

TDTS04: Computer Networks & Distributed Systems
Instructor: Niklas Carlsson

1

Tatiana Polishchuk, Postdoc

Transport Layer

Email: tatiana.polishchuk@liu.se
Office: B:478

Transport Layer 3-2

Chapter 3
Transport Layer

Computer Networking:
A Top Down Approach
5th edition.
Jim Kurose, Keith Ross
Addison-Wesley, April
2009.

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:
 If you use these slides (e.g., in a class) in substantially unaltered form, that
you mention their source (after all, we’d like people to use our book!)
 If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2010
J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer 3-3

Transport Layer: Roadmap

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

TCP/IP protocol stack

Application

Transport

Network

Link

Physical

Transport Layer 3-4

 Transport?

Transport Layer 3-5

Transport Layer 3-6

Transport Layer 3-7

Transport services
 provide logical communication

between app processes
running on different hosts

 transport protocols run in
end systems
 send side: breaks app

messages into segments,
passes to network layer

 rcv side: reassembles
segments into messages,
passes to app layer

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport Layer 3-8

Internet transport-layer protocols

 unreliable, unordered delivery: (UDP)

 no-frills extension of “best-effort” IP

 reliable, in-order delivery (TCP)

 congestion control
 flow control
 connection setup
 …

 Applications?

Transport Layer 3-9

Transport Layer: Roadmap

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-10

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2 P3 P4 P1

host 1 host 2 host 3

= process = socket

Recall: Sockets

 process sends/receives
messages to/from its
socket

 socket analogous to door

 provides connection
between the application
and network

process

transport
service

socket

host or
server

process

transport
service

socket

host or
server

Internet

Application 2-11

Transport Layer 3-12

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2 P3 P4 P1

host 1 host 2 host 3

= process = socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

Transport Layer 3-13

How demultiplexing works

 each datagram has source IP address,
destination IP address

 host uses IP addresses & port numbers to
direct segment to appropriate socket

Transport Layer 3-14

Connectionless demultiplexing

 UDP :
 when creating datagram to send into UDP
 socket, must specify the 2-tuple

• dest IP address
• dest port number

Transport Layer 3-15

Connection-oriented demux

 TCP socket identified
by 4-tuple:
 source IP address
 source port number
 dest IP address
 dest port number

 recv host uses all four
values to direct
segment to appropriate
socket

 server host may support
many simultaneous TCP
sockets:
 each socket identified by

its own 4-tuple

Transport Layer 3-16

Connection-oriented demux
(cont)

Client
IP:B

P1

client
 IP: A

P1 P2 P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Transport Layer 3-17

Transport Layer: Roadmap

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-18

UDP: User Datagram Protocol [RFC 768]

 connectionless:
 no handshaking between UDP sender and receiver

 only 2 functions

 mult/demult
 error detection (optional)

Transport Layer 3-19

UDP segment format

source port # dest port #

32 bits

Application
data

(message)

length checksum
In

bytes
including

header

Packet header
(8 bytes)

Transport Layer 3-20

UDP checksum

Sender:
 treat segment contents

as sequence of 16-bit
integers

 checksum: addition (1’s
complement sum) of
segment contents

 sender puts checksum
value into UDP checksum
field

Receiver:
 compute checksum of

received segment
 check if computed checksum

equals checksum field value:
 NO - error detected
 YES - no error detected.

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Transport Layer 3-21

Internet Checksum Example
 Note: when adding numbers, a carryout from

the most significant bit needs to be added
to the result

 Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

Transport Layer 3-22

Transport Layer: Roadmap

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-23

Principles of Reliable data transfer
 important in app., transport, link layers
 top-10 list of important networking topics!

 characteristics of unreliable channel will determine complexity
of reliable data transfer protocol (rdt)

ne
tw

or
k

la
ye

r

Transport Layer 3-24

Reliable data transfer: getting started
We’ll:
 incrementally develop sender, receiver sides of

reliable data transfer protocol (rdt)
 use finite state machines (FSM) to specify

sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

Transport Layer 3-25

Rdt1.0: reliable transfer over a reliable channel

 underlying channel perfectly reliable
 no bit errors
 no loss of packets

 separate FSMs for sender, receiver:

Wait for
call from
above

packet = make_pkt(data)
udt_send(packet)

rdt_send(data)
extract (packet,data)
deliver_data(data)

Wait for
call from

below

rdt_rcv(packet)

sender receiver

Transport Layer 3-26

Rdt2.0: channel with bit errors
 underlying channel may flip bits in packet
 use checksum to detect bit errors
 how to recover from errors?

Transport Layer 3-27

Rdt2.0: channel with bit errors
 Mechanisms for error recovery:

 acknowledgements (ACKs): receiver explicitly

tells sender that pkt received OK
 negative acknowledgements (NAKs): receiver

explicitly tells sender that pkt had errors
 retransmissions - sender retransmits pkt on receipt of

NAK

Transport Layer 3-28

rdt2.0: FSM specification

Wait for
call from
above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
 corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below sender

receiver
rdt_send(data)

Λ

Transport Layer 3-29

rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?

 sender doesn’t know what
happened at receiver!

 can’t just retransmit:
possible duplicate

Handling duplicates:
 sender retransmits current

pkt if ACK/NAK garbled
 sender adds sequence

number to each pkt
 receiver discards (doesn’t

deliver up) duplicate pkt

Transport Layer 3-30

rdt2.1: sender, handles garbled ACK/NAKs

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
 call 1 from

above

Wait for
ACK or
NAK 1

Λ
Λ

Transport Layer 3-31

rdt2.1: receiver, handles garbled ACK/NAKs

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 not corrupt(rcvpkt) &&
 has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
 && has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
 && has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 not corrupt(rcvpkt) &&
 has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

Transport Layer 3-32

rdt2.2: a NAK-free protocol

 same functionality as rdt2.1, using ACKs only
 instead of NAK, receiver sends ACK for last pkt

received OK
 receiver must explicitly include seq # of pkt being ACKed

 duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-33

rdt2.2: sender, receiver fragments

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
 isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0
sender FSM

fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
 && has_seq1(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

Wait for
0 from
below

rdt_rcv(rcvpkt) &&
 (corrupt(rcvpkt) ||
 has_seq1(rcvpkt))

udt_send(sndpkt)
receiver FSM

fragment

Λ

Transport Layer 3-34

rdt3.0: channels with errors and loss

New assumption:
underlying channel can
lose packets (data or
ACKs)
 checksum
 seq. #
 ACKs
 retransmissions
 ?

Approach: sender waits
“reasonable” amount of
time for ACK

 retransmits if no ACK
received in this time

 if pkt (or ACK) just delayed
(not lost):
 retransmission will be

duplicate, but use of seq.
#’s already handles this

 receiver must specify seq
of pkt being ACKed

 requires countdown timer

Transport Layer 3-35

rdt3.0 sender
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0 from

above

Wait
for

ACK1

Λ
rdt_rcv(rcvpkt)

Λ
Λ

Λ

Transport Layer 3-36

rdt3.0 in action

Transport Layer 3-37

rdt3.0 in action

Transport Layer 3-38

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027

L / R
RTT + L / R

=

Utilization

L – packet length
R - rate

Transport Layer 3-39

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender =

.024
30.008

= 0.0008

3 * L / R
RTT + L / R

=

Increase utilization
by a factor of 3!

Transport Layer 3-40

Pipelined protocols
pipelining: sender allows multiple, “in-flight”, yet-to-

be-acknowledged pkts
 range of sequence numbers must be increased
 buffering at sender and/or receiver

Stop-and-wait

checksum
 seq. #
ACKs
 retransmissions
 timeouts

Transport Layer 3-41

Mechanisms for reliable data
transfer

Pipelined

 seq. # range

increased
 windows
 Cumulative ACKs
 Send/recv buffers

Transport Layer 3-42

Pipelined Protocols

Go-back-N:
 N unacked packets in

pipeline – Window

 cumulative acks

 doesn’t ack packet if
there’s a gap

 sender has timer for
oldest unacked packet
 if timer expires,

retransmit all unack’ed
packets

Selective Repeat:
 sender can have up to

N unack’ed packets in
pipeline

 rcvr sends individual
ack for each packet

 sender maintains timer
for each unacked
packet
 when timer expires,

retransmit only
unack’ed packet

Transport Layer 3-43

GBN in
action

Transport Layer 3-44

Selective repeat in action

Transport Layer 3-45

Selective repeat:
 dilemma
Example:
 seq #’s: 0, 1, 2, 3
 window size=3

 receiver sees no

difference in two
scenarios!

 incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

Transport Layer 3-46

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

	Slide Number 1
	Slide Number 2
	Transport Layer: Roadmap
	TCP/IP protocol stack
	 Transport?
	Slide Number 6
	Transport services
	Internet transport-layer protocols
	Transport Layer: Roadmap
	Multiplexing/demultiplexing
	Recall: Sockets
	Multiplexing/demultiplexing
	How demultiplexing works
	Connectionless demultiplexing
	Connection-oriented demux
	Connection-oriented demux (cont)
	Transport Layer: Roadmap
	UDP: User Datagram Protocol [RFC 768]
	UDP segment format
	UDP checksum
	Internet Checksum Example
	Transport Layer: Roadmap
	Principles of Reliable data transfer
	Reliable data transfer: getting started
	Rdt1.0: reliable transfer over a reliable channel
	Rdt2.0: channel with bit errors
	Rdt2.0: channel with bit errors
	rdt2.0: FSM specification
	rdt2.0 has a fatal flaw!
	rdt2.1: sender, handles garbled ACK/NAKs
	rdt2.1: receiver, handles garbled ACK/NAKs
	rdt2.2: a NAK-free protocol
	rdt2.2: sender, receiver fragments
	rdt3.0: channels with errors and loss
	rdt3.0 sender
	rdt3.0 in action
	rdt3.0 in action
	rdt3.0: stop-and-wait operation
	Pipelining: increased utilization
	Pipelined protocols
	Mechanisms for reliable data transfer
	Pipelined Protocols
	GBN in�action
	Selective repeat in action
	Selective repeat:� dilemma
	Chapter 3 outline

