
TDTS04: Distributed Systems

Instructor: Niklas Carlsson

Email: niklas.carlsson@liu.se

Notes derived from “Distributed Systems:
Principles and Paradigms”, by Andrew S.

Tanenbaum and Maarten Van Steen, Pearson Int. Ed.

The slides are adapted and modified based on slides used by other
instructors, including slides used in previous years by Juha
Takkinen, as well as slides used by various colleagues from the
distributed systems and networks research community.

1

mailto:niklas.carlsson@liu.se

Goals

• Study concepts that build the foundations
of large-scale systems

• Learn about tradeoffs when building large-
scale systems

• Learn from case studies, example systems

• Get exposure to system building and (if
time) distributed systems research

2

Examples of distributed systems

• Web

• File-sharing

• Scientific computing

3

Distributed systems

• Hardware view

• Multiple independent but cooperating
resources

• Software view

• Single unified system

“A collection of independent computers that
appears to its users as a single coherent
system”

4

Distributed systems

“A collection of independent computers that
appears to its users as a single coherent
system”

• Benefits and Problems

• Benefits?

• Problems?

• Goals

• Sharing

• Transparency

• Scalability
5

Sharing

• Multiple users can share and access remote
resources

• Hardware, files, data, etc.

• Open standardized interface

• Separate policies from mechanisms

6

Transparency

• Hide the distributed nature of system from
users

• Several types:
• Location: Hide where a resource is located

• Migration: Resources can be moved

• Relocation: Resources can be moved while being
used

• Replication: Multiple copies of same resource
can exist

• Failure: Hide failures of remote resources

• …

7

Transparency in a Distributed System

Different forms of transparency in a distributed system.

Hide whether a (software) resource is in memory or

on disk
Persistence

Hide the failure and recovery of a resource Failure

Hide that a resource may be shared by several

competitive users
Concurrency

Hide that multiple copies of a resource exist Replication

Hide that a resource may be moved to another

location while in use
Relocation

Hide that a resource may move to another location Migration

Hide where a resource is located Location

Hide differences in data representation and how a

resource is accessed
Access

Description Transparency

8

Scalability

• Allow the system to become bigger

• Multiple dimensions:
• Size: Adding more resources and users

• Geographic: Dispersed across locations

• Administrative: Spanning multiple
administrative domains

9

Scalability

• Scalability problems appear as
performance problems

• Some common techniques:

– Divide and conquer

– Replication

– Distributed operation

– Service aggregation

– Asynchronous communication

10

Common Pitfalls

• The network is reliable

• The network is secure

• The network is homogenous

• The topology does not change

• Latency is zero

• Bandwidth is infinite

• Transport cost is zero

• There is one administrator

11

Distributed system architecture

• A distributed application runs across
multiple machines

• How to organize the various pieces of
the application?

• Where is the user interface,
computation, data?

• How do different pieces interact with
each other?

12

Architectures

• Centralized: Most functionality is in a
single machine

• Distributed: Functionality is spread across
symmetrical machines

• Hybrid: Combination of the two

13

Centralized architecture

• Client-server

• Client implements the user interface

• Server has most of the functionality

• Computation, data

• E.g.: Web

14

Centralized architectures

Figure 2-3. General interaction between a client and
a server.

15

Server design issues

Server organization

– Iterative

– Concurrent

• Multithreaded

• Fork (unix)

– Stateless or stateful

Client contact: End point (port)

– Well-known

– Dynamic: daemon; superserver (unix)

16

End point, general design issues

• Figure 3-11. (a) Client-to-server binding using a
daemon.

17

End point, general design issues

Figure 3-11. (b) Client-to-server binding using a
superserver.

18

Client-server architecture

• Application is vertically distributed

• Distribution along functionality

• Logically different component at
different place

19

Decentralized architectures

• Vertical distribution

• Horizontal distribution

• Peer-to-peer distribution

20

Component distribution

• Could have variations on component
distribution

• Different amount of functionality between
client-server

• Only UI at client

• UI+partial processing at client

• UI+processing at client, data at server

21

Server offloading

1.4

The difference between letting:

a) a server or

b) a client check forms as they are being filled 22

Multi-tiered servers

• Server may not be a single machine

• Multi-tiered architecture:

• Front-end

• Application server

• Database

23

Physical two-tired architectures

Alternative client-server organizations (a) – (e).

1-29

24

Multi-tiered architectures

An example of a server acting as a client.

1-30

25

Application layering

• The user-interface level
• The processing level
• The data level

26

Application layering

The general organization of an Internet search engine into
three different layers

1-28

27

Server clusters

• Replication of functionality across
machines

• Multiple front-ends, app servers,
databases

• Client requests are distributed among the
servers

• Load balancing

• Content-aware forwarding

28

Server clusters

Figure 3-12. The general organization of a
three-tiered server cluster.

29

Server clusters

Figure 3-13. The principle of TCP handoff.

30

Modern Architectures

An example of horizontal distribution of a Web service.

1-31

31

Decentralized architectures

• Horizontal distribution of application

• Each component is identical in
functionality

• Differ in the portion of data they operate
on

• E.g.: DNS, File-sharing, parallel
processing

32

Hierarchical architectures

• Tree of nodes

• Centralized architecture between parent
and children

• More scalable than a centralized
architecture

• Each node handles only part of the
network

33

Peer-to-peer systems

• Each component is symmetric in
functionality

• Peer: Combination of server-client

• How does a node find the other?

• No “well-known” centralized server

34

Overlay networks

• A logical network consisting of participant
components (processes/machines)

• Built on top of physical network

• Can be thought of as a graph

• Nodes are processes/machines, links are
communication channels (e.g., TCP
connections)

35

Types of peer-to-peer systems

• Unstructured: Built in a random manner

• Each node can end up with any sets of
neighbors, any part of application data

• E.g.: Gnutella, Kazaa

• Structured: Built in a deterministic
manner

• Each node has well-defined set of
neighbors, handles specific part of
application data

• E.g.: CAN, Chord, Pastry

36

Unstructured peer-to-peer architectures

• Each node has a list of neighbors to which
it is connected

• Communication to other nodes in the
network happens through neighbors

• Neighbors are discovered in a random
manner

• Exchange information with other nodes to
maintain neighbor lists

• Application data is randomly spread across
the nodes

• Flooding: To search for a specific item

37

Structured peer-to-peer architectures

• Nodes and data are organized
deterministically

• Distributed Hash Tables (DHT)

• Each node has a well-defined ID

• Each data item also has a key

• A data item resides in the node with
nearest key

• Each node has information about
neighbors in the ID space

• Searching for a data item:

• Routing through the DHT overlay

38

Hybrid architectures

• Combination of centralized and distributed
architectures

• Some parts of the system organized as
client-servers

• Other parts organized in decentralized
manner

39

Content distribution networks (CDNs)

• Provide localized content to users

• Decentralized set of content servers, may
have P2P relationship

• Client-Server relation to the users

• E.g.: Akamai

40

Collaborative distributed systems

• Work by user collaboration

• P2P in functionality

• Starting up is done in a client-server
manner

• E.g.: Bittorrent, Napster

41

