FLEP: Enabling Flexible and Efficient Preemption on GPUs

Bo Wu

Colorado School of Mines

bwu@mines.edu

Xu Liu

College of William and Mary
x110@cs.wm.edu

Xiaobo Zhou

University of Colorado, Colorado
Springs
xzhou@uccs.edu

Changjun Jiang

Tongji University, China

cjjiang@tongji.edu.cn

Abstract

GPUs are widely adopted in HPC and cloud computing plat-
forms to accelerate general-purpose workloads. However,
modern GPUs do not support flexible preemption, leading
to performance and priority inversion problems in multi-
tasking environments.

In this paper, we propose and develop FLEP, the first soft-
ware system that enables flexible kernel preemption and ker-
nel scheduling on commodity GPUs. The FLEP compilation
engine transforms the GPU program into preemptable forms,
which can be interrupted during execution and yield all or
part of the streaming multi-processors (SMs) in the GPU.
The FLEP runtime engine intercepts all kernel invocations
and determines which kernels and how those kernels should
be preempted and scheduled. Experimental results on two-
kernel co-runs demonstrate up to 24.2X speedup for high-
priority kernels and up to 27X improvement on normalized
average turnaround time for kernels with the same priority.
FLEP reduces the preemption latency by up to 41% com-
pared to yielding the whole GPU when the waiting kernels
only need several SMs. With all the benefits, FLEP only
introduces 2.5% runtime overhead, which is substantially
lower than the kernel slicing approach.

CCS Concepts o Software and its engineering — Multi-
processing / multiprogramming / multitasking

Keywords
scheduling

Preemption; Multi-tasking; GPGPU; Kernel

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions @acm.org.

ASPLOS °17, April 08-12, 2017, Xi’an, China

(© 2017 ACM. ISBN 978-1-4503-4465-4/17/04. .. $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037742

483

1. Introduction

Recent years have seen rapid adoption of GPUs in various
types of platforms because of the tremendous throughput
powered by massive parallelism. Applications offload com-
pute intensive workloads as kernels to the GPU for accel-
eration. Typically, one application cannot fully utilize the
GPU resources, and hence co-locating GPU applications on
the same machine may dramatically improve system effi-
ciency [9, 31, 34, 23, 25].

However, in such a multi-tasking environment, different
applications may compete for GPU access. It is critical to
coordinate the kernel executions in an effective and efficient
manner. Unfortunately, unlike CPUs, modern GPUs lack a
key capability for efficient and fair multi-tasking: preemp-
tion support. As such, high-priority kernels cannot be im-
mediately scheduled due to the GPU occupancy by a low-
priority kernel, which is known as priority inversion [13,
20]. Moreover, in a system with user-facing applications
and throughput-oriented applications co-located [11, 17, 9],
long-running kernels may block short-running kernels, seri-
ously degrading system’s fairness and responsiveness.

Nvidia has been improving the support for GPU sharing
in recent generations of GPUs. Starting from the Fermi ar-
chitecture [28], Nvidia GPUs can concurrently run up to 16
kernels from the same process. The Kepler GPU architecture
further enhances the concurrency support through Hyper-
Q [29], which enables simultaneous kernel launchs from
multiple threads. Furthermore, the introduction of Multi-
Process Service (MPS) [30] enables kernels from different
processes to share the same GPU. However, those architec-
ture features do not solve the problems caused by the lack
of preemption support. The key reason is that the streaming
multi-processors (SMs) of the GPU can only support up to
a certain number of active threads, while a kernel typically
launches hundreds of thousands of threads, much more than
what the SMs can host at one time. Once starting its execu-
tion, a kernel occupies the GPU until all its threads finish ex-

ecution. Hence, concurrent kernels can simultaneously share
the GPU only when their aggregate demand for hardware re-
sources is low, which is uncommon in practice.

Supporting preemption in GPU architectures is non-
trivial due to its dramatically different design philosophy
from CPUs. The large amount of active threads and siz-
able register files impose unique challenges for lightweight
preemption. Previous works [35, 32] proposed hardware ex-
tensions to enable preemptive programming on GPUs by ex-
ploiting the special semantics of GPU programs. However,
the NVIDIA Pascal GPU architecture is the only one that
claims to support preemption, though no publicly available
information shows the availability of software-level preemp-
tion control, let alone the evaluation of the preemption over-
head. Existing software solutions typically rely on kernel
slicing [41, 19, 5], where the compiler or programmer slices
the original kernel into many sub-kernels. The GPU can be
preempted at the end of each sub-kernel. These approaches
face a challenge of determining the granularity of the sub-
kernels. Too large granularity may lead to unsatisfactory
preemption latency, while too small granularity results in
non-trivial runtime overhead due to excessive kernel invoca-
tions. Moreover, the kernel slicing-based techniques always
preempt the whole GPU, but the waiting kernel may only
need multiple SMs. In this case, preempting just enough
SMs to run the waiting kernel substantially reduces preemp-
tion latency.

In this paper, our goal is to develop a software system
to enable flexible kernel preemption and kernel scheduling
for GPU applications in a transparent and efficient manner.
To this end, we have developed FLEP, the first compilation
and runtime software system that supports the following
features:

¢ Transparency: FLEP automatically transforms existing
GPU programs and does not require the user to integrate
the co-running kernels into the same GPU context.

¢ Flexibility: FLEP supports temporal preemption, which
yields the whole GPU, and spatial preemption, which
yields part of the SMs, depending on the configuration
of the waiting kernel. Moreover, FLEP can be configured
to preempt and schedule kernels with different goals.

¢ Efficiency: FLEP incurs marginal runtime overhead and
is hence practical for real-world usage.

The key components of FLEP are a compilation engine
and a runtime engine. The goal of the compilation engine
is to transform the input program so that: 1) the GPU ker-
nels can yield an arbitrary number of SMs; and 2) the CPU
code can receive orders from the runtime to preempt its
kernels. The major challenge is to circumvent the uncon-
trollable hardware thread scheduler and reduce the runtime
overhead incurred by the transformed code. To address it,
FLEP features a novel way to use persistent thread blocks
with SM awareness, which can yield a specific number of

484

SMs informed by the CPU and control the task granularity
to amortize communication overhead.

The FLEP runtime aims at determining and enforcing
the optimal kernel schedules through preemption support. It
predicts the duration of kernel invocations based on plug-
in performance models, tracks the kernels’ execution status,
and decides whether to preempt the running kernel and the
order to schedule waiting kernels given a scheduling policy.
We explore two scheduling policies with different goals to
show the FLEP’s flexibility and efficiency in controlling
runtime overhead.

The primary contributions of this work are as follows:

e We propose compilation techniques to transform GPU
programs to enable both temporal and spatial preemption
for the first time.

e We present a runtime engine with two scheduling policies
to determine kernel preemption and kernel scheduling to
achieve different goals.

e We implement a prototype system, FLEP, which consists
of the offline and online components to enable flexible
and efficient GPU kernel preemption and scheduling.

® We evaluate FLEP on eight benchmarks covering multi-
ple domains. The experiments on 28 co-running bench-
mark pairs demonstrate up to 24.2X speedup for high-
priority kernels. For 28 pairs of co-running benchmarks
with the same priority, FLEP improves the average nor-
malized turnaround time, which represents average re-
sponsiveness, by 8.1X on average. When fairness is the
major goal, FLEP demonstrates near-optimal weighted
fairness with well controlled performance degradation.
For a set of three-kernel co-runs, FLEP delivers up to
20.2X improvement on average normalized turnaround
time, but kernel reordering, a common approach to
manage kernel co-runs, only yields 2.3% improvement.
FLEP’s flexible spatial preemption reduces the preemp-
tion overhead by up to 41% compared to all-SM pre-
emption when the waiting kernels do not launch enough
threads to occupy the whole GPU. With all the benefits,
FLEP only introduces around 2.5% runtime overhead,
which is much lower than the kernel slicing approach.

2. Background and Motivation

In this section, we provide the background on the basic GPU
program execution model and the special features of the
GPU hardware thread scheduler, which is necessary to un-
derstand the proposed techniques. We focus on the Nvidia
GPUs and use the CUDA terminologies, but the other widely
used GPU programming model, OpenCL [3], is very sim-
ilar. We then motivate this research by exposing the prob-
lems of lacking flexible preemption support. Based on the
co-running results of a set of benchmarks, we show the pri-
ority inversion problem and the potential to improve average
program responsiveness.

Figure 1: Slowdown of high-priority kernels.

2.1 GPU Program Execution Model

The GPU, as a massively parallel compute engine, has thou-
sands of streaming processors (SP). Hundreds of them com-
pose a streaming multi-processor (SM), which can concur-
rently execute up to a certain number of threads (e.g. 2048 in
the Nvidia Kepler architecture). When a kernel is launched,
the GPU creates a large number of threads, which form
many thread blocks. A thread block is also called a coop-
erative thread array (CTA), in which the threads can com-
municate through on-chip shared memory. All the CTAs,
once launched, are managed by a hardware scheduler. When
an SM has sufficient hardware resources (e.g., registers or
shared memory), the scheduler dispatches a CTA to it. A
dispatched CTA is called an active CTA, whose threads are
grouped into warps, the basic unit to be scheduled by the
warp scheduler for SIMD execution on the SPs. Note that
once a kernel starts execution, it blocks all other kernels until
all of its CTAs are scheduled. In other words, modern GPUs
do not support preemption.

GPUs are typically used together with CPUs to form a
heterogeneous system. Each process running on the CPU can
leverage the GPU for acceleration by following several steps.
The CPU initializes the data and allocates space in the GPU
device memory. The CPU transfers data to the GPU memory.
The CPU invokes the GPU kernel to process the transferred
data. Finally, the GPU sends the computed results back to
the CPU memory (i.e., the host memory). All the operations
on the GPU, including the data allocation, data transfer, and
kernel invocation, are through sending commands. A GPU
may support multiple streams through which the commands
can be sent to the GPU. The commands in the same stream
are executed in FIFO order, while commands in different
streams can be executed in parallel.

In early GPUs, the streams are mainly used for overlap-
ping data transfer and kernel execution. Starting from the
Kepler architecture, Nvidia GPUs support concurrent exe-
cution of kernels from different processes using MPS. Each
MPS instance (i.e., an independent GPU program) is auto-
matically allocated a distinct stream. If the kernel command
from one stream cannot fully utilize the GPU, the co-running
kernels from a different stream can use the remaining re-
sources.

485

offline phase online phase

kernel performance

preemption

modeling decision engine

program
code

e T

preemption-enabling
compilation

Figure 3: Overview of the FLEP framework.

2.2 Demand for Flexible Preemption

The non-preemption feature of GPUs has two major prob-
lems. First, the kernel of a high-priority process has to wait
even if the GPU is running a kernel from a low-priority
process, causing the well-known priority inversion prob-
lem [13, 20]. Second, a short-running kernel may have to
wait until a long-running kernel finishes, which significantly
degrades overall performance and fairness. To illustrate how
serious the problem is, we co-run 28 application pairs. For
each pair of programs denoted as A_B, we run program A
on a small input and B on a large input. We invoke A’s ker-
nel immediately after B’s kernel is launched on the GPU.
Figure 1 shows the slowdown of A’s kernel because of the
waiting for B’s kernel to finish. The performance degrada-
tion due to the waiting is up to 32.6X. We will detail the
benchmarks and experiment setting in Section 6.

The results motivate temporal preemption, which forces
the running kernel to yield the GPU, such that a high priority
or short-running kernel can start execution quickly, depicted
by Figure 2. Existing software-based solutions to enabling
temporal preemption on GPUs are all based on kernel slic-
ing. They require the programmer or leverage a compiler to
slice the original kernel into many sub-kernels, each process-
ing part of the data input. One complexity of using kernel
slicing is to determine the optimal granularity. On the one
hand, too coarse-grained slicing (i.e., one sub-kernel pro-
cesses one large portion of the input) may not show enough
response time improvement. On the other hand, too fine-
grained slicing introduces non-trivial overhead. For exam-
ple, the Kepler GPU supports concurrent execution of 120
active CTAs of size 256, so we slice the kernel such that
each sub-kernel launches 120 CTAs. As a result, we observe
over 10% overhead for several benchmarks (details in Sec-
tion 6). Note that this overhead exists even if the kernel is
never preempted.

Moreover, a high-end GPU typically has more than 10
SMs, but current solutions yield all the SMs for preemption,
while the waiting kernel may only need several SMs. There-
fore, an ideal solution should also support spatial preemp-
tion, which asks the running kernel to only yield part of the
SMs, as depicted in Figure 2 (b). The major advantage of
spatial preemption is to reduce preemption overhead, which
is very important when a kernel may be preempted many

—— e e e~

temporal preemption

temporal preemption

spatial preemption

o SEEENEER - SEEENEEE - SN
sM 1: SR B sM 1: SIS S S ' SR AR
time time time
(a) (b)

Figure 2: The GPU has two SMs, each of which can support two concurrent CTAs. The blocks in blue represent CTAs from the
kernel being preempted (K1). The blocks in red represent preemption overhead. The blocks in green represent the CTAs from
the preempting kernel (K2). Figure (a) demonstrates the idea of temporal preemption. Kernel k1 yields the whole GPU, which
incurs some overhead. K2’s four CTAs fully occupy the GPU, whose execution is followed by some preemption overhead
and the resumed execution of K1. In (b), the left-hand sub-figure demonstrates temporal preemption, when k2 only needs one
SM, but both SMs are preempted. The overhead on SM 1 is substantial, as it does not have to be preempted. The right-hand
sub-figure demonstrates the idea of spatial preemption, in which only one SM is preempted.

times by micro kernels. Such a scenario is common in cloud
computing platforms, where the GPU may need to process
a large number of short queries from user-facing interactive
applications.

3. Overview of FLEP

The goal of FLEP is to enable flexible preemption and de-
termine during runtime which kernels and how these kernels
should be preempted. Specifically, FLEP handles two use
scenarios. First, the CPU processes with GPU acceleration
have different priorities. FLEP assigns the GPU invocations
the same priority as their parent processes have. The ker-
nel invocations of higher priority always preempt those of
lower priority. Second, when all active kernels (the running
kernel and those that are ready to run) have the same prior-
ity, FLEP uses a performance model to determine whether
the running kernel should be preempted and which kernel
should be scheduled next.

Figure 3 shows the overview of FLEP. The framework
consists of an online phase and an offline phase. In the of-
fline phase, FLEP completes two tasks. The first task is to
build for each kernel a performance model to be used in the
online phase to determine the preemption and scheduling or-
der of the kernels with the same priority. The second task is
to automatically compile the GPU program to be preempt-
able. The kernel invocation statement on the CPU side is
transformed such that once it is executed, the kernel invo-
cation command, together with its parameters, is intercepted
by FLEP’s runtime, which determines when to schedule this
kernel. The kernel code is also transformed so that it can be
notified by its host CPU code to yield all or part of the SMs.

The online phase also has two tasks. The first task is
kernel duration prediction and kernel execution logging. It
uses the performance model to predict the execution time of
each intercepted kernel invocation. As a kernel runs, FLEP
records its elapsed time and update the remaining execu-
tion time. The second task is making kernel preemption and
scheduling decisions. FLEP manages kernels buffered in pri-
ority queues, the number of which is equal to the number

486

of distinct priorities of the intercepted kernel invocations.
All kernels with the same priority are buffered in the same
queue. Whenever a new kernel arrives or a kernel finishes
processing, FLEP determines whether to preempt the run-
ning kernel, if there is one, and the next kernel to schedule.

In the next two sections, we describe the design and
implementation details of the two phases.

4. Offline Phase

In this section, we present the compilation engine design and
the performance modeling methodology for GPU kernels.

4.1 Compiler-based Program Transformation

GPU Kernel Transformation The goal of the GPU ker-
nel transformation is to make the GPU kernel execution pre-
emptable. Specifically, the CPU can interrupt the GPU ker-
nel’s execution for other kernels to occupy the GPU, and
resume the kernel’s execution later to finish the remaining
tasks. This is challenging due to the way GPU schedules
threads. A kernel launch typically launches a large number
of CTAs, which are buffered in a FIFO queue managed by
a hardware thread scheduler. That means once the scheduler
distributes the first CTA of a kernel to an SM, no CTAs from
other kernels have a chance to be scheduled until all CTAs
from that kernel are dispatched.

The technique, persistent threads [16], limits the number
of launched CTAs to the maximum the GPU can simulta-
neously host. If we view the computation completed by a
CTA in the original kernel as a task, persistent threads breaks
the 1-to-1 mapping between tasks and CTAs, and instead
assigns more tasks to a CTA. The FLEP compiler lever-
ages this idea to enable a naive form of preemptable ker-
nels, as shown in Figure 4 (a). Instead of launching N CTAs
as in the original kernel configuration, FLEP configures the
kernel to only launch num_SMs x max_CT As_per_SM
CTAs, where num_SM s is the number of SMs in the GPU
and max_CT As_per_S M is the maximum number of active
CTAs an SM can host. The value for max_CT As_per_SM
depends on the hardware resource usage of a CTA, including

kernel_temporal_preemption(
.. //original parameters
volatile bool *temp_P)

{
while(1) {
if("temp_P == true) return;

if((task = pull_task() == NULL)
return;

process(task);

@

kernel_temporal_preemption_enhanced(
.. //original parameters
volatile unsigned int *temp_P,
unsigned int L)

{
while(1) {
if("temp_P==true) return;
for(int i=0; i<L; ++i) {
if((task = pull_task() == NULL)
return;

process(task); }

(0)

kernel_spatial_preemption(
.. //original parameters
volatile unsigned int *spa_P,
unsigned int L)

{
while(1) {
if(hostSM_ID < *spa_P) return;
for(int i=0; i<L; ++i) {
if((task = pull_task() == NULL)
return;

process(task); }

()

Figure 4: The three versions of transformed kernels in pseudocode. Figure (a) shows how to enable temporal preemption based
on persistent threads. A CTA should quit execution once it finds out the value pointed by temp_P is changed to 1 by the CPU.
Figure (b) shows how to amortize the overhead of the access to temp_P by processing L tasks. Figure (c) shows how to enable
spatial preemption through retrieving the host SM IDs for each CTA.

registers, shared memory, and number of threads, which are
either given during runtime or can be derived through a lin-
ear scan of the compiled kernel code. It is hence guaranteed
that all launched CTAs are active. When a CTA starts execu-
tion, it enters a loop, each iteration of which tries to grab a
new task to process. A task here refers to the computations
that should be done by a CTA in the original kernel. To en-
able preemption, we introduce a variable, temp_P, which
can be read and updated by both the CPU and the GPU.
On Nvidia GPUs, such variables can be allocated in pinned
memory, a special non-pageable memory in the host mem-
ory space. When the CPU decides to preempt this kernel, it
sets temp_P to be true. At the beginning of next iteration of
the while loop, the kernel code checks the value of temp_P,
and quits execution if it is true. Hence, all SMs are released
and the CTAs from the waiting kernel can be scheduled.

This basic transformation enables temporal preemption,
in which the kernel yields all SMs when temp_P is set to
true. But it may introduce non-trivial runtime overhead. The
major source comes from the access to the variable temp_P
allocated in the host memory in each iteration. To reduce
the overhead, we further transform the kernel to the form in
Figure 4 (b). In this new form, the variable tmp_P is checked
once when the CTA processes L tasks. The overhead is thus
amortized to L tasks, and hence we name L the amortizing
factor. In this work, we always include this optimization
for kernel transformation. FLEP can automatically find the
smallest value for L through offline tuning (trying different
values from small to large) such that the runtime overhead
introduced by the transformation is less than 4%.

As explained in Section 2, it is oftentimes not necessary to
yield all the SMs for preemption, as the waiting kernel may
only launch a small number of CTAs. In this case, we only
need to preempt just enough SMs to host those CTAs. To
enable such spatial preemption, FLEP transforms the target
kernel to the form shown in Figure 4 (c). The key technique
is to retrieve the ID of the host SM for each active CTA. The
variable spa_P shared between the CPU and the GPU now

487

Cause: kernel finishes execution

Action: signal runtime
about kernel finish

Cause: encounter kernel
invocation

Cause: receive scheduling
signal from runtime
Action: schedule

kernel to GPU
Cause: receive preemptiol
signal from runtim

Action: notify runtime
about new kernel invocation

Action: preempt kernel execution

Figure 5: State machine for the transformed CPU code.

contains two kinds of information. First, a non-zero value
indicates that the kernel should be preempted. Second, the
value guides the kernel to yield just part of the SMs. All the
CTAs, which run on SMs of ID smaller than spa_P, should
quit execution; All the other CTAs keep running until all
tasks of the victim kernel are processed. Spatial preemp-
tion is equivalent to temporal preemption if spa_P’s value is
larger than or equal to the number of SMs in the GPU.

Since the transformation treats a CTA as a worker, all
threads in the same CTA should be synchronized to process
the same task or yield the host SM. The transformed kernel
uses a global variable to track the number of finished tasks,
which is updated through expensive atomic operations. For-
tunately, a CTA only needs to access this variable once when
it tries to grab a new task to process. Hence, one optimiza-
tion is to just use one thread (e.g., the first thread) in each
CTA to read the value for temp_P or spa_P and pull tasks.
The information is then stored in shared memory, followed
by a synchronization inside the CTA, which is then visible to
all the threads in the same CTA. The host SM ID can be re-
trieved extremely fast on Nvidia GPUs, as a register named
%smid stores the ID.

CPU Code Transformation The FLEP compiler trans-
forms the CPU code to be preemption-aware, meaning that
1) the kernel invocations should be managed by the run-
time and 2) the runtime can signal the CPU to preempt its

launched GPU kernel. In the original program, when the
CPU invokes a kernel, the GPU driver creates a bunch of
CTAs, which wait in a queue to be scheduled to SMs. As
explained in Section 2, once the CTAs are managed by the
hardware scheduler, we can no longer control the schedul-
ing order. In this work, the transformed CPU code notifies
the FLEP runtime for kernel invocations and leaves the ker-
nel scheduling decisions to the runtime. Recall that the FLEP
compiler transforms the GPU kernels in a way that they can
only be preempted by their host CPU programs, not the run-
time. Hence, the FLEP compiler transforms the CPU code,
such that it can receive preemption signals from the runtime,
and preempts its running kernels.

Figure 5 shows the state machine to demonstrate the func-
tionality of the transformed CPU code. The CPU execution
can be in one of the three states: S1 (CPU code execution),
52 (waiting for scheduling decisions), and S3 (waiting for
GPU execution). When no GPU kernels are active, the CPU
is in S1, preparing data for the GPU or processing data
transferred back from the GPU. When the CPU encounters a
kernel invocation statement, it sends the kernel’s information
(i.e., kernel’s name and configuration parameters) to the run-
time without launching the kernel, and enters the S2 state. If
the runtime decides to schedule this kernel to the GPU, it sig-
nals the CPU to launch the kernel. The CPU then enters state
53, meaning that the GPU is executing its kernel. There are
two out-going edges from S3. If the kernel finishes execu-
tion, the state transitions back to S1 for the CPU to process
the results. If the CPU receives a preemption signal from
the runtime, it preempts the kernel execution by setting the
shared variable described in the GPU kernel transformation
to the the appropriate value. The state transitions to S2 and
the CPU waits for its turn to use the GPU to finish the re-
maining tasks.

Compilation Infrastructure We implement the FLEP com-
piler as a source-to-source compiler using the Clang LibTool-
ing library (version 3.9) [1], which provides a CUDA fron-
tend and a set of APIs to easily manipulate the abstract syn-
tax tree. The transformation only needs one simple pass to
transform both CPU and GPU code. FLEP then invokes the
NVCC compiler provided by Nvidia to compile the trans-
formed program to generate the binary. We did not choose
to implement the techniques directly in Clang because its
backend does not support the %smid register yet.

4.2 Performance Modeling for Kernels and
Preemption Overhead Estimation

FLEP’s preemption capability can help improve the sys-
tem’s average responsiveness by preempting long-running
kernels to reduce the waiting time for short-running kernels.
To evaluate this capability, FLEP needs to predict the dura-
tion of kernel executions. There are many sophasicated per-
formance models for GPU kernels which may need to access
performance counters or are built on complicated analytical

488

analysis. Since the performance model will be used online
by FLEP, we follow the performance modeling methodology
used by Chen et al. [9] and build lightweight kernel-specific
models through linear regression. The model only needs four
parameters: grid size, CTA size, input size, and the size of
used shared memory, which can be easily obtained given
a kernel invocation. For each kernel, we use 100 randomly
generated data inputs and L2-norm penalty for training the
linear regression model. The inputs are the features and the
output is the duration of the kernel.

Note that in this work, we do not aim at building the most
accurate performance models. Our goal is to use reason-
able and lightweight models to evaluate FLEP’s capability
of making preemption and scheduling decisions. We make
FLEP highly flexible, which can easily integrate other per-
formance models. In Section 6, we show that the linear re-
gression model, despite its simplicity, helps FLEP substan-
tially improve the performance of a set of co-running bench-
marks.

Other than kernel duration, the preemption overhead also
plays an important role for making online scheduling deci-
sions. Instead of building a model to predict the preemption
overhead, we profile the overhead of 50 runs with different
inputs and use the average as an estimate of the online pre-
emption overhead.

5. Online Phase

In this section, we describe how FLEP manages the ker-
nel invocations and track their execution status. We also ex-
plain how FLEP makes preemption and scheduling decisions
given kernels with the same priority and those with different
priorities.

5.1 Duration Prediction and Execution Logging

When a kernel is invoked by the CPU, the kernel’s name, pri-
ority and features for performance modeling (as explained in
Section 4) are sent to FLEP’s runtime. FLEP feeds the fea-
tures into the kernel-specific performance model to predict
the invocation’s duration. Meanwhile, FLEP creates a triplet
to record the kernel’s execution status, which contains three
fields: predicted duration (7¢), waiting time (73,), and the
predicted remaining execution time (7).). Whenever a kernel
is active but not running on the GPU, its T}, accumulates.
T,’s initial value is the same as 7. Its value decreases when
it runs on the the GPU. T, once initialized, is never updated.
T, and T;. are updated only in the following three cases: 1) a
new kernel arrives; 2) a kernel is preempted; and 3) a kernel
finishes execution. The recorded timing information is criti-
cal to make scheduling decisions, as will be discussed in the
remainder of this section.

5.2 Preemption and Scheduling Decisions

We design and implement two scheduling policies with dif-
ferent preferences. FLEP can be configured to use either one.

// Executed when a new kernel (Kn) is invoked

if (kernel Kr is running on GPU) {

if (Kr.priority < Kn.priority) {
Preempt(Kr)
Enqueue(Kr.priority)
Schedule_to_GPU(Kn) }

else if (Kr.priority > Kn.priority) {
Enqueue(Kn, Kn.priority) }

else //Kr.priority == Kn.priority {
Schedule_for_queue(Kn.priority)

oINIaRON2O

}else{
Enqueue(Kn, Kn.priority)
Schedule_for_queue(Kn.priority)

//Executed when one kernel is finished

//find the non-empty queue of highest priority hp
. Schedule_for_queue(hp)

: //Definition of the key scheduling function
. schedule_for_queue(p){

//find the kernel Ks in the queue of priority level p
//with smallest Tr
if (kernel Kr is running on GPU){
if(Kr.Tr > Ks.Tr + preemption_overhead) {
Preempt(Kr)
Schedule_to_GPU(Ks) }
} else {
Schedule_to_GPU(Ks) }

\34: }

Figure 6: Online algorithm to make preemption and schedul-
ing decisions.

5.2.1 Highest priority first scheduling with
performance degradation minimization (HPF)

Figure 6 shows the algorithm of HPF’ design. HPF makes
new scheduling decisions in two cases. Case 1: A new ker-
nel (K,,) is invoked (lines 0-15). HPF first checks whether a
kernel K, is running on the GPU. If the new kernel’s priority
is higher, HPF preempts K, and schedule K,,. Since HPF al-
ways preempts the running kernel if any higher-priority ker-
nels are waiting, it knows K, is the only kernel whose pri-
ority is higher than that of K,.. If K,,’s priority is lower than
K,’s, HPF enqueues K, to the appropriate queue accord-
ing to its priority. When the two kernels’ priorities are equal,
HPF invokes a function, Schedule_for_queue, to determine
the scheduling order of kernels with the same priority. We
discuss this function later. Case 2: A Kernel is finished (lines
17-20). HPF identifies the first non-empty queue with the
highest priority and invokes Schedule_for_queue to sched-
ule kernels in that queue.

To make decisions for kernels with the same priority,
HPF concerns average performance degradation. Given a
kernel K, its performance degradation is defined as (75 +
TX)/TE, where TX is the overall waiting time when the
kernel is finished. The goal is to minimize the sum of
the performance degradation for all N kernels defined as
va(Tu{(+ TXi)/TX: Muthukrishnan et al. [26] proved
that shortest remaining time scheduling algorithm yields av-
erage performance degradation no worse than twice that of
the optimal schedule. Hence, we implement shortest remain-
ing time scheduling in the function Schedule_for_queue as
shown by lines 22-34. HPF first identifies the kernel K,
whose T, (remaining execution time) is the shortest and

489

schedule it to the GPU. To speed up this operation, when a
kernel is enqueued, the runtime makes sure that the kernels
are ordered based on their 7;. values. Hence, K is always
at the beginning of the queue. If a kernel, K, is running on
the GPU, HPF needs to determine whether to preempt it by
comparing K,’s remaining execution time with the sum of
K ’s remaining time and the preemption overhead. HPF pre-
empts K, only if K,.’s remaining execution time is larger.
We involve the preemption overhead to make the preemption
decision, because it influences all the other kernels’ waiting
time.

5.2.2 Fairness first scheduling under an overhead
constraint (FFS)

FFS tries to ensure that a kernel gets its share of the GPU
proportional to its priority. To achieve this goal, FFS im-
plements weighted round-robin scheduling. In each round, a
kernel ¢ runs on the GPU for an epoch of length 7' x W,
where W; is the weight assigned to the kernel’s priority
and 7' is a parameter to control context switch frequency.
Since FLEP enables preemption through compiler transfor-
mation, too frequent context switching (i.e. a small value for
T introduces excessive preemption overhead. To determine
T, FFS introduces a configurable threshold maxz_overhead,
which represents the maximum performance degradation the
user would like to sacrifice for fairness. FFS calculates the
minimum value for 7' such that the following constraint
holds.

>, Oi
T Wi

where O; represents the preemption overhead to preempt
kernel i.

< max_overhead

6. Evaluation
6.1 Methodology

Benchmarks We select 8 benchmarks shown in Table 1
from three benchmark suites, including SHOC [10], Ro-
dinia [6], and CUDA SDK [27]. The benchmarks cover mul-
tiple domains, such as machine learning, scientific comput-
ing, and dynamic programming. We give a brief description
of the benchmarks. CFD is a finite volume solver for fluid
dynamics applications. NN computes the 10 nearest neigh-
bor result for a given point. PF finds the path on a 2-D grid
using dynamic programming. PL estimates the location of a
target object based on a Bayesian framework. MD computes
the forces among a large number of atoms. SPMV multi-
plies a sparse matrix with a dense vector. MM multiplies two
dense square matrices. VA adds two dense vectors.

We make sure the selected benchmarks have dramatically
different characteristics. The kernel size varies from 6 lines
of code to 130 lines of code. This is important to evalu-
ate the efficiency of FLEP. For example, the benchmark VA
only has 6 lines of code in the kernel without a loop struc-

Table 1: Benchmarks and Kernel Execution Time on Three Inputs

Benchmark Source Description Lines of code in kernel exe. time (large) exe. time (small) exe. time (trivial) amortizing factor
CFD Rodinia [6] finite volume solver 130 11106 (us) 521 (us) 81 (us) 1

NN Rodinia [6] nearest neighbor 10 15775 (us) 728 (us) 55 (us) 100

PF Rodinia [6] dynamic programming 81 7364 (us) 811 (us) 57 (us) 150

PL Rodinia [6] Bayesian framework 24 5419 (us) 952 (us) 83 (us) 100

MD SHOC [10] molecular dynamics 61 15905 (us) 938 (us) 90 (us) 1

SPMV SHOC [10] sparse matrix vector multi. 23 5840 (us) 484 (us) 68 (us) 2

MM CUDA SDK [27] dense matrix multiplication 74 2579 (us) 1499 (us) 73 (us) 2

VA CUDA SDK [27] vector addition 6 30634 (us) 720 (us) 49(us) 200

ture. Hence, controlling the runtime overhead introduced by
FLEP is a critical task. Through offline tuning as explained
in Section 4, we choose different amortizing factors for dif-
ferent benchmarks, as shown in the last column of Table 1.
For each benchmark, we use three inputs (large, small, and
trivial) to evaluate different preemption scenarios. Table 1
lists the execution times of the benchmarks on the inputs,
when each benchmark runs alone on the GPU. Both large
and small inputs need all SMs on the GPU for optimal per-
formance. The small inputs only need part of SMs to eval-
uate spatial preemption. For example, if the GPU has 15
SMs, which can simultaneously host 120 active CTAs, the
trivial input may only create 40 CTAs and only needs 5 SMs.

Evaluation Strategy for Temporal Preemption We eval-
vate FLEP with all benchmarks using the large and small
input sets in two scenarios. In the first scenario, we emulate
a multi-tasking environment, in which applications have dif-
ferent priorities. More specifically, we evaluate pairs of co-
running applications in the form of A_B, where benchmark
A runs the large input with a high priority, and B takes the
small input with a low priority. To evaluate FLEP’s effective-
ness to avoid priority inversion with the HPF policy, we use
as the metric the speedup with preemption support provided
by FLEP over the original turnaround time (i.e., waiting time
plus execution time) for the high priority benchmarks. To
evaluate the FFS policy, we continuously monitor the GPU
share percentage of the two kernels and throughput degrada-
tion.

In the second scenario, we assign the co-running bench-
marks the same priority. Based on the performance model
and runtime decision engine, FLEP determines whether
to preempt the running kernel and which kernel to run
next. We use System Throughput (STP) and Average Nor-
malized Turnaround Time (ANTT) as metrics defined by
Eyerman [14] for evaluating the performance of multi-
programmed applications. STP shows the overall system
throughput, and ANTT shows average responsiveness. Note
that unlike most previous studies, in all the experiments we
leverage MPS to co-run the applications in different GPU
contexts instead of integrating the kernels into the same pro-
gram. Unless noted otherwise, we use MPS-based execu-

490

tions as the baseline for all co-run experiments. We average
the results from 10 repetitive runs.

Evaluation Strategy for Spatial Preemption For each
benchmark pair A_B, we run A on the large input and B
on the trivial input with a higher priority. We focus on pre-
emption overhead to show the advantage of only yielding
part of the SMs with the other SMs keeping running A’s
CTAs. We run benchmarks A and B using MPS to get the
aggregate kernel execution time T5,.,. For the co-run with
preemption support, we first launch the kernel of A fol-
lowed by the kernel of B. We record Trrrp as the time
period between the launch of A’s kernel and the finish of
both A and B’s kernels. The preemption overhead is defined
as (Trrep — Torg)/Torg.

Machine Environment The experiments are carried out
on a machine equipped with one Intel Xeon E3-1286 V3
CPU (3.70 GHz and 4 cores) and an Nvidia K40 GPU with
15 SMs. The host memory is 128 GB, and the GPU device
memory is 12 GB. The OS is Ubuntu Linux 14.04 with ker-
nel version 3.13.0. The CUDA toolkit version is 7.0. In all
experiments, we enable MPS for benchmark co-runs on the
GPU.

6.2 Prediction Accuracy for Kernel Duration

Figure 7 shows the average prediction errors when the
benchmarks run large and small inputs. We observe rea-
sonably accurate results, an average of 6.9% deviation from
the real execution time. The accuracy varies from 2.7% to
12.2% due to the dramatically different runtime behaviors
of the benchmarks. NN, MM, and VA have regular paral-
lelism and memory access patterns. The degree of control
and divergence is minimal and hence the difference between
inputs mainly lies in data size. For example, VA (vector ad-
dition) has perfect spatial locality, which results in perfect
memory coalescing and predictable memory performance.
On the contrary, the other benchmarks’ runtime behaviors
largely depend on the input features. For example, in MD the
memory access pattern is determined by the neighborhood
relations among the simulated atoms. The training data may
not be representative enough for the data used in the experi-
ments. SPMV is even more difficult to predict, as its control

Prediction Error

CFD NN PF PL MD SPMV MM VA Average

Figure 7: Kernel duration prediction errors.

Figure 8: Performance improvement for high-priority ker-
nels over their execution in MPS-based co-runs.

and memory access patterns are sensitive to the non-zero el-
ement distribution in the input matrix. Nevertheless, as later
sections will show, the prediction helps FLEP make pre-
emption decisions, which dramatically improves the overall
performance and responsiveness.

6.3 Results on Temporal Preemption
6.3.1 Two-kernel co-runs with HPF scheduling

We select CFD, NN, PF, and PL to run on the large in-
puts as low-priority workloads. We pair each of them with
each other benchmark running on the small inputs as high-
priority workloads. For each co-run pair, we launch the high-
priority workloads immediately after the low-priority work-
load starts to run. Recall that in the default co-runs based
on MPS, the low-priority workload creates a large number
of CTAs, whose execution blocks the whole GPU until fin-
ished. FLEP with the HPF scheduling policy, however, pre-
empts the low-priority running kernel, if there is any wait-
ing kernels with higher priority. Figure 8 shows substantial
performance improvements for the high-priority workloads.
We observe on average 10.1X speedup, with up to 24.2X im-
provement for SPMV when it coruns with NN. The smallest
speedup is 4.1X for MM with PF as co-runner. The large
variance in speedups is because of the different execution
times shown in Table 1. Running alone on the GPU, NN
needs 15775 us to process the large input, while SPMV on
the small input only runs for 484 us. Hence, preempting NN
greatly reduces the waiting time for SPMV. However, PL’s
execution time is only around 3.6 times longer than that of
MM, leading to an upper bound of 4.6X speedup from tem-
poral preemption.

491

30X T
—— CFD_SPMV
——— CFD_MM

CFD_VA

25X -

o 20X |-
S

B 15x —\I'\

Q.
D 10X |-

0 T I
0 2000 4000 6000 8000 10000 12000 14000

Delay Time (us)

18000

Figure 9: Performance improvement for high-priority ker-
nels over their execution in MPS-based co-runs when delay
is introduced between kernel invocations.

We further evaluate the cases in which the high-priority
kernel’s invocation does not immediately follow that of the
low-priority kernel. We introduce a delay between the two
invocations in each co-run, which is varied to show the in-
fluence on the speedup of the high-priority workloads. Fig-
ure 9 demonstrates that as the delay increases, the speedup
decreases almost linearly. The results align well with the in-
tuition, because during the delayed time, the low-priority fin-
ishes some work, which virtually reduces the waiting time
for the high-priority workload in the default co-run. Hence,
the performance improvement potential is less. We observe
a plateau close to 1 at the end of each performance curve,
because the delay time is longer than the execution time
of the low-priority workload. The high-priority workload,
once launched, can thus be immediately executed, yielding
no performance improvement potential.

In the evaluation of the equal-priority setting, we give the
co-running benchmarks the same priority. For each of MD,
MM, SPMYV, and VA, we run it on the small input together
with each of the other 7 benchmarks on the large inputs. Fig-
ure 10 shows the ANTT improvement over the MPS-based
co-runs. FLEP enhances ANTT by 8X on average for the 28
benchmark pairs. When the long-running kernel is invoked,
FLEP immediately schedules it to the GPU. After that, the
short-running kernel is invoked, and FLEP decides to pre-
empt the running kernel and schedule the short-running ones
for improvement on average responsiveness. Note that the
improvement is less than that of the performance improve-
ment for high priority workloads in the previous results. The
reason is that ANTT’s definition involves both co-running
kernels, but the long-running kernel does not benefit from
the preemption. Figure 11 shows the STP degradation due
to the overhead introduced by FLEP. Higher bars indicate
lower throughput. The average STP degradation is around
5.4%. For systems, whose responsiveness is critical, trading
small degradation on system throughput for substantial im-
provement on ANTT is desirable.

6.3.2 Three-kernel co-runs with HPF scheduling policy

In real-world deployment, more than two applications may
share the same GPU. We hence go beyond benchmarks pairs
and evaluate the co-runs of three benchmarks. We randomly

PZ2aad22SRZ8a82SR20a223SRZ8a2832%
TN R T e e L -
g§§§w|%§§§§§§§§§§§§§ \§§>>>><\§;
S %%mw%%m§ 2 N
Figure 10: Improvement on average normalized turnaround

time.

System Throughput Degradation

Figure 11: Performance degradation on system throughput.

25X

ANTT Improvement
o
x

SPMV_NN_VA

MD_SPMV_PL

NN_MD_SPMV

SPMV_MM_PL

VA_SPMV_MM

<
>
gn
o
i
a

PL_NN_SPMV
SPMV_MM_MD
SPMV_NN_MD

SPMV_PF_VA

MM_PL_CFD

SPMV_NN_MM
Avgrage

o
1=
z
(=4
w
o

SPMV_PF_MM
MM_SPMV_PF
CFD_SPMV_MM
NN_PL_PF
VA_CFD_MD
VA_MD_PF
VA_MD_CFD

w
o
(=
a
o
TN
(&)

SPMV_VA_MM
CFD_NN_MD

CFD_PL_VA

a
[
O
<
>
)
a

PL_NN_CFD

SPMV_NN_CFD

MM_NN_SPMV

Figure 12: ANTT improvement on three-benchmark co-
runs.

choose 28 benchmark triplets. For a triplet represented by
A_B_C, we launch the kernel from benchmark A on the
large input, followed by those from B and C' on the their
corresponding small inputs. Figure 12 shows the improve-
ment on ANTT from FLEP over the default co-runs enabled
by MPS. The improvement is up to 20.2X for the triplet
VA_SPMV_M M. Thanks to FLEP’s awareness of the ker-
nel duration, FLEP decides to preempt VA’s execution and
schedule SPMV, the shortest kernel among the three, which
also dramatically reduces the waiting time for MM. After
SPMV’s kernel finishes, FLEP schedules MM before VA, as
the remaining execution time of VA is significantly longer
than MM. On average, FLEP provides 6.6X improvement.

When multiple kernels are in the wait queue, existing
frameworks [23, 25], despite providing no preemption sup-
port, can schedule shorter kernels to improve turnaround
time. We hence evaluate kernel reordering but only observe
around 2.3% improvement on ANTT due to the blocking
long kernels launched at the very beginning.

492

100% ‘ ‘ ‘ ‘ ‘
90% Average GPU share of low-priority kernels
80% Average GPU share of high-priority kernels
70%
60%
50%
40%
30%
20%
10%

0 I I I I
10 20 30

= = —=—

GPU share percentage
e e e e I

70 80

. .
50 60
Time (ms)

100

o

90

Figure 13: Average GPU share for high and low priority
kernels with FFS.

15% T

T T T T
Average throughput degradation ‘

10%

5% B

Throughput degradation

.
50 60 70 80 90 100
Time (ms)

0 I I I I
40

Figure 14: Average throughput degradation with FFS.

6.3.3 Two-kernel co-runs with FFS scheduling policy

We use the same co-run pairs as in the experiments for the
HPF scheduling. The only change is that each benchmark
keeps invoking the same kernel in an infinite loop. Since
HPF always favors high-priority kernels, in this scenario
the low-priority kernels do not have any share of the GPU.
Figure 13 shows FFS’s enforcement of weighted fairness
when the weight ratio between the high and low priorities
is 2:1. The curves represent average GPU share across all
co-run pairs. We observe roughly 2/3 share of the GPU
time for high-priority workloads and around 1/3 share for
low-priority workloads, which is the goal for the weighted
fairness control. The error bars are very narrow, indicating
slight differences across the co-run pairs. Figure 14 presents
the throughput degradation with max_overhead empirically
selected as 10%. The results show that FLEP keeps the
performance degradation close to the threshold with small
variation across the co-runs. Note that FLEP allows users
to configure this parameter for the desired level of fairness
granularity.

We elide the results for three-kernel co-runs with FFS due
to space limit, because they are similar to those of the two-
kernel co-runs.

6.4 Results on Spatial Preemption

To evaluate spatial preemption, for each co-run pair, we in-
voke a low-priority kernel to run the large input followed
by a high-priority kernel invocation with the trivial input.
FLEP preempts just enough SMs to host all CTAs launched
by the high-priority kernel. We co-run each benchmark with
all the other benchmarks and average the preemption over-
head. Figure 15 shows the reduction on preemption over-
head from spatial preemption compared to temporal pre-

2
=]
X

40%

30%

N
=]
X

i
N
S

0

Preemption Overhead Reduction

CFD NN PF PL MD SPMV MM VA Average

Figure 15: Preemption overhead reduction through spatial
preemption.

2.4X
22X |-
2X |-

£
218X |

&
D 16X |

2]
14X |
1.2X |-
1X

— L L L L L
2 4 6 8 10 12 14
Num. of preempted SMs

Figure 16: Performance improvement over baseline spatial
preemption.

emption, which preempts all SMs. We observe an average
of 31% reduction (up to 41% for NN), which makes sig-
nificant difference if small kernels keep preempting long-
running low-priority kernels. There are two plausible rea-
sons for the significant reduction. First, spatial preemption
avoids unnecessary SM preemption. In contrary, temporal
preemption interrupts all SMs’ execution. Second, the spa-
tial co-running of kernels with different characteristics (e.g.,
memory-intensive and compute-intensive) may better utilize
the hardware resource.

Spatial preemption, however, has the side effect of sacri-
ficing the performance of high-priority workloads. Suppose
a high-priority workload launches 8 CTAs. Although yield-
ing one SM is enough to host all of them, yielding 8 SMs
to run one CTA on each results in better performance thanks
to the mitigated contention on the SMs. Figure 16 shows the
performance improvement from yielding more than enough
SMs to host the launched CTAs on four co-run pairs as case
studies. Both NN and MD need two SMs to host all CTAs;
so the baseline setting preempts two SMs. On the one hand,
we observe that NN and MD’s performance indeed improves
as we increase the number of preempted SMs. On the other
hand, the largest speedup over the baseline is only around
2.22X, indicating that the side effect may not be serious.
FLEP’s flexibility enables fine-tuning of the number of SMs
to yield for the user to strike the desired trade-off between
preemption overhead and performance degradation of the
high-priority kernels.

493

20%

T T
. FLEP
Kernel Slicing

15% -

10% -

Overhead

5% -

CFD

NN PF PL MD SPMV MM VA Average

Figure 17: Comparison of the overhead introduced by FLEP
and kernel slicing for single-kernel runs.

6.5 Overhead of Single-kernel Runs with Preemption
Enabled

Figure 17 shows the overhead introduced by FLEP and ker-
nel slicing. The results demonstrate that without being pre-
empted, the transformed kernels by FLEP run almost as fast
as the original kernels with only 2.5% overhead on average.
To achieve the same preemption granularity, kernel slicing
introduces an average overhead of 8%. For NN, PF, and PL,
FLEP and kernel slicing have comparable overhead. How-
ever, kernel slicing performs much worse for CFD, MD,
SPMYV, and MM, because kernel slicing incurs an excessive
number of kernel invocations. VA is the only benchmark,
for which kernel slicing substantially outperforms FLEP, as
FLEP has to use a large amortizing factor (200). In this case,
kernel slicing only needs to slice the kernel in a coarse-
grained manner, hence its negligible overhead.

7. Limitations

FLEP currently only supports CUDA on Nvidia GPUs. To
our best knowledge, OpenCL, or any other GPU program-
ming model, does not yet provide an interface to retrieve
SM IDs online on either Nvidia GPUs or AMD GPUs, but
FLEP relies on this functionality to enable spatial preemp-
tion. However, this is not a limitation for FLEP to sup-
port only temporal preemption, as long as the underlying
GPU satisfies the requirements to run persistent threads. This
work shows that online SM ID retrieval is a useful feature to
manage kernel co-runs.

The FLEP compiler works on program source code,
which may not be available in the cloud computing envi-
ronment. However, previous work shows that extracting the
GPU code from executables and transforming it through
compilers is doable [41]. In our future work, we will in-
vestigate in this direction to make FLEP practical in more
scenarios.

Choosing the appropriate amortizing factor is important
for controlling the preemption overhead, which is cum-
bersome as a required offline step. Moreover, a too large
amortizing factor means slower responsiveness for preemp-
tion, because a CTA needs to do more work before check-
ing whether it should yield the execution. Future commu-
nication technology between the CPU and GPU, such as

NVLink [2], can dramatically reduce the communication
latency and hence the overhead incurred by FLEP.

8. Related Work

Managing GPUs in a multi-tasking environment is critical
for achieving high performance and fairness. The problem
has drawn significant attention in several closely related re-
search fields. We group existing work into three categories:

Compiler- or runtime-based: Several frameworks have
been propsoed to enable preemption on GPUs through ker-
nel slicing [41, 19, 5]. The basic idea is to slice long-running
kernel invocations into multiple short-running ones. GPU
applications can be preempted when short-running kernel
invocations are finished. Kernel slicing has two major prob-
lems. First, it is difficult to determine the most appropriate
length of each slice. Second, the approach introduces over-
head even if the kernel is never preempted. In contrary, FLEP
does not slice kernels and is shown to introduce negligible
overhead. An independent work done by Chen et. al. pro-
posed similar compiler techniques as in FLEP to circumvent
the limitation of the kernel slicing approach [8, 7], but they
did not enable spatial preemption.

Pai and others observed that carefully scheduling multiple
kernels to co-run together can significantly improve GPU
utlization [31]. A similar approach is used in several other
works [40, 24, 15]. A major drawback of this line of work
is that the co-running kernels are artificially synthesized into
the same GPU context, which is not realistic in real-world
settings. FLEP does not have this assumption and can work
with applications with separate GPU contexts.

When multiple GPU applications co-run together on the
same GPU, the device memory and PCle bus may becomes
critical resources if the combined working set is too large.
Wang and others [37, 38] implemented a GPU memory man-
agement framework to treat the device memory as a data
cache, and coordinate the device memory usage of the co-
running applications. Baymax proposed by Chen and oth-
ers [9] built an analytical model to guide data transfers from
different applications. Kehne et al. [22] proposed GPUSwap,
which modifies the GPU driver to enable device memory
oversubscription in a transparent way. FLEP currently as-
sumes the combined working set can fit into the device
memory. We plan to integrate GPUSwap into FLEP to han-
dle large working sets.

Hardware-based: Tansaic et al. [35] first proposed hard-
ware extensions to enable preemption on GPUs. They lever-
age the special semantics of the GPU programming model
and design two preemption techniques: switch and drain.
Chimera [32] extended this work by introducing a third tech-
nique to flush the GPU cores, and utilizes all three tech-
niques to achieve a required latency. Our work is a software-
only framework that works on commodity GPUs.

494

Adraens et al. [4] showed the benefits from a hardware
extension to co-run memory-bound and compute-bound
GPU kernels in a spatial manner. Wang and others [39]
also showed similar benefits from such fine-rained hardware
partitioning. Jog et al. [18] evaluated the efficiency of the
memory system when GPU kernels simultaneously run on
different SMs, based on which they propose new memory
scheduling policies to improve the overall memory through-
put.

OS-based: Some studies modified the operating system or
the GPU drivers to manage GPUs as first class computing
resources [21, 33, 20]. The focus is on performance isola-
tion and interference elimination. As GPUs are increasingly
being adopted in data centers, full GPU virtualization be-
comes an important research area. Tian et al. [36] imple-
mented gVirt to virtualize Intel GPUs for graphics work-
loads. Dong and others [12] further improved gVirt’s per-
formance through hybrid page tables. Suzuki et al. imple-
mented GPUvm for full virtulization of Nvidia GPUs on
the Xen hypervisor [34]. All of those works assume that the
GPU is non-preemptive, while FLEP, by providing preemp-
tion service, complements them to provide more opportuni-
ties for performance optimization.

9. Conclusions

In this paper, we presented FLEP, the first practical, trans-
parent, and flexible software system to enable preemption
on commodity GPUs. FLEP works on GPU programs in dif-
ferent GPU contexts, and does not require any manual code
change. The FLEP compiler automatically transforms both
the CPU and GPU part of the program to support kernel in-
vocation interception and runtime kernel preemption. The
FLEP runtime leverages kernel-specific performance mod-
els to predict the duration for kernel invocations, based on
which preemption and kernel scheduling decisions are made.
FLEP improves the performance of the high-priority kernels
by 10X on average in 28 co-runs. When the co-running ker-
nels have equal priority, FLEP preempts the long-running
kernels and improves the ANTT by 8X for two-kernel co-
runs and 6.6X for three-kernel co-runs, respectively, on av-
erage. When the waiting kernels do not generate enough
CTAs to occupy all SMs, FLEP only preempts part of the
SMs to reduce the preemption overhead by up to 41% com-
pared to temporal preemption. FLEP demonstrates that pre-
emptive programming can be efficiently supported on com-
modity GPUs.

Acknowledgments

We thank the anonymous reviewers for their insightful com-
ments and suggestions. The effort of this project is funded by
National Science Foundation Grants 1464216 and 1618912.

References

[1] clang: a C language family frontend for LLVM. http:
//clang.1lvm.org/ ; accessed 23-02-2016.

[2] NVLink Communication Protocol. https://en.wikipedia.

org/wiki/NVLink.
[3] OpenCL. http://www.khronos.org/opencl/.

[4] J. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte. The
case for GPGPU spatial multitasking. In /8th IEEE Interna-
tional Symposium on High Performance Computer Architec-
ture, HPCA 2012, New Orleans, LA, USA, 25-29 February,
2012, pages 79-90, 2012.

[5] C. Basaran and K. Kang. Supporting preemptive task exe-
cutions and memory copies in gpgpus. In 24th Euromicro
Conference on Real-Time Systems, ECRTS 2012, Pisa, Italy,
July 11-13, 2012, pages 287-296, 2012.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-
H. Lee, and K. Skadron. Rodinia: A benchmark suite for
heterogeneous computing. In ZISWC, 2009.

[7] G. Chen, X. Shen, and H. Zhou. A software framework for
efficient preemptive scheduling on gpu. Technical report,
North Carolina State University, 2016.

[8] G. Chen, Y. Zhao, X. Shen, and H. Zhou. Effisha: A soft-
ware framework for enabling efficient preemptive schedul-
ing of gpu. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP’17, 2017.

[9] Q. Chen, H. Yang, J. Mars, and L. Tang. Baymax : Qos aware-
ness and increased utilization of non-preemptive accelerators
in warehouse scale computers. In Proceedings of the 21st
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS 16,
2016.

[10] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter. The scalable het-
erogeneous computing (shoc) benchmark suite. In GPGPU,
2010.

[11] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM,
56(2):74-80, Feb. 2013.

[12] Y. Dong, M. Xue, X. Zheng, J. Wang, Z. Qi, and H. Guan.
Boosting gpu virtualization performance with hybrid shadow
page tables. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15), pages 517-528, Santa Clara, CA, July
2015. USENIX Association.

[13] G. A. Elliott and J. H. Anderson. Real-world constraints
of gpus in real-time systems. In 17th IEEE International
Conference on Embedded and Real-Time Computing Systems
and Applications, RTCSA 2011, Toyama, Japan, August 28-
31, 2011, Volume 2, pages 48-54, 2011.

[14] S. Eyerman and L. Eeckhout. System-level performance
metrics for multiprogram workloads. IEEE Micro, 28(3):42—
53, 2008.

[15] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron. Fine-
grained resource sharing for concurrent gpgpu kernels. In
Presented as part of the 4th USENIX Workshop on Hot Topics

495

in Parallelism, Berkeley, CA, 2012. USENIX.

[16] K. Gupta, J. A. Stuart, and J. D. Owens. A study of persistent
threads style gpu programming for gpgpu workloads. In
Innovative Parallel Computing, page 14, May 2012.

[17] U. Hoelzle and L. A. Barroso. The Datacenter As a Com-
puter: An Introduction to the Design of Warehouse-Scale Ma-
chines. Morgan and Claypool Publishers, 1st edition, 2009.

[18] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin,
N. Chatterjee, S. W. Keckler, M. T. Kandemir, and C. R. Das.
Anatomy of gpu memory system for multi-application execu-
tion. In Proceedings of the 2015 International Symposium on
Memory Systems, MEMSYS 15, pages 223-234, New York,
NY, USA, 2015. ACM.

[19] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa,
and R. Rajkumar. RGEM: A responsive GPGPU execution
model for runtime engines. In Proceedings of the 32nd IEEE
Real-Time Systems Symposium, RTSS 2011, Vienna, Austria,
November 29 - December 2, 2011, pages 57-66, 2011.

[20] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa.
Timegraph: Gpu scheduling for real-time multi-tasking en-
vironments. In Proceedings of the 2011 USENIX Conference
on USENIX Annual Technical Conference, USENIXATC’11,
pages 2-2, Berkeley, CA, USA, 2011. USENIX Association.

[21] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. Gdev:
First-class gpu resource management in the operating system.
In Presented as part of the 2012 USENIX Annual Technical
Conference (USENIX ATC 12), pages 401-412, Boston, MA,
2012. USENIX.

[22] J. Kehne, J. Metter, and F. Bellosa. Gpuswap: Enabling over-
subscription of gpu memory through transparent swapping.
In Proceedings of the 11th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments (VEE
’15), pages 65-77, Istanbul, Turkey, Mar. 14-15 2015.

[23] T. Li, V. K. Narayana, and T. A. El-Ghazawi. Reordering
GPU kernel launches to enable efficient concurrent execution.
CoRR, abs/1511.07983, 2015.

[24] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, and
D. Chen. Efficient GPU spatial-temporal multitasking. /[EEE
Trans. Parallel Distrib. Syst., 26(3):748-760, 2015.

[25] C. Margiolas and M. F. P. O'Boyle. Portable and
transparent software managed scheduling on accelerators for
fair resource sharing. In Proceedings of the 2016 Inter-
national Symposium on Code Generation and Optimization,
CGO 2016, pages 82-93, New York, NY, USA, 2016. ACM.

[26] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. E.
Gehrke. Online scheduling to minimize average stretch. In
Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, FOCS 99, Washington, DC, USA, 1999.

[27] NVIDIA. Cuda software development toolkit v7.0
. https://developer.nvidia.com/cuda-toolkit-70.

[28] NVIDIA. Nvidia’s next generation cuda computer architec-
ture: Fermi. Technical report.

[29] NVIDIA. Next generation cuda computer architecture kepler
gk110. Technical report, 2012.

[30] NVIDIA. Sharing a gpu between mpi processes: multi-
process service (mps) overview. Technical report, 2013.

[31] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. Improv-
ing gpgpu concurrency with elastic kernels. In Proceedings
of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS ’13, pages 407-418, New York, NY, USA, 2013.

[32] J. J. K. Park, Y. Park, and S. Mahlke. Chimera: Collaborative
preemption for multitasking on a shared gpu. In Proceedings
of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS ’15, pages 593-606, New York, NY, USA, 2015.
ACM.

[33] C.J.Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel.

Ptask: Operating system abstractions to manage gpus as com-
pute devices. In Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles, SOSP ’11, pages
233-248, New York, NY, USA, 2011. ACM.

[34] Y. Suzuki, S. Kato, H. Yamada, and K. Kono. Gpuvm: Why
not virtualizing gpus at the hypervisor? In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages 109—
120, Philadelphia, PA, June 2014. USENIX Association.

[35] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro,
and M. Valero. Enabling preemptive multiprogramming on
gpus. In Proceeding of the 41st Annual International Sympo-
sium on Computer Architecuture, ISCA 14, pages 193-204,
Piscataway, NJ, USA, 2014. IEEE Press.

496

[36] K. Tian, Y. Dong, and D. Cowperthwaite. A full gpu vir-
tualization solution with mediated pass-through. In 20714
USENIX Annual Technical Conference (USENIX ATC 14),
pages 121-132, Philadelphia, PA, June 2014. USENIX As-
sociation.

K. Wang, X. Ding, R. Lee, S. Kato, and X. Zhang. Gdm:
Device memory management for gpgpu computing. In The
2014 ACM International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’14, pages
533-545, New York, NY, USA, 2014. ACM.

K. Wang, K. Zhang, Y. Yuan, S. Ma, R. Lee, X. Ding, and
X. Zhang. Concurrent analytical query processing with gpus.
Proc. VLDB Endow., 7(11):1011-1022, July 2014.

[39] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and
M. Guo. Simultaneous multikernel: Fine-grained sharing of
gpgpus. [EEE COMPUTER ARCHITECTURE LETTERS,
PP(99):748-760, 2015.

[40] B. Wu, G. Chen, D. Li, X. Shen, and J. S. Vetter. Enabling
and exploiting flexible task assignment on GPU through
sm-centric program transformations. In Proceedings of the
29th ACM on International Conference on Supercomputing,
ICS’15, Newport Beach/Irvine, CA, USA, June 08 - 11, 2015,
pages 119-130, 2015.

(37]

(38]

[41] H. Zhou, G. Tong, and C. Liu. GPES: a preemptive execution
system for GPGPU computing. In 21st IEEE Real-Time and
Embedded Technology and Applications Symposium, Seattle,

WA, USA, April 13-16, 2015, pages 87-97, 2015.

