Optical Network Design

Robert Sundberg D4
Oskar Svanell D4

Outline
- Introduction
- Optical components
- Lightpaths
- Lightpath topology design and routing wavelength assignment
- Connection management
- SONET/SDH
- Other transport techniques
- Performance & fault management
- Protection in SONET/SDH
- Protection in the Optical Layer
- Network design
- Long-haul & submarine networks
- Photonic packet switching
- Questions?

Introduction
- Historical overview
 - 1858 – First transatlantic telegraph cable
 - 1966 – “Optical wave guide”
 - 1988 – TAT8
 - 2002 – 150 000 km cable produced / year
- Transmission techniques
 - SDM
 - TDM
 - WDM
 - DWDM

Optical Components
- Optical Line Terminal (OLT)
- Optical Add/Drop Multiplexer (OADM)
- Optical Crossconnect (OXC)

Optical Components
- OEO converters
- Optical amplifiers (EDFA)

Lightpaths
- Circuit switched end-to-end channel
- Each lightpath is assigned a wavelength for each section
- The wavelength can be changed along the route
- Makes reuse of wavelengths possible
- Transparent connection
Lightpaths

- Circuit switched end-to-end channel
- Each lightpath is assigned a wavelength for each section
- The wavelength can be changed along the route
- Makes reuse of wavelengths possible
- Transparent connection

Lightpath topology design and Routing wavelength assignment

- Problems:
 1. Design a logical Topology – not covered
 2. Design a Lightpath Topology (i.e. Route Lightpaths)
 3. Assigning Wavelengths to routes

Example

LTD and RWA (cont.)

Definitions:

- s_d: Arrival rate for packets for s-d pair
- a_{ij}^{sd}: Fraction of traffic between s and d carried over link i-j
- T_{ij}^{sd}: Total traffic over link i-j
- Congestion is $C_{ij} = \max\{T_{ij}^{sd} - b_{ij}^{sd}\}$
- β_{ij}: maximum number of ports per router
- n^r: number of lightpaths in the network

Problem stated as a mathematical program:

Objective function: $\min \sum_{sd} C_{ij}^{sd}$
Flow conservation: $\sum_j a_{ij}^{sd} = \sum_i a_{ij}^{sd}$ for all i,j,s,d
Total flow on a logical link:
- $T_{ij}^{sd} = \sum_{sd} a_{ij}^{sd}$ for all i,j,s,d
Degree constraints:
- $\sum_j T_{ij}^{sd} \leq \beta_{ij}$ for all i,j,s,d
Nonnegativity and integer constraint:
- $T_{ij}^{sd}, \gamma_{ij}^{sd} \geq 0$ for all i,j,s,d; $b_{ij}^{sd} \in \{0,1\}$

Solving the mathematical problem:

- If the Objective function and the constraints are linear functions of the variables, then the problem is a Linear Program
- LTD is a Mixed Integer Linear Program
- LP-relaxation
- Feasible solutions
- Rounding

Routing Wavelength Assignment:
- Assigning wavelengths to lightpaths
- Can be seen as a graph coloring problem

Example
Connection management

- Long lightpath deployment time
- Connection remains active for a long time
- Goals:
 - Rapid connection setup
 - Dial-up bandwidth
 - Easy bandwidth trading

Connection management

- Distributed connection control:
 - Topology management
 - Route computation
 - Signaling protocol
 - Signaling network
 - Wavelength Routing Protocol (WaRP)
 - Cisco proprietary

SONET/SDH

- TDM streams
- Replaced nonsynchronous standards
- Physical Layer - Fiber and Coaxial(!)
- Transmission Rates
- Framing structure
- Multiplexing - Mapping
- Different Topologies:
 - Point-to-Point
 - Point-to-Multipoint
 - Hub network
 - Ring Network
- Distance terminology

Other transport techniques

- TDM mapped GbE, achieves ~ 10Gbit/s
- IP-GbE-Fiber can give short restoration
- CWDM - Coarse Wavelength Division Multiplexing
 - Larger spacing between wavelengths
- Metro DWDM
 - Each wavelength can transport 2.5Gbit/s or 10Gbit/s
 - Can transport SONET/SDH, ESCON, ATM, GbE etc
 - Number of wavelengths > 32 (Cisco equipment)

Performance & fault management

- Performance management
 - Monitor performance parameters
 - Ensure that performance goals are met

- Fault management
 - Detect problems in the network
 - Restore service in case of failures

Performance & fault management (cont.)

- Impact of transparency:
 - Fully transparent – flexible
 - Nontransparent – easy to engineer and manage

- Bit Error Rate (BER):
 - Parity Check
 - SONET/SDH overhead bytes
 - Digital wrapper overhead for the optical layer
 - Optical signal power / signal-to-noise ratio?
Performance & fault management (cont.)

Alarm management:
- Defect condition
- Forward defect indicator (FDI)
- Backward defect indicator (BDI)

LOL = Loss Of Light

Performance & fault management (cont.)

Alarm management:
- Defect condition
- Forward defect indicator (FDI)
- Backward defect indicator (BDI)
Protection in SONET/SDH

- Extensive management capabilities
- Different switching types
 - Path
 - Span
 - Ring
- Point-to-Point Protection
- Protection in Ring Networks
- UPSR, BLSR/4, BLSR/2

Protection in Ring Networks

- UPSR, BLSR/4, BLSR/2

Protection in the Optical Layer

- Can handle some failures without client layers involved
- Good for WDM networks
- Protects lightpaths
- Protection schemes:
 - 1+1 OMS Protection
 - 1:1 OMS Protection
 - OMS-DPRing
 - OMS-SPRing
 - 1:N Transponder Protection
 - 1+1 OCh Dedicated Protection
 - OCh-SPRing
 - OCh-Mesh Protection
- Best for today’s networks: Mesh Protection

Network design

- Technology considerations
 - SDM / TDM / WDM
 - Unidirectional vs Bidirectional WDM
- Equipment considerations
 - Arrayed vs separate components
 - Wavelength-specific vs wavelength tunable cards
 - All-optical vs O/E/O conversion
 - Different vendors

Network design (cont.)

- Topology design
 - PtP vs Ring vs Mesh
- Adaptation of client signals
 - Compliant wavelength
 - Non-compliant wavelength
 - Subrate Multiplexing

Long-haul & submarine networks

- Long-Haul (LH)
 - More wavelengths
 - Cheaper amplifiers and transponders
- Ultra Long-Haul (ULH)
 - Larger regenerator spacing

Regenerator spacing:
- Metro network: 50-75 km
- LH: 400-600 km
- ULH: 2500-4000 km
Long-haul & submarine networks

Submarine networks:
- Transcontinental ultra-long-haul link
- Repeaterless direct link
- Trunk-and-branch
 - Collapsed ring
- Festoon

Photonic Packet Switching

- Lightpaths, WaRIP – circuit switched
- IP, ATM – packet switched
- PPS – photonic packet switching
 - Difficult to realize
 - Very bulky
 - Very expensive

PPS, (cont.)

Why???
- Potential for higher capacities
- Improved optical bandwidth utilization
- Lower power consumption

IP over PPS:ed optical layer?
- Depends on statistical traffic properties

PPS (cont.)

Router functions:
- Routing
- Forwarding
- Switching
- Buffering
- Multiplexing
- Synchronization

PPS (cont.)

- Electrical buffering
 - registers, RAM
 - effective, cheap, flexible
- Optical buffering
 - 200 m fiber => 1 µs delay => 10 packets (1000b packets at 10 Gb/s)
 - very small buffers
 - fixed buffering time

Questions?