
Computer Networks

Instructor: Niklas Carlsson

Email: niklas.carlsson@liu.se

Notes derived from “Computer Networking: A Top
Down Approach”, by Jim Kurose and Keith Ross,
Addison-Wesley.

The slides are adapted and modified based on slides from

the book’s companion Web site, as well as modified slides
by Anirban Mahanti and Carey Williamson.

mailto:niklas.carlsson@liu.se

2

Creating a network app

write programs that
 run on (different) end systems
 communicate over network

No need to write software for
network-core devices

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

3

Application architectures

 client-server

 peer-to-peer (P2P)

 hybrid of client-server and P2P

4

App-layer protocols

public-domain protocols:

 Often defined in RFCs

 allows for
interoperability

 e.g., HTTP, SMTP,
BitTorrent

proprietary protocols:

 e.g., Skype, Spotify

5

6

7

Network applications: some jargon

Process: program running
within a host.

 within same host, two
processes communicate
using inter-process
communication (IPC,
defined by OS).

 processes running on
different hosts
communicate with an
application-layer
protocol

User agent: interfaces
with user “above” and
network “below”.

 implements user
interface &
application-level
protocol
 Web: browser

 E-mail: mail reader

 streaming audio/video:
media player

Processes communicating

 processes in different
hosts communicate by
exchanging messages

8

Processes communicating

 processes in different
hosts communicate by
exchanging messages

Client-server paradigm

client process: process
that initiates
communication

server process: process
that waits to be
contacted

9

Sockets

 process sends/receives
messages to/from its socket

process

TCP with

buffers,

variables

socket

host or

server

process

TCP with

buffers,

variables

socket

host or

server

Internet

controlled

by OS

controlled by

app developer

10

11

Addressing processes:

 For a process to
receive messages, it
must have an identifier

 Identifier includes
both the IP address
and port numbers
associated with the
process on the host.

 Example port numbers:
 HTTP server: 80

 Mail server: 25

 More on this later

12

Addressing processes:

 For a process to
receive messages, it
must have an identifier

 Every host has a unique
32-bit IP address

 Q: does the IP address
of the host on which
the process runs
suffice for identifying
the process?

 Answer: No, many
processes can be
running on same host

 Identifier includes
both the IP address
and port numbers
associated with the
process on the host.

 Example port numbers:
 HTTP server: 80

 Mail server: 25

 More on this later

13

Remember: What’s a protocol?

protocols define format,
order of msgs sent and
received among network

entities, and actions
taken on msg

transmission, receipt

14

Protocol: Connection oriented or not?

Connection oriented:
 Hand shaking

 Explicit setup phase for
logical connection

 Connection release
afterwards

 Establishes state information
about the connection

 Mechanisms for
 reliable data transfer, error

control, flow control, etc.

 Guarantees that data will
arrive (eventually)

15

Protocol: Connection oriented or not?

Connection oriented:
 Hand shaking

 Explicit setup phase for
logical connection

 Connection release
afterwards

 Establishes state information
about the connection

 Mechanisms for
 reliable data transfer, error

control, flow control, etc.

 Guarantees that data will
arrive (eventually)

Connection less:
 No handshaking

 No (significant) state
information (at end points
or in network)

 No mechanisms for flow
control etc.

 No guarantees of arrival
(or when)

 Simpler (and faster?)

16

Protocol: Connection oriented or not?

Connection oriented:
 Hand shaking

 Explicit setup phase for
logical connection

 Connection release
afterwards

 Establishes state information
about the connection

 Mechanisms for
 reliable data transfer, error

control, flow control, etc.

 Guarantees that data will
arrive (eventually)

Connection less:
 No handshaking

 No (significant) state
information (at end points
or in network)

 No mechanisms for flow
control etc.

 No guarantees of arrival
(or when)

 Simpler (and faster?)

Which is the best? … It depends
on (i) what it is used for, and (ii)
what it is built ontop of

17

Internet protocol stack

application

transport

network

link

physical

E.g., TCP (CO)

 UDP (CL)

E.g., IP (CL)

E.g., Ethernet (CL)

 ATM (CO)

Two notes on the physical layer:
• Guided (e.g., coaxial cable, fiber, etc) vs.
unguided (satellite, wireless, etc.)

• Signaling, modulation, encoding, etc,

18

Internet protocol stack

application

transport

network

link

physical

E.g., TCP (CO)

 UDP (CL)

E.g., IP (CL)

E.g., Ethernet (CL)

 ATM (CO)

Two notes on the physical layer:
• Guided (e.g., coaxial cable, fiber, etc) vs.
unguided (satellite, wireless, etc.)

• Signaling, modulation, encoding, etc,

19

20

What transport service does an app need?

Data loss

Timing

Bandwidth

21

What transport service does an app need?

Data loss
 some apps (e.g., file

transfer, telnet) require
100% reliable data
transfer

 other apps (e.g., audio) can
tolerate some loss

Timing
 some apps (e.g.,

Internet telephony,
interactive games)
require low delay to be
“effective”

Bandwidth

 most apps (“elastic
apps”) make use of
whatever bandwidth
they get

 other apps (e.g.,
multimedia) require
minimum amount of
bandwidth to be
“effective”

Internet transport protocols services

TCP service:
 connection-oriented: setup

required between client and
server processes

 reliable transport between
sending and receiving process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle
sender when network
overloaded

 does not provide: timing,
minimum throughput
guarantees, security

UDP service:
 unreliable data transfer

between sending and
receiving process

 does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

Q: why bother? Why is
there a UDP?

22

23

Internet apps: application, transport protocols

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

Application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

proprietary

(e.g., RealNetworks, youtube, netflix, spotify)

proprietary

(e.g., Dialpad, skype)

Underlying

transport protocol

24

Internet apps: application, transport protocols

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

Application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

proprietary

(e.g., RealNetworks, youtube, netflix, spotify)

proprietary

(e.g., Dialpad, skype)

Underlying

transport protocol

TCP

25

Internet apps: application, transport protocols

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

Application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

proprietary

(e.g., RealNetworks, youtube, netflix, spotify)

proprietary

(e.g., Dialpad, skype)

Underlying

transport protocol

TCP

TCP

26

Internet apps: application, transport protocols

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

Application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

proprietary

(e.g., RealNetworks, youtube, netflix, spotify)

proprietary

(e.g., Dialpad, skype)

Underlying

transport protocol

TCP

TCP

TCP

27

Internet apps: application, transport protocols

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

Application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

proprietary

(e.g., RealNetworks, youtube, netflix, spotify)

proprietary

(e.g., Dialpad, skype)

Underlying

transport protocol

TCP

TCP

TCP

TCP

28

Internet apps: application, transport protocols

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

Application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

proprietary

(e.g., RealNetworks, youtube, netflix, spotify)

proprietary

(e.g., Dialpad, skype)

Underlying

transport protocol

TCP

TCP

TCP

TCP

TCP (or UDP)

29

Internet apps: application, transport protocols

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

Application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

proprietary

(e.g., RealNetworks, youtube, netflix, spotify)

proprietary

(e.g., Dialpad, skype)

Underlying

transport protocol

TCP

TCP

TCP

TCP

TCP (or UDP)

UDP or TCP

typically UDP

30

31

WWW terminology and HTTP overview

32

Some “Web” Terminology

 Web page may contain links to other pages
(sometimes also called Web Objects)

 Object can be HTML file, JPEG image,
Java applet, audio file,…

 Web pages are “Hypertexts”
 One page points to another

 Each object is addressable by a URL:

 http://www.someschool.edu/someDept/pic.gif

path name host name protocol

33

HTTP overview

HTTP: hypertext
transfer protocol

 Web’s application layer
protocol

34

HTTP overview

HTTP: hypertext
transfer protocol

 Web’s application layer
protocol

PC running
Internet
Explorer
or Firefox

Server
running

Apache Web
server

Mac running
Safari

35

HTTP overview

HTTP: hypertext
transfer protocol

 Web’s application layer
protocol

 client/server model

 client: browser that
requests, receives,
“displays” Web objects

 server: Web server
sends objects in
response to requests

 HTTP 1.0: RFC 1945

 HTTP 1.1: RFC 2616

PC running
Internet
Explorer
or Firefox

Server
running

Apache Web
server

Mac running
Safari

36

HTTP overview (continued)

Uses TCP:
 client initiates TCP

connection (creates socket)
to server, port 80

 server accepts TCP
connection from client

 HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)

 TCP connection closed

HTTP is “stateless”
 server maintains no

information about
past client requests

37

HTTP overview (continued)

Uses TCP:
 client initiates TCP

connection (creates socket)
to server, port 80

 server accepts TCP
connection from client

 HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)

 TCP connection closed

HTTP is “stateless”
 server maintains no

information about
past client requests

Protocols that maintain
“state” are complex!

 past history (state) must
be maintained

 if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

38

39

Outline

 Introduction to App Layer Protocols

Brief History of WWW

Architecture

HTTP Connections

HTTP Format

Web Performance

Cookies

40

Response time modeling

Definition of RTT: time to
send a small packet to
travel from client to
server and back.

Response time:

 one RTT to initiate TCP
connection

 one RTT for HTTP
request and first few
bytes of HTTP response
to return

 file transmission time

total = 2*RTT+transmit time

time to

transmit

file

initiate TCP

connection

RTT

request

file

RTT

file

received

time time

41

HTTP connections

Non-persistent HTTP

 At most one object is
sent over a TCP
connection.

 HTTP/1.0 uses non-
persistent HTTP

Persistent HTTP

 Multiple objects can
be sent (one at a time)
over single connection

 HTTP/1.1 uses
persistent connections
in default mode
 Pipelined

 Non-pipelined

42

Persistent HTTP

Nonpersistent HTTP issues:

 requires 2 RTTs per object

 OS must work and allocate
host resources for each TCP
connection

 but browsers often open
parallel TCP connections to
fetch referenced objects

Persistent HTTP

 server leaves connection
open after sending response

 subsequent HTTP messages
between same client/server
are sent over connection

Persistent without pipelining:

 client issues new request
only when previous
response has been received

 one RTT for each
referenced object

Persistent with pipelining:

 default in HTTP/1.1

 client sends requests as
soon as it encounters a
referenced object

 as little as one RTT for all
the referenced objects

43

Network View: HTTP and TCP

 TCP is a connection-oriented protocol

SYN
SYN/ACK

ACK GET URL

YOUR DATA HERE

FIN FIN/ACK
ACK

Web Client Web Server

44

Example Web Page

Harry Potter Movies

As you all know,

the new HP book

will be out in June

and then there will

be a new movie

shortly after that…

“Harry Potter and

the Bathtub Ring”

page.html

hpface.jpg

castle.gif

45

Client Server

The “classic” approach

in HTTP/1.0 is to use one

HTTP request per TCP

connection, serially.

TCP SYN

TCP FIN

page.html
G

TCP SYN

TCP FIN

hpface.jpg
G

TCP SYN

TCP FIN

castle.gif
G

46

Client Server Concurrent (parallel) TCP

connections can be used

to make things faster.
TCP SYN

TCP FIN

page.html
G

castle.gif
G

F

S

G
hpface.jpg

S

F

C S C S

47

Client Server

The “persistent HTTP”

approach can re-use the

same TCP connection for

Multiple HTTP transfers,

one after another, serially.

Amortizes TCP overhead,

but maintains TCP state

longer at server.

TCP FIN

Timeout

TCP SYN

page.html
G

hpface.jpg
G

castle.gif
G

48

Client Server

The “pipelining” feature

in HTTP/1.1 allows

requests to be issued

asynchronously on a

persistent connection.

Requests must be

processed in proper order.

Can do clever packaging.

TCP FIN

Timeout

TCP SYN

page.html
G

castle.gif

hpface.jpg
GG

49

50

Outline

 Introduction to App Layer Protocols

Brief History of WWW

Architecture

HTTP Connections

HTTP Format

Web Performance

Cookies

51

HTTP request message

 HTTP request message:
 ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

User-agent: Mozilla/4.0

Connection: close

Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
 lines

Carriage return,
line feed

indicates end
of message

52

HTTP request message: general format

53

HTTP Methods

 GET: retrieve a file (95% of requests)

 HEAD: just get meta-data (e.g., mod time)

 POST: submitting a form to a server

 PUT: store enclosed document as URI

 DELETE: removed named resource

 LINK/UNLINK: in 1.0, gone in 1.1

 TRACE: http “echo” for debugging (added in 1.1)

 CONNECT: used by proxies for tunneling (1.1)

 OPTIONS: request for server/proxy options (1.1)

54

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default HTTP server port) at www.eurecom.fr.
Anything typed in sent
to port 80 at www.eurecom.fr

telnet www.eurecom.fr 80

2. Type in a GET HTTP request:

GET /~ross/index.html HTTP/1.0 By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

55

HTTP response message

HTTP/1.1 200 OK

Connection: close

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998 …...

Content-Length: 6821

Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

56

HTTP Response Status Codes

 1XX: Informational (def’d in 1.0, used in 1.1)
100 Continue, 101 Switching Protocols

 2XX: Success
200 OK, 206 Partial Content

 3XX: Redirection
301 Moved Permanently, 304 Not Modified

 4XX: Client error
400 Bad Request, 403 Forbidden, 404 Not Found

 5XX: Server error
 500 Internal Server Error, 503 Service
Unavailable, 505 HTTP Version Not Supported

57

HTTP Response Status Codes

 1XX: Informational (def’d in 1.0, used in 1.1)
100 Continue, 101 Switching Protocols

 2XX: Success
200 OK, 206 Partial Content

 3XX: Redirection
301 Moved Permanently, 304 Not Modified

 4XX: Client error
400 Bad Request, 403 Forbidden, 404 Not Found

 5XX: Server error
 500 Internal Server Error, 503 Service
Unavailable, 505 HTTP Version Not Supported

58

59

Outline

 Introduction to App Layer Protocols

Brief History of WWW

Architecture

HTTP Connections

HTTP Format

Web Performance

Cookies

Web caches (proxy server)

Goal: satisfy client request without involving origin server

Application 2-60

Web caches (proxy server)

Goal: satisfy client request without involving origin server

Application 2-61

 Use a proxy cache
 Acts as both client and server

 Typically cache is installed by ISP (university,
company, residential ISP)

Web caches (proxy server)

 user sets browser: Web
accesses via cache

 browser sends all HTTP
requests to cache
 If object in cache:

cache returns object

 Else: cache requests
object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client
origin
server

origin
server

Application 2-62

Caching example
origin

servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

Application 2-63

Caching example (cont)
origin

servers

public
 Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

institutional
cache

Application 2-64

Caching example (cont)
origin

servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

Application 2-65

Caching example (cont)
origin

servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

Application 2-66

Why Web caching?

Caching example (cont)
origin

servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

Application 2-67

Why Web caching?

 Reduce response time for
client request

 Reduce traffic on an
institution’s access link

 Offloads server

“Typical” hit rates?

Application 2-68

“Typical” hit rates?

 Traces suggests 40-50% hit rate for objects
and 20-25% for bytes (across geographies and
over time)

Application 2-69

Example references

 P Gill, M. Arlitt, N. Carlsson, A. Mahanti, C. Williamson, “Characterizing Organizational
Use of Web-based Services: Methodology, Challenges, Observations, and Insights”, ACM
Transactions on the Web (ACM TWEB), Vol. 5, No. 4 (Oct. 2011), pp. 19:1--19:23.

 A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy, “On the scale and
performance of cooperative Web proxy caching”. Proc. ACM Symposium on Operating
Systems Principles (ACM SOSP). Kiawah Island, SC, Dec. 1999, pp. 16—31.

70

Web Caching Hierarchy

client

local proxy cache

(e.g., local ISP,

University)

regional proxy cache

national/international proxy cache

71

Some Issues
 Not all objects can be cached

 E.g., dynamic objects, copyrighted material

 Cache Replacement Policies
 Variable size objects
 Varying cost of not finding an object (a “miss”)

in the cache

 Prefetch?
 A large fraction of the requests are one-timers

 Cache consistency
 strong
 weak

72

Some Issues
 Not all objects can be cached

 E.g., dynamic objects, copyrighted material

 Cache Replacement Policies
 Variable size objects
 Varying cost of not finding an object (a “miss”)

in the cache

 Prefetch?
 A large fraction of the requests are one-timers

 Cache consistency
 strong
 weak

73

Weak Consistency
 Each cached copy has a TTL beyond which

it must be validated with the origin server

 Age Penalty?

74

Conditional GET: client-side caching

 Goal: don’t send object if
client has up-to-date cached
version

 client: specify date of
cached copy in HTTP request

 server: response contains no
object if cached copy is up-
to-date.

client server

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

75

76

Content distribution networks (CDNs)

Content replication
 replicate content at hundreds of

servers throughout Internet
(often in edge/access network)

 content “close” to user reduce
impairments (loss, delay) of
sending content over long paths

origin server

in North America

CDN distribution node

CDN server

in S. America CDN server

in Europe

CDN server

in Asia

77

Content distribution networks (CDNs)

Content replication
 CDN (e.g., Akamai, Limewire) customer

is the content provider (e.g., CNN)

 Other companies build their own CDN
(e.g., Google)

 CDN replicates customers’ content in
CDN servers.

 When provider updates content, CDN
updates servers

origin server

in North America

CDN distribution node

CDN server

in S. America CDN server

in Europe

CDN server

in Asia

78

79

Cookies: keeping “state”

Many major Web sites
use cookies

Four components:
1) cookie header line in

the HTTP response
message

2) cookie header line in
HTTP request message

3) cookie file kept on
user’s host and managed
by user’s browser

4) back-end database at
Web site

Example:
 User visits a specific e-

commerce site …

80

Cookies: keeping “state” (cont.)

client server

usual http request msg

usual http response +
Set-cookie: 1678

server
creates ID

1678 for user

Cookie file

amazon: 1678

ebay: 8734

Cookie file

ebay: 8734

81

Cookies: keeping “state” (cont.)

client server

usual http request msg

usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

server
creates ID

1678 for user

Cookie file

amazon: 1678

ebay: 8734

Cookie file

ebay: 8734

82

Cookies: keeping “state” (cont.)

client server

usual http request msg

usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

server
creates ID

1678 for user

Cookie file

amazon: 1678

ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678

ebay: 8734

one week later:

83

Cookies: keeping “state” (cont.)

client server

usual http request msg

usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific

action

server
creates ID

1678 for user

Cookie file

amazon: 1678

ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678

ebay: 8734

one week later:

84

Cookies (continued)

What cookies can bring:

 authorization

 shopping carts

 recommendations

 user session state
(Web e-mail)

Cookies and privacy:

 cookies permit sites to
learn a lot about you

 you may supply name
and e-mail to sites

 search engines use
redirection & cookies
to learn yet more

 advertising companies
obtain info across
sites

aside

85

Web & HTTP

 The major application on the Internet
 A large fraction of traffic is HTTP

 Client/server model:
 Clients make requests, servers respond to them

 Done mostly in ASCII text (helps debugging!)

 Various headers and commands

 Web Caching & Performance

 Content Distribution Networks

86

87

More slides …

88

89

Introduction to HTTP

 HTTP: HyperText Transfer Protocol
 Communication protocol between clients and servers

 Application layer protocol for WWW

 Client/Server model:
 Client: browser that requests, receives, displays object

 Server: receives requests and responds to them

 Protocol consists of various operations
 Few for HTTP 1.0 (RFC 1945, 1996)

 Many more in HTTP 1.1 (RFC 2616, 1999)

Laptop w/

Netscape
Server w/ Apache

Desktop w/

Explorer

http request http request

http response http response

90

Request Generation

 User clicks on something

 Uniform Resource Locator (URL):
 http://www.cnn.com

 http://www.cpsc.ucalgary.ca

 https://www.paymybills.com

 ftp://ftp.kernel.org

 Different URL schemes map to different services

 Hostname is converted from a name to a 32-bit IP
address (DNS lookup, if needed)

 Connection is established to server (TCP)

91

What Happens Next?
 Client downloads HTML document

 Sometimes called “container page”

 Typically in text format (ASCII)

 Contains instructions for rendering
(e.g., background color, frames)

 Links to other pages

 Many have embedded objects:
 Images: GIF, JPG (logos, banner ads)

 Usually automatically retrieved
• I.e., without user involvement

• can control sometimes

 (e.g. browser options, junkbusters)

<html>

<head>

<meta

name=“Author”

content=“Erich Nahum”>

<title> Linux Web

Server Performance

</title>

</head>

<body text=“#00000”>

<img width=31

height=11

src=“ibmlogo.gif”>

<img

src=“images/new.gif>

<h1>Hi There!</h1>

Here’s lots of cool

linux stuff!

Click here

for more!

</body>

</html>

sample html file

92

Web Server Role
 Respond to client requests, typically a browser

 Can be a proxy, which aggregates client requests

 Could be search engine spider or robot

 May have work to do on client’s behalf:
 Is the client’s cached copy still good?

 Is client authorized to get this document?

 Hundreds or thousands of simultaneous clients

 Hard to predict how many will show up on some day
(e.g., “flash crowds”, diurnal cycle, global presence)

 Many requests are in progress concurrently

93

HTTP Request Format

GET /images/penguin.gif HTTP/1.0

User-Agent: Mozilla/0.9.4 (Linux 2.2.19)

Host: www.kernel.org

Accept: text/html, image/gif, image/jpeg

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: B=xh203jfsf; Y=3sdkfjej

<cr><lf>

• Messages are in ASCII (human-readable)

• Carriage-return and line-feed indicate end of headers

• Headers may communicate private information
(browser, OS, cookie information, etc.)

94

Request Types

Called Methods:
 GET: retrieve a file (95% of requests)
 HEAD: just get meta-data (e.g., mod time)
 POST: submitting a form to a server
 PUT: store enclosed document as URI
 DELETE: removed named resource
 LINK/UNLINK: in 1.0, gone in 1.1
 TRACE: http “echo” for debugging (added in 1.1)
 CONNECT: used by proxies for tunneling (1.1)
 OPTIONS: request for server/proxy options (1.1)

95

Response Format
HTTP/1.0 200 OK

Server: Tux 2.0

Content-Type: image/gif

Content-Length: 43

Last-Modified: Fri, 15 Apr 1994 02:36:21 GMT

Expires: Wed, 20 Feb 2002 18:54:46 GMT

Date: Mon, 12 Nov 2001 14:29:48 GMT

Cache-Control: no-cache

Pragma: no-cache

Connection: close

Set-Cookie: PA=wefj2we0-jfjf

<cr><lf>

<data follows…>
• Similar format to requests (i.e., ASCII)

96

Response Types
 1XX: Informational (def’d in 1.0, used in 1.1)

100 Continue, 101 Switching Protocols

 2XX: Success
200 OK, 206 Partial Content

 3XX: Redirection
301 Moved Permanently, 304 Not Modified

 4XX: Client error
400 Bad Request, 403 Forbidden, 404 Not Found

 5XX: Server error
 500 Internal Server Error, 503 Service
Unavailable, 505 HTTP Version Not Supported

97

Outline of an HTTP Transaction

 This section describes the
basics of servicing an HTTP
GET request from user space

 Assume a single process
running in user space, similar
to Apache 1.3

 We’ll mention relevant socket
operations along the way

initialize;

forever do {

 get request;

 process;

 send response;

 log request;

}

server in

a nutshell

98

Readying a Server

 First thing a server does is notify the OS it is interested in
WWW server requests; these are typically on TCP port 80.
Other services use different ports (e.g., SSL is on 443)

 Allocate a socket and bind()'s it to the address (port 80)

 Server calls listen() on the socket to indicate willingness to
receive requests

 Calls accept() to wait for a request to come in (and blocks)

 When the accept() returns, we have a new socket which
represents a new connection to a client

s = socket(); /* allocate listen socket */

bind(s, 80); /* bind to TCP port 80 */

listen(s); /* indicate willingness to accept */

while (1) {

 newconn = accept(s); /* accept new connection */b

99

Processing a Request

 getsockname() called to get the remote host name
 for logging purposes (optional, but done by most)

 gethostbyname() called to get name of other end
 again for logging purposes

 gettimeofday() is called to get time of request
 both for Date header and for logging

 read() is called on new socket to retrieve request
 request is determined by parsing the data

 “GET /images/jul4/flag.gif”

remoteIP = getsockname(newconn);

remoteHost = gethostbyname(remoteIP);

gettimeofday(currentTime);

read(newconn, reqBuffer, sizeof(reqBuffer));

reqInfo = serverParse(reqBuffer);

100

Processing a Request (cont)

 stat() called to test file path
 to see if file exists/is accessible

 may not be there, may only be available to certain people

 "/microsoft/top-secret/plans-for-world-domination.html"

 stat() also used for file meta-data
 e.g., size of file, last modified time

 "Has file changed since last time I checked?“

 might have to stat() multiple files and directories

 assuming all is OK, open() called to open the file

fileName = parseOutFileName(requestBuffer);

fileAttr = stat(fileName);

serverCheckFileStuff(fileName, fileAttr);

open(fileName);

101

Responding to a Request

 read() called to read the file into user space

 write() is called to send HTTP headers on socket
(early servers called write() for each header!)

 write() is called to write the file on the socket

 close() is called to close the socket

 close() is called to close the open file descriptor

 write() is called on the log file

read(fileName, fileBuffer);

headerBuffer = serverFigureHeaders(fileName, reqInfo);

write(newSock, headerBuffer);

write(newSock, fileBuffer);

close(newSock);

close(fileName);

write(logFile, requestInfo);

102

Summary of Web and HTTP

 The major application on the Internet
 Majority of traffic is HTTP (or HTTP-related)

 Client/server model:
 Clients make requests, servers respond to them

 Done mostly in ASCII text (helps debugging!)

 Various headers and commands
 Too many to go into detail here

 Many web books/tutorials exist
(e.g., Krishnamurthy & Rexford 2001)

103

