have been especially designed to use the x-kernel use an absolute
addressing scheme.

Thex-kernel reconcilesthese two approaches by maintainingatabl e of relative protocol numbers. (See Section12.3
for the format of this table.) Rather than embed protocol numbers in the protocol source code, protocols learn the
protocol numbers of protocols above them by querying this table using the following operation.

Protld relProtNum(Protl hip, Protl lip)

This operation returns the protocol number of the high-level protocol relative to the low-level protocoal, or -1if no such
binding has been configured in the protocol tables. This number will have to be cast into the appropriatetype; e.g., an
unsigned short by the ETH protocol and an unsigned char by IP.

Two other operations provide an aternate query interface. The operation

Protld protThiGetld(char *protocolName)
returns the protocol 1D number for the named protocol. ThisID number can be used with
Protld relProtNumByld(Protld hipld, Protl lip)

which has the same semantics as relProtNum, except that the high-level protocol isidentified by its 1D number rather
than by the Protl object itself. Thisinterface can be useful when you need to determine relative protocol numbers, but
do not have the appropriate Protl objectsin scope.

44 Usage Rules

By convention, active participant lists (those used in xOpen) havetheremote partici pant(s) first, followed by an optiona
local participant. Thelocal participant can often beomitted, in which case the protocol triesto use areasonable default.
For example, a UDP participant containsa UDP port and an I P host. If thelocal participant is missing from an active
participant list, UDP selects an available port for thelocal participant.

23

Figure 2: Using the participant list
/* protocol invoking xOpen on |owlevel protocol Ilp */
Part p[2];
/* set participant addresses before calling | owlevel protocol’s open */

partinit(p, 2);
part Push(p[0], &ServerHostAddr, sizeof(lPhost)); /* renote */

part Push(p[0], &ServerPort, sizeof(long)); /* renote */
part Push(p[1], ANY_HOCST, 0); /* local */
partPush(p[1], & ientPort, sizeof(long)); /* local */
xQOpen(sel f, self, Ilp, p);

}

Il p_open(Protl self, Protl hlp, Protl hlpType, Part *p)

{
/* get participant addresses within | owlevel protocol’s open */
renoteport = (long *)partPop(p[0]);
local port = (long *)partPop(p[1]);

}

In some cases, it is necessary to specify part of the information in a participant, but it is convenient to alow the
lower protocol to “fill in” the rest. To alow thisflexibility, the constant pointers ANY_HOST and ANY_PORT can
be used to specify “wildcard” values. For example, if you want to open UDP with a specific local port, but don't care
whichlocal host number is used, you could construct aloca participant with the specific local port but with the pointer
ANY_HOST pushed on the stack. The protocol that interpretsthe host part of the participant stack could then choose
areasonable default. Similarly, the pointer ANY_PORT could be used for protocols that use ports on their stacks.
Protocolsthat support wildcardsindicate thisin their manual page.

Figure 2 illustrates how a protocol that isabout to invoke xOpen on alow-level protocol initializes the participant
list, and then how the low-level protocol extracts that information from the participant list.

Noticein this example how the high-level protocol pushes two items (a host address and a port number) onto each
participant’s address stack, but the low-level protocol pops off only one item. Thisis because the low-level protocol
does not interpret the first item (the host address); it just passes it on to its low-level protocol. Also note that when
using participantsthat have been passed from other protocols, you must keep in mind that the address pointers may be
valid only for the duration of the current subroutine. Data that is needed beyond thistime should be explicitly copied
into static storage. In addition, because the participant structure is passed by reference in the xOpen call, the caller
should consider the contentsinvalid after the return.

In general, passive participant lists (those used in xOpenEnable) contain only thelocal participant, with no remote
participant specified. Thisindicatesthat an upper protocol iswillingto accept connectionsfrom any remote participant,
as long as the connection is addressed to the correct loca participant. Protocolswhich provide different semantics for
their openEnable participantswill indicate thisexplicitly in their manual page in the Appendix.

24

5 Event Library

The event library provides a mechanism for scheduling a procedure to be called after a certain amount of time. By
registering a procedure with the event library, protocolsare able to “timeout” and act on messages that have not been
acknowledged or to perform periodic maintenance functions.

5.1 Type Definitions

The only event-related type that protocol programmers need be aware of isthetype Event. Thistypeisdefined by the
underlying platform and is opague to the protocol programmer.

5.2 Event Operations
5.2.1 evSchedule

Schedules an event that executes function func with argument arg after delay usec microseconds; usec may equal 0.
A handleto the event is returned, and this can be used to cancel the event at some later time. When an event fires, a
new thread is created to run functionfunc. Notethat even after an event fires and athread has been scheduled to handle
it, the thread does not run until sometime after the currently executing thread gives up the processor. See Section 7 for
a description of how threads are scheduled.

Event evSchedule(EvFunc func, void *arg, unsigned usec)
typedef void (*EvFunc)(Event event, void *arg)

Function func must be of type void and take two arguments: thefirst, of type Event, isahandleto the event itself,
and the second, of type void *, is the argument passed to evSchedule. In order to satisfy the C compiler type checking
rules when accessing the arguments, function func must begin by casting its second argument to be a non-void type.
522 evDetach

Releases a handle to an event. As soon as func completes, the interna resources associated with the event are freed.
All events should eventually be either detached or canceled to assure that system resources are released.

void evDetach(Event event)

523 evCanced

Cancels event and returns EVENT_FINISHED if the event has aready happened, EVENT_RUNNING if theevent is
currently running, and EVENT_CANCELLED if the event has not run and can be guaranteed to not run. In the case
whereevCancel returnsEVENT_RUNNING, the caller must be careful to not del ete resources required by the event.

EvCancelReturn evCancel(Event event)

5.24 evisCanceled

Returnstrueif an evCancel has been performed on the event. Because event handlers receive their event as thefirst
calling argument, it is possible for a handler to check for cancellation of itself from other threads.

bool evisCancelled(Event event)

25

Figure 3: Repesting events

foo_init()

{

evDet ach(evSchedul e(func, arg, |NTERVAL));
}

func(Event self, void *arg)
actual work

evDet ach(evSchedul e(func, arg, | NTERVAL));

525 evDump

Displays a ps-stylelisting of x-kernel threads when the x-kernel is compiled with DEBUG mode. The address of the
entry function, thethread state (pending, schedul ed, running, finished, or blocked), the timerelevant to the thread state,
and flags (detached or cancelled), are displayed for each thread controlled by x-kernel monitor. The meaning of the
time entry varies according to the state. For pending threads, the time is the time until it will be scheduled; for other
states it is the time the thread has spent in that state. The timeisreset on each transition, i.e, it isnot cumulative.

void evDump(void)

5.3 UsageRules
5.3.1 Repeating Events
Each event that is scheduled executes at most onetime. Repeating events are programmed as illustrated in Figure 3.

532 CancellableEvents

The evisCancelled routineisdesigned to makeit easy to write events which might be cancelled before (or while) they
run. It is common practice, for example, for a session to pass session state to a timeout event. The evisCancelled
notification can be used to synchronize the timeout event and the possible destruction of the session state. An example
isgivenin Figure4.

5.3.3 Event Granularity

Although the event library uses an efficient representation (timing wheels) protocol programmers should be careful to
not schedule events that are too fine grained. For example, in TCP, it is better to schedule one event for every session
rather than for every message that is sent.

26

Figure 4: Cancellable events

foo_destroy()
{
é;/.CanceI (state->timeout Event);
} L.
foo_timeout (Event self, void *arg)
PStaEe *state = (PState *)arg;

xPush(lls, retransm tMsg);
/* xPush may have bl ocked -

check to see if state is still valid */
if (evlsCancelled(self))
return;
st ate->ti meout Event = evSchedul e(foo_tineout, arg, |NTERVAL);
}
6 Map Library

The map library provides afacility for maintaining a set of bindings between identifiers. The map library supports
operationsfor adding new bindingsto the set, removing bindingsfrom the set, and mapping oneidentifier into another,
relative to a set of bindings (lookup). Protocol implementations use these operations to transate identifiers extracted
from message headers (e.g., addresses, port numbers) into capabilities for (pointers to) x-kernel objects (e.g., Protl,
Sessn, Enable).

6.1 Type Definitions

The map library defines two data structures: MapElement and Map. A Binding is a pointer to a MapElement. A
map element is a table of bindings, where each binding is given by the pair <external key, internd id>. An externa
key isavariablelength byte string, which typically is constructed from various fieldsin amessage header. Aninternal
id isafixed-sized identifier (e.g., 232 or 64-bit memory address) which is a pointer to a protocol or session object.

typedef struct mapelement {
struct mapelement*next;
void *externalkey;
void *internalid;

} MapElement, *Binding;

typedef struct {

int nEntries;
int keySize;
MapElement *cache;
MapElement *reelist;

27

MapElement **table;

XkReturn (*resolve)();

Binding (*bind)();

XkReturn (*unbind)();

XkReturn (*remove)();
} *Map;

6.2 Map Operations
6.21 mapCreate

Creates a map with table_len eements in it. Externa keys bound in this map are keySize bytes long. The
maximum value for the key size is MAX_MAP_KEY _SIZE, currently 100 bytes. Programmers should normally use
sizeof(structuretype) as the key size to facilitate platform independence. Note that maps never overflow, but they
perform best if table_len is chosen so that the map is at most 50-80% full. Returns 0 if the map could not be created.

Map mapCreate(int table_len, int keySize)

6.22 mapBind

Addsabinding of externd key tointerna id to map. The binding will be done with keySize bytes of what key points
to, where keySize is the parameter that was used in the mapCreate call. The return value uniquely identifies this
binding; it can later be given as an argument to mapRemoveBinding. A return vaue of ERR_BIND indicatesthat the
key isaready bound in the map to adifferent id. If the key is aready bound to the same id, that binding is returned.

Binding mapBind(Map map, void *key, void *id)

6.23 mapResolve

Looksfor theinterna id bound to theexternal key inmap. Theresolutionwill bedonewith keySize bytesof what key
pointsto, where keySize is the parameter that was used in the mapCreate call. If abindingisfound, *id is assigned
the vaue of the interna identifier and XK_SUCCESS isreturned. If no appropriate binding is found, mapResolve
returns XK_FAILURE. If id isNULL, only theerror code is returned.

XkReturn mapResolve(Map map, void *key, void **id)

6.24 mapRemoveBinding
Removes binding bind from map. Returns XK_FAILURE if theitem is not in the map.
XkReturn mapRemoveBinding(Map map, Binding bind)

6.25 mapRemoveKey

Removes binding of the association key from the map. Thisisthe inverse of mapBind. Returns XK_FAILURE if the
itemis not in the map.

XkReturn mapRemoveKey(Map map, void *key)

6.2.6 mapClose
Destroys map and frees its space. Any elements left in the map will be unbound before the map is destroyed.

void mapClose(Map map)

28

6.2.7 mapForEach

Allowsiterative access to the entries of amap by the provided calback function func. Each call to mapForEach puts
the external key and itsinternal id into arguments passed the function func. The third argument passed to func isthe
supplied value arg. Aslong asthe flag MFE_CONTINUE isset in the callback function’sreturn vaue and there are
unprocessed keys, mapForEach will continueto call func.

If the flag MFE_REMOVE is set in the return value of the callback function, mapForEach will remove the entry
from the map after the user function returns and before it is called with the next map entry. Thisis the only correct
way to remove the “current” map entry during a mapForEach operation. If the user callback function attempts to
remove the “current” entry directly (viamapRemoveBinding or mapRemoveKey), the result is unpredictable and
may result in system crashes.

Itiscurrently possibleto remove entries other than the* current” entry from withinthe callback function. However,
we strongly discourage such use asits correctness depends onimpl ementation detail sthat may changein futureversions
of thex-kernel.

New map entries added in the middle of a mapForEach iteration may or may not show up during that iteration.
Map manipulationswithin amapForEach user function are generally not recommended.

MFE_REMOVE and MFE_CONTINUE are binary flags which may be combined using bitwise OR. The order in
which keys are returned depends on theinternal structure of the map.

void mapForEach(Map map, MapForEachFun func, void *arg)

typedef int MapForEachFun(void *key, void *id, void *arg)

6.3 Usage Rules
6.3.1 Map Modifications During mapFor Each

It is no longer permissible to directly remove the “current” entry in a mapForEach callback function, as it was
in x-kernel version 3.2. When adapting a version 3.2 protocol, care should be take to remove such illegal map
modifications.

Ilegal map modifications often appear in timeout handlers closing active sessions. Such code can be fixed easily
because it is customary to save the binding of an active session in the binding field of the Sessn and for functionsthat
close sessionsto check thisfield and performamapRemoveKey only if itisnon-zero. Thefix isto modify thetimeout
handler to (a) reset binding to zero, (b) call the session-closing function, and (c) return the flag MFE_.REMOVE in
addition to any other flags that may have been returned by the mapForEach callback function. This ensures that
the map entry for the active session that is being closed remains in the map until the mapForEach callback function
returns.

6.3.2 External Keys

Maps are used to bind a variable length external key to an internd id of typeint. The size of the external key isgiven
as an argument when a particular map is created. All external keys bound using this map are expected to be of this
size. It'simportant that you use a zero-izing routine like bzero before assigning val ues to a structure that will be used
with the map routines. The C language can have uninitialized datain the interstices of structures (i.e., padding areas),
and these can cause structures that are “equal” (i.e., al fields have the same vaues) to fail to map to the same valuein
the x-kernel.

6.3.3 Activeand Passive Maps

Protocols generally maintain two maps: an active map and a passive map. Active maps are used to map keys found
in incoming messages into the session that will process the message. Thus, the active map holds information about
the set of currently active connections. Passive maps are used to bind keysto Enable objects (Section 2.1.2), thereby
alowing a protocol to create a session when a message that is part of a new connection arrives. Typically, a protocol

29

bindsan activekey toasessioninitsxOpen routine, and apassive key to an enableobject initsxOpenEnable routine.
These bindingsare then used in the protocol’sxDemux routine.

30

7 Thread Library

The x-kernel uses a “thread-per-message” model of computation, and provides primitives for synchronizing threads.
The following operations affect thread scheduling. Of these, only semWait can cause the x-kernel to run a different
thread than the current one.

Note that this section does not define any operations for creating or destroying threads. This is because x-kernel
threads are created and destroyed implicitly. Threads are created by the device driver (in the case of incoming
messages), by the system call interface (in the case of outgoing messages), and by the event library (in the case of an
event firing). Threads are destroyed when they return from the outer-most procedure.

7.1 Type Definitions

The only thread-related type of which protocol programmers need be aware is the type Semaphore. However, this
typeisdefined by the underlying platform and is opaque to the protocol programmer.

7.2 Synchronization Operations
721 seminit

Initializes semaphore sem with a count of count. Semaphores in the kernel are normally alocated steticaly (i.e.,
Semaphore x;) and must be initialized (seminit(&x, 1);) before they are used.

void semlnit(Semaphore *sem, int count)

722 semWait

Increments the use count for the semaphore. The current thread will either acquire the semaphore sem or give up
control until asemSignal is done by another thread and the scheduler runs.

void semWait(Semaphore *sem)

7.2.3 semSignal

The current thread decrements the use count for semaphore sem. The current thread continues executing. Note that
if multiple threads are blocked on the semaphore, there is no policy about which thread will be avakened by the
semSignal.

void semSignal(Semaphore *sem)

7.3 Dday

Delays the current thread for at least msec milliseconds. Thisis not a thread primitive, but a library routine built
on top of semWait/semSignal. Note that the argument is in milliseconds, while the time argument to evSchedule
(Section 5.2.1) isin microseconds.

void Delay(int msec)

7.4 UsageRules
7.4.1 Scheduling and Preemption

The currently executing thread gives up control by either terminating or executing a semWait operation. In other
words, the x-kernel does not preempt threads; threads voluntarily give up control of the processor. However, because
each protocol is assumed to be an independent component, protocols are written to assume that control may be given
up when a higher or lower level protocol isinvoked. Therefore, al protocol-to-protocol operations are considered to
have the potential to cause a thread switch, and all data structures must be “secured” before calling such operations.

31

7.4.2 Blocking

Although the x-kernel advocates a “thread-per-message’” model and it provides primitives for blocking threads, as a
genera rule, threads should not block except when waiting for areply in an RPC-like protocol. In most other cases,
should a thread not be able to proceed, it should put the message in a protocol-dependent queue and return. Later,
another thread can pick up the message from the queue and continue processing it.

For example, when an incoming thread/message arrives in IP and discovers that it isjust one fragment of alarger
datagram, rather than blocking the thread and waiting for the other fragments to arrive, the thread should insert the
fragment into a reassembly buffer and return. The thread that delivers the last fragment will then reassemble the
fragments into a single datagram and continue.

7.4.3 External Threads

Where the x-kernel is enbedded in another operating system, there may be asynchronous threads representing device
drivers or user requests that want to enter the x-kernel. These threads must, in general, acquire the x-kernel master
lock (i.e., enter the x-kernel monitor) with xk_master_lock before performing any x-kernel operations, including
other thread synchronization operations. (Thisisn’t necessary for normal x-kernel threads because threads started by
evSchedule acquire the master lock automatically when they start running.) Unless a call is explicitly documented
otherwise, threads may not make x-kernel system or library calls without holding the master lock.

A thread acquires and rel eases the master x-kernel lock with the following operations.

void xk_master_lock(void)
void xk_master_unlock(void)

Note that normal protocols should not use these operations. The only place that they are meaningful is in anchor
protocols, such as device drivers, and application-level interfaces, that have to transition between the x-kernel and
the host OS. Also note that this interface is not part of the official x-kernel interface; it is interna to the current
implementation of the x-kernel.

7.4.4 Thread Turnaround

Protocols should refrain from taking threads which are shepherding outgoing messages down the protocol stack and
turning them around to accompany messages traveling up the protocol stack. Since protocols are allowed to reverse
thread direction from incoming to outgoing, alowing turnaround from outgoing to incoming could lead to a thread
caught in arecursive loop. If an outgoing thread needs to send a message back up, it should start a new thread to do
this. The push routine of the ethernet protocol (/usr/xkernel/protocols/eth) has an example of how thisis done.

7.45 Multiprocessor Support

Version 3.3 of the x-kernel is MP-safe, athough probably not MP-performant. Thisis because al threads executing in
the x-kernel must first acquire a master lock; i.e., the x-kernel is currently implemented as a single monitor. Research
projects at the Swedish Institute of Computer Science and The University of Massachusetts have been investigating
the addition of finer-grain locks.

32

8 Tracelibrary

Thex-kernel providestwo different facilitiesfor tracing protocol execution. Thefirst, whichisdescribed inthissection,
supports the conditiona printing, in printf format, of statements taking from zero to six variables. Every protocol
should make use of the trace facililty described in this section. The second, which is described in the next section,
supports the collection of fine-grain trace data, and the storage of this data to files, where it can later be analyzed.
Protocols use this more advanced facility only when they are being instrumented for detailed performance analysis.

8.1 Type Definitions

The current value of the trace variable tracevar is used to control whether or not a particular trace operation takes
place. Thetrace variable values can be set at system build time (see Section 12). The following defined constants are
suggestive of how to use trace levels.

TR_NEVER for debugging statements that are unused (noop)
TR_FULL_-TRACE every subroutine entry and exit

TR_DETAILED all functions plus dumps of data structures at strategic points
TR_FUNCTIONAL_TRACE all the functions of the module and their parameters
TR_.MORE_EVENTS even more detail on events

TR_EVENTS more detail than major events
TR_SOFT_ERRORS mild warnings

TR_MAJOR_EVENTS open, close, etc.

TR_GROSS_EVENTS the coarsest tracing level

TR_ERRORS serious non-fata errors; some residual event traces
TR_ALWAYS normally only used during protocol development

8.2 Operations
821 xTrace

The xTracen macros take n arguments (where 0 <= n <= 6) in addition to the variables tracevar, tracelevel, and
formatstring. tracevar is a name associated with the protocol or subsystem being traced. tracelevel is compared
to the value of the trace variable to determine a runtime if the trace statement should be printed. formatstring is a
printf-style formatting statement.

Each protocol has a trace variable based on the protocol name with “trace” prepended and “p” appended; eg.,
udp has trace variable traceudpp. In addition to protocol tracing, there are x-kerndl trace variables for subsys-
tems: eg., init, processswitch, protocol, processcrestion, event, msg and ptbl. These are defined in the file xker-
nel/include/xk_debug.h.

Note that the trace facility automatically suppliesanewline at the end of the trace message, therefore the supplied
format string need not. Also, the trace facility prepends “trace’ to the tracevar argument passed in. Thus, the first
argument must be the protocol name with only “p” appended; e.g., udpp for udp. Because of this prepending, there
should be no whitespace preceding atrace variable name in any tracing statement. Whitespace will cause errorsin the
macro expansion and result in compilation errors.

xTracen(int tracevar, int tracelevel, char *formatstring, args, ...)
For example:
int traceudpp;
xTrace2(udpp, TR ERRORS, "input port % output port %", inp, outp);
will print the trace message if the x-kernel was built in DEBUG mode (see Section 12 and if TR.ERRORS <=
traceudpp.

33

8.2.2 xTraceP, xTraceS

The xTracePn and xTraceS»n macros function much the same way as the xTracen macros, except that they take a
Protl or Sessn as their first parameter (instead of a trace variable) and they print the protocol instance name before
therest of the trace statement. Thisturnsout to be very useful when reading an x-kernel trace where severa protocols
were interleaving trace statements. We recommend using the xTracePn and xTraceSrn macros whenever you have an
appropriate Protl Sessn in scope, using the xTracern macros only when there is no such Protl or Sessn available.

xTracePrn(Protl protocol, int tracelevel, char *formatstring, args, ...) XTraceSn(Sessn session, int
tracelevel, char *formatstring, args, ...)

8.23 xIfTrace, xIfTraceP, xIfTraceS
If thetracelevel isless than or equd to the value of the tracevar, then execute the statement directly following.
xIfTrace(int tracevar, int tracelevel)

For example:
int traceudpp;

x| fTrace(udpp, TR_ERRORS)
dunp_header () ;

xIfTraceP and xIfTraceS are the anal ogous operations, taking a Protl or Sessn instead of atrace variable.

xIfTraceP(Protl protocol, int tracelevel) xIfTraceS(Sessn session, int tracelevel)

8.3 UsageRules

Trace statementsare macros which areonly activein DEBUG mode (see Section 12). If you arewritinganew protocol,
you should insert trace statements. Even though there will be no bugs | eft after you release your protocol, it may help
othersin debugging their protocols. Don’t delete these very helpful debugging statements when you are done.

Thetracelevelslistedin Section 8.1 arein increasing order of severity. When an x-kernel runswith tracing enabled,
trace statements associated with atrace variablewill printif their tracelevel isat least as severe asthe vaue of thetrace
variable. For example, if the TCP trace variableis set to TR_.GROSS_EVENTS, thiswill cause TCP trace statements
with trace levels of TR_.GROSS_EVENTS, TR_LERRORS and TR_.ALWAYS to be displayed. To display al TCP
trace statements, you would set the TCP trace variable to have the value TR_LFULL_TRACE.

9 Data-TracelLibrary

In addition to the trace facilities that print information to standard output, as described in the previous section, the
x-kernel also provides a facility for saving detailed trace information about protocol execution to disk. This data can
later be processed by various protocol-specific analysis tools. We anticipate most protocols using the trace facility
described in the previous section, rather than the facility given in this section.

This datatracing facility supports operations for creating and managing circular trace buffers, writing trace entries
to abuffer, saving traces to afile, and appending “postamble’ information to trace files..

9.1 Type Definitions

The data tracing facility defines three data structures: dt is the main object associated with a trace (it manages the
trace buffers and output file); dthdr keeps track of the numbers and sizes of trace bufferswritten to the output file; and
dtpost manages the postambl e list (postamble buffers are written to the trace file after the trace has completed).

typedef struct dt_object_struct {

char *buffer;
char *current;
char *last;
char *traceName;
int fileSize;
dthdr fileHdr;
dtpost *post;
int numPost;
dtCloseFunc closeFunc;
void *closeArg;
struct dt_objectrextict

}dt;

typedef struct dt_filehdr_struct {
int version;
int bufferSize;
int numberBuffers;
int lastBufferldx;
int lastBufferSize;

} dthdr;

typedef struct dt_postamble_struct {
char *buffer;
int size;
struct dt_postamble;struct

} dtpost;

9.2 Operations
9.2.1 dtCreateTraceObj

Creates and initializes a trace object with name traceName. The traceName and instName fields are also used to
create the name of the trace output file. If instName is NULL, the output file is “traceName.dt”; otherwise, it is
“traceName_instName.dt” (substituting the appropriate val ues for the variable names).

35

Thelogsize parameter specifies the size of the trace buffer in bytes, and fileSize states the maximum length of the
tracefilein terms of trace buffers (e.g., logsize = 10000 and fileSize = 3 means atrace buffer of approximately 10KB
and a maximum trace file size of 30KB).

dt *dtCreateTraceObj(char *traceName, char *instName, int logsize, int fileSize)

Note that both the trace buffer and trace file are circular. When the trace buffer is full, it will be flushed to disk;
when the trace file isfull, the next trace buffer written will overwrite thefirst onein thefile.

A list of al trace objects created by any protocol is maintained by the datatrace tool. The newly created trace object
isput at the end of thislist.
9.22 dtTrace

The dtTracen macros take n arguments in addition to a pointer to a dt object. The effect of dl of them isto save the
trace variables given as arguments to the trace buffer, and advance the buffer pointer. When the trace buffer becomes
full, it isflushed to disk and the buffer pointer isreset to the start of the trace buffer.

void dtTracer(dt *dtobj, args,...)

9.2.3 dtTraceBuf

The dtTraceBuf macro can be used instead of dtTracen. It copiesasingle buffer, pointed to by buf and of length len,
to the trace buffer, and advances the buffer pointer. When the trace buffer becomes full, it is flushed to disk and the
buffer pointer isreset to the start of the trace buffer.

dtTraceBuf(dt *dtobj, char *buf, int len)

9.24 dtFlushTraceObj
Flushes the data in the buffersto the datafile. Also flushes the postamble dataif flush_post is non-zero.
void dtFlushTraceObj(dt *dtobyj, int flush_post)

9.25 dtRegisterCloseFunc

Associate closefunc with trace object dtobj. Function closefunc isinvoked with argument closearg when dtClose()
iscalled.

void dtRegisterCloseFunc(dt *dtobj, dtCloseFunc closefunc, void *closearg)

9.26 dtClose

Thisfunction first calls the function registered with dtobj by dtRegisterCloseFunc(), if thereisone. It then removes
the trace object from the trace object list, flushes the trace buffer to disk, and frees all storage associated with the
object.

void dtClose(dt *dtobj)

9.2.7 dtCloseAll
Invokes dtClose() on al trace objects. This function should be called at the end of the program.
void dtCloseAll()

36

9.2.8 dtAppendPostAmble

Adds a buffer to the trace object dtobj, which isflushed to the end of the file when dtClose() is called. Assumes that
the buffer has been preallocated. The buffer is placed at the end of the postamble list.

XkReturn dtAppendPostAmble(dt *dtobj, char *buffer, int size)

9.29 dtinsertPostAmble

Adds a buffer to the trace object dtobj, which isflushed to the end of the file when dtClose() is called. Assumes that
the buffer has been preallocated. The buffer isplaced at the beginning of the postamble list.

XkReturn dtinsertPostAmble(dt *dtobj, char *buffer, int size)

9.2.10 dtPostAmblel ocation
Returns the offset from the beginning of the file to the beginning of the postamble information.
long dtPostAmbleLocation(dthdr *FileHdr)

9.211 dtGetTraceObj
Returns the trace object that was created with name traceName.
dt *dtGetTraceObj(char *traceName)

9.2.12 dtGetTopTraceObj
Returnsthefirst trace objectsin thelist of trace objects.
dt *dtGetTopTraceObj()

9.2.13 dtLoadXObjRomOpts

This routine would typically be called in a protocol’s initialization routine, if the protocol supports tracing. See
Section 9.3 for more information.

void dtLoadXObjRomOpts(Protl prot)

9.3 UsageRules

A romfile entry can be used to creste a trace object for a protocol that supports tracing. The protocol’sinitiaization
routineshould includeacall to dtLoadXObjRomOpts(); when thisfunctionisinvoked, theromfileis scanned looking
for entries that bear the name of that protocol and that have meaning to the datatrace facility.

A romfile entry to create a trace object for the I P protocol would look like:

ip trace name=i p_trace |ogsize=10000 filesize=3;
Thefirst argument in the romfile entry must be the protocol name, and thesecondis“t r ace”. The“nane” argument

is optional; if not specified, the trace object is given no name. The above romfile entry would result in a call to
dtCreateTraceObj() with the specified parameters when the dtLoadXObjRomOpts() function was invoked.

37

10 Utility Routines

10.1 Storage
10.1.1 xMalloc

Essentially the same as the Unix malloc routine. Causes an x-kernel abort if no storage is available; therefore, it has
no error return value.

char *xMalloc(int size)
The x-kernel provides a macro, X_-NEW, that can be used to all ocate space of a certain type.
#define X_NEW(type) (type *)xMalloc(sizeof(type))

10.1.2 xFree
Frees previously allocated memory.

int xFree(char *buf)

10.2 Time

The x-kernel uses atime structurethat is the same as that of Unix.

typedef struct {
long sec;
long usec;
} XTime;

1021 xGetTime
Sets time to the current time of day.

void xGetTime(XTime *time)

10.22 xAddTime

Sets result to the sum of time_1 and time_2. Assumestime_1 and time_2 are in standard time format (i.e., does not
check for integer overflow of the usec value).

void xAddTime(XTime *result, XTime time_1, XTime time_2)

10.2.3 xSubTime
Sets result to the difference of time_1 and time_2. The resulting value may be negative.

void xSubTime(XTime *result, XTime time_1, XTime time_2)

38

10.3 Panic Conditions

10.3.1 xAssert

If the expression exp evauates to FAL SE, the x-kernel will print a message and halt.
xAssert(bool exp)

Note that xAssert statements are macros which are only active in DEBUG mode (see Section 12). In OPTIMIZE
mode, xAssert and trace statements go awvay completely. You should keep thisin mind to avoid bugs that show up
only in OPTIMIZE mode. For example, the statment:

XAssert (nmapResol ve(nmap, key, &p) == XK_SUCCESS);

will have no effect in OPTIMIZE mode. You should be careful to separate the operation and the check of the return
code, asfollows.

res = napResol ve(map, key, &p);
xAssert (res == XK_SUCCESS);
10.3.2 xError
Non-fatal error conditionscan print warnings even in nondebugging mode by using the xError call.

XError(char *ErrorString)

10.4 ByteOrder: ntohs, ntohl, htons, and htonl
The byte order functions are the same as the Unix functions.
u_shortntohs(u_short n)
u_long ntohl(u_long n)

u_shorthtons(u_short n)
u_long htonl(u_long n)

10.5 Checksum
1051 inCkSum

Calculates a 16-bit 1's complement checksum over buffer (of length length) and message, returning the bit comple-
ment of the sum. length should be even and the buffer must be aligned on a 16-bit boundary. length may be zero.

u_short inCkSum(Msg *message, u_short *buffer, int length)

10.5.2 ocsum

Returns the 1's complement sum of the count 16-bit words pointed to by hdr, which must be aligned on a 16-bit
boundary.

u_short ocsum(u_short *hdr, int count)

10.6 StringstoHosts

Utility routines exist for converting from string representations of 1P and Ethernet addresses to their structural coun-
terparts and vice-versa

39

10.6.1 ipHostStr

Returns a pointer to a string with a “dotted-decimal” representation of IP host host (e.g., “192.12.69.1"). This string
isin astatic buffer, so it must be copied if its valueisto be preserved.

char *ipHostStr(IPhost *host)

10.6.2 str2ipHost

Interprets str as a “dotted-decimal” representation of an IP host and assigns the fields of host accordingly. The
operation failsif str does not seem to be in dotted-decimal form.

XkReturn str2ipHost(IPhost *host, char *str)

10.6.3 ethHostStr

Returns a pointer to a string with a representation of Ethernet host host (e.g., “8:0:2b:ef:23:11"). Thisstringisin a
static buffer, so it must be copied if itsvalue isto be preserved.

char *ethHostStr(ETHhost *host)

10.6.4 str2ethHost

Interprets str as a six-hex-digit-colon-separated representation of an Ethernet host and assigns the fields of host
accordingly. The operation failsif str does not seem to bein the correct format.

XkReturn str2ethHost(ETHhost *host, char *str)

10.7 Host Name Service

A simple way of mapping host name stringsto host | P addresses is provided viarom file entries (see Section 12.4) and
the interface function xk_gethostbyname.

During x-kernel startup, rom filelinesbeginning withthestring“dns” are parsed into name and address components
and added to the host name table. E.g.:

dns unbra 192.12. 69. 97

The host name must be less than 64 characters in length.

10.7.1 xk_gethostbyname

This function will look up a hostname and return its IP address in addr. The name must be an exact match to arom
fileentry; no substringsare allowed. If the name is not found, the return code indicates failure.

XkReturn xk_gethostbyname(char *name, IPhost *addr)

10.8 ROM fileparsing utilities

When writing a protocol that provides user-configurable ROM file options, you can make use of the ROM file parsing
utilitiesto process the ROM file entries. To use these utilities:

1. Write separate routinesto handle each ROM option your protocol will support. These routines should be of the
following type:

typedef XkReturn (*ProtlRomOptFunc)(Protl protl, char **fields, int numFields,
int lineNumber, void *arg)

40

v 114

‘(0 ‘(ydguod |101d) j00z 1s/(s1do)joaz s ‘sido ‘) [as)sidouoy |10.dpu |}

}

(418s |104d)11u1 00}

_ _ 11N Busred ydowol
'SSFOONS HX : WNTIVA X ¢ T > (1i0d<-sdy ‘.@p. ‘[z]44e)uedss uinial U1 Y3Im 80e41U1 pnom [00010.d S} MOY SMOLS G 3nBi4 Ul ajdwexe ay) sierwerd Bbeiul a|bus axer YoIum Jo
y1og ‘uondo nuw ue pue uondo 1iod e ‘suondo NOY oM spoddns yoiym [00030.4d B BpIsUoD ‘9dwexe Ue Sy
‘91e1S<-}|9s(x 91eISd) = sdy deIsd

} “Blpuey poRkdOsse si 10 Sppl Me) 001 yiimaul] NOd e
(Biey, PIOA ‘BUI| Ul ‘SpP[@I14U U1 ‘Jleyy, Jeyd ‘}|9S |10id)1lodpes. woJj pue 3¥N11IV4-MX Buiuinp. oun41dOWoy 1014 3y} WO} S} NS Jo1Aeyeq aWes iy | "peuUeas ad 1ou |[Im
ulinisgix dlieis SIS INOY B} JO 1591 8 L “PpauINRI B ||1M FYNTIVE DX pue pajutid aq ||1m afiessaw oo Ue ‘PRl puosss
a1 sayoew sa e sydo paiddns sy Jo suou Ing ‘|odolold yorew o) seadde aul| INOH B JO ppl 1S4l 8yl 4|

{ . .
. - . - ; . . WewnB.e pa11ddns-#esn ay3 pUe Jequunu du 1|3y} Sul 1y} U0 SPRY JO Bgunu 3y 'dul| ey uospply NOY
'SSFOONS™HX 1 WNTIVAMX ¢ T > (nw<-sdy ".mp. ‘[z]4ue)uedss uunial 1l ‘|0o03104d 8y3 yiim pa|ea s1uondo eys Joj osun4idowoy|oid syl ‘Buiis Axdwe syl sisaiue sidoay) joauo
. _ JO PP BWRU B} 1 10 ‘SS11JUS S3A0 BY} JO BUO JO PRI} SWEU B} SDYITRW 8U 1| 3U} JO PR PUOISS 8} §| “PaULEXS
9ye1s<-19s(x d1eiSd) = sdy 9eisd } s1‘sidowoy|10.d Jo ‘s1do Aeire 8y} ‘puNOy S| YoTeW B yans UBUYM “(YoTew pInom AIpYIS 1o 03 S/AIPYIL BUIp

YIMSD1LIUB 31 INOY ‘03S/AIpYIe S1aouesul [00010.4d ays §1 “63) 100010.d JO Sueu oUeIsUl [N 8y} J0 sweu

(Baes ploA faUL] UL SPISIHU UL AJBL. JBYD T4 13S 1301d)N WPES) I0o0jo:d BU} BUIR SBUOTL PRI .1 BU} SRUM Seul] Joj BUBI00| Bl INOX U} UBNOIL SUBDS BUINOJ SIYL

uiniagdx od1leis
g (Bre, pioA ‘sidownu i ‘sydo, 1dowoy10id ‘|09010.d [1014)SIAOWOYI0I4PUL UINBYNX

{ 1iodpess ‘¢ ‘,1i0d, }
‘{ nwpeas ‘¢ ‘.nw, } 'sidowoy|101dpuly |22 ‘9pod UoIEZIeNIuUIS,[090104d JNOA UlaBYMBWoS g

} = [Isido 1dowod |104d 2 11eIS
adowoypoid {

[(x PIOA UL UL .. JBUD ‘1304d)1J0dPEA I UINIRDX O [1eIS 14 UONOUN] JOJPUBY f auny aunndowonnold
“(x PIOA QUL UL ey deyd f[10Ud)N WPRS U UINISX J1lels /+ uondo s1y) 10} SP|al} JO JaqUINU WNWIUIW 4/ ‘SP|3I4uIW wi
/x 3l WOY Ul payoads se uondo ay1 Jo sweu ,/ ‘eweu, reyo

9111 1n Busied 1dowolayl yim Buiepeiu| g ainbi4 1 1018 jopadAy

‘uondo NOY yoes Jojainonis 1dowoyold
8U0 S1alY L suonouny Bulpuey JBY) 03 SSweu uoido puig Yo Iym saanionuis 1dOWoyold Jo Aele uearsl) g

“Jaguinuaul| ayl pue j00030.d ay) jo sweu ay) BuiAjosds

‘afiessal J0LB w0y a1} INOY ,, 91eueb e ud [1m apod Busted syl ‘THNTIVAMX SuInBl Bipuey ayl §|
"pe.sap 41 safessaw Jo.se aonpo.d 0] Jo [puey 8yl Mo| e 01 pepIA0Id ST lequunuaul|

ayL "ApANoadsal ‘spial pue spiai4wnu ul pede|d aq ||1m SSARSWBUISP B143U} U aUL| Jey} U0 SPRY JO Bquinu
8yL 3|1} INOY 8y ulaul|arudoidde Ue spulj i LsYmaunol JBIpuey syl | ||1m 8pod Busied 8|1y INOY 8Y.L

11 Control Operations

Control operations are used to perform arbitrary operations on protocols and sessions, via the xControlProtl and
xControlSessn operations described in Sections 2.2.9 and 2.2.15. xControlProtl and xControlSessn return an
integer that indicates the length in bytes of the information which was written into the buffer, or -1 to indicate an error.

All implementations of control operations should check the length field before reading or writing the buffer,
returning -1 if the buffer istoo small. The checkLen(actualLength, expectedLength) macro can be used for this.

The opcode field in the control operations specifies the operation to be performed on the protocol or session.
There are two “classes’ of operations: standard ones that may be implemented by more than one protocol, and
protocol -specific ones.

11.1 Standard Control Operations
1111 Operations Common to Both Protocolsand Sessions

These operations can be performed on both protocols and sessions.
GETMYHOST, GETMYHOSTCOUNT

When used on aprotocol, GETMYHOST asksfor al possible host addresses for thelocal host.
When used on a session, GETMYHOST asks for the local host addresses actually being used
on the connection. If the buffer istoo small for al of the hosts, GETMYHOST will write as
many hosts as the buffer allows (GETMYHOST with a buffer large enough to hold one host
will return the most common or default host). GETMYHOSTCOUNT asks for the number of
hosts which could be returned by GETMYHOST.

GETMAXPACKET, GETOPTPACKET

Tresats the buffer as a pointer to an integer and sets it to the length of the longest message that
the protocol can deliver (GETMAXPACKET) or the length of the longest message that can be
delivered without fragmentation (GETOPTPACKET). A protocol typically implements this
operation by querying itslower protocol and then subtracting its header length.

Although GETMAXPACKET and GETOPTPACKET can be performed on protocols, it is
preferable to use them on sessions, since different sessions of the same protocol may return
different values.

RESOLVE, RRESOLVE

These operations map high-level addresses into low-level addresses (RESOLVE) and vice
versa (RRESOLVE).

11.1.2 Session-Only Operations
These operations can be performed on sessions only.
GETPEERHOST, GETPEERHOSTCOUNT

GETPEERHOST returns the host addresses of al peers of asession. It isan error to submit
a buffer that istoo small for al of the peer hosts, and -1 will be returned. GETPEERHOST-
COUNT asks for the number of hosts which will be returned by GETPEERHOST.

GETMYPROTO, GETPEERPROTO

Treats the buffer as a pointer to along and setsit to the local or remote “protocol number” of
the session. For example, UDP returnsthelocal UDP port fromaGETMYPROTO operation.

FREERESOURCES

Treats the buffer as a pointer to an XkHandle. This value is interpreted as the result of a
previous xPush and frees the resources associated with that message.

SETNONBLOCKINGIO

Treats the buffer as a pointer to an int (non-zero == TRUE). This operation is interpreted by
sessions which do output buffering. Such sessions may block threads executing an xPush until
sufficient buffer space is available to hold the outgoing message. If SETNONBLOCKINGIO
with value TRUE is performed on such a session, athread which would normally block in such
asituation returns with an XMSG_ERR_WOULDBLOCK message handle instead.

11.2 Protocol-Specific Control Operations

While all protocols support the control operations enumerated above, it is not uncommon for any given protocol to
also support a collection of protocol-specific opcodes. These opcodes can be associated with either both the protocol’s
session and protocol objects, or with just its session objects. These opcodes are defined relative to an identifier that
has been assigned to each protocol (in the file include/upi.h). For example, the protocol ARP has been assigned the
id ARP_CTL. Individual opcodes are then defined (in arp.h) as:

#define ARP_INSTALL (ARP_CTL*MAXOPS + 0)
#define ARP_IPINTERFACES (ARP_CTL*MAXOPS + 1)
#define ARP_IPADDRS (ARP_CTL*MAXOPS + 2)

This scheme is used to ensure that al control opcodes are unique. By convention, protocol -specific opcodes defined

by protocol XY Z are prefixed with XYZ_. Also, until an identifier has been assigned to a protocol being written (i.e.,

until it's been defined in upi.h), a set of temporary ids, TMPO_CTL, TMP1_CTL, ... TMP4_CTL, can be used.
Protocol -specific control operations are described in the manual page for each protocol in Appendix A.

11.3 Forwarding Control Operations

Thereare severa situationswhere aprotocol or session may not be prepared to handleacontrol operation. For example,
a protocol -specific control operation may be sent through severa intermediate protocolsin a graph beforeit reaches a
protocol that understands the operation. Because of this, protocols and sessions should be prepared to forward control
operationswhich they don’t understand or can’t satisfy to their lower protocol/sessions.

12 Configuring a Kernel

This section describes how to configure and build an x-kernel. You will need to substitute the pathname where your
system’s x-kernel tree resides for /usr/xkernel in the following.

The x-kernel configure and build procedure is the same, regardiess of whether you are building a user_level,
standalone, or simulator x-kernel. For simplicity, we explain how to build a user_level kernel. Substitute stand_alone
or simulator for user_level in the pathnames that follow to build standalone and simulator kernels, respectively.

12.1 Build Directory

The x-kernel user must set up a “build directory” in which to construct an instance of the x-kernel. Build directories
are usualy created within a user’s home directory.

Each build directory can support onex-kernel configuration at atime. The contents of threetypes of files determine
an x-kernel configuration. They are:

e A graph.comp file specifies the collection of protocolsthat are to be included in the kernel and the relations
between them.

e Protocol tablefiles (prottab) define the number space for protocolsto identify each other.
o ROM files specify runtime options, such as the |P address of the host machine on which an x-kernel will be run.

The graph.comp file must reside in the build directory. Protocol table files and ROM files are not required to be
inthe build directory; later, we show how to specify the locations of these files. Note that the graph.comp fileisread
in during the build phase, and so represents an x-kernel’s static configuration. The protocol table files and ROM files
are scanned at runtime, and so allow dynamic configuration of the x-kernel.

Directory /usr/xkernel/user_level/build/Template contains samples of common graph.comp and ROM files.
The graph.comp file should be copied from thisdirectory to your build directory. Also, the appropriate Makefile for
your platform must be copied from this directory to the build directory; it should be renamed Makefile, and made
writable. The sample ROM file found in this directory may be copied to a directory from which you intend to run the
x-kernel; more on thisin Section 13.

For the purpose of the remaining discussion, we assume you are configuring a kernel so as to implement and
evaluate protocol ASP (A Simple Protocol), the example protocol used in the x-kernel Tutorial [8].

12.2 Specifyinga Protocol Graph

The graph.comp file is divided into three sections: device drivers, protocols, and miscellaneous configuration
parameters. The sections are separated by lines beginning with @; each section may be empty.

Thefirst two sections—devicedriversand protocol s—describethe protocol graph to be configuredintothex-kernel.
The only difference between the two sectionsisthat driversin thefirst section areinitialized directly from the x-kernel
boot thread, whereas protocolsin the protocol section are initialized from adistinct protocol initialization thread. For
the device drivers and platforms in this distribution, this distinction is of no consequence and device drivers may be
configured in either the first or the second section.

Device drivers and protocol s are described by the same types of entries, as illustrated by the following example.

name=asp files=asp dir=asp protocol s=ip, eth trace=TR_MAJOR_EVENTS;

The first field gives the protocol’s name. The rest of the fields are optional and may occur in any order. The dir and
files fields describe the names and locations of the source files that implement the protocol. Files are specified without
extensions. The dir and files fields are not used in the common case where you want to link in protocol object code
from the public system object area (/usr/xkernel/protocols); they are used only when you want to compile and link
code from your private build area. If afiles entry exists but no dir entry is specified, the current directory (i.e., the

build directory) is assumed. If adir entry exists without afiles entry, thefiles field defaultsto asingle.c file with the
protocol’sname.

The protocols field indicates the protocols directly below the current protocol in the graph, that is, the protocols
upon which this protocol depends. When thisfield contains multipleprotocols, order is significant; thelower protocols
will beloaded into theupper protocol’ sdown vector inthe order inwhich they arelisted. A protocol thaexpects multiple
protocols below it will describe the expected semantics of the lower protocolsin itsmanua page in Appendix A.

Thetrace field defines the debugging level used in trace statements depending on the protocol variabletraceaspp.

Multipleinstantiationsof protocolsare supported by using a“/” character after the protocol name, and then adding
aunique suffix. In the following example, two instantiations of “asp” are indicated, one over “ip” and one over “eth,”
and both are used by the “prt” protocol. In thisexample, each instance suffix for the “asp” protocol isthe name of the
protocol below the instance, but thisisjust a convention; any distinct string could be used as an instance suffix. Note
that only the first of multipleinstantiationsshould have dir, files, or trace fields.

nanme=asp/ip files=asp dir=asp protocol s=ip trace=TR_MAJOR_EVENTS;
nane=asp/ et h protocol s=eth;
nanme=prt files=prt dir=prt protocol s=asp/ip, asp/eth trace=TR_ERRCRS;

Thethird section of graph.comp containsthe names of protocol tablefilesthat areto beloaded duringinitiaization.
It also contains the names of subsystems and their configuration parameters. Currently, trace variables are the only
configuration parameters that can be set here. The followingillustrates atypical use of the third section.

Q@

#

You can specify protocol tables to be read in at boot tine.

#

prottbl =/ usr/xkernel /etc/prottbl.std;

prottbl =./protthl.local;

#

You can specify subsystemtracing for nessages and protocol operations
(see file include/xk_debug.h for a list of subsystemtrace variables).

#
name=nmsg trace=TR_GROSS_EVENTS;
nane=pr ot ocol trace=TR_MAJOR_EVENTS;
#

You can specify the nanme of the ROMfile to be used; it will be read
during "nmake conpose" and incorporated into the xkernel runtine inage.

#

ronfile=ronfile.asp;

#

You can specify ronfile contents (see section "ROMoptions").
#

ronopt shepherd threads 8;

The graph.comp fileisread by an x-kernel utility program called compose. This utility generates startup code
to build the protocol graph and set up the described configuration. The protocol graph is built bottom-up; when a
protocol’sinitiaization functionis called, the lower level-protocols have aready been initialized.

12.3 Protocol Tables

The x-kernel runtime environment always includes a protocol table that defines the number space protocols use to
identify each other. The x-kernel builds a table of protocol numbers by reading configuration files at runtime, and

"pasn aq Aew uondo NOY sd |yanb 1un
ay1 ‘lequinu |00030.d aAIR planbiun e a/ey 1snw j00030.d Joddn ydes eyl os ‘Joireyed Syl 1011S1 0] “j00010.d BMO|
a|busse 01aAIR P JBquinu [000104d awes ayr asn 01s|oooloid Jaddn adiinw smoj e a|gel j000104d Byl ‘1 neep Ag

‘S NUNJ T8 pepeo| 3.8 S3(gel [00010.d paLLeu 3y} ‘'s3sed Y10 U]

ZINVN3T 14 19130ud
TIAVNIT 14 19130ud

SI W0y a1l INOY YL (72T U0NoeS 885) 3]l INOY © U1 0 ‘(22T Uoloes)
3|1y dwoao ydesb ayy ,eyie Ul palIoads ag Ued puBX-X 3yl Jo aoueisul kenaied e Aq pasn S| a|ge) 000104d ay |

suondo WOY T€ZT

'S9oULISISUodU| JO
80ussa.d 8y Ul Loge pue safiessalu 1018 SAID ||1M pue S3|gel [090104d 8y UO S$HI8Ud ADUBIS ISUOD SUNJ BUBY-X 8y L
91} WesAS ay) ul egquuinu S yoew 1snwi [020304d jBy10 8y} Jo JBquinNpP! 8y} ‘sjodo3o.d Byio Jo ssigelayl Bu nuewbe
usYM ey} 910N d | 0}aAIR R 00Z JSauinu [000J0.d sey 11 ey} a1edipul pue dS 'Y [000304d ABU INO Ul oM B8H

{
00z dse
}ozoodi
000T dse
#
a|gel |020104d Atel|Ixny #
#

‘91dwexa siy3 ul se [000304d Bu s e 8y 10} [cel sy} Juswibire ued noA ‘BuLisquinu
11011dXe sasn yaiym j090304d Buns e ue anode |00030.d meu JNoA 8inbijucd 03 pasu NoA §| 8|gel Aeijixre InoA pue
a|0e1 Wels/s ayl yiog Ul peal 0} pusey JNoA ainbjuod usyl pue [02030.d meu JNoA 01 JequinNp! Aeloduwie) e subsse
yoiym ajgel [0oooud Areljixre ue aulsp 01 wem Ajceqoad |j1m noA ‘jooojold meu e Bunum ase noA 4| a|gel [090304d
ayiul Ajue Ueaey SN pussy e Ul painbiuods|oooloid | pue ‘3ge) [00010.4d 8UO 158 1 peo| ISNWIS pUBY X |1V

“1o]|1} Zed e Ag Aem 1Y) paLAIP seXded Bunpb pue Buluuni
9Je HJe1s AAIRU 8 pue pUBY-X 3y} y1oq uaym “Ba yoes |00010.4d aAlteu s wioje|d ayl yiim Bu e el Jo Jebuep
B S13Y} UBYM 31§ SIU) 88N 01 JUeM ||IM NOA 'SBquinu [000304d plepuels-Uou sasn ‘pisuou’|gnold ‘9|1 puodss ay L
‘Busn a1e NoA wuojre|d ay) uo a1ins |00030.d plepuels ayl Yiim Bulieeiul jo Jabuep ou Ss1aleyl UBYMm pasn ag pnous
3|} SIYL "UO 0S pue ‘PURYP U} 0} 9AIR PRI ,0080X,, [000104d Se UMoUY SI d| d| 03 dAIRRI L9, [020101d Se UMOU, S|
dD1 “Be 'slequnu [00030.d plepuels ayisureiuc ‘pls||guold ‘Sa|1 0M1asaU) JO 118y L "018/|aulayX/Isn/ ul peedo|
ake 9|1} 9y “pisuou’|jgnoid pue pis'iguosd Sa|1 aicel [000304d [nESN OM] YIIM pRINQLISIP S1 PUBX-X 8y L
"aWRYRs Bu Lequinu 110 11dw IS IY1asn pINoys pueX-Xay) Ul UeliLims |00030.d MeU | ‘ puiey-X 8y} JoseoBay) Joauos!
Aljigesodwod a|q i) Sy “pasodwiod ag Aew s|oo0104d Moy ul Ajig ey a1ow smo| e Ajea o Butegquinu 1101 (duwi|

“Jaguinu j0o0104d Jeddn ayy Joy

sJapesy 1By ul pplaIAg- e arey Busqunu 1101dw i Busns|ooo1oid os ‘ puey-xayl uissniuenbalAg-y ake siequinu

d| [02010.d 1SV 19 018AIRBI Bquinu [020104d S11Se 6 BQUINNP!S . IdHNNS 8sh pinom pue anbuyoe siyl sAojdwe

‘a1dwexd 4o} ‘1S 19 equinu [030104daAIR PIS]ISE BauNNpPIanbiuns, jodojoud ydeaasn Apiotdwi ||1mIng ‘sj030304d
Jaddn pamoy e s11aweu Ao11dxe 1ou saop [000104d Y3 Bweyds Bulisguinu 1101 jdw 1 Ue sasn anbjuyosl puodss ay |

“JBOWNNP!S, [00010.d 8y B)e 1s1| d|y fuondo

8y} Jo aoussald ay) Ag paedlpul S| aweyds Bueguinu siy) jo asn "jodoloid prel-eybiy ydes Joj pash ag pnous

eyl Jequinu aAIRpJ 8yl pue 11 anode painBiyuod aq Aew sjooojold yoiym saeoipul Appijdxe [0oo1oid ay) ‘sweyods
Bulequunu 3101|dxe Ue sssnanbiuydel 1s114ay | 8deds Jequinu [03010.dS118uljep 03 |0003j0.d e JoySAemomiareasey |

*109030.4d Ydes saiynuep! Apnbiun JaquinNpl aleym

A4

[{ zwnNjai zdiy TwnNjaI Tdly }] JequinNp! aweu

w0y ay} Jo Anue ue sey j0o0104d ydeg

8 1se |q
L duo |
9 doy
S dpn
v diel
€ die
{
T0T 1se|q
#
paub Isseun ale ‘GGz > U > TG ‘U sJtaqunu [0d0104d 4| #
#
LT dpn
9 doy
T duo |
}
z di
{
T00€EX 1se [q
#
PAAI3Sa 10U BlJe ,,4EX SadA1 18UIBYID #
#
GE08X diel
9080X die
0080X di
}
T yie
#

way1l asn eyl s|ooololid asoyl 4o} siagunu |020310.d #

aAl1le @) san1b pue s .,p1 |00010.d 31N |O0Sqe S8Q 1J2SAP |1} SIYL #
#

[g1104d #

#

'3]119|ce1 [000104d B |dwexe ue s1BuIMo||0)ay L
‘pasn aq Apjes Aew 019/|aulaMX/Isn/

Ul S9|ge1 |000104d 1Mesep 8yl Jo auo ‘sjooolold plepuels-uou Aue apnpoul lou saop 3l dwoo ydelb ayy 4
"J0o030.d
peeoIpul 8yl 01 Uo afiessaw 8yl sassed pue ‘a|gel 1090104d 8y saenb ‘epesy aflessaw ay) wiouy [000104d pra| ybiy
PEU 8y} Jo sBquinu [00030.4d 8y s1oeIe afiessaw ay) Buipoy [090104d 3y} ‘snyl "oy Buiaeds. 8yl uo afiessaw ay)
$53004d PINOYS S$|00010.d U IYM U ILLIBIBP 883U} pUe ‘11 1Uss 12Y3S[02030.d By Jo siequuinu ay) Bujueiuod spp 1) slepesy
afiessow S11 Ul 31D afiessawl puBY-X yded 4D 1 1o 4an 01 dn pessed aq pnoys afiessawl paApdal e }1apiosp snw
1000104d 418y} ‘ajdwexe Jo} ‘sbuopq afiessaw ay yoym o1 j00030.4d pra| ybiy ay) suiweep snw [03030.4d ays ‘siyl
op o] ‘jooojoud pre|-eybiyaendoidde ayy 01 dn passed aq 1snw afiessawu ay) ‘11 Bu ssa00.4d saus U1} pue afiessawl elep

BuiLoou| Ue sanBaal [000104d PUB-X Ue 81 'SNOIAGO 3 Jou Aew papsau s a|del 000304d ay) ey uoseal ay |
*1|S119p09 [000310.4d 8y} Ul slequINu j000104d 101|dXe paquie 01 Buirey woJy sedoprep [000104d Ssa.)SIYL
“;Bguinu |00030.d e 03 Bupuodsa.102 |09030.d BY3 BuIWIBIBP 01 8|del SIY) Aenb 01s|00030.d J0) o ITRRdO Ue sapino.d

prottbl unique.hl ps on

124 ROM Files

ROM files allow specification of runtime options for protocols and various subsystems. When a protocol instance
or x-kernel subsystem initializes, it typicaly scans a list of user-provided optionsin the ROM fileto see if it should
adjust its default parameters for that particular instantiation. ROM options are used for a variety of purposes, such
as providing initial values for databases, specifying numbers of network shepherd threads, and providing IP gateway
information.

Each ROM file entry consists of a single line. The first field in each line specifies the particular protocol or
subsystem that should interpret that line. The rest of the fields are specific to that particular protocol or subsystem.
Comments can be added following a#. For example, given the following ROM file:

#
Exanple ROMfile
#

simeth port 1234

arp 192.12.69.49 192.12.69.1 1234
arp 192.12.69.45 192.12.69.1 9876

prottbl /usr/xkernel/etc/prottbl.nonstd

the SIMETH protocol will interpret the first line, the ARP protocol will interpret the second and third lines, and the
protocol table subsystem will interpret the last line.

The exact method for indicating where the x-kernel should find itsROM filesis specific to theindividua platforms
and is documented for each platformin Section 12.6.

Protocols that provide ROM file configurable optionswill describe the format of these optionsin their man pages
in Appendix A.

12,5 Build Procedure

Onceyou have edited the graph.compfiletoincludeal | protocolsand devicedriversto be configured into the x-kernel,
an instance of the x-kernel can be built. Execute the following steps. (The protocol table and ROM files can be
specified and even changed at alater time because they are read at runtime.)

1. Put /usr/xkernel/bin/BINTYPE and /usr/xkernel/bin in your search path, where BINTYPE is one of sunos-
sparc, solaris-sparc, osfl-alpha, linux-alpha, linux-x86 or irix-mips.
These must occur before /bin and /usr/bin. This alows use of the version of make distributed with the x-kernel
(GNU makev. 3.66), which isincluded inthe BINTYPE directory, rather than the standard Unix make.

2. Modify the Makefile in the build directory. The varigble XRT in this Makefile must be a path to the root of the
x-kernel source tree; e.g., /usr/xkernel. The x-kernel uses a trace package to generate debugging information;
to enable the tracing facility, set the Makefile variable HOWTOCOMPILE to DEBUG. To obtain accurate
performance timings, variable HOWTOCOMPILE should be assigned OPTIMIZE. This causes all trace of
tracing code to be eliminated from the kernel.

3. Type: make compose

If this is the first time make compose has been run, you may see what appear to be error messages about
missing files, such as Makefile.local and DEPS/Makedep.*. These warnings can be ignored, since these files
will be created by the running of make compose.

49

4. Type: make depend
5. Type: make

Object fileswill be placed in a subdirectory of the OBJS directory, whose name reflects the chosen configuration
and platform (e.g., UL-DEBUG-sunos-sparc). Object files are stored similarly throughout the x-kernel hierarchy.
Thefinal x-kernel executable (xkernel) will be placed in your build directory.

Steps 3 through 5 must be repeated whenever you change the graph.comp file. If the Makefile is changed, only
step 5 must be repeated. Changes to the protocol tables and ROM files do not require rebuilding tke x-kernel .

12.6 Examples

The x-kernel source tree contains some ready-to-use configuration files to help you build any of the different types of
x-kernels. This section contains locations and descriptions of thesefiles. All of the configurations specify a protocol
stack that includes ETH, ARP, VNET, IR, and ICMP, plus some set of higher level protocols

12.6.1 User-Level with Simulated Ethernet

A user_level x-kernel will usually be configured to use the Unix socket facility to send and receive from the network (see
Section 13.1). Example graph.comp and ROM files for building and running such a kernel that includes the TCP/IP
protocol stack can be found in /usr/xkernel/user_level/build/Template/. Configurationfilesfor other protocol stacks
can be found subdirectories of /usr/xkernel/user_level/build/Template/; e.g., example_rpc shows how to configure
an RPC stack, and example_msp shows how to configure a stack that includes the M SP and SWP protocols.

Note that in this graph.comp file, the lowest protocol in the protocol stack is the SIMETH driver. Refer to
Section 13.1 for an explanation of the ROM file's simeth and arp options.

12.6.2 User-Level with Direct Ethernet Access

An x-kernel that uses a simulated device driver like SSMETH can communicate only with other x-kernels; it is not
possible to exchange messages with a “native” application since an x-kernel configured with SIMETH encapsul ates
the messages it sends in a UDP datagram. To send raw ethernet packets over the network, one needs to configure a
kernel that includes a protocol that interacts directly with the device driver of the host OS. Unlike SIMETH, whichis
supported on al Unix platforms, these protocol s are platform dependent. The current distributionincludes three such
protocols: IRIXFDDI and IRIXETH for IRIX, and ETHPKT for Linux. Inal three cases, root access is required to
run akernel with one of these protocols configured in.

Example graph.comp and rom files for building and running a kernel that includes ETHPKT are given in
lusr/xkernel/userlevel/build/Template/example_ethpkt. Notice that the graph.comp file specifies that protocol
tableprottbl.nonstd be used. It doesthisso that al protocols (most importantly, | P) are assigned nonstandard protocol
numbers; this prevents messages designated for the x-kernel from being acted upon by the machine's native protocol
stack, and vice versa.

12.6.3 Simulator

Directory /usr/xkernel/simulator/build/Template/example contains the configuration files needed to build and run
the simulator. The graph.comp fileisthe only one needed to compile the simulator; the others must be in the working
directory at runtime.

The files residing in the example directory configure a simulated network consisting of two Ethernets connected
by a point-to-point link. Each Ethernet has two hosts, for a total of four. One host on each Ethernet runs the traffic
protocol to simulate background traffic from TCP connections. The two other hosts run megtest, which uses TCP to
stream one megabyte of data from one host to the other. Three flavors of TCP are configured into the simulator: rtcp
(TCP Reno), ttcp (TCP Tahoe), and vtcp (TCP Vegas). Any of these TCPs can be run on thetraffic and megtest hosts.

50

The simulator treststhegraph.comp filedifferently than the user_level and standal one x-kernelsdo. The simulator
does not set up its protocol graph using the graph.comp; it only uses it to decide what protocolsit must includein the
executable. At runtime, the simulator creates the protocol graph using the xsim.data file. Note that in the example
graph.comp file, megtest is configured over TCP Reno, but the xsim.data file runsit over TCP Vegas.

Thereisonly one ROM file, and thisfile contains information for al of the hostsin the smulation. The example
ROM file specifies the gateway to which ahost will send when its IP datagram is addressed to a machine residing on
another network. Note that the ROM entries begin first with the name of the protocol (ip) and then the name of the
host which uses that entry (e.g., h1nO — host 1 on network 0).

Most of the difficulting in configuring the simulator is how to specify the network you want to smulate. This
specification is given in thefile xsim.data, which is described el sewhere [1].

51

13 RunningaKernel

This section describes the procedure for running a user_level simulator x-kernel. A user_level x-kernel runsin Unix
user space, and usually uses a Unix socket interface (or other OS-specific interfaces, such as ETHPKT) to send and
receive messages on the network. A simulator x-kernel also runsin user space, but doesn’t use the network hardware
at all; instead, it simulates traffic between hosts on a configurable network in virtual time.

13.1 Unix User Level (SunOS/SolarigyOSF/ITix/Linux)

The behavior of an x-kernel running as a user task depends on the “device drivers’ configured into the kernel. There
are two categories of x-kernel device drivers: those that send real network packets (e.g., ETHPKT in Linux and
IRIXETH in Irix), and those that send encapsulated network packets (e.g, SMETH or SIMFDDI). Real-packet drivers
use platform-specific methods to access network devices, and are relatively straightforward to configure and use. (Be
sure to see the manual page for theindividua driversin Appendix A.)

13.1.1 Simulated Drivers

Configuring the encapsul ated-packet drivers can be confusing. (We refer to encapsul ated-packet drivers as simulated
drivers, and instances of x-kernels using them as simulated hosts.)) Simulated drivers sit at the bottom of a protocol
stack, just like a standard device driver. Instead of sending packets directly to the device, however, they use the Unix
socket interface (and thus the Unix implementations of UDP and IP) to send and receive packets. For example, if
you implement IP and UDP within a user_level x-kernel, then the UDP packets produced by the x-kernel are, in turn,
encapsulated in real UDP packets. This means that protocols and programs built on top of UDP in the x-kernel can
only tak to their peersin other x-kernels; they cannot communicate with “real” versions of those protocolsrunning on
aUnix machine, for example.

Since a user_level x-kernel with a simulated driver uses a connectionless UDP socket as its transport mechanism,
more than one such x-kernel can be run on asingleworkstation. Because of thisflexibility, thelocal |P address used by
each kernel (the simulated | P address) is decoupled from the | P address of the actual workstation onwhichit runs (the
real |P address). Configurationfiles for a user_level x-kernel must therefore indicate not only which UDP port should
be used by the simulated driver, but aso the binding between the real and simulated | P addresses for each x-kernel.

Consider the following example ROM files (as described in Section 12.4) for two user_level x-kernels.

% cat client/rom

simeth port 3050

#

Sim | P addr Real | P addr Real UDP port
#

arp 128.10.5.54 192.12.69.1 3050

arp 128.10.5.23 192.12.69.1 3051

% cat server/rom

simeth port 3051

#

Sim | P addr Real | P addr Real UDP port
#

arp 128.10.5. 54 192.12.69.1 3050

arp 128.10.5. 23 192.12.69.1 3051

52

The simeth entriesindicate thereal UDP port number which each simulated host will use to receive network packets.
A unique port number must be used for each simulated host running on any given read processor. Simulated hosts
running on different processors can use the same port number. (In this example, the two simulated hosts run on the
same red processor (192.12.69.1) and use different UDP port numbers: 3051 and 3050.) Note that the name of the
ethernet protocol appears exactly asit doesin the graph.comp file.

For thearp entries, each line correspondsto asimulated IP host. The second field isthe simulated | P host number,
the third field is the actual 1P host number where the x-kernel runs, and the fourth field is the x-kernel’s UDP port
number. Note that the simulated IP host numbers do not necessarily correspond to the real 1P address of the machine
on which the simulated host is running. Since ARP broadcasts are infeasible for smulated hosts, each x-kernel must
be configured with an arp entry for each of its peers.

See the manua page in Appendix ?? for more information on configuring a specific simulated driver.

13.1.2 Running

Asthe result of configuring akernel (Section 12), afile named xkernel should exist in your build directory.

While in this directory, you should create a sub-directory for each x-kernel instance to be tested. For ex-
ample, if you intend to start up client and server instances of a user_level x-kernel, create two subdirectories,
eg., client and server. In each subdirectory, create a file named rom, an example of which can be copied from
usr/xkernel/user_level/build/Template. The ROM files should contain configuration information as described in
Section 12.4, and in the man pages for protocols and device driversin Appendix A.

Each simulated host runs as a separate Unix process. To run multiple x-kernels using awindowing user interface,
you should start each processin a separate window. For each simulated host, open ashell command window, cd to the
sub-directory that containsthat host’srom file (e.g., cd client) and type.../xkernel. Use DELETE or CTRL-C to stop
an x-kernel.

13.2 Simulator

An executable called xkernel will reside in the build directory after following the procedures described in Section 12.
To run the simulation, change to a directory containing the xsim.data, rom, and protocol table files, and invoke the
executable.

Notethat the x-kernel executable created by the simulator is of adifferent order than the user_level executable. For
thelatter, each invocation of the executabl e corresponds to exactly one host instance. However, invoking the simulator
runsthe entire simulation, which may potentially includethousands of hosts communicating over avariety of networks.

13.3 Running Test Suites

Most protocol sdistributed with the x-kernel come with atest protocol in the protocols/test directory. These protocols
typicaly send a number of round trips for messages of various sizes and report the total time for the test. The most
common test protocols are configured into the protocol library, but some may have to be copied and compiled directly
in auser's build area. Test protocols compiled into the protocol graph start up automatically with the rest of the
protocols.

The behavior of test protocols can be modified by various command-line and ROM file options. See the man page
for the TEST protocol in Appendix A.

13.4 Troubleshooting

Many of the problems encountered when running an x-kernel turn out to be configuration problems. Setting the
debugging variable traceprotocol to TR_EVENTS or higher can be very helpful in identifying problems. A few
common symptoms and some things you might want to check if these symptoms occur are:

e The x-kernel aborts before the first protocol’sinit routineis called.

53

Your x-kernel may have been configured without a protocol table. Make sure your graph.comp or ROM files
mention at |east one protocol table and that the specified protocol table exists and is readable.
The x-kernel hangsin arp_init.

ARP's initidization routine will not return until it has discovered the binding for its local IP address. If the
x-kernel hangsin arp_init, ARPis probably sending out RARP requests which are not being answered. Multiple
warning messages of the form:

ARP: Could not get my IP address for interface eth (still trying)

are an indicator of this problem.

If you are running the sunos simulator, you must have an ARP binding in your ROM filefor your loca host (see
Section 13.1). On other platforms, an ARP binding for the local host is not necessary if another host on your
network will respond to RARP broadcasts. If you do not have such ahost (or if it isnot responding for whatever
reason), adding alocal binding to your ROM file should fix the problem.

Messages sent out on one host are never received on the destination host.

Check your ROM file. If it containsan initial binding for the destination host which isincorrect, the destination
host will not see packets from the sending host.

An xOpen hangsfor awhile and then fails.

An open may fail if ARP cannot resolve the IP address of the destination (turning ARP tracing on can help
identify this problem). ARP requests should never be sent on the sunos simulator platform. If you are running
on the sunos platform and you see ARP requests being sent, check the ROM file on the sending host and make
sure there is an ARP binding for the destination host.

The x-kernel aborts before a specific protocol’sinit routineis called.

If the x-kernel cannot find a protocol number for your protocol in any of its tables, it will abort before caling
that protocol’sinitiaization routine. You will need to add an entry for your protocol in one of the tables (see
Section 12.3).

Messages get to the destination host but never make it up to the appropriate protocol.

Make sure that the source and destination hosts are running with identical protocol table entriesfor the protocol
in question. If the numbers are different, messages won't get to the appropriate protocol on the destination host.

14 Releasing a Protocol

Once you have debugged and tuned a new protocol, you can make it available for others to use by creating a new
directory in/usr/xkernel/protocols, copying your source filesinto that directory, creating amakefile in that directory,
and modifying the makefile in /usr/xkernel/protocols. If your protocol is adevice driver, instead put the source files
in /usr/xkernel/user_level/platforms/PLATFORM/drivers, where PLATFORM is one of sunos, solaris, osf1, irix,
or linux. You should put any public .h files in /usr/xkernel/inclue/prot. Finaly, you need to update the prottbl files
in /usr/xkernel/etc to include protocol numbers for your new protocol, and /usr/xkernel/include/upi.h to include a
base control op number for your protocol.

If you want to make your new protocol available to other sites, then make atar file of your protocol available and
drop a note to xkernel-help@cs.arizona.edu. We will include your protocol in the next release. You should aso
create a“man page” for you protocol similar to those found in the Appendix. The source files for these man pages are
in /usr/xkernel/doc/manual/protocols.

55

References

[1] L. S. Brakmo, A. C. Bavier, and L. L. Peterson. z-Sm User’s Manual (\ersion 1.0). Network Systems Research
Group, Department of Computer Science, University of Arizona, Jan. 1996.

[2] N. C. Hutchinsonand L. L. Peterson. The x-Kernel: An architecture for implementing network protocols. |EEE
Transactions on Software Engineering, 17(1):64-76, Jan. 1991.

[3] D. Mosberger. Map Library Design Notes. Network Systems Research Group, Department of Computer Science,
University of Arizona, Jan. 1996.

[4]

D. Mosberger. Message Library Design Notes. Network Systems Research Group, Department of Computer
Science, University of Arizona, Jan. 1996.

(5

S.W. O'Malley and L. L. Peterson. A dynamic network architecture. ACM Transactions on Computer Systems,
10(2):110-143, May 1992.

[6]

L. L. Peterson. Getting Started with the z-kernel. Network Systems Research Group, Department of Computer
Science, University of Arizona, Jan. 1996.

[7] L. L. Peterson and B. S. Davie. Computer Networks: A Systems Approach. Morgan Kaufmann Publishers, San
Fransico, CA, 1996.

8

L. L. Peterson, B. S. Davie, and A. C. Bavier. z-kernel Tutorial. Network Systems Research Group, Department
of Computer Science, University of Arizona, Jan. 1996.

56

A Protocol Specifications

This appendix describes each of the protocols currently available in Version 3.3 of the x-kernel. (Additional protocols
are availablein Version 3.2.) The description for each protocol provides the following information.

NAME
Name of the protocol. This name, given in all lower-case |etters, can be given as an argument to xGetProtIByName
to get acapability for (pointer to) the protocol. Note that there are multipleimplementations of various protocols; i.e.,

agiven name might map to multipleimplementations. The implementation bound to aname in agiven kernel issetin
graph.comp.

SPECIFICATION

Reference to a document that gives the specification for the protocol. In cases where no formal specification exists,
this section gives ahigh-level description of the protocol.

SYNOPSIS

A brief description of what the protocol does. Outlines any unusual features and bugs, including any features of the
protocol specification not implemented.

REALM
Indicates whether the protocol isin the ASYNC ream (supporting push, demux and pop), the RPC realm (supporting

call, calldemux and calpop), the CONTROL realm (existing only to alow control operations), or the ANCHOR realm
(interfacing with the host system).

PARTICIPANTS

A discussion of the number of participants the protocol expects to see and what it expects to see on the participants’
stacks.

CONTROL OPERATIONS
Non-standard control operationssupported by the protocol. For each control operation, thetype of theinput and output

argument is given (i.e., the type used to interpret the buffer argument). In the case of control operations that take
multiple arguments, a set of typesis given. Non-primitivetypes are generally defined in the protocol’s.h file.

EXTERNAL INTERFACE

A description of interfaces not encapsulated within x-kernel operations

CONFIGURATION

A description of configuration options for the protocol, including descriptions of of what this protocol expects of the

protocols below it. If the protocol can only be configured above a certain protocol, the appropriate graph.comp line
isgiven explicitly.

57

AUTHORS

Who to complain toif the protocol failsto work as advertised.

58

Al ARP

NAME
ARP (Address Resolution Protocol)

SPECIFICATION

D. Plummer. An Ethernet Address Resolution Protocol. Request for Comments 826, USC Information Sciences
Institute, Marinadel Ray, Calif., Nov. 1982.

SYNOPSIS

ARPtrand ates| P addressesinto ethernet addresses, and viceversa(i.e,, it asoimplementsRARP). Thisimplementation
of ARP supportsasingleinterface, but may be multiply instantiated to support several network interfaces.

REALM

ARPisinthe CONTROL ream. There are no ARP sessions — control operations may be performed on the protocol
object only.

CONTROL OPERATIONS

RESOLVE: Maps an |P address into an ethernet address.

Input: | Phost
Output: ETHhost

RRESOLVE: Maps an ethernet address into an | P address.

Input: ETHhost
Output: | Phost

ARP_I NSTALL: Installsan IP address to ETH address binding.
Input: ArpBinding== {ETHhost eth; | Phost ip;}
Output: none
ARP_GETMYBI NDI NG Return the IP and ETH address of the loca host for the interface.
Input: none
Output: ArpBinding== {ETHhost eth; |Phost ip;}

ARP_FOREACH: Thisis a kludge to alow non-broadcast device drivers, such as SIMETH, to simulate broadcast
without having to keep their own tables of reachable hosts. When the ARP_-FOREACH control operation is
invoked, ARP will call-back theinvoking protocol once for each binding initstable.

Input: ArpForEach=={ voi d *arg; ArpForEachFunc f; }
Output: none
typedef int (ArpFor EachFunc) (ArpBinding*, void*);

59

ETH.REG STERARP: ARP invokes this control operation on its lower protocol at initialization time so the driver
knows which protocol to useif it hasto invoke an ARP_-FOREACH. Thisis not pretty.

Input: XCbj
Output: none

CONFIGURATION

nanme=ar p protocol s=et h;

AUTHORS

Larry Peterson and Norm Hutchinson

60

A2 ASP

NAME
ASP (A Simple Protocol)

SPECIFICATION

L. Peterson and B. Davie. Computer Networks: A Systems Approach. Morgan Kaufmann Publishers, San Francisco,
CA (1996).

SYNOPSIS

ASPisan example protocol that supportsan unrel eable message delivery service, where the two end-pointsof an ASP
channel are identified by apair of ports.

REALM

ASPisinthe ASYNC realm.

PARTICIPANTS

ASP removes a pointer to a long (the ASP port number) from the participant stack. ASP ports must be less than
0x10000. If thelocal participant ismissing, or if theloca protocol number is ANY _PORT, ASP will select an unused
loca port.

CONFIGURATION

nane=asp protocol s=ip;

AUTHORS

Larry Peterson and Andrew Bavier

61

A3 BID

NAME
BID (Boot 1D Protocol)

SPECIFICATION
BID isthefiltering module of the Bootld protocol. The Bootld protocol is designed to advise workstationsthat a peer
has rebooted, to protect protocol sfrom receiving messages generated during previous boot incarnations, and to inform
higher protocols of apeer’s reboot in atimely fashion.

If an upper protocol registerswith BIDCTL protocol and messages from its session pass through BID sessions, the

Bootld protocol guarantees that a message from a rebooted peer will not be sent to an upper protocol until the upper
protocol has been informed of the reboot.

SYNOPSIS

BID sessions stamp all outgoing messages with alocal and remote Bootld and filter out al incoming messages which
do not have the correct Bootlds. Determination of the “correct” Bootld is made by theBIDCTL protocol. BID requires
BIDCTL.

BID isnot reliable. If thereis confusion between two peers as to what their mutual Bootlds are, messages between
them will be silently dropped until the confusion is resolved.

REALM

BID isinthe ASYNC ream.

PARTICIPANTS

BID expects an |Phost on the top of each participant. It examines thisvalue but does not remove it form the partici pant
stack before opening its transport protocol .

CONFIGURATION

BID expects to be configured above two protocols. The first is the transport protocol and the second is the BIDCTL
protocol.

AUTHOR

Ed Menze

62

A4 BIDCTL

NAME
BIDCTL (Bootid Control Protocol)

SPECIFICATION

BIDCTL isthe control module of the Bootld protocol. The Bootld protocol is designed to advise workstationsthat a
peer has rebooted, to protect protocols from receiving messages generated during previous boot incarnations, and to
inform higher protocols of apeer’s reboot in atimely fashion.

If an upper protocol registerswith BIDCTL protocol and messages from its session pass through BID sessions, the
Bootld protocol guarantees that a message from a rebooted peer will not be sent to an upper protocol until the upper
protocol has been informed of the reboot.

SYNOPSIS

Upper protocols register their desire to be informed of a peer’s reboot by openEnabling BIDCTL with that remote
peer’s IPhost. When BIDCTL determines that the remote peer has rebooted, it informs all interested upper protocols
viaa control operation (see below.) If an upper protocol is no longer interested in learning about a peer’s reboot, it
may openDisable BIDCTL.

REALM

BIDCTL isinthe CONTROL realm. There are no BIDCTL sessions.

PARTICIPANTS

BIDCTL openEnable and openDisable expect a single participant containing the IPhost of the remote peer.

CONTROL OPERATIONS

Bl DCTL _PEER REBOOTED: Invoked by BIDCTL on registered upper protocols to inform them that a peer has
rebooted. The id field of the BidctIBootMsg contains the new remote Bootld. The upper protocol’s control
function should not block while handling this notification.

Input: Bi dct| Boot Msg == { | Phost h; Bootld id; }
Output: none

The remaining control operations are not necessary for most users of BIDCTL. They are provided mostly for the
use of filtering protocols (e.g., BID) which work in conjunction with BIDCTL.

Bl DCTL_FI RST_CONTACT: Invoked by BIDCTL on registered upper protocolsto inform them that an initia bootid
for the given peer has been discovered. Theid field of the BidctlBootM sg contains the new remote Bootld.

Input: Bi dct | Boot Msg
Output: none

Bl DCTL_GET_LOCAL BI D: Returnsthe current Bootld of the local host.

63

Input: none
Output: Boot | d

Bl DCTL_CET_PEERBI D: Returnsthe last confirmed Bootld of the given remote host. If theid field of the input
structureis non-zero, it indicates a possible new value. If thisvalue differs from BIDCTL's confirmed value for

that peer, BIDCTL will start a handshake with the remote peer to determine anew confirmed value. The input
id can be used by afiltering protocol to indicate that it has seen a new remote Bootld value.

The Bootld of the output structurewill be 0 (an invalid Bootld) if BIDCTL doesn't yet know the peer’s Bootld.
Input: Bi dct | Boot Msg
Output: Bi dct | Boot Msg

Bl DCTL_GET_PEER_BI D.BLOCKI NG Differsfrom Bl DCTL_GET_PEERBI Din that the calling thread will block
if BIDCTL has not yet learned the peer’s Bootld or if the suggested id field is non-zero and differs from the
protocol’s current value for the peer Bootld. If the operation blocks, it will not release the calling thread until
the peer Bootld has been confirmed. Thereisno timeout.

Input: Bi dct| Boot Msg
Output: Bi dct | Boot Msg

CONFIGURATION

BIDCTL expects only its transport protocol below it. It will open the transport protocol with a single participant
consisting of the remote | P host.

BIDCTL usesaninternal checksum and workscorrectly in the presence of dropped messages, so areliabletransport
protocol isnot necessary.

Asan optimization, BIDCTL can perform an IP local-net broadcast to inform interested peers that it has rebooted.
A rom fileentry of theform:

bi dctl bcast
will cause the broadcast and an entry of the form:

bi dctl nobcast
will suppressit. Without arom file entry, BIDCTL will perform the broadcast unless BIDCTL_NO_BOOT_BCAST is
defined during compilation.

AUTHOR

Ed Menze

A5 BLAST

NAME
BLAST (RPC Blast Micro-Protocol)

SPECIFICATION

S.O'Malley and L. Peterson. A Dynamic Network Architecture. ACM Transactions on Computer Systems 10, 2 (May
1992), 110-143.

B. Welch. The Sprite remote procedure call. University of Californiaat Berkeley, Tech Report UCB/CSD 86/302,
June 1986.

SYNOPSIS

BLAST isamicro-protocol version of Sprite RPC’sfragmentation agorithm. The algorithm was extracted from Sprite
and madeinto astand-aloneprotocol. BLAST takesalarge message, fragmentsitinto smaller packets, and sends them.
The maximum packet size accepted by BLAST (as returned by the GETMAXPACKET control op) is the product of
the maximum number of fragmentshandled by BLAST (16 by default) and the optimal packet size of BLAST’slower
protocol. Blastistuned for thelocal area networks and should not be used across the Internet.

The receiver gathers al of the packets and sends a NACK if it has reason to believe (through time-outs or other
considerations) that a packet has been dropped. BLAST can handle any number on outstanding messages between
two hosts (buffer space permitting, of course). The protocol is bidirectional; i.e., it supports blasts in both directions
over the same session. Small messages take a short cut through the protocol and do not require the allocation of any
resources.

The sender keeps a copy of the message around until atime-out occurs or the higher level protocol that sent the
message notifies BLAST that it can free the message (through a FREERESOURCES control op.) Users of blast are
strongly encouraged to free messages assoon as possible. The sender knowswhichBLAST (BLAST can beinstantiated
more than once) and which message to free because when a push was performed blast writesinto a message attribute
attached by CHAN (or some other high level protocol) a pointer to itself and a 32 bit integer ticket which uniquely
identifies the message.

Because the sending BLAST may time-out and rel ease amessage before all fragments have been received, BLAST
isnotreliable. It is, however, very persistent.

BLAST performance is critically dependant upon the time-out strategy used and the initial values of those timers.
As mentioned earlier the sender uses a timer to free resources after a set interval has occurred. Tuning thistimer for
use with higher level protocolswhich do not explicitly free resources is very difficult. For applications which do free
resources thistime-out interval has no effect on performance unlessit is set to too small avaue. The receiver setsa
timer whenever a fragment from a new packet arrives. The only purpose of thistimer is to detect the drop of the last
fragment. Thistimer is set to some constant times the number of fragments in the message. If this timer expires to
early thisis detected by the code and the constant is increased by a factor of two. After aNACK is set to the round
trip time plus some constant times the number of fragments. The purpose of thistime is to generate a new NACK if
the original NACK or retransmitted segments are lost.

REALM

BLAST isinthe ASYNC ream.

PARTICIPANTS

65

BLAST neither removes nor adds anything to the participant stacks.

CONTROL OPERATIONS

FREERESOURCES: Free the storage associted with the message handl e passed as argument. The handle should bea
value returned by xPush. (protocol and session).

Input: xmsg_handl e_t
Output: none

CHAN_RETRANSM T: This is CHAN’'s way of asking BLAST if it should go ahead and retransmit the message.
BLAST returnstrue (1) if and only it has received no NACK'sfor this message since the message was sent or the
last time CHAN_RETRANSMIT was called. The ideabeing that CHAN should not retransmit while BLAST is
in the process of sending the message.

Input: none
Output: 0 or 1

BLAST_SETOUTSTANDI NGVBGS: Set the number of outstanding messages allowed (protocol only).

Input: i nt
Output: none

BLAST_GETOUTSTANDI NGVSGS: Get the number of outstanding messages allowed (protocol only).

Input: none
Output: i nt

CONFIGURATION

BLAST requires only its lower transport protocol. Since BLAST doesn't use host addresses, it can sit on top of
protocol s using different address types without modification.

AUTHORS

Sean O'Malley and Ed Menze

66

A6 CHAN

NAME
CHAN (RPC Channel Micro-Protocol)

SPECIFICATION

S.O'Malley and L. Peterson. A Dynamic Network Architecture. ACM Transactions on Computer Systems 10, 2 (May
1992), 110-143.

B. Welch. The Sprite remote procedure call. University of Californiaat Berkeley, Tech Report UCB/CSD 86/302,
June 1986.

SYNOPSIS

CHAN isasingle protocol version of Sprite RPC's reliable request-reply channel. The agorithm was extracted from
Sprite and made into a stand-alone protocol. Each CHAN session supports the Birrell-Nelson implicit acking RPC
agorithm between two hosts.

CHAN provides “a most once” RPC semantics. When a CHAN call returns successfully, the protocol guarantees
that the request has been processed exactly once by the server. If CHAN returns unsuccessfully (XK_FAILURE), the
server may have processed the request once, or it may not have seen therequest at all.

Channel numbers are entirely internal to the CHAN protocol. When a new client channel session is created, a
new host-host channel number is selected internally by CHAN. When protocols openEnable CHAN, they will receive
connections from any channel number on any remote host. Each open of CHAN by a client session will result in the
passive creation of a corresponding session on the server.

Each channel session will accept only asingleoutstanding request. Sending additional requests on achannel before
thefirst request has returned is not all owed.

CHAN relieson the BIDCTL and BID protocolsto determine when a peer has rebooted. When notified of apeer’s
reboot, CHAN will disable al active channels to that host. Outstanding calls will return XK_FAILURE, as will all
subsequent calls on that channel session. Replies sent through disabled server channels will be discarded.

CHAN must know severa things about the transport protocol used to actually send the message. Thisinformation
isrepresented in the following structure:

typedef struct {

XObj transport;

int ticket;

int reliable;

int expensive;

unsi gned int tineout;
} chan_info_t;

This structureis defined in the CHAN session state and a pointer to it is attached as an attribute to each outgoing
message. Beforethe message is send CHAN zero'sout all fields of the structure. When xPush returns CHAN assumes
that some lower level protocol may havefilled in thefields.

If transport has been defined CHAN will perform a FREERESOURCES control operation on transport when the
current message has been acked. If thelower level protocol isreliable CHAN will never retransmit the entire message
and will not start atimer. If the lower level protocol isexpensive CHAN will not retransmit the entire message when it
timesout. It simply requestsan ACK. Thetimeout field isignored for themoment. If transport has been defined CHAN
will invoke a CHAN_RETRANSMIT control operation on it before retransmitting. If this control operation returns
0 CHAN will not retransmit the body of the message. This allows a lower level protocol like BLAST to discourage
CHAN from retransmitting while the message is still being sent.

67

REALM

CHAN lies on the boundary between the ASYNC realm and the RPC realm. That is, it lookslikean ASYNC protocol
to protocols below it, and an RPC protocol to protocols above it.

CONTROL OPERATIONS

CHAN_ABORT_CALL: When invoked on a channel session, it causes the current call (if one is outstanding) to abort
and return XK_FAILURE.

Input: none
Output: none

PARTICIPANTS

CHAN neither removes from nor adds to the participant stacks, passing the participants untouched to the transport
protocol on an open and ignoring the participant structure on an openenable.

CONFIGURATION

CHAN requires its lower transport protocol configured as the first lower protocol and BIDCTL configured as the
second lower protocol. CHAN requiresthat it’stransport protocol will deliver incoming messages from different hosts
through different lower sessions and that all CHAN messages from the same host come from the same lower session.
CHAN isarealm boundary protocol which assumes its transport protocol is symmetric (in the ASYNC realm.)
Because CHAN affixes a pointer to the outgoing message it must be in the same address space as any transport
protocol which will attempt to set the structure passed in the attribute.

AUTHOR

Sean O'Malley

68

A7 ETH

NAME
ETH (Ethernet Protocol)

SYNOPSIS

This hardware-independent protocol provides the interface between the rest of the x-kernel protocols and the actual
ethernet drivers. It has a UPI interface to protocols above it and interacts with the drivers through a specialized UPI
interface. There should be a separate instantiation of the ETH protocol for each driver protocol.

REALM

ETH isinthe ASYNC ream.

PARTICIPANTS

ETH expects a single remote participant with an ETHhost pointer on the top of the stack. If the loca participant is
present it isignored.

CONTROL OPERATIONS

ETH.SETPROM SCUQUS: Sets the corresponding device controller in promiscuous mode and deliver copies of al
packets to this session. (session only)

Input: none
Output: none

EXTERNAL INTERFACE

Ethernet driver protocols should include the file protocols/eth/eth_i.h which defines the interface between ETH and
thedrivers.

ETH will openenableits driver protocol once at initialization time, without a participant list. This gives the driver
protocol the XObj it should use in xDemux when it delivers messages.

ETH calls xPush with the driver protocol object (not a session) to send a message. ETH never opens the lower
protocol.

ETH will attach a pointer to an ETHhdr as a message attribute for each outgoing message:

typedef struct {

ETHhost dst;

ETHhost Src;

u_short type;
} ETHhdr;

ETH requires that the driver attach a message attribute pointing to an appropriate ETHhdr structure for every
incoming message. For both incoming and outgoing messages, the ETHhdr type field will be in network byte order.

69

ETH requiresthe driver protocol to implement the control op GETMYHOST.

ETH provides support for |IEEE 802.3 packet formats. An upper protocol registering with Ethernet type O is
assumed to the recipient for al IEEE 802.3 packets. Conversely, a protocol using an Ethernet type smaller than
the maximum |EEE 802.3 data size will have its packets sent using |EEE 802.3 format (i.e., with the packet length
overwriting the type field.)

CONFIGURATION
Each instantiation of ETH should be configured above its corresponding driver protocol.

ETH recognizes the following ROM options:
et h/ xxx mtu N: Instantiation xxx of ETH should usean MTU of N (decimal). Default is 1500.

AUTHOR

Ed Menze

70

A.8 FDDI

NAME
FDDI (FDDI Protocol)

SYNOPSIS

This hardware-independent protocol provides the interface between the rest of the x-kernel protocols and the actual
FDDI drivers. It has a UPI interface to protocols above it and interacts with the drivers through a speciaized UPI
interface. There should be a separate instantiation of the FDDI protocol for each driver protocol.

REALM

FDDI isinthe ASYNC ream.

PARTICIPANTS

FDDI expects a single remote participant with an FDDIhost pointer on the top of the stack. If the local participant is
present it isignored.

CONTROL OPERATIONS

MAC_SETPROM SCUQUS: Sets the corresponding device controller in promiscuous mode and deliver copies of al
packets to this session. (session only)

Input: none
Output: none

EXTERNAL INTERFACE

FDDI driver protocols should include the file protocols/fddi/fddi_i.h which defines the interface between FDDI and
thedrivers.

FDDI will openenableitsdriver protocol once at initiaizationtime, without a participant list. This givesthe driver
protocol the XObj it should use in xDemux when it delivers messages.

FDDI cals xPush with the driver protocol object (not a session) to send a message. FDDI never opens the lower
protocol.

FDDI will attach a pointer to an FDDIhdr as amessage attribute for each outgoing message:

typedef struct {

FDDI host dst;

FDDI host src;

u_short type;
} FDDI hdr;

FDDI requires that the driver attach a message attribute pointing to an appropriate FDDIhdr structure for every
incoming message. For both incoming and outgoing messages, the FDDIhdr typefield will bein network byte order.

71

FDDI requires the driver protocol to implement the control op GETMY HOST.

CONFIGURATION

Each instantiation of FDDI should be configured above its corresponding driver protocol.

FDDI recognizes the following ROM options:
fddi / xxx ntu N Instantiation xxx of FDDI should an MTU of N.

AUTHOR

David Yates

72

A9 ICMP

NAME
ICMP (Internet Control Message Protocol)

SPECIFICATION

J. Postel. Internet Protocol. Request for Comments 792, USC Information Sciences Institute, Marinadel Ray, Calif.,
Sept. 1981. ; SYNOPSIS

ICMP handles control messages for IP. Thisimplementation iscompletein that it handles all possibleincoming ICMP
requests.

REALM

ICMPisinthe CONTROL readm. ICMP sessions may be opened to allow control operations.

PARTICIPANTS

ICMP neither removes nor adds anything to the participant stacks. It passes the participantsdirectly to |P.

CONTROL OPERATIONS

| CVP_ECHOREQ Send an ICMP Echo Request message to the peer host and wait for areply. The buffer contains
the length of the message. Returns 0 if successful, -1 if atimeout occurred. (session only)

Input: i nt
Output: none

CONFIGURATION
nane=i cnp protocol s=i p;
AUTHOR

Clinton Jeffery

73

Al10 IP

NAME
IP (Internet Protocol)

SPECIFICATION

J. Postel. Internet Protocol. Request for Comments 768, USC Information Sciences Institute, Marinadel Ray, Calif.,
Aug. 1980.

SYNOPSIS

1P handl es fragmentation and routing required i n transmitting messages across heterogeneousinterconnected networks.
Thisimplementation is complete, with the exception of some of the optional header fields.

REALM

IPisinthe ASYNC realm.

PARTICIPANTS

IP removes a pointer to an | Phost from the top of the stack of each participant. If thelocal participant ismissing or if
the local 1Phost pointer is ANY _HOST, IP will select an appropriate local |Phost.

CONTROL OPERATIONS

| PAMYNET: Returnlocal host’s|P network number. Thisisan IP address with the host component set to 0. (session
only)

Input: none
Output: | Phost

| P_.REDI RECT: Modifiesrouting table to use a specified gateway when delivering packets to a specified | P address.
The first address is for the destination and the second is for the gateway. (session or protocol)

Input: | Phost [2]
Output: none

| P_.GETPSEUDOHDR: Fills the buffer with a partial 1P pseudoheader, containing the source address, destination
address, and the upper protocol type. The packet length field and the zero-block are both set to zero. (session
only)

Input: none
Output: | PpseudoHdr

| P.PSEUDCHDR: Used by protocols that use the IP pseudoheader (e.g., TCP and UDP) to dert protocols between
them and IP that they must not change the length of packets without worrying about the length field in the
pseudoheader. |Pitself simply absorbs this control operation and returns.

Input: none

74

Output: none

CONFIGURATION
IP must be configured above VNET:

name=i p protocol s=vnet;

If an explicit route for a remote network is not specified, |P will forward packets for that network to a default
gateway, if one has been configured. The default gateway can be set with arom file entry of the form:
ip gat eway 127.1.22.11

If no default getway has been configured, or the specified default gateway can not be reached directly, IP will
operate without a default gateway and ERR_XOBJwill be returned in cases where a default gateway would otherwise
have been used.

AUTHORS

Clinton Jeffery, David Kays and Ed Menze

75

All MSP

NAME
MSP (Message Stream Protocol)

SPECIFICATION

L. Peterson and B. Davie. Computer Networks: A Systems Approach. Morgan Kaufmann Publishers, San Francisco,
CA (1996).

SYNOPSIS

MSP extends SWP to include exlicit connection setup/tear-down and flow control. MSP expects a higher level
protocol to buffer incoming messages, and inform MSP as to the amount of available buffer space via the
MSP_SETRCVBUFSIZE control op. This is similar to TCP's TCP_SETRCVBUFSPACE control op. The imple-
mentation of MSP is directly derived from SWP. Like SWP, MSP is a message-oriented protocol, rather than a
byte-oriented protocol like TCP.

Because M SP does not implement congestion control, should the intial advertized flow control window be large
enough, it is possible that an MSP source will send a large burst of packets upon startup. Thisis not unlike TCP's
behavior before slow start was implemented. Even if MSP is being run over a single ethernet, is is possible for this
initia burst to cause congestion-likelosses. Thisis because when running on top of Unix using SIMETH, the UDP
receiver buffer on thereceiving host may overflow, analogousto theway router buffersoverflow withanon-slow-started
TCP. When thishappens, the x-kernel printssim_ether ERROR: Can't get next buffer, dropping incoming packet.
MSP is robust, however, so it will eventually recover from these losses. An interesting exercise would be to add
slow-start to MSP.

REALM

MSPisinthe ASYNC realm.

PARTICIPANTS

MSP removes a pointer to a long (the MSP port number) from the participant stack. MSP ports must be less than
IO())((::;IO('))%(:LIf theloca participantismissing, or if theloca protocol number isANY _PORT, MSP will select an unused

CONTROL OPERATIONS

MBP_SETRCVBUFSI ZE: Setsthe receiver’s buffer size to the specified number of bytes. This effectively opensthe
flow control window to thissize.

Input: i nt buf si ze

Output: none

CONFIGURATION

76

name=nsp protocol s=ip; A.12 SELECT

AUTHOR NAME

Tim Newsham SELECT (RPC Select Micro-Protocol)

SPECIFICATION

S.O'Malley and L. Peterson. A Dynamic Network Architecture. ACM Transactions on Computer Systems 10, 2 (May
1992), 110-143.

B. Welch. The Sprite remote procedure call. University of Californiaat Berkeley, Tech Report UCB/CSD 86/302,
June 1986.

SYNOPSIS

SELECT is a micro-protocol that performs the addressing function of Sprite RPC; i.e, it demultiplexes request
messages to the appropriate procedure,

REALM

SELECT isinthe RPC realm.

PARTICIPANTS

SELECT removes a pointer to along (the remote procedure number) from the top of the stack of thefirst participant.
CONFIGURATION

SELECT expects one RPC realm protocol below it.

AUTHOR

Sean O'Malley

77 78

Al13 SwWP

NAME
SWP (Sliding Window Protocol)

SPECIFICATION

L. Peterson and B. Davie. Computer Networks: A Systems Approach. Morgan Kaufmann Publishers, San Francisco,
CA (1996).

SYNOPSIS
SWP implements reliable, ordered message delivery using the sliding window algorithm. It is a message-oriented
protocol, rather than abyte-oriented protocol like TCP. SWP does not support explicit connection setup or flow control.

(See MSP for these features,) This implementation of SWP is loosely based on the one given in the book, but it is
much more robust and complete.

REALM

SWPisinthe ASYNC realm.

PARTICIPANTS

SWP removes a pointer to along (the SWP port number) from the participant stack. SWP ports must be less than
:);(C:;IO(’)J(())(:LH theloca participant ismissing, or if theloca protocol number is ANY _PORT, SWP will select an unused

CONTROL OPERATIONS

SWP_SET_SWS: Sets the sending window size for thissession.

Input: i nt sws
Output: none

CONFIGURATION

nanme=swp protocol s=ip;

AUTHOR

Tim Newsham

79

Al4 TCP

NAME
TCP (Transmission Control Protocol)

SPECIFICATION

Transmission Control Protocol. Request for Comments 793, USC Information Sciences Ingtitute, Marina Del Rey,
Cdlif., Sept. 1981

SYNOPSIS

TCPisareliable stream transport protocol. It maintains a connection between the server and the client, and provides
reliable stream delivery to the process. Thisimplementationisan encapsulation of the Unix 4.3 BSD implementation.

This implementation of TCP supports input and output buffering. Output buffers are contained within TCP. If
the amount of data sent and unacknowledged by the peer reaches the output buffer size, TCP will block subsequent
xPush’s (or will return XM SG_ERR_WOULDBLOCK in the case of non-blocking 1/0.)

TCP provides support for users to work with finite input buffers. TCP will limit the amount of input data sent to
its upper protocol via xDemux to the size of the input buffer. When data have been consumed from the user’s input
buffer, free buffer space must be signalled to TCP viaa TCP_-SETRCVBUFSPACE call (see below.) If auser does not
wish to use input buffering, a control message signalling an empty buffer should be sent in response to each xDemux.

REALM

TCPisinthe ASYNC realm.

PARTICIPANTS

TCP removes a pointer to a long (the TCP port number) from the participant stack. TCP ports must be less than
0x10000. If thelocal participant ismissing, or if thelocal protocol number is ANY _PROT, TCP will select an unused
local port.

CONTROL OPERATIONS

TCP_PUSH: Force a TCP message to be sent. (session only)

Input: none
Output: none

TCP_GETSTATEI NFO Returns state of the connection. (session only)

Input: none
QOutput: i nt

TCP_DUMPSTATEI NFO Printsout statistics gathered by TCP. (protocol only)

Input: none
Output: none

80

TCP_GETFREEPORTNUM Returnsan unused TCP port number. Thisport number will not begiven out to subsequent
TCP.GETFREEPORTNUM calsuntil it isreleased with TCP_.RELEASEPORTNUM. Thisallowsan opener to
separate reservation of free portsfrom the actual open operation, if desired. (protocol only)

Input: none
Output: long

TCP_RELEASEPORTNUM Releases a TCP portnumber previously acquired with TCP_.GETFREEPORTNUM. (pro-
tocol only)

Input: long
Output: none

TCP_SETRCVBUFSPACE: Tells TCP how many bytesin the receive queue are free. (session only)

Input: u_short
Output: none

TCP_SETRCVBUFSI ZE: Tells TCP the size of the TCP user’s receive queue. (session only)

Input: u_short
Output: none

TCP_GETSNDBUFSPACE: Asks TCP for the number of free bytesits send queue. (session only)

Input: none
Output: u_short

TCP_SETSNDBUFSI ZE: Tells TCP to change its send queue to the indicated size (session only)

Input: u_short
Output: none

TCP_SETOOBI NLI NE: Tells TCP whether userswants urgent datato be delivered inline(non-zero == yes.) (session
only)

Input: int
Output: none

TCP_GETOOBDATA: reads the urgent data (exactly one byte), returning 1 on a successful read or returning O if data
was either read already or was not received yet (the OOB notification may precede the actual reception of the
OOB data)

Input: none
Output: char

TCP_OOBPUSH: send amsg in urgent mode

Input: Msg*
Output: char

81

TCP_OOBMODE: TCP uses thisto tell the user of TCP that it has urgent data present, i.e., TCP does an xControl ()
cal onitsparent — THIS ISAN UPCALL! The first void pointer (argsQ]) is of type XObj and is a pointer to
the TCP session that invoked this operation. The second pointer (args[1]) is of type u-int and isthe value of the
urgent datamark. The oobmark indicates that the "oobmark-th" byte in the receive queue isthe oobdata (or will
be the oobdata.)

Note: al protocolsusing TCPwithout having OOB datadelivered in-band must be prepared to accept thisupcall.

Input: void *args[2]
Output: none

CONFIGURATION

name=t cp protocol s=ip;

AUTHORS

Norm Hutchinson, Herman Rao, and David Mosberger-Tang

82

A.l15 TEST

NAME
TEST (instantiated as’ chantest’, ' udptest’, etc.)

SPECIFICATION

The test protocol, usually running a simple a “ping-pong” test of the protocol below it, for various message lengths
and number of round trips.

SYNOPSIS

Transport test protocols run in one of two roles, either as “client” or as “server” In most cases, the client will send a
message to the server and wait for areply before sending the next message. There are no provisionsfor retransmission:
if the protocol below the test protocol drops a message, the test will fail.

CONFIGURATION

When the test protocol instantiates, it can determine which role it should assume in several ways. Command line
parameters can be used to cause the same kernel to run as the server on one machine and as the client on another. The
server should be started up witha“-s’ flag:

xkernel -s

The client side must be told the host address of the server peer (note that on the sunos platform, this should be the
address of the simulated IP host.) This can be donewith the “-c” command line option, e.g.:

xkernel -c192.12.69.54
The number of round tripsfor each packet size can be set with the “trips’ flag:
xkernel -trips=10000
Thetest protocolsall usethecommon tracevariablepr ot t est which can beset inthethird section of graph.comp:
@
ﬁ;al.ma=udpt est pr ot ocol s=udp;
n@anE=pr ottest trace=TR_EVENTS;

If you set atrace level when you declare thetest protocol in the second section of graph.comp, it will be ignored.

CAVEATS
Remember that if you are using simeth you must use the name of the simulated host when you invoke the client, not
thereal host.

83

A.l6 UDP

NAME
UDP (User Datagram Protocol)

SPECIFICATION

J. Postel. User Datagram Protocol. Request for Comments 768, USC Information Sciences Institute, Marinadel Ray,
Calif., Aug. 1980.

SYNOPSIS

UDPisatrivial protocol that dispatches messages that arrive at the host to a process running on the host.

REALM

UDPisinthe ASYNC ream.

PARTICIPANTS

UDP removes a pointer to a long (the UDP port number) from the participant stack. UDP ports must be less than
0x10000. If theloca participantismissing, or if thelocal protocol number isANY _PORT, UDP will select an unused
loca port.

CONTROL OPERATIONS

UDP_ENABLE_CHECKSUM Cause the session to use checksums on its outgoing packets. (session only)
Input: none
Output: none

UDP_DI SABLE_.CHECKSUM Cause the session to not use checksums on its outgoing packets. (session only)
Input: none
Output: none

UDP_GETFREEPORTNUM Returnsan unused UDP port number. Thisport number will not begiven out to subsequent
UDP_GETFREEPORTNUM cals until it is released with UDP_.RELEASEPORTNUM. This allows an opener
to separate reservation of free ports from the actual open operation, if desired. (protocol only)

Input: none
Output: long

UDP_RELEASEPORTNUM Releases aUDP portnumber previously acquired with UDP_GETFREEPORTNUM. (pro-
tocol only)
Input: long
Output: none

CONFIGURATION

name=udp protocol s=ip;

AUTHORS

Larry Peterson and Sean O’ Malley

85

A.17 VCHAN

NAME
VCHAN (Channel Virtual-Protocol)

SPECIFICATION

S.O'Malley and L. Peterson. A Dynamic Network Architecture. ACM Transactions on Computer Systems 10, 2 (May
1992), 110-143.

B. Welch. The Sprite remote procedure call. University of Californiaat Berkeley, Tech Report UCB/CSD 86/302,
June 1986.

SYNOPSIS

VCHAN isavirtual protocol that multiplexes multipleclient procedureinvocationsover some number of open channels.
The cal blocksif there are no idle channels available. VCHAN was originally based on the Sprite RPC protocol.

VCHAN initialy opens a default number of channels for a new session, though this number can be increased or
decreased via control operations.

REALM

VCHAN isin the RPC ream.

PARTICIPANTS

VCHAN expects an |Phost pointer on the stack of each participant. It will not remove this pointer before passing the
address down to the lower protocol .

CONTROL OPERATIONS

VCHANLI NCCONCURRENCY: Increase the number of active channelsby thenumber given (x Cont r ol Sessn only).
Input: i nt
Output: none;

VCHANLDECCONCURRENCY: Decrease the number of active channels by the number given (xCont r ol Sessn
only).

Input: i nt
Output: none;
CONFIGURATION

VCHAN expects to be configured above another RPC realm protocol. It expects that each xOpen on thelower protocol
with the same participantswill return anew lower session.

86

AUTHOR

Ed Menze

87

A.18 VDELAY

NAME
VDELAY (Virtual Delay Protocol)

SPECIFICATION

Delays outgoing packets. Used to exercise the ability of other protocolsto keep the pipe full.

SYNOPSIS

VDELAY sessions delay packets for a fixed number of milliseconds to simulate end-to-end latency. VDELAY is

designed to simulate propogation delay, not del ays due to queuing and congestion. The high-level protocol can set the
delay (measured in milliseconds); the default is 25ms. VDELAY has no other effects on outgoing packets.

REALM
VDELAY isinthe ASYNC ream.
PARTICIPANTS

VDELAY passes participantsto the lower protocols without manipulating them.

CONTROL OPERATIONS

VDELAY_SETDELAY: Setsthedelay for this session to the specified number of milliseconds.

Input: i nt del ay
Output: none

VDELAY_GETDELAY: Returnsthe current delay for this session.

Input: none
Output: i nt del ay

CONFIGURATION

VDELAY can be configured between any two ASYNC protocols. It is commonly configured between the protocol
you want to test (e.g., MSP) and IP.

AUTHOR

Ed Menze

88

A.19 VNET

NAME
VNET (Virtual Network Protocol)

SPECIFICATION

VNET isavirtua protocol which manages multiple physica network protocols. When opened with an IP address,
VNET determinesif the host can bereached directly on one of itsphysical networks. If it can, asession on that network
isopened. If it can not be directly reached, an ERR_XOBJisreturned.

SYNOPSIS

VNET sits above pairs of network protocols (one per interface) and ARP protocols. When opened with a remote
IP address, VNET compares the net number with that of its lower protocols to determine if the host can be reached
directly on aloca network, opening the appropriate interface protocol (if possible.)

If opened withan | P broadcast address, VNET will determine which networksare matched by the broadcast address
and will open alower session on each of those networks. A push on a VNET broadcast session will result in a push
on all of these lower network sessions.

Use of the | P broadcast address 255.255.255.255 will result inaVNET session which broadcastson all of theloca
networks.

REALM

VNET isinthe ASYNC ream.

PARTICIPANTS

VNET removes a pointer to an |Phost from the top of the stack of the remote participant. Only the remote participant
is processed. New participants are created for opening the lower network protocols.

CONTROL OPERATIONS

VNET_GETADDRCLASS: Determinestheaddressclass of thegiven IPhost. The address classisoneof thefollowing:

LOCAL_ADDR.C: An address for thelocal host.

REMOTE_HOST_ADDR_C: Remote host directly reachable onalocal net.

REMOTE_NET_ADDR.C: Remote host on a remote network.

BCAST_LOCAL_ADDR C: 255.255.255.255 — broadcast address for al local nets.

BCAST_NET_ADDR C. Broadcast address for a single network or asingle subnet (if subnets are being used.)
BCAST_SUBNET_ADDR C: Broadcast for a network (more than a single subnet) when subnets are being used.

Input: VnetClassBuf == { int class; |Phost host; }
Output: VnetClassBuf

VNET_GETNUM NTERFACES: Indicate the number of interfaces used by the VNET protocol (protocol only.)

89

Input: none
Output: i nt

VNET_HOSTONLOCALNET: Indicates(throughthexControl return value) whether thegivenhostison oneof VNET's
interfaces. When performed on a session, only thoseinterfaces active on that session will be considered (atypical

VNET session only uses one interface, though a broadcast session may have more than one.) When performed
on aprotocol, all interfaces are considered.

Returns sizeof (IPhost) if it ison alocal network, O if itisnot.

Input: | Phost
Output: none

VNET_GETI NTERFACEI D: Returns an opaque identifier indicating the interface used by this session. This iden-
tifier may be used in subsequent VNET_DI SABLEI NTERFACE and VNET_ENABLEI NTERFACE calls. This
operation will fail (and return O) if performed on a broadcast session with more than one interface. Broadcast
Sessions never process incoming packets, however, so this operation will aways succeed when performed on a
session delivering incoming packets. (Session only.)

Input: none
Output: VO D *

VNET_DI SABLEI NTERFACE: The session will nolonger send messages out over theinterface corresponding to the
given interface identifier. (Session only.)

Input: VOI D *
Output: none

VNET_ENABLEI NTERFACE: Undoes the effect of aprevious VNET_DI SABLEI NTERFACE (Session only.)

Input: VOI D *
Output: none

VNET_lI SMYADDR: Indicates (through the xControl return value) whether the given host is an address which might
be used to reach this host on VNET's local networks (i.e., if the addressis one of thishost’s P addresses or isa
broadcast address.) Returnssizeof(IPhost) if it islocal (or broadcast), 0 if it isnot.

Input: | Phost
Output: none

CONFIGURATION

VNET expectsits lower protocolsto be configured in network/ARP pairs:
nanme=vnet protocol s=eth/1, arp/1,eth/2,arp/2;

AUTHOR

Ed Menze

90

A.20 VDROP

NAME
VDROP (Virtua Drop Protocol)

SPECIFICATION

Throws away occasional incoming packets. Used to exercise the recovery mechanisms of other protocols.

SYNOPSIS
VDROP sessions throw away incoming packets at regular intervals. By default, this interval is set in a somewhat
random fashion at session creation time, though it can be set explicitly on a per-protocol basis viaa ROM option (see
CONFIGURATION below) or on a per-session basis viaa control operation.

VDROP has no effect on outgoing packets.

VDROP should probably alow sessions to have more interesting distributions of drop intervas than “once every
N packets”

REALM
VDROPisinthe ASYNC realm.
PARTICIPANTS

V DROP passes participants to the lower protocolswithout manipulating them.

CONTROL OPERATIONS

VDROP_SETI NTERVAL: Setsthedrop interva for thissession. Aninterval of 1 drops every packet, an interval of 2
drops every other packet, etc. Aninterval of zero indicates that VDROP is disabled for that session. (session

only)
Input: i nt interval
Output: none

VDROP_GETI NTERVAL: Returnsthe current drop interval for this session. (session only)

Input: none
Output: i nt i nterval

CONFIGURATION

VDROP recogni zes the following ROM options:
vdrop/ xxx interval N: Instantiationxxx of VDROP will use N as the drop interval for all of itssessions.

AUTHOR

Ed Menze

91

A2l VSIZE

NAME
VSIZE (Size Virtual-Protocol)

SPECIFICATION

S.O'Malley and L. Peterson. A Dynamic Network Architecture. ACM Transactions on Computer Systems 10, 2 (May
1992), 110-143.

SYNOPSIS

VSIZE isavirtua protocol that multiplexes messages through N lower-level protocol sbased on the size of the message
being sent. By default, VSIZE determines the maximum packet size that each lower level protocol can handle by
performing a GETOPTPACKET control operation on the first N-1 lower protocols (thelast lower protocol is assumed

to have an infinite maximum packet size). VSIZE sends each message using the lower level protocol with the smallest
index whose optimum packet size is greater than the length of the message.

REALM
VSIZE isinthe ASYNC ream.
PARTICIPANTS
V SIZE passes participants to the lower protocol s without manipul ating them.
CONTROL OPERATIONS
V SIZE forwards control operationsto the “largest message” protocol.
CONFIGURATION
VSIZE's |ower protocols should be order by decreasing efficiency and increasing packet size.
V SIZE recogni zes the following ROM options:
vsi ze/ xxx cutoff Cl C2: Instantiation xxx of VSIZE should use a cutoff length of C1 bytes for itsfirst
down protocol and a cutoff value of C2 bytes for its second down protocol. This control operation alows the user of

VSIZE to override the GETOPTPACKET. Note this operation does not check to seeiif the specified cutoff valueisless
than the maximum packet size of the lower level protocol.

AUTHOR

Ed Menze

92

B DeviceDrivers

This appendix describes device drivers currently implemented in the x-kernel. The descriptionsare in the same format
asthosein Appendix A. Note that these drivers are platform-dependent.

93

B.1 ETHPKT

NAME
ETHPKT (Raw Ethernet Driver (Linux platform))

SPECIFICATION

ETHPKT provides direct interaction with an ethernet device through a Linux SOCK_PACKET socket.

SYNOPSIS

Each instantiation of ETHPKT is associated with a single ethernet device. ETHPKT has the ability to re-map and
block ethernet typesto allow an x-kernel to coexist with the normal TCP/IP stack.

REALM

ETHPKT isinthe ANCHOR realm, supporting the ethernet driver interface described in ETH.

PARTICIPANTS

ETHPKT supportstheethernet driver interface rather than astandard xkernel UPI, and thus makes no use of participant
stacks.

CONTROL OPERATIONS

GETMYHOST: Returnsthe six byte hardware address for the ethernet device.

Input: none
Output: ETHhost*

ETH.SETPROM SCUCUS: Enables promiscuous mode for the ethernet device.

Input: none
Output: none

EXTERNAL INTERFACE

ETHPKT adheres to the external interface defined by ETH.

CONFIGURATION

ETHPKT requires no lower protocol. The default network device is “eth0”, which corresponds to the primary
ethernet adapter in the host machine.

nanme=et hpkt ;

ETHPKT recognizes the following ROM options:

et hpkt / xxx bl ock type:

Instantiation xxx of ETHPKT will block all ethernet packets of the given t ype from being processed by the
driver. Thet ype should be specified in hex and should be in network byte order. There isno limit to the number of
bl ock options.

et hpkt/ xxx devi ce nane:

Instantiation xxx of ETHPKT will use the given network device. Thisisthe name used internally by the Linux
kernel. If no optionis provided the default is“eth0”.

et hpkt/ xxx remap real type bogustype:

Instantiation xxx of ETHPKT will re-map all outgoing ethernet packets of typer eal t ype tobogust ype. The
reverse will be doneto all incoming packets. Ther eal t ype and bogust ype should be specified in hex and should
be in network byte order. There is no limit to the number of r emap options. Although subsequent operations on
previously mapped ids have no effect.

After an incoming packet has had its ethernet type field re-mapped it is subject to being blocked from the bl ock
option.

This method of changing ethernet types allows different mappingsfor each instantiation of ETHPKT. If thisis not
required, the x-kernel protocolstables could be changed to achieve the same result.

Example graph.comp and rom files for usng ETHPKT can be found in
/usr/ xkernel /user | evel / bui | d/ Tenpl at e/ exanpl e_et hpkt .

AUTHOR

Mason Katz

95

B.2 IRIXETH

NAME
IRIXETH (Raw Ethernet Driver (IRIX platform))

SPECIFICATION

IRIXETH is auser-space x-kernel ethernet driver that sends and receives messages using IRIX raw sockets.

SYNOPSIS

IRIXETH places and receives packets directly on the wire using the SGI raw socket interface. Using raw socketsis a
priviledged operation, so the user must be root or the running xkernel must be owned by root and have the suid bit set.

REALM

IRIXETH isin the ANCHOR redm, supporting the ethernet driver interface described in ETH.

PARTICIPANTS

IRIXETH supportsthe ethernet driver interface rather than a standard xkernel UPI interface and thus makes no use of
participant stacks.

CONTROL OPERATIONS

MAC_REG STERARP: Used by an ARP instantiation to register itself with its corresponding SIMETH driver.
IRIXETH has no need of this and simply consumes the control operation.

Input: XCbj /* ARP protocol object */
Output: none

MAC_DUMP_STATS: If IRIXETH or PACKET_STATS have been defined when the module is compiled (the default),
this causes the driver to print out relevant statistics such as packets sent and received, broadcasts sent, errors, etc.

Input: none
Output: none

EXTERNAL INTERFACE
IRIXETH adheres to the external interface defined by ETH.
CONFIGURATION

IRIXETH requires no lower protocol. It can be configured in either the driver section or the protocol section of
graph.comp.
IRIXETH recognizes the following ROM options:

96

i ri xeth nmmm nnnn: Thisingtantiation of irixeth should use IRIX raw socket send port mmmm and receive B.3 IRIXFDDI
port nnnn. There must be such alinefor each instantiation of IRIXETH in the x-kernel.

NAME

AUTHORS IRIXFDDI (Raw FDDI Driver (IRIX platform))

Jim Doyle
SPECIFICATION

IRIXFDDI isauser-space x-kernel FDDI driver that sends and receives messages using |RIX raw sockets.

SYNOPSIS

IRIXFDDI places and receives packets directly on the wire using the SGI raw socket interface. Using raw socketsisa
priviledged operation, so the user must be root or the running xkernel must be owned by root and have the suid bit set.

REALM

IRIXFDDI isinthe ANCHOR realm, supporting the FDDI driver interface described in FDDI.

PARTICIPANTS

IRIXFDDI supports the fddi driver interface rather than a standard xkernel UPI interface and thus makes no use of
participant stacks.

CONTROL OPERATIONS

MAC_REG STERARP: Used by an ARP instantiation to register itself with its corresponding SIMFDDI driver.
IRIXFDDI has no need of thisand simply consumes the control operation.

Input: XCbj /* ARP protocol object */
Output: none

MAC_DUMP_STATS: If IRIXFDDI_STATS or PACKET_STATS have been defined when the moduleis compiled (the
default), this causes the driver to print out relevant statistics such as packets sent and received, broadcasts sent,
errors, etc.

Input: none
Output: none

EXTERNAL INTERFACE

IRIXFDDI adheres to the external interface defined by FDDI.

CONFIGURATION

IRIXFDDI requires no lower protocol. It can be configured in either the driver section or the protocol section of
graph.comp.
IRIXFDDI recognizes the following ROM options:

97 98

i rixfddi nmmmm nnnn: Thisinstantiation of irixfddi should use IRIX raw socket send port mmmm and receive
port nnnn. There must be such alinefor each instantiation of IRIXFDDI in the x-kernel.

AUTHORS

David Yates and Erich Nahum

99

B4 SIMETH

NAME
SIMETH (Simulated Ethernet Driver (SunOS, Solaris, OSF/1, Linux, and IRIX platforms))

SPECIFICATION

SIMETH simulates an x-kernel ethernet driver by sending and receiving messages using Unix UDP sockets.

SYNOPSIS

Each instantiation of SIMETH is associated with aspecific Unix UDP port and simul ates an ethernet driver for asingle
interface. SIMETH transmits outgoing messages by sending to other UDP ports and presents UDP messages received
on its port as incoming ethernet packets. Note that since messages sent from one simulated x-kernel to another are
encapsul ated within Unix UDP packets, it is only possible to communicate with another peer running the x-kernel with
this same driver. Communication with “native’ peers isnot possible with thisdriver.

The mapping between Unix UDP portsand SIMETH ethernet addresses isvery simple. The six bytesof SIMETH
ethernet address are formed by the concatenation of the four byte IP host number for the Unix host on which the
simulator is running and the two-byte UDP port used by the SIMETH instantiation. Note that thisisthereal IP host
number, not the simulated | P host number. See the CONFIGURATION section below.

Note that an x-kernel may be configured with multiple instantiationsof SIMETH, each with its own UDP port, to
simulate a multihomed host.

SIMETH can awvkwardly simulate ethernet broadcast messages. When an outgoing broadcast message is sent to
SIMETH, SIMETH asks its corresponding ARP protocol for adump of all hostsinitstable. SIMETH then sends the
message to each of these hostsin a point-to-point fashion. Note that for areasonable simulation of ethernet broadcast,
al x-kernelsin communication should have the same ARP table (see the ARP)

REALM
SIMETH isin the ANCHOR realm, supporting the ethernet driver interface described in ETH.

PARTICIPANTS

SIMETH supportsthe ethernet driver interface rather than a standard xkernel UPI interface and thus makes no use of
participant stacks.

CONTROL OPERATIONS

ETH.REG STERARP: Used by an ARP instantiation to register itself with its corresponding SIMETH driver. This
is used to simulate ethernet broadcasts as described above. If no ARP protocol registers with a SSIMETH
instantiation, broadcasts on that instantiation will not be possible.

Input: XCbj /* ARP protocol object */
Output: none

EXTERNAL INTERFACE

100

SIMETH adheres to the externd interface defined by ETH.

CONFIGURATION

SIMETH requires no lower protocol. It can be configured in either the driver section or the protocol section of
graph.comp.

SIMETH recognizes the following ROM options:

si met h nnnn: This instantiation of simeth should use UDP port nnnn. There must be such a line for each
instantiation of SIMETH in the x-kernel.

AUTHORS

Larry Peterson and Norm Hutchinson (sunos platform), Erich Nahum, David Yates, and Jim Doyle (irix platform).

101

B.5 SIMFDDI

NAME
SIMFDDI (Simulated FDDI Driver (IRIX platform))

SPECIFICATION

SIMFDDI simulates an x-kernel FDDI driver by sending and receiving messages using Unix UDP sockets.

SYNOPSIS

Each instantiation of SIMFDDI is associated with a specific Unix UDP port and simulates an FDDI driver for a
singleinterface. SIMFDDI transmits outgoing messages by sending to other UDP ports and presents UDP messages
received on its port as incoming FDDI packets. Note that since messages sent from one IRIX x-kernel to another are
encapsul ated within Unix UDP packets, it is only possibleto communicate with another peer running the x-kernel with
this same driver. Communication with “native’ peersis not possible with thisdriver.

The mapping between Unix UDP ports and SIMFDDI fddi addresses is very simple. The six bytes of SIMFDDI
fddi address are formed by the concatenation of the four byte IP host number for the Unix host on which the simulator
is running and the two byte UDP port used by the SIMFDDI instantiation. Note that thisis the real |P host number,
not the simulated | P host number. See the CONFIGURATION section below.

Note that an x-kernel may be configured with multipleinstantiationsof SIMFDDI, each with itsown UDP port, to
simulate a multihomed host.

SIMFDDI can awkwardly simulate FDDI broadcast messages. When an outgoing broadcast message is sent to
SIMFDDI, SIMFDDI asks its corresponding ARP protocol for adump of al hostsinitstable. SIMFDDI then sends
the message to each of these hostsin apoint-to-point fashion. Notethat for areasonable simulation of FDDI broadcast,
al x-kernelsin communication should have the same ARP table (see ARP).

REALM

SIMFDDI isin the ANCHOR realm, supporting the FDDI driver interface described in FDDI.

PARTICIPANTS

SIMFDDI supports the FDDI driver interface rather than a standard xkernel UPI interface and thus makes no use of
participant stacks.

CONTROL OPERATIONS

MAC_REG STERARP: Used by an ARPinstantiationtoregister itself withitscorresponding SIMFDDI driver. Thisis
used to simulate fddi broadcasts as described above. If no ARP protocol registerswithaSIMFDDI instantiation,
broadcasts on that instantiation will not be possible.

Input: XCbj /* ARP protocol object */
Output: none

MAC_.DUMP_STATS: If SIMFDDI_STATS or PACKET_STATS have been defined when the moduleis compiled (the
default), this causes the driver to print out relevant statistics such as packets sent and received, broadcasts sent,
errors, etc.

102

Input: none

Output: none Index

address resolution, 62 GETOPTPACKET, 46
arp, 62 GETPEERHOST, 46

EXTERNAL INTERFACE asp, 64 GETPEERHOSTCOUNT, 46

SIMFDDI adheres to the external interface defined by FDDI. bid, 65 hip, 17
bidctl, 66 hipType, 17

CONFIGURATION blast, 68 host names, 43
Blocking, 35 htonl, 42

SIMFDDI requires no lower protocol. It can be configured in either the driver section or the protocol section of htons, 42

graph.comp. Checksum, 42

.) . icmp, 76
SIMFDDI recognizes the following ROM options: defaultOpenDisable, 19 inCkSum, 42
si nfddi nnnn: Thisinstantiation of simfddi should use UDP port nnnn. There must be such a line for each defaultOpenDisableAll, 19 ip, 77

instantiation of SIMFDDI in the x-kernel. defaultOpenEnable, 18 ipHostStr, 43
defaultVirtual OpenDisable, 19 irixeth, 99

AUTHORS defaultVirtual OpenEnable, 19 irixfddi, 101
Delay, 34

David Yates and Erich Nahum dnsrom option, 43 Mep, 31
dtAppendPostAmble, 40 mapBind, 32
dtClose, 39 mapClose, 32
dtCloseAll, 39 mapCreate, 32
diCreateTraceObj, 38 mapForEach, 33

103

dtFlushTraceObj, 39
dtGetTopTraceObj, 40
dtGetTraceObj, 40
dtInsertPostAmble, 40
dtLoadX ObjRomOpts, 40

mapRemoveBinding, 32
mapRemoveKey, 32
mapResolve, 32
message attributes, 23
message validity, 24

dtPostAmblel ocation, 40 messages, 21
dtRegisterCloseFunc, 39 msgAssign, 22
dtTrace, 39 msgBreak, 23
dtTraceBuf, 39 msgCleanUp, 24

enable objects, 10

msgConstructAllocate, 21
msgConstructBuffer, 21

eth, 72 msgConstructCopy, 21
ethHostStr, 43 msgConstructEmpty, 21
ethpkt, 97 msgConstructlnplace, 22
evCancdl, 29 msgDestroy, 22
evDetach, 29 msgDiscard, 23
evDump, 30 msgGetAttr, 24
evlsCancelled, 29 msgJoin, 23
evSchedule, 29 msgLength, 22
msgPeek, 23
fddi, 74 ngPop' 23
findProtlRomOpts, 44 msgPush, 23
FREERESOURCES, 46 msgRefresh, 22
msgSetAttr, 23
GETMAXPACKET, 46 msgShow, 24
GETMYHOST, 46 msgStats, 24

GETMYHOSTCOUNT, 46

msgTruncate, 22

1€ 'Se0RIIX

1€ deoRILX

g ‘a%el] X

T¥ BWILX

T 'BWILgNSX

9T ‘dnPSX

GT ‘UMOQUSSISIBSX
€T ‘Usndx

LT 'USSSSIULIGX

/T ' PosdI X

€T ‘dodx

TT ‘sjeuguedox
2T ‘suoquedox

2T ‘lIve|gesiguedox
2T 9|ges1quedox
TT ‘uadox

9T ‘PoMdAINX

T 00| RINX

oF ‘aweuAgisoywebyx
9T ‘USSASPIRASIX
9T ‘' poidpleAsIX

9T ‘USSaSs X

9T ‘oIS IX

1€ 'Sedeil}IX

1€ deRILYIX

1€ 'S%I1L}IX

9T ‘adA1d|Hx

9T ‘dnNLOX

T ‘SWILPOX

GT ‘UMOQUSSISIBOX
ST ‘UmoQoIdBOX
ST ‘sweNAg j0dpox
$T ‘SiuedpEdBOX
T ‘914X

2 '1o13x

T ‘9rolidnax

GT ‘ussasAolsegx
2T ‘Xnuegx

GT ‘USS3SMERI0X
T ‘N0IdeIERIDX

$T ‘USsSS [01JU0DX
€T ' j0.d [01U0DX
2T 'duo@eso|DX

€T '850[0X

€T ‘dod|eox

2T ‘Xxnweq|eox

T '[eOX

S0T

2v ‘HessyX
T 'BWILPPYX
T ‘MAN X
g6 '9Z55A

26 "BUA

¥6 ‘16 ‘doIpA
68 ‘Ueyon

/8 ‘dpn

G8 ‘91
28 ‘doy

18 ‘6. ‘dvs

€ ‘soHd iz

£ 'SOHYBZIS
GOT ‘Ippyws

€0T ‘Ypws

97 ‘OI9NIMO0TANONLIS
6 ‘s19[qo uosses
€ ‘Hepmues

v ‘pubiswies

€ ‘U ues

08 ‘1S

9 'AA10S34Y

e ‘Busied a1y wol
9 'AN10S3H

12 ‘plAgwinNiold Bl
/2 'WnNNioId Pl

/2 'pIeoiqLiod

6 's199[00 [00030d

1Z ,m‘_mnc._:c _ooouo‘_n

/2 ‘9fesn Jaquunu j0o030.d
7 ‘1dowod pod

/2 ‘welAgdo oeisied
9z ‘ysndired

1 ‘dodied

/2 'YibusTied

9z ‘Nujped

9z ‘siedpnred

Zb ‘wnsoo

2v 'syou
Zv ‘lyou

Ge ‘1oddns Jossaooudniniy
72 ‘U embsw

2 ‘suo@ embsw

72 Memisw

