
  

Introduction to Lab 2 
and 

Socket Programming

-Vengatanathan Krishnamoorthi



  

Before we start..

● Soft deadline for lab 2- February 13
● Finish assignment 1 as soon as possible if you 

have not yet.
● Hard deadline for assignments- March 11
● If you still have issues with login, registration 

or group write an email immediately to your 
TA.

● For change of group/no group-mate remember 
to cc both new and old group-mates.



  

What will we do in lab 2?

● Goals:
– Learn about WWW and HTTP

– Learn TCP/IP socket programming to understand 
HTTP and WWW better

– Build a simple proxy



  

What is WWW?
● It is a world-wide system of interconnected 

servers which distribute a special type of 
document.

● Documents are marked-up to indicate 
formatting (Hypertexts)

● This idea has been extended to embed 
multimedia and other content within the 
marked-up page.



  

What is HTTP?

● HTTP is WWW's application layer protocol.
● HyperText Transfer Protocol (HTTP) to 

transfer HyperText Markup (HTML) pages and 
embedded objects.

● Works on a client-server paradigm.
● Needs reliable transport mechanism (TCP).



  

HTTP

Client

Server

Router



  

HTTP

Client

Server

Router

Note: HTTP server always runs on port 80



  

HTTP

Client

Server

Router

Note: HTTP server always runs on port 80

Note: Client can use any unrestricted port
Generally >1024



  

Proxy

● Acts as intermediary between client and 
server.



  

Benefits of a proxy
● Hide your internal network information (such 

as host names and IP addresses).
● You can set the proxy server to require user 

authentication.
● The proxy server provides advanced logging 

capabilities.
● Proxy servers help you control which services 

users can access.
● Proxy-caches can be used to save bandwidth.



  

HTTP with proxy

Client

Server

Router

Note: HTTP server always runs on port 80

Note: Client can use any unrestricted port
Generally >1024

Proxy

Proxy listens on a port (>1024) and talks to server on 
another (>1024)



  

What is a port?

● A port is an application-specific or process-
specific software construct serving as a 
communications endpoint.

●  The purpose of ports is to uniquely identify 
different applications or processes running on 
a single computer and thereby enable them to 
share a single physical connection to a 
packet-switched network like the Internet.



  

Port cont..

● Port only identifies processes/applications.
● W.r.t. Internet, ports are always used together 

with IP.
● Notation 192.168.1.1:80

IP address Transport protocol port
UDP/TCP



  

Socket programming

● These are software constructs used to create 
ports and perform operations on them.

● It is a way to speak to other programs using 
standard Unix file descriptors.

● We will talk about two types of sockets:
– Datagram socket

– Stream socket



  

Datagram sockets

● They are connectionless
● Do not guarantee in order delivery
● No form of loss recovery
● No congestion control
● No flow control



  

Datagram sockets

● They are connectionless
● Do not guarantee in order delivery
● No form of loss recovery
● No congestion control
● No flow control
● Datagram sockets use UDP



  

Stream sockets

● Connection oriented sockets
● In order and guaranteed delivery
● Error identification and recovery
● Congestion control
● Flow control
● Stream sockets use TCP protocol



  

Structs

● Structs are used to pass values to most socket 
functions.

● Read up on the following structs
● addrinfo (contains address related information)
● sockaddr (contains socket address)

struct addrinfo {
    int              ai_flags;     // AI_PASSIVE, AI_CANONNAME, etc.
    int              ai_family;    // AF_INET, AF_INET6, AF_UNSPEC
    int              ai_socktype;  // SOCK_STREAM, SOCK_DGRAM
    int              ai_protocol;  // use 0 for "any"
    size_t           ai_addrlen;   // size of ai_addr in bytes
    struct sockaddr *ai_addr;      // struct sockaddr_in or _in6
    char            *ai_canonname; // full canonical hostname

    struct addrinfo *ai_next;      // linked list, next node
};

struct sockaddr {
    unsigned short    sa_family;    // address family, AF_xxx
    char              sa_data[14];  // 14 bytes of protocol address
}; 



  

Socket programming calls

● getaddrinfo()
– Get address information

– Takes as input
● Host name
● Service type (HTTP) or only port number if local
● Information about IP family(v4 or v6), type of socket. 

(struct addrinfo)

– Returns
● A pointer to a linked list. Lets call this 'result'



  

Socket programming calls

● socket()
– Takes as input

● Address family
● Socket type
● Protocol

– Returns
● File descriptor



  

Socket programming calls

● bind()
– Takes as input

● File descriptor number
● Address information obtained from getaddrinfo()
● Address length

– Returns
● -1 on error

● What does this do?
– Associate the socket with a port number



  

Socket programing calls

● connect()
– Takes as input

● File descriptor number
● Address information obtained from getaddrinfo()
● Address length

– Returns
● -1 on error

● What does this do?
– Attempts to setup a connection with the other end



  

Socket programing calls

● listen()
– Takes as input

● File descriptor (fd for the socket/port to listen)
● Backlog (max queue of incoming connection)

– Returns
● -1 on error

● This must run at the server side to listen to 
incoming connection



  

Socket programing calls

● accept()
– Takes as input

● File descriptor number
● Address information obtained from getaddrinfo()
● Address length

– Returns
● -1 on error

● Reads through the backlog and picks one from 
the list to connect to it.

● Runs at the server side



  

Socket programing calls

● send()
– Takes as input

● File descriptor number
● Message
● Length

– Returns
● Number of bytes sent

● Send is always best effort. If it cant send the 
whole message, the value returned is smaller.



  

Socket programing calls

● recv()
– Takes as input

● File descriptor number
● Buffer
● Max buffer length

– Returns
● Number of bytes received
● Or -1 on error



  

Socket programing calls

● close()
– Takes as input

● File descriptor

● Closes the stream socket (TCP connection 
tear down)



  

Assignment description
● Imagine that you are a conscientious Internet 

user who wishes to protect your friends and 
family from viewing inappropriate Web 
content. In particular, you want them to avoid 
any Web pages that might insult their 
intelligence. Specific examples that may come 
to mind are Web pages that mention 
SpongeBob, Britney Spears, Paris Hilton, or 
Norrköping. You must do your best to prevent 
their Web browsers from viewing these sites.



  

How do you do that?

● Well socket programming of course...
● Build a proxy to which an user can connect to
● The proxy connects to the server on user's 

behalf (recollect how proxy works)
● Proxy receives the response from the server
● Forwards only 'good' responses to the user
● Redirects in other case



  

Browser configuration

● Proxy listens on a particular port

127.0.0.1 

Proxy's port number

Make sure it is blank



  

HTTP basics

● Recollect lab 1. It contains things that you 
need in lab 2.

● HTTP request
– Get

● Syn, SynAck, Ack



  

HTTP basics

● HTTP response
– OK



  

HTTP basics

● HTTP 1.0 vs HTTP 1.1
– Many differences read http://www8.org/w8-papers/5c-protocols/key/key.html

– For this assignment
● Connection: close

– Handshake-Get-response-OK-Teardown
● Connection: keep-alive

– Handshake-Get-response-OK-wait-Get-
response

● What should you use for the proxy?

http://www8.org/w8-papers/5c-protocols/key/key.html


  

How to handle connections

● With connection: keep-alive, the connection is 
kept open. You are responsible to figure out 
when the response is completed.

● With connection: close, the server closes the 
connection after the response is sent.



  

How to handle connections

● With connection: keep-alive, the connection is 
kept open. You are responsible to figure out 
when the response is completed.

● With connection: close, the server closes the 
connection after the response is sent.

● How can you enforce connection: close on 
HTTP 1.1?



  

General overlay

Client

Server

Proxy

Server 
side

Client 
side



  

Server side: listens on a port, accepts, receives, forwards to client side

General overlay

Client

Server

Proxy

Server 
side

Client 
side



  

Client side: connects to the server, send request, receive response,
                   Forwards to client side

General overlay

Client

Server

Proxy

Server 
side

Client 
side



  

Content filtering

● Need to be able to filter both based on URL 
and content.

● In which of the two halves of the proxy will you 
implement filtering based on URL?

● In which of the two halves of the proxy will you 
implement content filtering?

● How to actually do content filtering?



  

Content filtering

● Response from the server comes in segments
● Remember TCP segmentation?



  

Content filtering

● Response from the server comes in segments
● Remember TCP segmentation?
● Reconstruct the message in a temporary 

buffer
● Then run filtering on the message



  

Text vs other binary data

● What is the requirement for filtering w.r.t binary 
data?
– Only that you have to be smart in handling any 

data type

● What will happen if you attempt to reconstruct 
an image or video and try to filter it?

● Solutions?



  

Text vs binary data

● Content-type header
● Differentiate content type 

– Run/don't run filtering

– Send data or block the client



  

How to block specific content
● You are supposed to return a specific 

response based on URL filtering or content 
filtering

HTTP redirect
● If filtering confirms presence of inappropriate 

words

HTTP/1.1 301 Moved Permanently
● Else send response



  

Debugging advice

● Stick to simple web pages initially
● Debug incrementally
● Check and double check request string for 

formatting and completeness
– Source of many errors like 'server closed 

connection unexpectedly'

● If developing on own computers, use 
wireshark to debug. Can save a lot of time!



  

Debugging advice

● HTTP vs HTTPS
– Requirements do not ask for a proxy which works 

with HTTPS

– Avoid testing on any site to which you are signed 
in

– Restrict yourselves to simple sites and basic test 
cases



  

Debugging advice

● Header manipulation
– First thing to check at a proxy is the URL that it 

sends out to the server

– It might require different manipulations based on 
the site. Be sure that you test for all sites 
mentioned in the test scenario

– If you change some fields in the header, the 
packet length has to be changed or brought back 
to the original length



  

Questions?

Good Luck!!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

