
TDTS04/11: Computer Networks

Instructor: Niklas Carlsson

Email: niklas.carlsson@liu.se

Notes derived from “Computer Networking: A Top
Down Approach”, by Jim Kurose and Keith Ross,
Addison-Wesley.

The slides are adapted and modified based on slides from

the book’s companion Web site, as well as modified slides
by Anirban Mahanti and Carey Williamson.

1

mailto:niklas.carlsson@liu.se

2

Transmission Control Protocol

3

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnter checksum

F S R P A U
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

4

Sequence and Acknowledgement
Number
 TCP views data as unstructured, but

ordered stream of bytes.
 Sequence numbers are over bytes, not

segments
 Initial sequence number is chosen randomly
 TCP is full duplex – numbering of data is

independent in each direction
Acknowledgement number – sequence

number of the next byte expected from
the sender

ACKs are cumulative

5

TCP seq. #’s and ACKs
Seq. #’s:

 byte stream
“number” of first
byte in segment’s
data

ACKs:

 seq # of next byte
expected from
other side

 cumulative ACK

Q: how receiver handles
out-of-order segments

 A: TCP spec doesn’t
say, - up to
implementor

Host A Host B

1000 byte
data

Host sends
 another

500 bytes

host ACKs
receipt of

data

time

6

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

 initialize TCP variables:

 seq. #s

 buffers, flow control
info (e.g. RcvWindow)

 client: connection initiator
 Socket clientSocket = new

Socket("hostname","port

number");
 server: contacted by client
 Socket connectionSocket =

welcomeSocket.accept();

7

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

 initialize TCP variables:

 seq. #s

 buffers, flow control
info (e.g. RcvWindow)

 client: connection initiator
 Socket clientSocket = new

Socket("hostname","port

number");
 server: contacted by client
 Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

 specifies initial seq #

 no data

Step 2: server host receives
SYN, replies with SYNACK
segment

 server allocates buffers

 specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

8

TCP Connection Establishment

client server

9

TCP Connection Establishment

client server CLOSED

LISTEN

SYN_SENT SYN_RCVD

Established

Passive open

SYN/SYN+ACK

ACK

Active open;
SYN

SYN+ACK/ACK

Solid line for client

Dashed line for server

10

TCP Connection Termination

client server

closing

ti
m

e
d
 w

ai
t

FIN_WAIT1

FIN_WAIT2

CLOSE_WAIT

LAST_ACK

CLOSED

TIME_WAIT

CLOSED

11

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnter checksum

F S R P A U
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

12

13

TCP reliable data transfer

 TCP creates rdt
service on top of IP’s
unreliable service
 Pipelined segments

 Cumulative acks

 Single retransmission
timer

 Retransmissions are
triggered by:
 timeout events

 duplicate acks

 Initially consider
simplified TCP sender:
 ignore duplicate acks

 ignore flow control,
congestion control

14

TCP sender events:
data rcvd from app:

 Create segment with
seq #

 seq # is byte-stream
number of first data
byte in segment

 start timer if not
already running (think
of timer as for oldest
unacked segment)

 expiration interval:
TimeOutInterval

timeout:

 retransmit segment
that caused timeout

 restart timer

 Ack rcvd:

 If acknowledges
previously unacked
segments
 update what is known to

be acked

 start timer if there are
outstanding segments

15

TCP
sender
(simplified)

 NextSeqNum = InitialSeqNum

 SendBase = InitialSeqNum

 loop (forever) {

 switch(event)

 event: data received from application above

 create TCP segment with sequence number NextSeqNum

 if (timer currently not running)

 start timer

 pass segment to IP

 NextSeqNum = NextSeqNum + length(data)

 event: timer timeout

 retransmit not-yet-acknowledged segment with

 smallest sequence number

 start timer

 event: ACK received, with ACK field value of y

 if (y > SendBase) {

 SendBase = y

 if (there are currently not-yet-acknowledged segments)

 start timer

 }

 } /* end of loop forever */

16

17

TCP Flow Control

 receive side of TCP
connection has a
receive buffer:

 speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

 app process may be
slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
 too fast

flow control

18

TCP Flow control: how it works

(Suppose TCP receiver
discards out-of-order
segments)

 spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd -

LastByteRead]

 Rcvr advertises spare
room by including value
of RcvWindow in
segments

 Sender limits unACKed
data to RcvWindow
 guarantees receive

buffer doesn’t overflow

19

20

Silly Window Syndrome

 Recall: TCP uses sliding window

 “Silly Window” occurs when small-sized
segments are transmitted, resulting in
inefficient use of the network pipe

 For e.g., suppose that TCP sender
generates data slowly, 1-byte at a time

 Solution: wait until sender has enough data
to transmit – “Nagle’s Algorithm”

21

Nagle’s Algorithm

1. TCP sender sends the first piece of data
obtained from the application (even if data
is only a few bytes).

2. Wait until enough bytes have accumulated

in the TCP send buffer or until an ACK is
received.

3. Repeat step 2 for the remainder of the

transmission.

22

Silly Window Continued …

 Suppose that the receiver consumes data
slowly
 Receive Window opens slowly, and thus sender

is forced to send small-sized segments

 Solutions
 Delayed ACK

 Advertise Receive Window = 0, until reasonable
amount of space available in receiver’s buffer

23

24

Historical Perspective

October 1986, Internet had its first
congestion collapse

 Link LBL to UC Berkeley
 400 yards, 3 hops, 32 Kbps
 throughput dropped to 40 bps
 factor of ~1000 drop!

 Van Jacobson proposes TCP Congestion
Control:
 Achieve high utilization
 Avoid congestion
 Share bandwidth

25

Principles of Congestion Control

 Congestion: informally: “too many sources sending
too much data too fast for network to handle”

 Different from flow control!
 Manifestations:

 Packet loss (buffer overflow at routers)
 Increased end-to-end delays (queuing in router buffers)

 Results in unfairness and poor utilization of network
resources
 Resources used by dropped packets (before they were lost)
 Retransmissions
 Poor resource allocation at high load

26

Congestion Control: Approaches
 Goal: Throttle senders as needed to ensure

load on the network is “reasonable”

End-end congestion control:
 no explicit feedback from network
 congestion inferred from end-system

observed loss, delay
 approach taken by TCP

Network-assisted congestion control:
 routers provide feedback to end systems
 single bit indicating congestion (e.g., ECN)
 explicit rate sender should send at

27

TCP Congestion Control: Overview

 end-end control (no network assistance)

 Limit the number of packets in the network to
window W

 Roughly,

 W is dynamic, function of perceived network
congestion

rate =
W

RTT

Bytes/sec

28

29

TCP Congestion Controls

 Tahoe (Jacobson 1988)
 Slow Start

 Congestion Avoidance

 Fast Retransmit

 Reno (Jacobson 1990)
 Fast Recovery

 SACK

 Vegas (Brakmo & Peterson 1994)
 Delay and loss as indicators of congestion

30

data
segment

Slow Start
 “Slow Start” is used to

reach the equilibrium state

 Initially: W = 1 (slow start)

 On each successful ACK:

 W  W + 1

 Exponential growth of W

 each RTT: W  2 x W

 Enter CA when
 W >= ssthresh

 ssthresh: window size
after which TCP cautiously
probes for bandwidth

ACK

sender
cwnd

1

2

3
4

5
6
7
8

receiver

31

ACK

data
segment

Congestion Avoidance

 Starts when

 W  ssthresh

On each successful ACK
W  W+ 1/W

 Linear growth of W each RTT

 W  W + 1

1

2

3

4

receiver sender

32

TCP (initial version without loss)

Window

Time

ssthresh

Slow Start

Reached initial
 ssthresh value;
 switch to CA mode

33

CA: Additive Increase,
Multiplicative Decrease

We have “additive increase” in the absence
of loss events

After loss event, decrease congestion
window by half – “multiplicative decrease”
 ssthresh = W/2

 Enter Slow Start

34

TCP Tahoe (more on losses next …)

Window

Time

W1

W1/2

W2

W2/2

ssthresh=W1/2

ssthresh=W2/2

Slow Start

Reached initial
 ssthresh value;
 switch to CA mode

35

Detecting Packet Loss

Assumption: loss
indicates congestion

Option 1: time-out
 Waiting for a time-out can

be long!

Option 2: duplicate ACKs
 How many? At least 3.

11

13

12

14

15

17

16

11

10

X

11

11

10

11

Sender Receiver

36

Fast Retransmit

Wait for a timeout is quite long

Immediately retransmits after 3
dupACKs without waiting for timeout

Adjusts ssthresh

 ssthresh  W/2

Enter Slow Start
 W = 1

37

How to Set TCP Timeout Value?

 longer than RTT
but RTT varies

too short: premature timeout
unnecessary retransmissions

too long: slow reaction to segment loss

38

How to Estimate RTT?

 SampleRTT: measured time from segment

transmission until ACK receipt

 ignore retransmissions

 SampleRTT will vary, want estimated RTT
“smoother”
 average several recent measurements, not just

current SampleRTT

39

TCP Round-Trip Time and Timeout

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

 EWMA

 influence of past
sample decreases
exponentially fast

 typical value:  =
0.125

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

40

TCP Round Trip Time and Timeout

Setting the timeout
 EstimtedRTT plus “safety margin”

 large variation in EstimatedRTT -> larger safety margin

 first estimate how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = µ*EstimatedRTT + Ø*DevRTT

Typically, µ =1 and Ø = 4.

DevRTT = (1-)*DevRTT +

 *|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

 Then set timeout interval:

[Jacobson/Karels Algorithm]

41

TCP Tahoe: Summary
 Basic ideas

Gently probe network for spare capacity
Drastically reduce rate on congestion
Windowing: self-clocking
Other functions: round trip time estimation,

error recovery
 for every ACK {
 if (W < ssthresh) then W++ (SS)
 else W += 1/W (CA)

 }
 for every loss {
 ssthresh = W/2
 W = 1
 }

42

TCP Tahoe

Window

Time

W1

W1/2

W2

W2/2

ssthresh=W1/2

ssthresh=W2/2

Slow Start

Reached initial
 ssthresh value;
 switch to CA mode

43

Questions?

Q. 1. To what value is ssthresh initialized to at
the start of the algorithm?

Q. 2. Why is “Fast Retransmit” triggered on
receiving 3 duplicate ACKs (i.e., why isn’t it
triggered on receiving a single duplicate ACK)?

Q. 3. Can we do better than TCP Tahoe?

44

45

TCP Reno

Window

Time
Slow Start

Reached initial
 ssthresh value;
 switch to CA mode

Note how there is “Fast Recovery” after cutting Window in half

46

TCP Reno: Fast Recovery
Objective: prevent `pipe’ from emptying

after fast retransmit
 each dup ACK represents a packet having left

the pipe (successfully received)

 Let’s enter the “FR/FR” mode on 3 dup ACKs

 ssthresh  W/2
retransmit lost packet
W  ssthresh + ndup (window inflation)
Wait till W is large enough; transmit new packet(s)
On non-dup ACK (1 RTT later)
 W  ssthresh (window deflation)
 enter CA mode

47

TCP Reno: Summary

 Fast Recovery along with Fast Retransmit
used to avoid slow start

On 3 duplicate ACKs
 Fast retransmit and fast recovery

On timeout
 Fast retransmit and slow start

48

49

TCP Throughput

What’s the average throughout ot TCP as a
function of window size and RTT?
 Ignore slow start

 Let W be the window size when loss occurs.

When window is W, throughput is W/RTT

 Just after loss, window drops to W/2,
throughput to W/2RTT.

Average throughout: .75 W/RTT

50

TCP Futures

 Example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

 Requires window size W = 83,333 in-flight
segments

 Throughput in terms of loss rate:

 ➜ L = 2·10-10 Wow
 New versions of TCP for high-speed needed!

LRTT

MSS22.1

51

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

TCP Fairness

52

Fairness (more)

 TCP fairness: dependency on RTT
 Connections with long RTT get less throughput

 Parallel TCP connections

 TCP friendliness for UDP streams

53

54

Chapter 3: Summary

 principles behind transport
layer services:

 multiplexing,
demultiplexing

 reliable data transfer

 flow control

 congestion control

 instantiation and
implementation in the
Internet

 UDP

 TCP

Next:

 leaving the network
“edge” (application,
transport layers)

 into the network
“core”

55

56

Tutorial: TCP 101

 The Transmission Control Protocol (TCP) is
the protocol that sends your data reliably

Used for email, Web, ftp, telnet, p2p,…
Makes sure that data is received correctly:

right data, right order, exactly once
Detects and recovers from any problems

that occur at the IP network layer
Mechanisms for reliable data transfer:

sequence numbers, acknowledgements,
timers, retransmissions, flow control...

57

TCP 101 (Cont’d)

 TCP is a connection-oriented protocol

SYN

SYN/ACK

ACK
GET URL

YOUR DATA HERE

FIN
FIN/ACK

ACK

Web Client Web Server

58

TCP 101 (Cont’d)

 TCP slow-start and congestion avoidance

ACK

59

TCP 101 (Cont’d)

 TCP slow-start and congestion avoidance

ACK

60

TCP 101 (Cont’d)

 TCP slow-start and congestion avoidance

ACK

61

TCP 101 (Cont’d)

 This (exponential growth) “slow start”
process continues until either:
 packet loss: after a brief recovery phase, you

enter a (linear growth) “congestion avoidance”
phase based on slow-start threshold found

 limit reached: slow-start threshold, or
maximum advertised receive window size

 all done: terminate connection and go home

TCP 201: Examples …

62

63

Tutorial: TCP 301

 There is a beautiful way to plot and
visualize the dynamics of TCP behaviour

 Called a “TCP Sequence Number Plot”

 Plot packet events (data and acks) as
points in 2-D space, with time on the
horizontal axis, and sequence number on
the vertical axis

 Example: Consider a 14-packet transfer

64

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

X

+
+

+

+
+
+

+

+
+
+

+
+

+

65

So What?

What can it tell you?

 Everything!!!

66

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

X

+
+

+

+
+
+

+

+
+
+

+
+

+

RTT

67

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

X

+
+

+

+
+
+

+

+
+
+

+
+

+

TCP
Seg.
Size

68

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

X

+
+

+

+
+
+

+

+
+
+

+
+

+

TCP Connection Duration

69

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

X

+
+

+

+
+
+

+

+
+
+

+
+

+

Num
Bytes
Sent

70

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

X

+
+

+

+
+
+

+

+
+
+

+
+

+

Bytes

Sec

71

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

X

+
+

+

+
+
+

+

+
+
+

+
+

+
Access

Network
Bandwidth

(Bytes/Sec)

72

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

X

+
+

+

+
+
+

+

+
+
+

+
+

+

Sender’s
Flow Control
Window Size

73

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

X

+
+

+

+
+
+

+

+
+
+

+
+

+

TCP
Slow
Start

74

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

X

+

+

+

+
+

+

+

Delayed ACK

75

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X
X

X

X

X

X

X
X

X
X

X

+
+

+

+
+
+

+

+ +
+

+
Packet
Loss

Duplicate
ACK

76

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X
X

X

X

X

X

X
X

X
X

X

+
+

+

+
+
+

+

+
+

+

X

+

Retransmit

Cumulative ACK

+

77

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X
X

X

X

X

X

X
X

X
X

X

+
+

+

+
+
+

+

+
+

+

X

+

RTO

+

78

TCP 301 (Cont’d)

What happens when a packet loss occurs?

Quiz Time...
 Consider a 14-packet Web document

 For simplicity, consider only a single packet loss

79

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

X

+
+

+

+
+
+

+

+
+
+

+
+

+

80

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

+
+

+

+
+
+

+

+
+

+
+

+

?

81

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

+
+

+

+
+
+

+

+
+

+
+

+

X +

82

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

X

+
+

+

+
+
+

+

+
+
+

+
+

+

83

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

+
+

+

+
+
+

+

+

+
+

+

?

84

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X
X

+
+

+

+
+
+

+

+

+ +

+
+

+

85

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

X

+
+

+

+
+
+

+

+
+
+

+
+

+

86

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X

X

X

X

X

X
X

X
X

X

X

+
+

+

+
+
+

+

+

+

?

87

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X

X

X

X

X

X
X

X
X

X

X

+
+

+

+
+
+

+

+ + + +

+

X

+

88

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X

X
X

X

X

X

X

X
X

X
X

X

X

+
+

+

+
+
+

+

+
+
+

+
+

+

89

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X +
?

90

Time

S
e
qN

um

X +

Key: X Data Packet
 + Ack Packet

X
X

X + + +
X

X

X +
+

+

X +
X +

X +

91

TCP 301 (Cont’d)

Main observation:
 “Not all packet losses are created equal”

 Losses early in the transfer have a huge
adverse impact on the transfer latency

 Losses near the end of the transfer always
cost at least a retransmit timeout

 Losses in the middle may or may not hurt,
depending on congestion window size at the
time of the loss

92

Congratulations!

 You are now a TCP expert!

