
TDTS04/TDDD93: Distributed Systems

Instructor: Niklas Carlsson

Email: niklas.carlsson@liu.se

Notes derived from “Distributed Systems:
Principles and Paradigms”, by Andrew S.

Tanenbaum and Maarten Van Steen, Pearson Int. Ed.

The slides are adapted and modified based on slides used by other
instructors, including slides used in previous years by Juha
Takkinen, as well as slides used by various colleagues from the
distributed systems and networks research community.

1

mailto:niklas.carlsson@liu.se

Communication

• How do distributed components talk to
each other?

2

Communication in distributed systems

• “Distributed” processes

• Located on different machines

• Need communication mechanisms

• Goal: Hide distributed nature as far as
possible

3

Communication in distributed systems

• Networking primitives and protocols (e.g.:
TCP/IP)

• Advanced communication models: Built
on networking primitives

• Messages

• Streams

• Remote Procedure Calls (RPC)

• Remote Method Invocation (RMI)

4

Messages and streams

• We have already seen many protocols

• Connection or connection less

• Different layers

• Communication paradigm

• Unicast

• Multicast

• Broadcast, limited flooding

• Anycast

• Publish-subscribe

5

Connection-oriented socket (TCP)

Figure 4-15. Connection-oriented communication
pattern using sockets.

7

Remote procedure calls (RPC)

• Goal: Make distributed computation look
like centralized computation

• Idea: Allow processes to call procedures
on other machines

• Make it appear like normal procedure
calls

8

RPC operation

• Challenges:

• Hide details of communication

• Pass parameters transparently

• Stubs

• Hide communication details

• Client and server stubs

• Marshalling

• Flattening and parameter passing

9

Stubs

• Code that communicates with the remote side

• Client stub:

• Converts function call to remote communication

• Passes parameters to server machine

• Receives results

• Server stub:

• Receives parameters and request from client

• Calls the desired server function

• Returns results to client

10

Client and server stubs

Figure 4-6. Principle of RPC between a client and
server program.

RPC operation

12

Client code

Server code

Client stub

Server stub

RPC client RPC server

Remote Procedure Calls (1)

A remote procedure call occurs in the following steps:

1. The client procedure calls the client stub in the normal way.

2. The client stub builds a message and calls the local operating
system.

3. The client’s OS sends the message to the remote OS.

4. The remote OS gives the message to the server stub.

5. The server stub unpacks the parameters and calls the server.

 Continued …

Remote Procedure Calls (2)

A remote procedure call occurs in the following steps
(continued):

6. The server does the work and returns the result to the stub.

7. The server stub packs it in a message and calls its local OS.

8. The server’s OS sends the message to the client’s OS.

9. The client’s OS gives the message to the client stub.

10.The stub unpacks the result and returns to the client.

Parameter passing: Local procedures

• Pass-by-value
• Original variable is not modified

• E.g.: integers, chars

• Pass-by-reference
• Passing a pointer

• Value may be changed

• E.g.: Arrays

• Pass-by-copy/restore
• Copy is modified and overwritten to the original

15

Passing value parameters

Figure 4-7. The steps involved in a doing a
remote computation through RPC.

Marshalling

• Converting parameters into a byte stream

• Problems:
• Heterogeneous data formats: Big-endian vs. little-

endian

• Type of parameter passing: By-value vs. by-
reference

17

Stub generation

• Most stubs are similar in functionality
• Handle communication and marshalling

• Differences are in the main server-client code

• Application needs to know only stub interface

• Interface Definition Language (IDL)
• Allows interface specification

• IDL compiler generates the stubs automatically

18

Writing a Client
and a Server (1)

Figure 4-12. The steps in writing a client and
a server in DCE RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and
Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-
239227-5

Writing a Client and a Server (2)

Three files output by the IDL compiler:

• A header file (e.g., interface.h, in C terms).

• The client stub.

• The server stub.

Binding

• How does the client stub find the server
stub?
• Needs to know remote IP address/port no.

• Port mapper
• Daemon on server machine maintaining server

bindings

• Listens on a well-known port

• Server stub registers its port no. and
service name with portmapper
• Client gets this binding by querying portmapper

21

Binding a Client to a Server (1)

• Registration of a server makes it possible for a client
to locate the server and bind to it.

• Server location is done in two steps:

1.Locate the server’s machine.

2.Locate the server on that machine.

Binding a Client to a Server (2)

Figure 4-13. Client-to-server binding in DCE.

RPC issues

• Basic RPC performed in a synchronous
manner
• What if client wants to do something else?

• What if things fail?

24

Types of communication

Figure 4-4. Persistent vs. transient communication and

synchronous/asynchronous communication.

Types of communication

Figure 4-4. Persistent vs. transient communication and

synchronous/asynchronous communication.

Asynchronous RPC

• Basic RPC
• Client blocks until results come back

• Asynchronous RPC
• Server sends ACK as soon as request is received

• Executes procedure later

• Deferred synchronous RPC
• Use two asynchronous RPCs

• Server sends reply via second asynchronous RPC

• One-way RPC
• Client does not even wait for an ACK from the

server
27

Tanenbaum & Van
Steen, Distributed
Systems: Principles
and Paradigms, 2e,
(c) 2007 Prentice-
Hall, Inc. All rights
reserved. 0-13-
239227-5

Client and Server Stubs

Figure 4-6. Principle of RPC between a client and
server program.

Asynchronous RPC (2)

Figure 4-10. (b) The interaction using asynchronous
RPC.

Asynchronous RPC (3)

Figure 4-11. A client and server interacting through
two asynchronous RPCs.

31

RPC: Network failure

• Client unable to locate server:

• Lost requests/replies:

32

RPC: Network failure

• Client unable to locate server:

• Return error or raise exception

• Lost requests/replies:

33

RPC: Network failure

• Client unable to locate server:

• Return error or raise exception

• Lost requests/replies:

• Timeout mechanisms

• Make operation idempotent (does not
change the results beyond initial operation)

• Use sequence numbers, mark
retransmissions

34

RPC: Server failure

• Server may crash during RPC

• Did failure occur before or after
operation?

• Operation semantics

35

RPC: Server failure

• Server may crash during RPC

• Did failure occur before or after
operation?

• Operation semantics

• Exactly once: desirable but impossible
to achieve

• At least once

• At most once

• No guarantee

36

RPC: Client failure

• Client crashes while server is computing

• Server computation becomes orphan

• Possible actions

37

RPC: Client failure

• Client crashes while server is computing

• Server computation becomes orphan

• Possible actions

• Extermination: log at client stub and
explicitly kill orphans

• Reincarnation: Divide time into epochs
between failures and delete
computations from old epochs

• Expiration: give each RPC a fixed
quantum T; explicitly request extensions

38

39

Remote method invocation (RMI)

• RPCs applied to distributed objects

• Class: object-oriented abstraction

• Object: instance of class

• Encapsulates data

• Exports methods: operations on data

• Separation between interface and
implementation

40

Distributed objects

• Interface resides on one machine, object on
another

• RMIs allow invoking methods of remote
objects

• Use proxies, skeletons, binding

• Allow passing of object references as
parameters

41

Tanenbaum & Van Steen, Distributed Systems: Principles and
Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-
239227-5

Distributed objects

Figure 10-1. Common organization of a remote
object with client-side proxy.

Proxies and skeletons

• Proxy: client stub
• Maintains server ID, endpoint, object ID

• Does parameter marshalling

• In practice, can be downloaded/constructed on
the fly

• Skeleton: server stub
• Does demarshalling and passes parameters to

server

• Sends result to proxy

43

The General RMI Architecture

1. The server must first bind its name
to the registry

2. The client looks up the server name
in the registry to establish remote
references.

3. …

RMI Server

skeleton

stub

RMI Client

Registry

bind

lookupreturn call

Local Machine

Remote Machine

The Stub and Skeleton

A client invokes a remote method, the call is first forwarded to the
stub.

The stub is responsible for sending the remote call over to the
server-side skeleton

The stub opens a socket to the remote server, marshals (Java:
serializes) the object parameters and forwards the data stream to
the skeleton.

A skeleton contains a method that receives the remote calls,
unmarshals the parameters, and invokes the actual remote object
implementation.

S
tu

b

RMI Client RMI Server

s
k
e
le

to
n

return

call

Binding a client to an object

• Loading a proxy in client address space

• Implicit binding:

• Bound automatically on object
reference resolution

• Explicit binding:

• Client has to first bind object

• Call method after binding

46

Parameter passing
• Less restrictive than RPCs

• Supports system-wide object references

• Pass local objects by value, remote objects by
reference

Steps for Developing an RMI System

1. Define the remote interface

2. Develop the remote object by implementing the remote interface.

3. Develop the client program.

4. Compile the Java source files.

5. Generate the client stubs and server skeletons.

6. Start the RMI registry.

7. Start the remote server objects.

8. Run the client

Object-based messaging

Figure 10-9. CORBA’s callback model for
asynchronous method invocation.

Object-based messaging

Figure 10-10. CORBA’s polling model for
asynchronous method invocation.

Naming: CORBA Object References

Figure 10-11. The organization of an IOR with
specific information for IIOP.

