
C FOR EMBEDDED
SYSTEMS

(CONT. 1)

LECTURE II
TDDI11 Embedded

Software

DEPT. COMPUTER AND INFORMATION SCIENCE (IDA)

LINKÖPINGS UNIVERSITET

OUTLINE

• Bit manipulation

• Mixing C and assembly

2

Operation Boolean Operator Bitwise Operator

AND && &

OR || |

XOR unsupported ^

NOT ! ~

BOOLEAN AND BINARY OPERATORS

•Boolean operators are primarily used to form
conditional expressions (as in an if statement)

•Bitwise operators are used to manipulate bits.
3

BOOLEAN VALUES

•Most implementations of C don't provide a Boolean
data type.

•Any numeric data type may be used as a Boolean
operand.

• Boolean operators yield results of type int, with true
and false represented by 1 and 0.

•Zero is interpreted as false; any non-zero value is
interpreted as true.

4

(5 || !3) && 6

= (true OR (NOT true)) AND true

= (true OR false) AND true

= (true) AND true

= true

= 1

True / False ?

BOOLEAN EXPRESSIONS

5

BITWISE OPERATORS

•Bitwise operators operate on individual bit

positions within the operands

•The result in any one bit position is entirely

independent of all the other bit positions.

6

INTERPRETING THE BITWISE-AND

7

m p m AND p interpretation

0
0 0

0
If bit m of the mask is 0,

then bit p is cleared to 0.
1 0

1
0 0

p
If bit m of the mask is 1,

then bit p is unchanged.
1 1

INTERPRETING THE BITWISE-OR

8

m p m OR p interpretation

0
0 0

p
If bit m of the mask is 0,

then bit p is unchanged.
1 1

1
0 1

1
If bit m of the mask is 1,

then bit p is set to 1.
1 1

INTERPRETING THE BITWISE-XOR

9

m p m XOR p interpretation

0
0 0

p
If bit m of the mask is 0,

then bit p is unchanged.
1 1

1
0 1

~p
If bit m of the mask is 1,

then bit p is inverted.
1 0

(5 | ~3) & 6

= (00..0101 OR ~00..0011) AND 00..0110

= (00..0101 OR 11..1100) AND 00..0110

= (11..1101) AND 00..0110

= 00..0100

= 4

BITWISE EXPRESSIONS

10

• A 1 in the bit position of interest is AND'ed with
the operand. The result is non-zero if and only if
the bit of interest was 1:

 if ((bits & 64) != 0) /* check to see if bit 6 is set */

01000000b7b6b5b4b3b2b1b0 0b6000000&

TESTING BITS

11

• Since any non-zero value is interpreted as true,
the redundant comparison to zero may be
omitted, as in:

if (bits & 64) /* check to see if bit 6 is set */

TESTING BITS, CONT.

12

• The mask (64) is often written in hex (0x0040), but a
constant-valued shift expression provides a clearer
indication of the bit position being tested:

if (bits & (1 << 6)) /* check to see if bit 6 is set */

• Almost all compilers will replace such constant-valued
expressions by a single constant, so using this form
almost never generates any additional code.

TESTING BITS, CONT.

13

#define FALSE (0)
#define TRUE (1)

typedef unsigned char BOOL ;

typedef struct SHIFTS
{
BOOL right_shift;
BOOL left_shift;
BOOL ctrl;
BOOL alt;
BOOL left_ctrl;
BOOL left_alt;
} SHIFTS;

BOOL Kybd_Flags_Changed(SHIFTS *) ;
void Display_Kybd_Flags(SHIFTS *) ;

void main()
{
SHIFTS kybd ;
 do
 { /* repeat until both shift keys pressed */
 if (Kybd_Flags_Changed(&kybd))
 Display_Kybd_Flags(&kybd) ;
 } while (!kybd.left_shift ||!kybd.right_shift);
}

TESTING KEYBOARD FLAGS USING
BITWISE OPERATORS

14

typedef unsigned int WORD16 ;

BOOL Kybd_Flags_Changed(SHIFTS *kybd)
{

 static WORD16 old_flags = 0xFFFF ;
 WORD16 new_flags ;

 dosmemget(0x417, sizeof(new_flags), &new_flags) ;
 if (new_flags == old_flags) return FALSE ;
 old_flags = new_flags ;

 kybd->right_shift = (new_flags & (1 << 0)) != 0 ;
 kybd->left_shift = (new_flags & (1 << 1)) != 0 ;
 kybd->ctrl = (new_flags & (1 << 2)) != 0 ;
 kybd->alt = (new_flags & (1 << 3)) != 0 ;
 kybd->left_alt = (new_flags & (1 << 9)) != 0 ;
 kybd->left_ctrl = (new_flags & (1 << 8)) != 0 ;

 return TRUE ;
}

CONTINUED ...

15

• Setting a bit to 1 is easily accomplished with
the bitwise-OR operator:

bits = bits | (1 << 7) ;/* sets bit 7 */

• This would usually be written more succinctly as:

 bits |= (1 << 7) ; /* sets bit 7 */

10000000b7b6b5b4b3b2b1b0 1b6b5b4b3b2b1b0|

SETTING BITS

16

• Note that we don't add (+) the bit to the operand!
That only works if the current value of the target bit in
the operand is known to be 0.

• Although the phrase "set a bit to 1" suggests that the
bit was originally 0, most of the time the current value
of the bit is actually unknown.

SETTING BITS, CONT.

17

• Clearing a bit to 0 is accomplished with the
bitwise-AND operator:

bits &= ~(1 << 7) ; /* clears bit 7 */

• Note that we don't subtract the bit from
the operand!

(1 << 7) 10000000

~(1 << 7) 01111111

CLEARING BITS

18

When clearing bits, you have to be careful that the
mask is as wide as the operand. For example, if bits
is changed to a 32-bit data type, the right-hand
side of the assignment must also be changed, as in:

bits &= ~(1L << 7);/* clears bit 7 */

CLEARING BITS, CONT.

19

bits &= ~((long int)1 << 7);/*clears bit 7 */

• Inverting a bit (also known as toggling) is
accomplished with the bitwise-XOR operator
as in:

bits ^= (1 << 6); /* flips bit 6 */

• Although adding 1 would invert the target
bit, it may also propagate a carry that would
modify more significant bits in the operand.

INVERTING BITS

20

Bits 15 - 11 Bits 10 - 5 Bits 4 - 0

time Hours Minutes Seconds 2

Bits 15 - 11 Bits 10 - 6 Bits 5 - 0

time >> 5 ????? Hours Minutes

Bits 15 - 11 Bits 10 - 6 Bits 5 - 0

(time >> 5) & 0x3F 00000 00000 Minutes

15 0

minutes = (time >> 5) & 0x3F Minutes

Extract minutes from time

EXTRACTING BITS

21

Bits 15 - 11 Bits 10 - 5 Bits 4 - 0

oldtime Hours Old Minutes Seconds 2

Bits 15 - 11 Bits 10 - 5 Bits 4 - 0

newtime = oldtime & ~(0x3F << 5) Hours 000000 Seconds 2

Bits 15 - 11 Bits 10 - 5 Bits 4 - 0

newtime |= (newmins & 0x3F) << 5 Hours New Minutes Seconds 2

Updates minutes in time

INSERTING BITS

22

OUTLINE

• Bit manipulation

• Mixing C and assembly

23

INLINE ASSEMBLY: COMPILER DEPENDENT

❑DJGPP (C development environment for Intel 80386)

❑

❑ __asm__ instructs the compiler to treat the parameters of the

statement as pure assembly and to pass them to the assembler as

written

❑ __volatile__ optional statement which instructs the compiler not to

move opcodes around

❑ Microsoft C

24

__asm push ebp
__asm mov ebp, esp

__asm {
 push ebp
 mov ebp, esp
}

__asm__ __volatile__ {push ebp mov ebp, esp}

X86 ASSEMBLER
• Intel syntax

– Used by NASM assembler (open-source assembler for 16, 32

and 64-bit X86)

– Opcode Destination Source (order as in ”Y = X” in C)

– Hexadecimal (resp. decimal, octal, binary) constants end with

”h” (resp. d, o, b) as in 10h (resp. 16d, 20o, 10000b)

– Operand determine size: byte (8bits), word (16bits), dword

(32bits), qword (64bits)

– Memory addressing like section:[base + index*scale + offset]

25

X86 ASSEMBLER

26

PUSH EBP

MOV EBP, ESP

MOV ECX, 0

MOV EAX, [EBP]

MOV EBX, [EBP + 32]

MUL EBX

ADD [ESI + 4], EAX

C-ASSEMBLY INTERFACING

• EBP is base pointer (helps us to point to things in stack)

• ESP is current stack pointer

• PUSH send contents to top of stack

• POP retrieve contents from top of stack

27

WRITE C FUNCTION IN ASSEMBLY

28

print:
 PUSH EBP ; save previous stack frame
 MOV EBP, ESP ; save current stack frame
 MOV ECX,[EBP+8] ; read parameter ’str’
 MOV EDX,[EBP+12] ; read parameter ’size’

; do function stuff here

 MOV ESP, EBP ; restore stack frame
 POP EBP ; restore previous frame
 RET

print(const char* str, int size);

CALLING CONVENTION

•We want to serve different procedures one after another

•When a caller calls a procedure, the program must follow
some steps

– Put parameters in a place in memory so that the callee (i.e., the
called procedure) may access them

– Transfer control to the callee

– Acquire space on memory to store local variables, if needed

– Do computation

– Return control to point of origin in caller

• Calling convention is the set of rules that compilers and
programmers must follow to achieve the above 29

CALLER (BEFORE IT CALLS)

•Example,

– Caller is the main function

– It will call a function called foo

– a = foo(12, 15, 18)

30

Caller saved registers
EAX, ECX & EDX

(as needed)

Return Address ESP

ARG 1 = 12

ARG 2 = 15

ARG 3 = 18

EBP

JUST BEFORE THE CALL
• Main (caller) is using ESP and EBP

• First, main pushes, EAX, ECX and EDX (only if

they need to be preserved)

• Next, it pushes the arguments (last argument

first) i.e., for “a = foo(12, 15, 18)”:

– push dword 18

– push dword 15

– push dword 12

• Then, the return address (contents of register

EIP, i.e., the program counter) is pushed

• Finally, control transferred to foo
31

return address

EBP=ESP

ARG 1 = 12

ARG 2 = 15

ARG 3 = 18

caller saved registers
EAX, ECX & EDX

(as needed)

main’s EBP

[EBP+8]

[EBP+12]

[EBP+16]

JUST AFTER THE CALL

• First, foo (callee) must setup its own stack

frame. EBP register was pointing to

somewhere in main’s stack frame. This must

be preserved. So, we push it.

• Then, the content of ESP is copied to EBP.

ESP is freed to do other things and EBP is now

the base pointer for foo. So, we can point to

things in foo’s stack with an offset from EBP

• The above two steps are:

– push EBP

– mov EBP, ESP

• 4B for main’s EBP and 4B for return address.

That’s why 8B offset to first argument.

32

return address

EBP

ARG 1 = 12

ARG 2 = 15

ARG 3 = 18

caller saved registers
EAX, ECX & EDX

(as needed)

main’s EBP

[EBP+8]

[EBP+12]

[EBP+16]

Local variable 1

Local variable 2

Temp storage

[EBP - 4]

[EBP - 8]

[EBP - 20]
ESP

CALLEE (AFTER IT WAS CALLED)

• Foo must allocate space for temporary

variables that cannot be stored in registers as

well as other storage memory

• If, e.g, foo has 2 variables of type int (4B),

plus it needs 12B. Total = 20 bytes.

• Allocate 20B in the stack, by adjusting ESP

– sub esp, 20

• Finally, foo must preserve EBX, ESI and EDI

if they are being used

• Now, foo can be executed. ESP can go up and

down but the EBP will remain same.

• Maybe other functions are called but always

EBP is restored.
33

return address ESP

ARG 1 = 12

ARG 2 = 15

ARG 3 = 18

caller saved registers
EAX, ECX & EDX

(as needed)

EBP

CALLEE (BEFORE IT RETURNS)

• Store the computed (return) value in EAX

• Restore values of EBX, ESI and EDI, if

needed.

• Now, release area used for local storage

and temporary registers spillover. Then,

pop the return address of main to EBP

– mov ESP, EBP

– pop EBP

• Finally, just return

– ret
34

CALLER (AFTER RETURNING)

• Control returns to caller (main)

•The arguments passed to foo are not needed any more, so

adjust ESP

– add ESP , 12

•Save the EAX (returned value) in appropriate memory location

•Main pops, EAX, ECX and EDX (only if they were preserved

before the call)

35

NEXT LECTURE

• Pointers

• Structures

• Unions

• Endianness

• Bitfield

36

	Slide 1: C for embedded systems (cont. 1)
	Slide 2: Outline
	Slide 3: Boolean and binary operators
	Slide 4: Boolean values
	Slide 5: Boolean expressions
	Slide 6: Bitwise operators
	Slide 7: Interpreting the bitwise-AND
	Slide 8: Interpreting the bitwise-OR
	Slide 9: Interpreting the bitwise-XOR
	Slide 10: Bitwise expressions
	Slide 11: Testing bits
	Slide 12: Testing bits, cont.
	Slide 13: Testing bits, cont.
	Slide 14: Testing keyboard flags using bitwise operators
	Slide 15: continued ...
	Slide 16: Setting bits
	Slide 17: Setting bits, cont.
	Slide 18: Clearing bits
	Slide 19: Clearing bits, cont.
	Slide 20: Inverting bits
	Slide 21: Extracting bits
	Slide 22: Inserting bits
	Slide 23: Outline
	Slide 24: Inline Assembly: Compiler dependent
	Slide 25: X86 assembler
	Slide 26: X86 assembler
	Slide 27: C-assembly interfacing
	Slide 28: Write c function in assembly
	Slide 29: Calling convention
	Slide 30: Caller (before it calls)
	Slide 31: Just Before The Call
	Slide 32: Just After The Call
	Slide 33: Callee (after it was called)
	Slide 34: Callee (before it returns)
	Slide 35: Caller (after returning)
	Slide 36: Next lecture

