<GS UNp;,
N Ve,

7 €
¥Gs uni¥

TDTSO04 Distributed Systems
Part A

slides derived from “Distributed Systems: Principles and Paradigms”, by Andrew S. Tanenbaum
and Maarten Van Steen, Pearson Int. Ed., as well as material from other instructors including
Niklas Carlsson and Juha Takkinen.

MIKAEL ASPLUND

REAL-TIME SYSTEMS LABORATORY
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent
system”

* Hardware view
* Multiple independent but cooperating
resources
* Software view
* Single unified system

LiU EXPANDING REAUT;

Distributed systems

* Benefits

* Performance

* Distribution

* Reliability

* Incremental growth

* Sharing of data/resources
* Problems

* Difficulties developing software

* Fault management

* Network problems

* Security problems

LiU EXPANDING REAUT;

Goals

* Study concepts that build the foundations
of large-scale systems

* Learn about tradeoffs when building large-
scale systems

* Learn from case studies, example systems

* Get exposure to system building and (if
time) distributed systems research

LiU EXPANDING REALITZ

Distributed systems

* Why?

* Why not?

LiU EXPANDING REALITX

Examples

u
\3\0 0‘001

LiU EXPANDING REALITY

Distributed systems

* Goals
* Sharing (incl. openness and heterogeneity)
* Transparency
* Scalability (incl. communication)
* Dependability

LiU EXPANDING REAUT;

Transparency in a Distributed System

Transparency Description
Hide differences in data representation and how
Access .
a resource is accessed
Location Hide where a resource is located
Migration Hide that a resource may move to another location

Hide that a resource may be moved to another

Relocation R S
location while in use
Replication Hide that multiple copies of a resource exist
Hide that a resource may be shared by several
Concurrency "~
competitive users
Failure Hide the failure and recovery of a resource

Hide whether a (software) resource is in memory

Persistence .
or on disk

Different forms of transparency in a distributed system.
LiU EXPANDING REAUTS

Scalability

* Scalability problems appear as performance
problems

* System load, storage requirements,
communication overhead, ...

* Some common techniques:
— Divide and conquer
— Replication
— Distributed operation
— Service aggregation
— Asynchronous communication
— Multicast

LiU EXPANDING REAUII

Sharing

* Multiple users can share and access remote
resources

* Hardware, files, data, etc.
* Open standardized interface

* Often heterogeneous environment
(hardware, software, devices,
underlying network protocols, etc.)

* Middleware layer to mask heterogeneity
* Separate policies from mechanisms

LiU EXPANDING REAUTg

Scalability

* Allow the system to become bigger
without negatively affecting performance

* Multiple dimensions:
* Size: Adding more resources and users
* Geographic: Dispersed across locations

* Administrative: Spanning multiple
administrative domains

LiU EXPANDING REAUIS

Dependability

* Property of a computing system which
allows reliance to be justifiably placed on
the service it delivers.

[Avizienis et al. 2004]

LiU EXPANDING REAL\IE

Attributes of dependability Attributes of dependability

« Safety
= non-occurrence of catastrophic consequences on the)) .
environment ° Malntalnablllty
« ability to undergo repairs and modifications.
* Availability

* the readiness for usage - Integrity
* non-occurrence of unauthorized alteration of information
* Reliability

« continuity of correct service + Confidentiality

+ absence of unauthorized disclosure of information

LiU EXPANDING REALITY LiU EXPANDING REALITY

Means of achieving dependability Common Pitfalls

+ Fault prevention
< Design in such a way that occurrence of faults are reduced

* The network is reliable
* The network is secure
* Fault tolerance _ * The network is homogenous

« Design system to cope with faults . The topo]og does not change

Y

+ Fault removal e 1, atency is zero

« Review and test system to remove faults . B d dth .. f .t

andawl 1S 1nrinite

« Fault forecasting ° Transport cost is zero
. ar:ii;;?ni occurrence of faults in order to justify the dependability of . There iS one administrator
LiU EXPANDING REALITY LiU EXPANDING REAUIE
Distributed system architecture Roles
* A distributed application runs across - Client-server
multiple machines + Client implements the user interface
° HOW to organize the VaFiOUS pieces Of = Server(s) has most of the functionality

- Computation, data

the application? ~ E.g:Web
* Where is the user interface,

. * Peer-to-peer (P2P
computation, data? peer (P2P)

Each component is symmetric in functionality

* How do different pieces interact with - Peer: Combination of server-client
each other? = No “well-known” centralized server
* Hybrid

Combination of the two
LiU EXPANDING REAUI; LiU EXPANDING REALITY

System organisation Types of distribution

- Centralised = Vertical distribution
* Most functionality is in a single unit » Logically different components on different machines

* e.g., multitiered architectures
- Decentralised

= Functionality is spread across multiple units * Horizonal distribution
* Multiple logically equivalent parts

Potentially operating on different data

LiU EXPANDING REALITY LiU EXPANDING REALITY

A taxonomy of architectural models Centralized client-server architectures

Distributed systems

Figure 2-3. General interaction between a client and a server.

Client-server Peer-to-peer Hybrid

Wait for result

Decentralised & :
horizontally Client
Centralised Decentralised distributed

Request
Vertically
distributed
Server --------- oo - — oo oo
Vertically Horizontally Y Horiz. & vert. Provide service Time —>
distributed distributed distributed
LiU EXPANDING REALITY LiU EXPANDING REALI;X
Server design issues End point, general design issues
o) ; ; Server machine
= Server organization; e.g., How to process client requests? Client machine
— Iterative 2. ReqyeSt Register
- Concurrent) 4’%? Server |-J_ end point
- Multithreaded Client <
« Fork (unix) ”

— Stateless or stateful 1. Ask for s G

q .
end point | |Daemon ~End-point

table

» Client contact; e.g., how to contact end point (port)
- Well-known (a)
— Dynamic: daemon; superserver (unix)

* Figure 3-11. (a) Client-to-server binding using a
daemon.

LiU EXPANDING REAU;g LiU EXPANDING REALI;X

End point, general design issues

Figure 3-11. (b) Client-to-server binding using a superserver.

Client machine

Client
]

Server machine

2. Continue
service 3

Actual
server

1. Request
service

server

Create

server for

requested
\L — service

()

Application layering

User interface

User-interface

level

Keyword expression

Query
generator

Database queries

containing

HTML
generator

Ranking
component

Ranked list level

of page titles

—

The general organization of an Internet search

Database
with Web pages

engine into three different layers

with meta-inf

Web page titles

HTML page
list
J Processing

‘ormation

Physical two-tired architectures

Client machine

LiU EXPANDING REAU;;

Application layering

* The user-interface level

* The processing level

* The data level

LiU EXPANDING REAU;g

Component distribution (vertical)

distribution

client-server

* Only UI at client
* Ul+partial processing at client
* Ul+processing at client, data at server

Server offloading

User interface

‘ User interface‘

‘ User interface

| User interface

‘ User interface

v e

ser interface

‘ Application

‘ Application ‘

‘ Application ‘ ’WApplication |

| Application

* Could have variations on component

* Different amount of functionality between

LiU EXPANDING REAng

‘ Application

Database

Client Server
FIRST NAME[WAARTEN] s>
LAST NAVE
EMAIL e
—»
(=] !> -
Check form Process form
(@
Client Server
FIRST NAME[MAARTEN

LAST NAME
E-MAIL
@

MAARTEN
VAN STEEN
STEEN@CS.VUNL

»

[Database ‘ ‘ Database ‘ ‘ Database | | Database ‘ ‘\” IE)atabase
Server machine
@ (b) © ()

Alternative client-server organizations (a) — (e).

LiU EXPANDING REAUE&

Check form
®

The difference between letting:

a) a server or

L

Process form

b) a client check forms as they are being fillge FxPANDING REALILY

Multi-tiered servers Multi-tiered architectures

» Server is not necessarily a single machine User interface Wait for result

(presentation)
+ Multi-tiered architecture: Request Return
operation result
* Front-end Application Wait for data
+ Application server server
» Database Request data Return data
Database N S
. i i I i semver
Vertical distribution Time —»
An example of a server acting as a client.
LiU EXPANDING REALITY LiU EXPANDING REAUQ
Server clusters Server clusters
. Logical switch | Application/compute servers ! Distributed
» Replication of functionality across machines (possibly multiple) | : file/database
. ! | t
- Multiple front-ends, app servers, databases ! : system
: 1
Dispatched 1 : @
. . i request |
+ Client requests are distributed among the servers Client requests a i ;
- — o= T
* Load balancing . :
- Content-aware forwarding ! | @
: 4-[—)
F ! |
« Horizontal distribution First tier Second tier ! Third tier
LiU EXPANDING REALITY LiU EXPANDING REAUH
Server clusters Modern Architectures
Logically a Front end
: andling
single TCP Response Server incoming Replicated Web servers each
connection requests containing the same Web pages
Requests = = e Disks
handled in _yy 1 — [
Request o roun‘d-robin g¥ = *§/>
. Request . h g doffy ® fashion L
Client »| Switch | (handed off) .
[]
Figurw Internet
Server

An example of horizontal distribution of a Web service.

LiU EXPANDING REAU;g LiU EXPANDING REAUJ%{

Replica selection

* Round robin
* Load-based policies
* Payload-based methods (e.g., priorities)

* Energy/resource usage aware policies (e.g., costs)

LiU EXPANDING REAU;;

Hierarchical architectures

* Tree of nodes

* Centralized architecture between parent
and children

* More scalable than a centralized
architecture

* Each node handles only part of the
network

LiU EXPANDING REAU%S

Overlay networks

¢ A logical network consisting of participant
components (processes/machines)

* Built on top of physical network
* Can be thought of as a graph

* Nodes are processes/machines, links are
communication channels (e.g., TCP
connections)

LiU EXPANDING REAUXI

Replicating state

* Non-trivial problem

» Challenges
» Ensuring replica consistency
» Avoding too heavy performance penalties
* Fault management

* Requires proper notions of order and state
« Distributed algorithms
* More on this in part C

LiU EXPANDING REALITY

Peer-to-peer systems

* All nodes are equal
» How to organise structurally?

* How to find other nodes?

LiU EXPANDING REALITY

Types of peer-to-peer systems

* Unstructured: Built in a random manner

* Each node can end up with any sets of
neighbors, any part of application data

* E.g.: Gnutella, Kazaa
* Structured: Built in a deterministic manner

* Each node has well-defined set of
neighbors, handles specific part of
application data

* E.g.: CAN, Chord, Pastry

LiU EXPANDING REAUIE

Hybrid architectures

* Combination of peer-to-peer and client-
server

* Some parts of the system organized as
client-servers

* Other parts organized as peer-to-peer
networks

LiU EXPANDING REAUI%

Collaborative distributed systems

* Work by user collaboration
* P2P in functionality
* Startup is done in a client-server manner

* E.g., Bittorrent, Napster

LiU EXPANDING REAUIg

LiU EXPANDING REAUI¥

Content distribution networks (CDNSs)

Provide localized content to users

Decentralized set of content servers, may
have P2P relationship

Client-Server relation to the users

E.g., Akamai

LiU EXPANDING REAUH

Other service model variations

Multiple servers and caches (proxies)
Mobile code
Mobile agents

Low-cost computers at client side
(networked computers, and thin clients)

Mobile devices

LiU EXPANDING REAUIE

