
Computer Networks

Instructor: Niklas Carlsson

Email: niklas.carlsson@liu.se

Notes derived from “Computer Networking: A Top
Down Approach”, by Jim Kurose and Keith Ross,
Addison-Wesley.

The slides are adapted and modified based on slides from

the book’s companion Web site, as well as modified slides
by Anirban Mahanti and Carey Williamson.

1

mailto:niklas.carlsson@liu.se

FTP

2

File Transfer Protocol (FTP)

 FTP client contacts FTP
server at port 21, specifying
TCP as transport protocol

 Client obtains authorization
over control connection

 Client browses remote
directory by sending
commands over control
connection.

 When server receives a
command for a file transfer,
the server opens a TCP data
connection to client

 After transferring one file,
server closes connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

 Server opens a second TCP
data connection to transfer
another file.

 Control connection: “out of
band”

 FTP server maintains “state”:
current directory, earlier
authentication

3

FTP commands, responses

Sample commands:
 sent as ASCII text over

control channel

 USER username
 PASS password

 LIST return list of file in
current directory

 RETR filename retrieves
(gets) file

 STOR filename stores
(puts) file onto remote
host

Sample return codes
 status code and phrase (as

in HTTP)

 331 Username OK,

password required

 125 data connection

already open;

transfer starting

 425 Can’t open data

connection

 452 Error writing

file

4

Mail

5

Electronic Mail

Three major
components:

 user agents
 e.g., Eudora, Outlook,

Pine, Netscape
Messenger

 mail servers
 Incoming, outgoing

messages

 Simple Mail Transfer
Protocol: SMTP

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

6

Electronic Mail: SMTP [RFC 2821]

 Client’s SMTP mail server establishes a TCP
connection to the recipients SMTP server using
Port 25

 three phases in messg. transfer

 handshaking (greeting)

 transfer of messages

 closure

 command/response interaction

 commands: ASCII text

 response: status code and phrase

messages must be in 7-bit ASCII

7

Sample SMTP interaction
 S: 220 hamburger.edu

 C: HELO crepes.fr

 S: 250 Hello crepes.fr, pleased to meet you

 C: MAIL FROM: <alice@crepes.fr>

 S: 250 alice@crepes.fr... Sender ok

 C: RCPT TO: <bob@hamburger.edu>

 S: 250 bob@hamburger.edu ... Recipient ok

 C: DATA

 S: 354 Enter mail, end with "." on a line by itself

 C: Do you like ketchup?

 C: How about pickles?

 C: .

 S: 250 Message accepted for delivery

 C: QUIT

 S: 221 hamburger.edu closing connection

8

Try SMTP interaction for yourself:

 telnet servername 25

 see 220 reply from server

 enter HELO, MAIL FROM, RCPT TO, DATA, QUIT
commands

above lets you send email without using email client
(reader)

9

SMTP: final words

 SMTP uses persistent
connections

 SMTP requires message
(header & body) to be in 7-
bit ASCII

 SMTP server uses
CRLF.CRLF to determine
end of message

 SMPT is a “chatty”
protocol

Comparison with HTTP:

 HTTP: pull

 SMTP: push

 both have ASCII
command/response
interaction, status codes

 HTTP: each object
encapsulated in its own
response msg

 SMTP: multiple objects
sent in multipart msg

10

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

 header lines, e.g.,
 To:

 From:

 Subject:

different from SMTP
commands!

 body
 the “message”, ASCII

characters only

header

body

blank
line

11

Message format: multimedia extensions

 MIME: multimedia mail extension, RFC 2045, 2056

 additional lines in msg header declare MIME content type

From: alice@crepes.fr

To: bob@hamburger.edu

Subject: Picture of yummy crepe.

MIME-Version: 1.0

Content-Transfer-Encoding: base64

Content-Type: image/jpeg

base64 encoded data

.........................

......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

12

Mail access protocols

 SMTP is a push protocol. How will a user access emails?

user
agent

sender’s mail
server

user
agent

SMTP SMTP

receiver’s mail
server

13

Mail access protocols

 SMTP is a push protocol. How will a user access emails?

 Mail access protocol: retrieval from server

 POP: Post Office Protocol [RFC 1939]

• Users can’t create folders on mail server

 IMAP: Internet Mail Access Protocol [RFC 1730]

• more features (more complex)

• manipulation of stored msgs on server

 HTTP: Hotmail , Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

14

DNS

15

DNS: Domain Name System

Internet hosts:
 IP address (32 bit) - used for addressing

datagrams

 “name”, e.g., www.yahoo.com - used by humans

DNS: provides translation between host
name and IP address
 distributed database implemented in hierarchy

of many name servers

 distributed for scalability & reliability

16

Distributed, Hierarchical Database

 Root servers and TLD servers typically do not
contain hostname to IP mappings; they contain
mappings for locating authoritative servers.

Root DNS Servers

com DNS servers ca DNS servers edu DNS servers

poly.edu

DNS servers
umass.edu

DNS servers
yahoo.com

DNS servers

amazon.com

DNS servers

ucalgary.ca

DNS servers

TLD

Servers

usask.ca

DNS servers

17

DNS Services

Hostname to IP address translation

Host aliasing
 Canonical and alias names

Mail server aliasing

 Load distribution
 Replicated Web servers: set of IP addresses

for one canonical name

18

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7
8

TLD DNS server

DNS Infrastructure

 Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

 Infrastructure:
 Client resolver

 Local DNS server

 Authoritative DNS
Server

 Root DNS Server

 Top-Level Domain
DNS Server

 Transport protocol?

19

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7
8

TLD DNS server

DNS Infrastructure

 Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

 Infrastructure:
 Client resolver

 Local DNS server

 Authoritative DNS
Server

 Root DNS Server

 Top-Level Domain
DNS Server

 Transport protocol?
 UDP (port 53)

20

DNS: Root name servers

 contacted by local name server that cannot
resolve name directly

 root name server:
 contacts authoritative name server if name mapping

is not known

 gets mapping

 returns mapping to local name server

21

TLD and Authoritative Servers

 Top-level domain (TLD) servers: responsible
for .com, .org, .net, .edu, .gov, .mil, and all top-
level country domains (e.g., .uk, .fr, .ca, .jp)
 Network Solutions maintains servers for .com TLD
 Educause for .edu TLD

Authoritative DNS servers: organization’s
DNS servers, providing authoritative
hostname to IP mappings for organization’s
servers (e.g., Web and mail).
 Can be maintained by organization or service

provider

22

Local Name Server

 Each ISP (residential ISP, company,
university) has one.
 Also called “default name server”

When a host makes a DNS query, query is
sent to its local DNS server
 Acts as a proxy, forwards query into hierarchy.

 Reduces lookup latency for commonly searched
hostnames

23

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

4 5

6

authoritative DNS server

dns.cs.umass.edu

7

8

TLD DNS server

3

Recursive queries

recursive query:
 puts burden of name

resolution on
contacted name
server

 heavy load?

iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

24

DNS: caching and updating records

 once (any) name server learns mapping, it caches
mapping

 cache entries timeout (disappear) after some
time called the Time To Live (TTL)

 TLD servers typically cached in local name
servers

• Thus root name servers not often visited

25

DNS records

DNS: distributed db storing resource records (RR)

 Type=NS
 name is domain (e.g.

foo.com)

 value is IP address of
authoritative name
server for this domain

RR format: (name, value, type, ttl)

 Type=A
 name is hostname

 value is IP address

 Type=CNAME
 name is alias name for some

“canonical” (the real) name

 www.ibm.com is really
 servereast.backup2.ibm.com

 value is canonical name

 Type=MX

 value is name of mail server
associated with name

26

DNS protocol, messages

DNS protocol : query and reply messages, both with
same message format

msg header
 identification: 16 bit #

for query, reply to query
uses same #

 flags:

 query or reply

 recursion desired

 recursion available

 reply is authoritative

27

DNS protocol, messages

Name, type fields
 for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

DNS messages are carried using UDP on port 53

28

Inserting records into DNS

 Example: just created startup “Network Utopia”
 Register name networkutopia.com at a registrar

(e.g., Network Solutions)
 Need to provide registrar with names and IP addresses of

your authoritative name server (primary and secondary)
 Registrar inserts two RRs into the com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

 Put in authoritative server Type A record for
www.networkutopia.com and Type MX record for
networkutopia.com

 How do people get the IP address of your Web site?

29

Socket programming

30

Sockets (recall)

 process sends/receives
messages to/from its
socket

process

TCP with

buffers,

variables

socket

host or

server

process

TCP with

buffers,

variables

socket

host or

server

Internet

controlled

by OS

controlled by

app developer

31

Socket programming

Socket API
 explicitly created, used,

released by apps

 client/server paradigm

 two types of transport
service via socket API:

 unreliable datagram

 reliable, byte stream-
oriented

a host-local,
application-created,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another application

process

socket

Goal: learn how to build client/server application that
communicate using sockets

32

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UDP or TCP)

TCP service: reliable transfer of bytes from one
process to another

process

TCP with

buffers,

variables

socket

controlled by

application

developer

controlled by

operating

system

host or

server

process

TCP with

buffers,

variables

socket

controlled by

application

developer

controlled by

operating

system

host or

server

internet

33

Client/server socket interaction: TCP

wait for incoming

connection request
connectionSocket =

welcomeSocket.accept()

create socket,
port=x, for

incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close

connectionSocket

read reply from

clientSocket

close

clientSocket

Server (running on hostid) Client

send request using

clientSocket read request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

34

o
u

tT
o

S
e

rv
e

r

to network from network

in
F

ro
m

S
e

rv
e

r

in
F

ro
m

U
s
e

r

keyboard monitor

Process

clientSocket

input

stream

input

stream

output

stream

TCP

socket

Client

process

client TCP
socket

Stream jargon

 stream is a sequence of
characters that flow into
or out of a process.

 input stream is attached to
some input source for the
process, e.g., keyboard or
socket.

 output stream is attached
to an output source, e.g.,
monitor or socket.

35

Socket programming with UDP

UDP: no “connection” between
client and server

 no handshaking

 sender explicitly attaches IP
address and port of
destination to each packet

 server must extract IP
address, port of sender from
received packet

UDP: transmitted data may be
received out of order, or lost

application viewpoint:

UDP provides unreliable transfer
 of groups of bytes (“datagrams”)

 between client and server

36

Client/server socket interaction: UDP

Server (running on hostid)

close

clientSocket

read datagram from

clientSocket

create socket,

 clientSocket =

DatagramSocket()

Client

Create datagram with server IP and

port=x; send datagram via

 clientSocket

create socket,

port= x.

serverSocket =

DatagramSocket()

read datagram from

serverSocket

write reply to

serverSocket

specifying

client address,

port number

37

Example: client (UDP)

se
n

d
P

a
ck

e
t

to network from network

re
ce

iv
e

P
a

ck
e

t

in
F

ro
m

U
se

r

keyboard monitor

Process

clientSocket

UDP

packet

input

stream

UDP

packet

UDP

socket

Output: sends

packet (recall

that TCP sent “byte

stream”)

Input: receives

packet (recall

thatTCP received

“byte stream”)

Client

process

client UDP
socket

38

39

Chapter 2: Summary

 application architectures
 client-server

 P2P

 hybrid

 application service
requirements:
 reliability, bandwidth,

delay

 Internet transport
service model
 connection-oriented,

reliable: TCP

 unreliable, datagrams: UDP

 specific protocols:
 HTTP

 FTP

 SMTP, POP, IMAP

 DNS

 P2P: BitTorrent, Skype

 socket programming

40

Chapter 2: Summary

 typical request/reply
message exchange:
 client requests info or

service

 server responds with
data, status code

 message formats:
 headers: fields giving

info about data

 data: info being
communicated

some important lessons about protocols

Important themes:

 control vs. data msgs

 in-band, out-of-band

 centralized vs.
decentralized

 stateless vs. stateful

 reliable vs. unreliable
msg transfer

 “complexity at network
edge”

41

