Computer Networks

Instructor: Niklas Carlsson

Email: niklas.carlsson@liu.se

Notes derived from "Computer Networking: A Top Down Approach", by Jim Kurose and Keith Ross, Addison-Wesley.

The slides are adapted and modified based on slides from the book's companion Web site, as well as modified slides by Anirban Mahanti and Carey Williamson.

Network Layer

- carries segments from sending to receiving host
- on sending side, encapsulates segments into IP datagrams
- on rcv side, delivers segments to TL
- network layer protocol runs in every node (hosts and routers)
- router examines header fields in all IP datagrams passing through it

Key Network-Layer Functions

- forwarding: move packets from router's input to appropriate router output
- routing: determine the path taken by packets as they flow from a sender to a receiver
 - Routing algorithms run at routers to determine "paths";
 - Routers have a forwarding table
 - Destination address-based in Datagram networks
 - Virtual circuit number-based in VC Networks

Interplay between routing and forwarding

What does the Network layer consist of?

Host, router network layer functions:

The Internet Protocol (IP)

IP datagram format (IPv4)

IP datagram format (IPv4)

IP protocol version number header length (bytes) "type" of data

> max number remaining hops (decremented at each router)

upper layer protocolto deliver payload to

how much overhead with TCP?

- ?? bytes of TCP
- ?? bytes of IP

IP datagram format (IPv4)

IP protocol version number header length (bytes) "type" of data

> max number remaining hops (decremented at each router)

upper layer protocol to deliver payload to

how much overhead with TCP?

- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead

IP Fragmentation & Reassembly

- network links have a limit on the largest possible link-level frame size permitted.
 - MTU: Maximum
 Transmission Unit
 - different link types, different MTUs
- large IP datagram can be divided ("fragmented") within the network (internetworking)
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

IP Fragmentation and Reassembly

<u>Example</u>

- 4000 byte datagram
- MTU = 1500 bytes

1480 bytes in data field

offset = . 1480/8

One large datagram becomes several smaller datagrams

length	ID	norefrag	offset	
=1500	=x	=1	=185	

length	ID	morefrag	offset	
=1040	=x	=0	=370	

ICMP: Internet Control Message Protocol

- used by hosts & routers to communicate network-level information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

Type	Code	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

IPv4 Addressing

- IP address: 32-bit identifier for host, router interface
- interface: connection between host/router and physical link
 - routers typically have multiple interfaces
 - hosts usually have one, but may have multiple interfaces (multi-homed)
 - IP addresses are associated with each interface

Class-based Addressing

- IP addresses consist of:
 - Network part
 - Host part
- IP addresses are divided into five classes: A, B, C, D, and E.
- □ Problems??

0 Network (7 bits)	Host (24 bits)
--------------------	----------------

Class A

4		Network	Host
1	U	(14 bits)	(16 bits)

Class B

110	Network	Host
110	(21 bits)	(8 bits)

Class C

1110	Multicast address

Class D

Class E

Subnets: Motivation

- The "classful" addressing scheme proposes that the network portion of a IP address uniquely identifies one physical network.
 - Any network with more than 255 hosts needs a class B address. Class B addresses can get exhausted before we have 4 billion hosts!
- □ Take bits from the host number part to create a "subnet" number ("right sizing").

Subnets

☐ IP address:

- subnet part (high order bits)
- host part (low order bits)

□ What's a subnet?

- device interfaces with same subnet part of IP address
- can physically reach each other without intervening router

network consisting of 3 subnets

Subnets

Recipe

To determine the subnets:

- Detach each interface from its host or router, creating islands of isolated networks.
- Each isolated network is called a subnet.

Subnet mask: /24

Subnets

How many?

Addressing in the Internet

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address
- Before CIDR, Internet used a class-based addressing scheme where x could be 8, 16, or 24 bits. These corrsp to classes A, B, and C resp.

200.23.16.0/23

IP addresses: how to get one?

Q: How does host get IP address?

- hard-coded by system admin in a file
 - Wintel: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- □ DHCP: Dynamic Host Configuration Protocol: dynamically get address from a server
 - this is becoming very popular

IP addresses: how to get one?

Q: How does network get subnet part of IP addr?
 A: gets allocated portion of its provider ISP's address space

ISP's block	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0 Organization 1 Organization 2		00010111	<u>0001001</u> 0	00000000	200.23.16.0/23 200.23.18.0/23 200.23.20.0/23
Organization 7	<u>11001000</u>	00010111	00011110	00000000	200.23.30.0/23

Hierarchical addressing: route aggregation

ISP has an address block; it can further divide this block into sub blocks and assign them to subscriber organizations.

IP addressing: the last word...

Q: How does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned

Names and Numbers

- o allocates addresses
- o manages DNS
- o assigns domain names, resolves disputes

Hierarchical addressing: route aggregation

ISP has an address block; it can further divide this block into sub blocks and assign them to subscriber organizations.

Hierarchical addressing: route aggregation

ISP has an address block; it can further divide this block into sub blocks and assign them to subscriber organizations.

Forwarding: Longest prefix matching

	<u>Prefix</u>	Link Interface
200.23.16.0/21		0
200.23.24.0/23		1
200.23.24.0/21		2
otherwise		3

Examples

Dest IP: 200.23.22.161 Which interface?

Dest IP: 200.23.24.172 Which interface?

Forwarding: Longest prefix matching

<u>Prefix Match</u>	Link Interface
11001000 00010111 00010	0
11001000 00010111 0001100	1
11001000 00010111 00011	2
otherwise	3

Examples

Dest IP: 11001000 00010111 00010110 10100001 Which interface?

Dest IP: 11001000 00010111 00011000 10101010 Which interface?

All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

- Motivation: local network uses just one IP address as far as outside word is concerned:
 - no need to be allocated range of addresses from ISP:
 - just one IP address is used for all devices
 - can change addresses of devices in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - devices inside local net not explicitly addressable, visible by outside world (a security plus).

- □ NAT is controversial:
 - o routers should only process up to layer 3
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, eg, P2P applications
 - o address shortage should instead be solved by IPv6

<u>IPv6</u>

- □ Initial motivation: 32-bit address space soon to be completely allocated.
- Additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- o fixed-length 40 byte header
- no fragmentation allowed

IPv6 Header (Cont)

Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same "flow." (concept of "flow" not well defined).

Next header: identify upper layer protocol for data

ver p	ori	flow label		
pay	/load len	next hdr	hop limit	
	source a	ddress		
	(128	oits)		
	destination	n address		
	(128	bits)		
data				
32 hite				

Other Changes from IPv4

- Checksum: removed entirely to reduce processing time at each hop
- Options: allowed, but outside of header, indicated by "Next Header" field
- □ ICMPv6: new version of ICMP
 - o additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Transition From IPv4 To IPv6

- □ Not all routers can be upgraded simultaneous
 - ono "flag days"
 - O How will the network operate with mixed IPv4 and IPv6 routers?
- Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers

Tunneling

Logical view:

Physical view:

