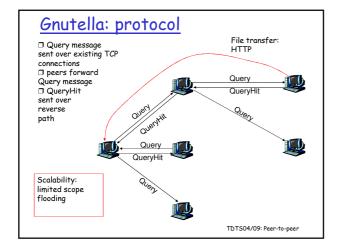


P2P: problems with centralized directory

- single point of failure
- performance bottleneck
- copyright infringement: "target" of lawsuit is obvious

file transfer is decentralized, but locating content is highly centralized

TDTS04/09: Peer-to-peer


Query flooding: Gnutella


- fully distributedno central server
- public domain protocol
- many Gnutella clients implementing protocol

overlay network: graph

- edge between peer X and Y if there's a TCP connection
- all active peers and edges form overlay net
- edge: virtual (not physical) link
- given peer typically connected with < 10 overlay neighbors

TDTS04/09: Peer-to-peer

Distributed Hash Table (DHT)

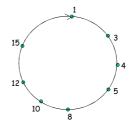
- □ DHT = distributed P2P database
- □ Database has (key, value) pairs;
 - o key: ss number; value: human name
 - o key: content type; value: IP address
- □ Peers query DB with key
 - DB returns values that match the key
- ☐ Peers can also insert (key, value) peers

TDTS04/09: Peer-to-peer

DHT Identifiers

- □ Assign integer identifier to each peer in range $[0,2^{n}-1].$
 - Each identifier can be represented by n bits.
- □ Require each key to be an integer in same range.
- □ To get integer keys, hash original key.
 - o eg, key = h("Led Zeppelin IV")
 - This is why they call it a distributed "hash" table

TDTS04/09: Peer-to-peer

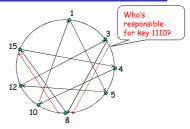

How to assign keys to peers?

- Central issue:
 - Assigning (key, value) pairs to peers.
- □ Rule: assign key to the peer that has the closest ID.
- Convention in lecture: closest is the immediate successor of the key.
- □ Ex: n=4; peers: 1,3,4,5,8,10,12,14;
 - o key = 13, then successor peer = 14
 - o key = 15, then successor peer = 1

TDTS04/09: Peer-to-peer

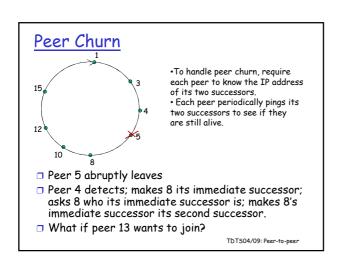
TDTS04/09: Peer-to-peer

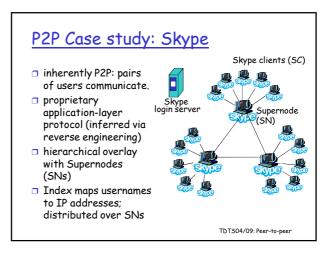
Circular DHT (1)

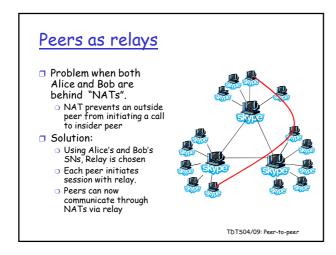


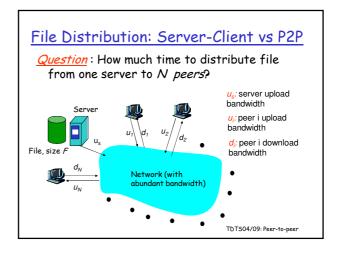
- □ Each peer *only* aware of immediate successor and predecessor.
- "Overlay network"

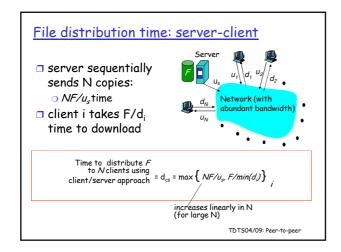
TDTS04/09: Peer-to-peer

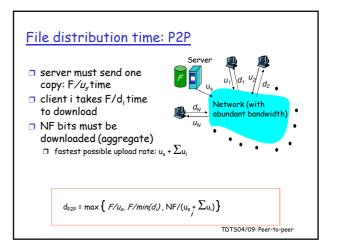

Circle DHT (2) 0001 O(N) messages Who's on avg to resolve key 1110 ? query, when there 0011 are N peers 1111 0100 1100 0101 Define closest 1010 as closest 1000

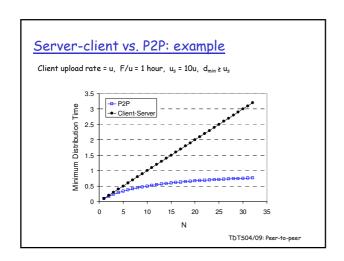

Circular DHT with Shortcuts

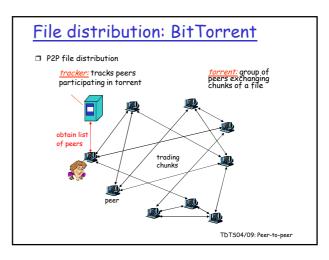


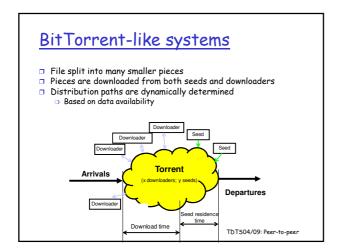

- Each peer keeps track of IP addresses of predecessor, successor, short cuts.
- Reduced from 6 to 2 messages.
- Possible to design shortcuts so O(log N) neighbors, O(log N) messages in query

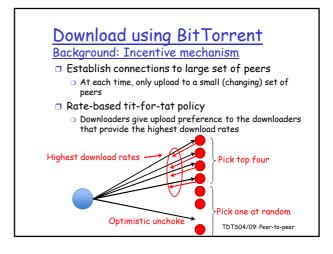

TDTS04/09: Peer-to-peer

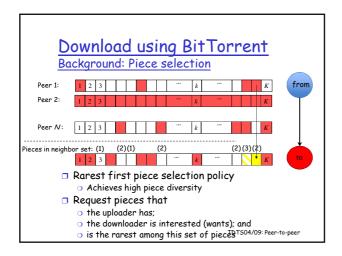


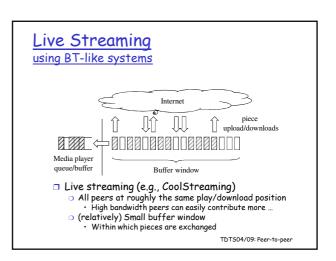












Peer-assisted VoD streaming Some research questions ...

- Can BitTorrent-like protocols provide scalable ondemand streaming?
- ☐ How sensitive is the performance to the application configuration parameters?
 - Piece selection policy
 - Peer selection policy
 - Upload/download bandwidth
- □ What is the user-perceived performance?
 - O Start-up delay
 - Probability of disrupted playback

ACM SIGMETRICS 2008; IFIP Networking 2007; IFIP Networking 2009
TDTS04/09: Peer-to-peer