
C FOR EMBEDDED
SYSTEMS

(CONT. 2)

DEPT. COMPUTER AND INFORMATION SCIENCE (IDA)

LINKÖPINGS UNIVERSITET

LECTURE III
TDDI11 Embedded

Software

OUTLINE

• Pointers

• Structures

• Unions

• Endianness

• Bitfield

2

count

7

count

7

countPtr

POINTER VARIABLE DEFINITIONS AND
INITIALIZATION

Pointer variables

– Contain memory addresses as their values

– Normal variables contain a specific value (direct reference)

– Pointers contain address of a variable that has a specific

value (indirect reference)

– Indirection – referencing a pointer value
3

POINTER VARIABLE DEFINITIONS AND
INITIALIZATION (CONT.)

• * used with pointer variables:

int *myPtr;

• Defines a pointer to an int (pointer of type int *)

• Multiple pointers require using a * before each variable

definition

int *myPtr1, *myPtr2;

• Can define pointers to any data type

• Initialize pointers to 0, NULL, or an address

• 0 or NULL – points to nothing
4

yPtr

y

5

yptr

500000 600000

y

600000 5

Address of y

is value of
yptr

POINTER OPERATORS

& (address operator)

• Returns address of operand

int y = 5;

int *yPtr;

yPtr = &y; /* yPtr gets address of y */

• yPtr “points to” y

5

POINTER OPERATORS, CONT.

• * (indirection/dereferencing operator)

– Returns a synonym/alias of what its operand points to

– *yptr returns y (because yptr points to y)

– * returns an lvalue that can be used for assignment

• Returns alias to an object

yptr = 7; / changes y to 7 */

• * and & are inverses

– They cancel each other out

6

DISPLAY EXAMPLE

•Alphanumeric color display
– Memory mapped at address 0xB8000

– 80 characters on each line

– Each character consists of two bytes

• First byte: ASCII code

• Second byte: foreground + background colors

7

char *p = (char *)(0xB8000 + 2 * (80 * row + col));

p = 65; / e.g., display 'A' on screen */

CALLING FUNCTIONS BY REFERENCE

•Call by reference with pointer arguments
– Pass address of argument using & operator

– Allows you to change actual location in memory

– Arrays are not passed with & because the array name is
already a pointer

•* operator
– Used as alias/nickname for variable inside of function

– *number used as nickname for the variable passed

8

void double(int *number)
 {
 *number = 2 * (*number);
 }

POINTER EXPRESSIONS AND
POINTER ARITHMETIC

Arithmetic operations can be performed on

pointers

– Increment/decrement pointer (++ or --)

– Add an integer to a pointer(+ or += , - or -=)

– Pointers may be subtracted from each other

– Operations meaningless unless performed on an array

9

pointer variable vPtr

v[0] v[1] v[2] v[4]v[3]

3000 3004 3008 3012 3016

location

POINTER EXPRESSIONS AND
ARITHMETIC, CONT.

5 element int array on machine with 4-bytes ints

– vPtr points to first element v[0]

• at location 3000 (vPtr = 3000)

– vPtr += 2; sets vPtr to 3008

• vPtr points to v[2] (incremented by 2), but the machine

has 4 byte ints, so it points to address 3008

10

POINTER EXPRESSIONS AND
ARITHMETIC, CONT.

• Subtracting pointers

• Returns number of elements from one to the other. If

vPtr2 = v[2];

vPtr = v[0];

• vPtr2 - vPtr would produce 2

• Pointer comparison (<, == , >)

– See which pointer points to the higher numbered array

element

– Also, see if a pointer points to 0

11

POINTER EXPRESSIONS AND
POINTER ARITHMETIC, CONT.

•Pointers of the same type can be assigned
to each other
– If not the same type, a cast operator must be used

– Exception: pointer to void (type void *)

• Generic pointer, represents any type

• No casting needed to convert a pointer to void
pointer

• void pointers cannot be dereferenced

12

THE RELATIONSHIP BETWEEN
POINTERS AND ARRAYS

•Arrays and pointers closely related

▪ Array name like a constant pointer

▪ Pointers can do array subscripting operations

•Define an array b[5] and a pointer bPtr

▪ To set them equal to one another use:

 bPtr = b;

▪ The array name (b) is actually the address of first element
of the array b[5]

bPtr = &b[0];

▪ Explicitly assigns bPtr to address of first element of b
13

THE RELATIONSHIP BETWEEN
POINTERS AND ARRAYS, CONT.

– Element b[3]

• Can be accessed by *(bPtr + 3)

– Where n is the offset. Called pointer offset
notation

• Can be accessed by bptr[3]

– Called pointer subscript notation

– bPtr[3] same as b[3]

• Can be accessed by performing pointer arithmetic
on the array itself *(b + 3)

14

suit[3]

suit[2]

suit[1]

suit[0] ’H’ ’e’ ’a’ ’r’ ’t’ ’s’ ’\0’

’D’ ’i’ ’a’ ’m’ ’o’ ’n’ ’d’ ’s’ ’\0’

’C’ ’l’ ’u’ ’b’ ’s’ ’\0’

’S’ ’p’ ’a’ ’d’ ’e’ ’s’ ’\0’

ARRAYS OF POINTERS

• Arrays can contain pointers. For example: an array of strings

char * suit[4] = { "Hearts", "Diamonds", "Clubs", "Spades" };

– Strings are pointers to the first character

– char * – each element of suit is a pointer to a char

– The strings are not actually stored in the array suit, only pointers to

the strings are stored

– suit array has a fixed size, but strings can be of any size

15

POINTERS TO FUNCTIONS (3)

• Most frequent use: generic functions

• Example: Generic sort routine

16

void bubble_sort(int arr[],int asize,int (*cmp)(int,int)){
 int i, j, tmp;

for (i = 0;i < asize-1; i++)
 for (j = i+1;j < asize; j++)
 if (cmp(arr[i] , arr[j])) {
 tmp=arr[i];
 arr[i]=arr[j];
 arr[j]=tmp;
 }
}

int gt(int a, int b) { if (a > b) return 1; else return 0; }
bubble_sort(somearray, 100, gt);
bubble_sort(otherarray, 200, lt);

POINTERS TO FUNCTIONS

•Pointer to function
– Contains address of function

– Similar to how array name is address of first element

– Function name is starting address of code that defines
function

•Function pointers can be
– Passed to functions

– Stored in arrays

– Assigned to other function pointers

17

POINTERS TO
FUNCTIONS, CONT.

•Example: bubblesort
– Function bubble takes a function pointer

• bubble calls this helper function

• this determines ascending or descending sorting

– The argument in bubblesort for the function pointer:

int (*cmp)(int a, int b)

tells bubblesort to expect a pointer to a function that takes
two ints and returns an int

– If the parentheses were left out:
int *cmp(int a, int b)

• Defines a function that receives two integers and returns a
pointer to a int

18

OUTLINE

• Pointers

• Structures

• Unions

• Endianness

• Bitfield

19

STRUCTURES

– Collections of related variables (aggregates) under one

name

• Can contain variables of different data types

– Commonly used to define records to be stored in files

– Combined with pointers, can create linked lists, stacks,

queues, and trees

– Can hold the data associated to a hardware device

20

STRUCTURE DEFINITIONS

• Example

 struct card {

char *face;

char *suit;

};

– struct introduces the definition for structure card

– card is the structure name and is used to declare variables

of the structure type

– card contains two members of type char *

• These members are face and suit

21

STRUCTURE DEFINITIONS, CONT.

– A struct cannot contain an instance of itself

– Can contain a member that is a pointer to the same structure type

– A structure definition does not reserve space in memory. Instead

creates a new data type used to define structure variables

Definitions

– Defined like other variables:

Struct card oneCard, deck[52], *cPtr;

– Can use a comma separated list:

struct card {

 char *face;

 char *suit;

} oneCard, deck[52], *cPtr;
22

STRUCTURE DEFINITIONS, CONT

• Valid operations

– Assigning a structure to a structure of the same type

– Taking the address (&) of a structure

– Accessing the members of a structure

– Using the sizeof operator to determine the size of a

structure

23

INITIALIZING STRUCTURES

• Initializer lists

struct card oneCard = { "Three", "Hearts" };

• Assignment statements

struct card threeHearts = oneCard;

• Could also define and initialize threeHearts as follows:

struct card threeHearts;

threeHearts.face = “Three”;

threeHearts.suit = “Hearts”;

24

ACCESSING MEMBERS OF
STRUCTURES

• Accessing structure members

– Dot operator (.) used with structure variables

struct card myCard;

printf("%s", myCard.suit);

– Arrow operator (->) used with pointers to structure variables

struct card *myCardPtr = &myCard;

printf("%s", myCardPtr->suit);

– myCardPtr->suit is equivalent to

(*myCardPtr).suit

25

USING STRUCTURES WITH
FUNCTIONS

• Passing structures to functions

– Pass entire structure or pass individual members

– Both pass call by value

• To pass structures call-by-reference

– Pass its address

• To pass arrays call-by-value

– Create a structure with the array as a member

– Pass the structure

26

LET’S CODE!

27

struct.c

28

TYPEDEF

•typedef
– Creates synonyms (aliases) for previously defined data types

– Use typedef to create shorter type names

– Example:

typedef struct Card *CardPtr;

– Defines a new type name CardPtr as a synonym for type

struct Card *

– typedef does not create a new data type

• Only creates an alias

29

TYPEDEFS

unsigned long int count ;

versus

typedef unsigned long int DWORD32 ;

DWORD32 count ;

30

TYPEDEFS AND #DEFINES

typedef unsigned char BYTE8;

typedef unsigned short int WORD16;

typedef unsigned long int DWORD32;

typedef int BOOL;

#define FALSE 0

#define TRUE 1

31

OUTLINE

• Structures

• Unions

• Endianness

• Bitfield

• Bit manipulation

32

UNIONS
• Memory that contains a variety of objects over time

• Only contains one data member at a time

• Members of a union share space

• Conserves storage

• Only the last data member assigned can be accessed

• union definitions same as struct

union Number {

 int x;

 float y;

};

union Number value;

33

UNIONS

34

union Data

{

int i;

float f;

char str[20];

} data;

The memory occupied by a union will be large enough to hold the largest

member of the union.

For example, in above example the type data will occupy 20 bytes.

UNIONS

• Valid union operations

– Assignment to union of same type: =

– Taking address: &

– Accessing union members: .

– Accessing members using pointers: ->

35

VARIANT ACCESS WITH POINTERS,
CASTS, & SUBSCRIPTING

• Given an address, we can cast it as a pointer to data of the

desired type, then dereference the pointer by

subscripting.

• Without knowing the data type used in its declaration, we

can read or write various parts of an object named

operand using:

((BYTE8 *) &operand)[k]

36

BOOL Kybd_Flags_Changed(KYBD_INFO *kybd)
{
 // ...

 kybd->both = ((WORD16 *) &new_flags)[0] ;
 kybd->lo = ((BYTE8 *) & new_flags)[0] ;
 kybd->hi = ((BYTE8 *) &new_flags)[1] ;

 if (kybd->both == old_flags) return FALSE ;
 old_flags = kybd->both ;

 return TRUE ;
}

typedef struct KYBD_INFO
{
 BYTE8 lo ;
 BYTE8 hi ;
 WORD16 both ;
} KYBD_INFO ;

VARIANT ACCESS WITH POINTERS,
CASTS, & SUBSCRIPTING, CONT.

37

union { 31

unsigned long dd ; dd

unsigned short dw[2] ; dw[1] dw[0]

unsigned char db[4] ; db[3] db[2] db[1] db[0]

VARIANT ACCESS WITH
UNIONS

38

BOOL Kybd_Flags_Changed(KYBD_INFO *kybd)
{

 static WORD16 old_flags = 0xFFFF;
VARIANT *flags = (VARIANT *) malloc(sizeof(VARIANT));

 dosmemget(0x417, sizeof(VARIANT), (void *) flags);

 kybd>both = flags->w;
 kybd->lo = flags->b[0];
 kybd->hi = flags->b[1];
 free(flags);

 if (kybd->both == old_flags) return FALSE;
 old_flags = kybd->both;
 return TRUE;

}

VARIANT ACCESS WITH UNIONS,
CONT.

39

typedef union VARIANT {
 BYTE8 b[2] ;
 WORD16 w ;
} VARIANT ;

typedef struct KYBD_INFO
{
 BYTE8 lo ;
 BYTE8 hi ;
 WORD16 both ;
} KYBD_INFO ;

LET’S CODE!

40

union.c

41

OUTLINE

• Pointers

• Structures

• Unions

• Endianness

• Bitfield

42

TDDI11, Embedded Software

union

{

 unsigned long dd;

 unsigned short dw[2];

 unsigned char db[4];

};

dd

dw[0]dw[1]

db[3] db[0]db[1]db[2]
31......24|23.......16|15........8|7........0

31..0

dd

dw[1]dw[0]

db[0] db[3]db[2]db[1]
31......24|23.......16|15........8|7........0

31..0

Little endian

vs

Big endian
Endianness differ

depending on

architecture.

X86: little

Motorola, sparc: big

ENDIANNESS

43

ENDIANNESS
• Big-endian systems are systems in which the most

significant byte of the word is stored in the smallest

address given and the least significant byte is stored in

the largest. In contrast, little endian systems are those in

which the least significant byte is stored in the smallest

address.

44

WHY IS ENDIANNESS
IMPORTANT FOR EMBEDDED
SOFTWARE DEVELOPERS?
• Think about communication between two machines that

have different Endianness

• One machine writes integers to a file and another machine

with opposite Endianness reads it.

• Sending numbers over network between two machines with

different Endianness. Think about serial communication

when we split the data into multiple chunks!!

45

OUTLINE

• Pointers

• Structures

• Unions

• Endianness

• Bitfield

46

BIT FIELD

• In embedded systems, storage is at a premium

• It may be necessary to pack several objects into one word

• Bit fields allow single bit objects

• They must be part of a structure

47

BITFIELD EXAMPLE

• Embedded systems must communicate with peripherals at low-level.

• A register of a disk controller, for example, has several fields.

• How can we represent this memory compactly? 48

BIT FIELD EXAMPLE
struct DISK_REGISTER {

unsigned int ready:1;

unsigned int error_occured:1;

unsigned int disk_spinning:1;

unsigned int write_protect:1;

unsigned int head_loaded:1;

unsigned int error_code:8;

unsigned int track:9;

unsigned int sector:5;

unsigned int command:5;

};

• Bit fields must be part of a structure/union – stipulated by the C standard

49

LET’S CODE!

50

bitfield.c

51

	Slide 1: C for embedded systems (cont. 2)
	Slide 2: Outline
	Slide 3: Pointer variable definitions and initialization
	Slide 4: Pointer variable definitions and initialization (cont.)
	Slide 5: Pointer operators
	Slide 6: Pointer operators, cont.
	Slide 7: Display example
	Slide 8: Calling functions by reference
	Slide 9: Pointer expressions and pointer arithmetic
	Slide 10: Pointer expressions and arithmetic, cont.
	Slide 11: Pointer expressions and arithmetic, cont.
	Slide 12: Pointer expressions and pointer arithmetic, cont.
	Slide 13: The relationship between pointers and arrays
	Slide 14: The relationship between pointers and arrays, cont.
	Slide 15: Arrays of pointers
	Slide 16: Pointers to functions (3)
	Slide 17: Pointers to functions
	Slide 18: Pointers to functions, cont.
	Slide 19: Outline
	Slide 20: Structures
	Slide 21: Structure definitions
	Slide 22: Structure definitions, cont.
	Slide 23: Structure definitions, cont
	Slide 24: Initializing structures
	Slide 25: Accessing members of structures
	Slide 26: Using structures with functions
	Slide 27: Let’s code!
	Slide 28
	Slide 29: typedef
	Slide 30: typedefs
	Slide 31: typedefs and #defines
	Slide 32: Outline
	Slide 33: Unions
	Slide 34: Unions
	Slide 35: Unions
	Slide 36: Variant access with pointers, casts, & subscripting
	Slide 37: Variant access with pointers, casts, & subscripting, cont.
	Slide 38: Variant access with unions
	Slide 39: Variant access with unions, cont.
	Slide 40: Let’s code!
	Slide 41
	Slide 42: Outline
	Slide 43: Endianness
	Slide 44: Endianness
	Slide 45: Why is Endianness important for embedded software developers?
	Slide 46: Outline
	Slide 47: Bit field
	Slide 48: Bitfield example
	Slide 49: Bit field example
	Slide 50: Let’s code!
	Slide 51

