
TDTS04/11: Computer Networks

Instructor: Niklas Carlsson

Email: niklas.carlsson@liu.se

Notes derived from “Computer Networking: A Top
Down Approach”, by Jim Kurose and Keith Ross,
Addison-Wesley.

The slides are adapted and modified based on slides from

the book’s companion Web site, as well as modified slides
by Anirban Mahanti and Carey Williamson.

1

mailto:niklas.carlsson@liu.se

Pure P2P architecture
 no always-on server

 arbitrary end systems
directly communicate

 peers are intermittently
connected and change IP
addresses

 Three topics (in these slides):
 File sharing

 File distribution

 Searching for information

 Case Studies: Bittorrent and
Skype

peer-peer

2

P2P: centralized directory

original “Napster” design

1) when peer connects, it
informs central server:
 IP address

 content

2) Alice queries for “Hey Jude”

3) Alice requests file from Bob

centralized
directory server

peers

Alice

Bob

1

1

1

1 2

3

3

P2P: problems with centralized directory

centralized
directory server

peers

Alice

Bob

1

1

1

1 2

3

4

 file transfer is
decentralized, but
locating content is
highly centralized

P2P: problems with centralized directory

centralized
directory server

peers

Alice

Bob

1

1

1

1 2

3

5

 single point of failure

 performance bottleneck

 copyright infringement:
“target” of lawsuit is obvious

 file transfer is
decentralized, but
locating content is
highly centralized

Query flooding: Gnutella

 fully distributed
 no central server

 public domain protocol
 many Gnutella clients

implementing protocol

6

7

overlay network: graph

 edge between peer X and Y if
there’s a TCP connection

 active peers form overlay net

 edge: virtual (not physical) link

 each peer typically connected
with < 10 overlay neighbors

Gnutella: protocol

Query

QueryHit

Query

QueryHit

File transfer:
HTTP

 Query message sent over existing
TCP connections
 Peers forward Query message
 QueryHit sent over
reverse path

Scalability:
limited scope flooding

8

Hierarchical Overlay

 between centralized
index, query flooding
approaches

 each peer is either a
group leader or assigned
to a group leader.

 group leader tracks
content in its children

ordinary peer

group-leader peer

neighoring relationships

in overlay network

9

P2P Case study: Skype

 inherently P2P: pairs of
users communicate.

 proprietary application-
layer protocol (inferred
via reverse engineering)

 hierarchical overlay
with Supernodes (SNs)

 Index maps usernames
to IP addresses;
distributed over SNs

Skype clients (SC)

Supernode
(SN)

Skype
login server

10

11

Structured p2p systems

12

Distributed Hash Table (DHT)

DHT = distributed P2P database

Database has (key, value) pairs;
 key: ss number; value: human name

 key: content type; value: IP address

 Peers query DB with key
 DB returns values that match the key

 Peers can also insert (key, value) peers

13

DHT Identifiers

Assign integer identifier to each peer in range
[0,2n-1].
 Each identifier can be represented by n bits.

 Require each key to be an integer in same range.

 To get integer keys, hash original key.
 eg, key = h(“Led Zeppelin IV”)

 This is why they call it a distributed “hash” table

14

How to assign keys to peers?

 Central issue:
 Assigning (key, value) pairs to peers.

 Rule: assign key to the peer that has the
closest ID.

 Convention in lecture: closest is the closest
successor of the key.

 Ex: n=4; peers: 1,3,4,5,8,10,12,14;
 key = 13, then successor peer = 14

 key = 15, then successor peer = 1

15

1

3

4

5

8
10

12

15

Circular DHT (1)

 Each peer only aware of immediate successor
and predecessor.

 “Overlay network”
16

Circle DHT (2)

0001

0011

0100

0101

1000
1010

1100

1111

Who’s
responsible
for key 1110 ?

I am

O(N) messages
on avg to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

17

Circular DHT with Shortcuts

 Each peer keeps track of IP addresses of predecessor,
successor, short cuts.

 Reduced from 6 to 2 messages.
 Possible to design shortcuts so O(log N) neighbors,

O(log N) messages in query

1

3

4

5

8
10

12

15

Who’s
responsible
for key 1110?

18

19

Example: Chord Routing [see
paper for details instead]
 A node s’s ith neighbor has the ID that is equal to

s+2i or is the next largest ID (mod ID space), i≥0

 To reach the node handling ID t, send the message
to neighbor #log2(t-s)

 Requirement: each node s must know about the next
node that exists clockwise on the Chord (0th
neighbor)

 Set of known neighbors called a finger table

20

Chord Routing (cont’d)

i Finger
table for
node 67

0 72

1 72

2 72

3 86

4 86

5 1

6 32

1

8

32

87
86

72

67

Closest
node
clockwise
to

67+2i mod
100

21

File Distribution: Server-Client vs P2P

Question : How much time to distribute file
from one server to N peers?

us

u2 d1 d2

u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload

bandwidth

ui: peer i upload

bandwidth

di: peer i download

bandwidth

22

File distribution time: server-client

us

u2 d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F
 server sequentially

sends N copies:
 NF/us time

 client i takes F/di

time to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
i

Time to distribute F
to N clients using

client/server approach

23

File distribution time: P2P

us

u2 d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F
 server must send one

copy: F/us time

 client i takes F/di time
to download

 NF bits must be
downloaded (aggregate)
 fastest possible upload rate: us + Sui

dP2P = max { F/us, F/min(di) , NF/(us + Sui) }
i

24

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e P2P

Client-Server

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

25

26

BitTorrent-like systems

 File split into many smaller pieces
 Pieces are downloaded from both seeds and downloaders
 Distribution paths are dynamically determined

 Based on data availability

Arrivals

Departures

Downloader

Downloader

Downloader

Downloader

Seed

Seed

Download time

Seed residence

time

Torrent
(x downloaders; y seeds)

27

File distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

peer

 P2P file distribution

28

Background
Peer discovery in BitTorrent

 Torrent file
 “announce” URL

 Tracker
 Register torrent file

 Maintain state information

 Peers
 Obtain torrent file

 Announce

 Report status

 Peer exchange (PEX)

 Issues
 Central point of failure

 Tracker load
Swarm = Torrent

29

Background
Peer discovery in BitTorrent

 Torrent file
 “announce” URL

 Tracker
 Register torrent file

 Maintain state information

 Peers
 Obtain torrent file

 Announce

 Report status

 Peer exchange (PEX)

 Issues
 Central point of failure

 Tracker load
Swarm = Torrent

30

Background
Multi-tracked torrents

 Torrent file
 “announce-list” URLs

 Trackers
 Register torrent file

 Maintain state information

 Peers
 Obtain torrent file

 Choose one tracker at random

 Announce

 Report status

 Peer exchange (PEX)

 Issue
 Multiple smaller swarms

SwarmTorrent
SwarmTorrent

31

Background
Multi-tracked torrents

 Torrent file
 “announce-list” URLs

 Trackers
 Register torrent file

 Maintain state information

 Peers
 Obtain torrent file

 Choose one tracker at random

 Announce

 Report status

 Peer exchange (PEX)

 Issue
 Multiple smaller swarms

SwarmTorrent
SwarmTorrent

32

Background
Multi-tracked torrents

 Torrent file
 “announce-list” URLs

 Trackers
 Register torrent file

 Maintain state information

 Peers
 Obtain torrent file

 Choose one tracker at random

 Announce

 Report status

 Peer exchange (PEX)

 Issue
 Multiple smaller swarms

SwarmTorrent
SwarmTorrent

33

Download using BitTorrent
Background: Incentive mechanism
 Establish connections to large set of peers

 At each time, only upload to a small (changing) set of
peers

 Rate-based tit-for-tat policy
 Downloaders give upload preference to the downloaders

that provide the highest download rates

Highest download rates

Optimistic unchoke

Pick top four

Pick one at random

34

Download using BitTorrent
Background: Piece selection

 Rarest first piece selection policy
 Achieves high piece diversity

 Request pieces that
 the uploader has;
 the downloader is interested (wants); and
 is the rarest among this set of pieces

Peer 1:

Peer N :

Peer 2:

… …

Pieces in neighbor set:

1 2 3 k K

1 2 3 k K

1 2 3 k K

1 2 3 k K

(1) (2) (1) (2) (2) (3) (2)
… …

… …

… …

from

to

35

36

37

More slides …

38

39

Chord Routing (cont’d)
 A node s is node t’s neighbor if s is the closest node to t+2i mod H

for some i. Thus,
 each node has at most log2 N neighbors

 for any object, the node whose range contains the object is reachable
from any node in no more than log2 N overlay hops

(each step can always traverse at least half the distance to the ID)

 Given K objects, with high probability each node has at most
 (1 + log2 N) K / N in its range

 When a new node joins or leaves the overlay,
O(K / N) objects move between nodes

i Finger
table for
node 67

0 72

1 72

2 72

3 86

4 86

5 1

6 32

1

8

32

87
86

72

67

Closest
node
clockwise
to

67+2i mod
100

Peer Churn

 Peer 5 abruptly leaves
 Peer 4 detects; makes 8 its immediate successor;

asks 8 who its immediate successor is; makes 8’s
immediate successor its second successor.

 What if peer 13 wants to join?

1

3

4

5

8
10

12

15

•To handle peer churn, require
each peer to know the IP address
of its two successors.
• Each peer periodically pings its
two successors to see if they
are still alive.

40

41

Chord Node Insertion
 One protocol addition: each node knows its closest counter-

clockwise neighbor

 A node selects its unique (pseudo-random) ID and uses a
bootstrapping process to find some node in the Chord

 Using Chord, the node identifies its successor in the
clockwise direction

 An newly inserted node’s predecessor is its successor’s
former predecessor 82

1

8

32

67

87
86

72

pred(86)=72

Example: Insert 82

42

Chord Node Insertion (cont’d)

1

8

32

67

87
86

72

82

 First: set added node s’s fingers correctly
 s’s predecessor t does the lookup for each distance of 2i

from s

i Finger
table for
node 82

0 86

1 86

2 86

3 1

4 1

5 32

6 67

Lookup(86) = 86

Lookup(90) = 1

Lookup(98) = 1

Lookup(14) = 32

Lookup(46) = 67

Lookup(84) = 86

Lookup(83) = 86

Lookups from node 72

43

Chord Node Insertion (cont’d)
 Next, update other nodes’ fingers

about the entrance of s (when
relevant). For each i:
 Locate the closest node to s

(counter-clockwise) whose 2i-finger
can point to s: largest possible is
s - 2i

 Use Chord to go (clockwise) to
largest node t before or at s - 2i

• route to s - 2i, if arrived at a larger
node, select its predecessor as t

 If t’s 2i-finger routes to a node
larger than s

• change t’s 2i-finger to s
• set t = predecessor of t and repeat

 Else i++, repeat from top

 O(log2 N) time to find and update
nodes

1

8

32

67

87
86

72

82 82-23

23-finger=86
82 23-finger=86

82

23-finger=67 X
X

e.g., for i=3

NAT/firewall problems …

 Problem when both
Alice and Bob are
behind “NATs”.
 NAT prevents an outside

peer from initiating a call
to insider peer

 Solution:

44

Peers as relays

 Problem when both
Alice and Bob are
behind “NATs”.
 NAT prevents an outside

peer from initiating a call
to insider peer

 Solution:
 Using Alice’s and Bob’s

SNs, Relay is chosen
 Each peer initiates

session with relay.
 Peers can now

communicate through
NATs via relay

45

