
TDTS04 Distributed Systems
Part A

MIKAEL ASPLUND
REAL-TIME SYSTEMS LABORATORY

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

Slides derived from “Distributed Systems: Principles and Paradigms”, by Andrew S. Tanenbaum 
and Maarten Van Steen, Pearson Int. Ed., as well as material from other instructors including 
Niklas Carlsson and Juha Takkinen.

Goals

• Study concepts that build the foundations 
of large-scale systems

• Learn about tradeoffs when building large-
scale systems

• Learn from case studies, example systems
• Get exposure to system building and (if 

time) distributed systems research

2

Distributed systems

• Hardware view
• Multiple independent but cooperating 

resources
• Software view

• Single unified system

“A collection of independent computers that 
appears to its users as a single coherent 
system”

3

Distributed systems

• Why?

• Why not?

4

Distributed systems

• Benefits
• Performance
• Distribution
• Reliability
• Incremental growth
• Sharing of data/resources

• Problems
• Difficulties developing software
• Fault management
• Network problems
• Security problems

5

Examples



Distributed systems

• Goals
• Sharing (incl. openness and heterogeneity)
• Transparency
• Scalability (incl. communication)
• Dependability

7

Sharing

• Multiple users can share and access remote 
resources
• Hardware, files, data, etc.

• Open standardized interface
• Often heterogeneous environment 

(hardware, software, devices, 
underlying network protocols, etc.)

• Middleware layer to mask heterogeneity
• Separate policies from mechanisms 

8

Transparency in a Distributed System

Different forms of transparency in a distributed system.

Hide whether a (software) resource is in memory 
or on disk

Persistence

Hide the failure and recovery of a resourceFailure

Hide that a resource may be shared by several 
competitive users

Concurrency

Hide that multiple copies of a resource existReplication

Hide that a resource may be moved to another 
location while in use

Relocation

Hide that a resource may move to another locationMigration 

Hide where a resource is locatedLocation

Hide differences in data representation and how 
a resource is accessed

Access

DescriptionTransparency

9

Scalability

• Allow the system to become bigger 
without negatively affecting performance

• Multiple dimensions:
• Size: Adding more resources and users
• Geographic: Dispersed across locations
• Administrative: Spanning multiple 

administrative domains

10

Scalability

• Scalability problems appear as performance 
problems
• System load, storage requirements, 

communication overhead, ...
• Some common techniques:

– Divide and conquer
– Replication
– Distributed operation
– Service aggregation
– Asynchronous communication
– Multicast

11

Dependability

• Property of a computing system which 
allows reliance to be justifiably placed on 
the service it delivers. 
[Avizienis et al. 2004] 

12



Attributes of dependability

● Safety
● non-occurrence of catastrophic consequences on the 

environment

● Availability
● the readiness for usage

● Reliability
● continuity of correct service

Attributes of dependability

● Maintainability
● ability to undergo repairs and modifications.

● Integrity
● non-occurrence of unauthorized alteration of information

● Confidentiality
● absence of unauthorized disclosure of information

Means of achieving dependability

● Fault prevention
● Design in such a way that occurrence of faults are reduced

● Fault tolerance
● Design system to cope with faults

● Fault removal
● Review and test system to remove faults

● Fault forecasting
● Predict the occurrence of faults in order to justify the dependability of 

the system

Common Pitfalls

• The network is reliable
• The network is secure
• The network is homogenous
• The topology does not change
• Latency is zero
• Bandwidth is infinite
• Transport cost is zero
• There is one administrator

16

Distributed system architecture

• A distributed application runs across 
multiple machines
• How to organize the various pieces of 

the application?
• Where is the user interface, 

computation, data?
• How do different pieces interact with 

each other?

17

Roles

● Client-server
● Client implements the user interface
● Server(s) has most of the functionality

– Computation, data
– E.g.: Web

● Peer-to-peer (P2P)
● Each component is symmetric in functionality

● Peer: Combination of server-client

● No “well-known” centralized server

● Hybrid
● Combination of the two



System organisation

● Centralised
● Most functionality is in a single unit

● Decentralised
● Functionality is spread across multiple units

Types of distribution

● Vertical distribution
● Logically different components on different machines

● e.g., multitiered architectures

● Horizonal distribution
● Multiple logically equivalent parts

● Potentially operating on different data

A taxonomy of architectural models

Distributed systems

Peer-to-peerClient-server

Decentralised &
horizontally 
distributedCentralised Decentralised

Horizontally
distributed

Vertically 
distributed

Vertically 
distributed

Hybrid

...

Horiz. & vert.
distributed

Centralized client-server architectures

Figure 2-3. General interaction between a client and a server.

22

Server design issues

● Server organization; e.g., How to process client requests?
– Iterative

– Concurrent
• Multithreaded

• Fork (unix)

– Stateless or stateful

● Client contact; e.g., how to contact end point (port)
– Well-known

– Dynamic: daemon; superserver (unix)

23

End point, general design issues

• Figure 3-11. (a) Client-to-server binding using a 
daemon.

24



End point, general design issues

Figure 3-11. (b) Client-to-server binding using a superserver.

25

Application layering

• The user-interface level

• The processing level

• The data level 

26

Application layering

The general organization of an Internet search 
engine into three different layers

1-28

27

Component distribution (vertical)

• Could have variations on component 
distribution

• Different amount of functionality between 
client-server
• Only UI at client
• UI+partial processing at client
• UI+processing at client, data at server

28

Physical two-tired architectures

Alternative client-server organizations (a) – (e).

1-29

29

Server offloading

1.4

The difference between letting:

a) a server or

b) a client check forms as they are being filled 30



Multi-tiered servers

● Server is not necessarily a single machine

● Multi-tiered architecture:
● Front-end
● Application server
● Database

● Vertical distribution

Multi-tiered architectures

An example of a server acting as a client.

1-30

32

Server clusters

● Replication of functionality across machines
● Multiple front-ends, app servers, databases

● Client requests are distributed among the servers
● Load balancing
● Content-aware forwarding

● Horizontal distribution

Server clusters

Figure 3-12. The general organization of a 
three-tiered server cluster.

34

Server clusters

Figure 3-13. The principle of TCP handoff.

35

Modern Architectures

An example of horizontal distribution of a Web service.

1-31

36



Replica selection

• Round robin

• Load-based policies

• Payload-based methods (e.g., priorities)

• Energy/resource usage aware policies (e.g., costs)

• …

37

Replicating state

● Non-trivial problem

● Challenges
● Ensuring replica consistency

● Avoding too heavy performance penalties

● Fault management

● Requires proper notions of order and state
● Distributed algorithms

● More on this in part C

Hierarchical architectures

• Tree of nodes
• Centralized architecture between parent 

and children
• More scalable than a centralized 

architecture
• Each node handles only part of the 

network

39

Peer-to-peer systems

● All nodes are equal

● How to organise structurally?

● How to find other nodes?

Overlay networks

• A logical network consisting of participant 
components (processes/machines)

• Built on top of physical network

• Can be thought of as a graph

• Nodes are processes/machines, links are 
communication channels (e.g., TCP 
connections)

41

Types of peer-to-peer systems

• Unstructured: Built in a random manner
• Each node can end up with any sets of 

neighbors, any part of application data
• E.g.: Gnutella, Kazaa

• Structured: Built in a deterministic manner
• Each node has well-defined set of 

neighbors, handles specific part of 
application data

• E.g.: CAN, Chord, Pastry

42



Hybrid architectures

• Combination of peer-to-peer and client-
server
• Some parts of the system organized as 

client-servers
• Other parts organized as peer-to-peer 

networks

43

Content distribution networks (CDNs)

• Provide localized content to users

• Decentralized set of content servers, may 
have P2P relationship

• Client-Server relation to the users

• E.g., Akamai

44

Collaborative distributed systems

• Work by user collaboration

• P2P in functionality

• Startup is done in a client-server manner

• E.g., Bittorrent, Napster

45

Other service model variations

• Multiple servers and caches (proxies)
• Mobile code
• Mobile agents
• Low-cost computers at client side 

(networked computers, and thin clients)
• Mobile devices 
• …

46

47


