
Seminar 2

1. Instruction Pipelining
2. Superscalars
3. Parallel Architectures
1 of 67Datorarkitektur Se 2

2 of 67Datorarkitektur Se 2

Problem 1
A nonpipelined processor has a clock rate of 2.5 GHz. An upgrade to the
processor introduces a five-stage pipeline. However, due to internal pipeline
delays, the clock rate of the new processor has to be reduced to 2 GHz.

What is the speedup achieved for a sequence of 100 instructions?

3 of 67Datorarkitektur Se 2

Problem 1
A nonpipelined processor has a clock rate of 2.5 GHz. An upgrade to the
processor introduces a five-stage pipeline. However, due to internal pipeline
delays, the clock rate of the new processor has to be reduced to 2 GHz.

What is the speedup achieved for a sequence of 100 instructions?

Remember from Lecture 4-5:
 τ: duration of one cycle
 n: number of instructions to execute
 k: number of pipeline stages
 Tk,n: total time to execute n instructions on a pipeline with k stages
 Sk,n: (theoretical) speedup produced by a pipeline with k stages when

executing n instructions

Tk n, k n 1–()+[] τ×=

On a non-pipelined processor each instruction takes k τ,
and n instructions take Tn = n k τ

4 of 67Datorarkitektur Se 2

Problem 1
A nonpipelined processor has a clock rate of 2.5 GHz. An upgrade to the
processor introduces a five-stage pipeline. However, due to internal pipeline
delays, the clock rate of the new processor has to be reduced to 2 GHz.

What is the speedup achieved for a sequence of 100 instructions?

Remember from Lecture 4-5:
 τ: duration of one cycle
 n: number of instructions to execute
 k: number of pipeline stages
 Tk,n: total time to execute n instructions on a pipeline with k stages
 Sk,n: (theoretical) speedup produced by a pipeline with k stages when

executing n instructions

Tk n, k n 1–()+[] τ×=

On a non-pipelined processor each instruction takes k τ,
and n instructions take Tn = n k τ

Sk n,
Tn
Tk n,
---------- n k× τ×

k n 1–()+[] τ×
--------------------------------------- n k×

k n 1–()+-------------------------= = =

Problem 1
A nonpipelined processor has a clock rate of 2.5 GHz. An upgrade to the
processor introduces a five-stage pipeline. However, due to internal pipeline
delays, the clock rate of the new processor has to be reduced to 2 GHz.

What is the speedup achieved for a sequence of 100 instructions?

Solution

S5 100,
100 5×

5 100 1–()+-------------------------------- 4,8= =

We would have a speedup of 4.8 if the pipelined processor would work at the
same clock rate as the initial one!

But the clock rate of the pipelined processor is reduced by a factor of 2/2.5 = 0.8

S = 4.8 x 0.8 = 3.8
5 of 67Datorarkitektur Se 2

Problem 2

Consider the following assembly language program:

Show the dependencies.

1: Move R3, R7 R3 ← R7
2: Load R8, (R3) R8 ← (R3)
3: Add R3, R3, 4 R3 ← R3 + 4
4: Load R9, (R3) R9 ← (R3)
5: BLE R8, R9, L3 Branch if R9 > R8
6 of 67Datorarkitektur Se 2

Problem 2

Consider the following assembly language program:

Show the dependencies.

1: Move R3, R7 R3 ← R7
2: Load R8, (R3) R8 ← (R3)
3: Add R3, R3, 4 R3 ← R3 + 4
4: Load R9, (R3) R9 ← (R3)
5: BLE R8, R9, L3 Branch if R9 > R8
7 of 67Datorarkitektur Se 2

Problem 2

Consider the following assembly language program:

Show the dependencies.

1: Move R3, R7 R3 ← R7
2: Load R8, (R3) R8 ← (R3)
3: Add R3, R3, 4 R3 ← R3 + 4
4: Load R9, (R3) R9 ← (R3)
5: BLE R8, R9, L3 Branch if R9 > R8
8 of 67Datorarkitektur Se 2

Problem 2

Consider the following assembly language program:

Show the dependencies.

1: Move R3, R7 R3 ← R7
2: Load R8, (R3) R8 ← (R3)
3: Add R3, R3, 4 R3 ← R3 + 4
4: Load R9, (R3) R9 ← (R3)
5: BLE R8, R9, L3 Branch if R9 > R8
9 of 67Datorarkitektur Se 2

Problem 2

Consider the following assembly language program:

Show the dependencies.

1: Move R3, R7 R3 ← R7
2: Load R8, (R3) R8 ← (R3)
3: Add R3, R3, 4 R3 ← R3 + 4
4: Load R9, (R3) R9 ← (R3)
5: BLE R8, R9, L3 Branch if R9 > R8
10 of 67Datorarkitektur Se 2

Problem 2

Consider the following assembly language program:

Show the dependencies.

1: Move R3, R7 R3 ← R7
2: Load R8, (R3) R8 ← (R3)
3: Add R3, R3, 4 R3 ← R3 + 4
4: Load R9, (R3) R9 ← (R3)
5: BLE R8, R9, L3 Branch if R9 > R8
11 of 67Datorarkitektur Se 2

Problem 2

Consider the following assembly language program:

Show the dependencies.

True data dependency (RAW): 1 - 2, 1 - 3, 2 - 5, 3 - 4, 4 - 5

Output dependency (WAW): 1 - 3

Antidependency (WAR): 2 - 3

1: Move R3, R7 R3 ← R7
2: Load R8, (R3) R8 ← (R3)
3: Add R3, R3, 4 R3 ← R3 + 4
4: Load R9, (R3) R9 ← (R3)
5: BLE R8, R9, L3 Branch if R9 > R8
12 of 67Datorarkitektur Se 2

13 of 67Datorarkitektur Se 2

Problem 3
a. Identify the dependencies in the following code:

b. Rename the registers in the above sequence to prevent, where possible,
dependency problems.

c. Consider a superscalar computer on which the execution of each instruction
takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c1) in order execution;
c2) out of order execution before renaming;
c3) out of order execution after renaming.

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

Problem 3
a. Identify the dependencies in the following code:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30
14 of 67Datorarkitektur Se 2

Problem 3
a. Identify the dependencies in the following code:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30
15 of 67Datorarkitektur Se 2

Problem 3
a. Identify the dependencies in the following code:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30
16 of 67Datorarkitektur Se 2

Problem 3
a. Identify the dependencies in the following code:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
17 of 67Datorarkitektur Se 2

Problem 3
a. Identify the dependencies in the following code:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
18 of 67Datorarkitektur Se 2

Problem 3
a. Identify the dependencies in the following code:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
19 of 67Datorarkitektur Se 2

Problem 3
a. Identify the dependencies in the following code:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
20 of 67Datorarkitektur Se 2

Problem 3
a. Identify the dependencies in the following code:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
21 of 67Datorarkitektur Se 2

Problem 3
a. Identify the dependencies in the following code:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
22 of 67Datorarkitektur Se 2

Problem 3
a. Identify the dependencies in the following code:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
23 of 67Datorarkitektur Se 2

Problem 3
a. Identify the dependencies in the following code:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
24 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
25 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R11 + R3
9: R10 ← 0
10: R1 ← R11 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
26 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R11 + R3
9: R10 ← 0
10: R1 ← R11 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
27 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R11 + R3
9: R10 ← 0
10: R1 ← R11 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
28 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
29 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
30 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
31 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R51 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
32 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R51 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
33 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R51 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
34 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R51 ← 0
6: R21 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
35 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R51 ← 0
6: R21 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
36 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R51 ← 0
6: R21 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
37 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R51 ← 0
6: R21 ← R4 − 25
7: R3 ← R7 − 2
8: R41 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
38 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R51 ← 0
6: R21 ← R4 − 25
7: R3 ← R7 − 2
8: R41 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
39 of 67Datorarkitektur Se 2

Problem 3
b. Rename registers to prevent output - and antidependencies:

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R51 ← 0
6: R21 ← R4 − 25
7: R3 ← R7 − 2
8: R41 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10
40 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c1) in order execution;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

ALU ALU
Cycle 1 1
41 of 67Datorarkitektur Se 2

42 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c1) in order execution;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1
Cycle 2 2

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

43 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c1) in order execution;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1
Cycle 2 2
Cycle 3 3 4

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

44 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c1) in order execution;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1
Cycle 2 2
Cycle 3 3 4
Cycle 5 5 6

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

45 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c1) in order execution;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1
Cycle 2 2
Cycle 3 3 4
Cycle 4 5 6
Cycle 5 7

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

46 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c1) in order execution;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1
Cycle 2 2
Cycle 3 3 4
Cycle 4 5 6
Cycle 5 7
Cycle 6 8 9

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

47 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c1) in order execution;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1
Cycle 2 2
Cycle 3 3 4
Cycle 4 5 6
Cycle 5 7
Cycle 6 8 9
Cycle 7 10

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

48 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c2) out-of-order order execution, without renaming;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1 9

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

49 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c2) out-of-order order execution, without renaming;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1 9
Cycle 2 2

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

50 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c2) out-of-order order execution, without renaming;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1 9
Cycle 2 2
Cycle 3 3 4

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

51 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c2) out-of-order order execution, without renaming;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1 9
Cycle 2 2
Cycle 3 3 4
Cycle 4 5 6

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

52 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c2) out-of-order order execution, without renaming;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1 9
Cycle 2 2
Cycle 3 3 4
Cycle 4 5 6
Cycle 5 7

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

53 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c2) out-of-order order execution, without renaming;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1 9
Cycle 2 2
Cycle 3 3 4
Cycle 4 5 6
Cycle 5 7
Cycle 6 8 10!

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R1 ← R2 + R4
5: R5 ← 0
6: R2 ← R4 − 25
7: R3 ← R7 − 2
8: R4 ← R1 + R3
9: R10 ← 0
10: R1 ← R1 + 30

54 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c3) out-of-order order execution, with renaming;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1 4

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R51 ← 0
6: R21 ← R4 − 25
7: R3 ← R7 − 2
8: R41 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

55 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c3) out-of-order order execution, with renaming;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1 4
Cycle 2 2 5

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R51 ← 0
6: R21 ← R4 − 25
7: R3 ← R7 − 2
8: R41 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

56 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c3) out-of-order order execution, with renaming;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1 4
Cycle 2 2 5
Cycle 3 3 6

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R51 ← 0
6: R21 ← R4 − 25
7: R3 ← R7 − 2
8: R41 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

57 of 67Datorarkitektur Se 2

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c3) out-of-order order execution, with renaming;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1 4
Cycle 2 2 5
Cycle 3 3 6
Cycle 4 7 9

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R51 ← 0
6: R21 ← R4 − 25
7: R3 ← R7 − 2
8: R41 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30

Problem 3
c. Consider a superscalar computer on which the execution of each instruction

takes one cycle; the computer has two arithmetic units. Show how
instructions are executed in consecutive cycles with:
c3) out-of-order order execution, with renaming;

True data dependency (RAW): 1 - 2, 2 - 3, 3 - 7, 4 - 8, 4 - 10, 7 - 8.
Output dependency (WAW): 1 - 4, 1 - 10, 2 - 5, 4 - 10.
Antidependency (WAR): 2 - 4, 2 - 10, 2 - 6, 3 - 5, 4 - 6, 4 - 8, 6 - 8, 8 - 10

ALU ALU
Cycle 1 1 4
Cycle 2 2 5
Cycle 3 3 6
Cycle 4 7 9
Cycle 5 8 10

1: R1 ← 100
2: R5 ← R1 + R2
3: R7 ← R5 + 1
4: R11 ← R2 + R4
5: R51 ← 0
6: R21 ← R4 − 25
7: R3 ← R7 − 2
8: R41 ← R11 + R3
9: R10 ← 0
10: R12 ← R11 + 30
58 of 67Datorarkitektur Se 2

Problem 4
An application program is executed on a nine-processor cluster. The program
took time T on this cluster. Further, it was found that 25% of T was time in which
the application was running simultaneously on all nine processors. The
remaining time, the application had to run on a single processor.
a. Calculate the speedup under the aformentioned conditions (relative to

execution on a single processor).
b. Suppose that we are able to effectively use 17 processors rather than 9 on

the parallelized portion of the code. Calculate the speedup (relative to
execution on a single processor) that is achieved.
59 of 67Datorarkitektur Se 2

Problem 4
An application program is executed on a nine-processor cluster. The program
took time T on this cluster. Further, it was found that 25% of T was time in which
the application was running simultaneously on all nine processors. The
remaining time, the application had to run on a single processor.
a. Calculate the speedup under the aformentioned conditions (relative to

execution on a single processor).

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

. . .
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
60 of 67Datorarkitektur Se 2

Problem 4
An application program is executed on a nine-processor cluster. The program
took time T on this cluster. Further, it was found that 25% of T was time in which
the application was running simultaneously on all nine processors. The
remaining time, the application had to run on a single processor.
a. Calculate the speedup under the aformentioned conditions (relative to

execution on a single processor).

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

. . .
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -

0.25*T
0.75*T
61 of 67Datorarkitektur Se 2

Problem 4
An application program is executed on a nine-processor cluster. The program
took time T on this cluster. Further, it was found that 25% of T was time in which
the application was running simultaneously on all nine processors. The
remaining time, the application had to run on a single processor.
a. Calculate the speedup under the aformentioned conditions (relative to

execution on a single processor).

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

. . .
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -

0.25*T
0.75*T

S9
TS
T9P

TS
T-----= =
62 of 67Datorarkitektur Se 2

Problem 4
An application program is executed on a nine-processor cluster. The program
took time T on this cluster. Further, it was found that 25% of T was time in which
the application was running simultaneously on all nine processors. The
remaining time, the application had to run on a single processor.
a. Calculate the speedup under the aformentioned conditions (relative to

execution on a single processor).

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

. . .
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -

0.25*T
0.75*T

S9
TS
T9P

TS
T-----= =

TS 0,25 T 9 0,75 T×+×× 3T= =
63 of 67Datorarkitektur Se 2

Problem 4
An application program is executed on a nine-processor cluster. The program
took time T on this cluster. Further, it was found that 25% of T was time in which
the application was running simultaneously on all nine processors. The
remaining time, the application had to run on a single processor.
a. Calculate the speedup under the aformentioned conditions (relative to

execution on a single processor).

S9
TS
T9P

TS
T-----= =

TS 0,25 T 9 0,75 T×+×× 3T= =

S9 3=

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

. . .
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -

0.25*T
0.75*T
64 of 67Datorarkitektur Se 2

Problem 4
An application program is executed on a nine-processor cluster. The program
took time T on this cluster. Further, it was found that 25% of T was time in which
the application was running simultaneously on all nine processors. The
remaining time, the application had to run on a single processor.
b. Suppose that we are able to effectively use 17 processors rather than 9 on

the parallelized portion of the code. Calculate the speedup (relative to
execution on a single processor) that is achieved.

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

. . .
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -

0.75*T

S17
TS
T17P
----------- 3T

T17P
-----------= =

?

65 of 67Datorarkitektur Se 2

T

Problem 4
An application program is executed on a nine-processor cluster. The program
took time T on this cluster. Further, it was found that 25% of T was time in which
the application was running simultaneously on all nine processors. The
remaining time, the application had to run on a single processor.
b. Suppose that we are able to effectively use 17 processors rather than 9 on

the parallelized portion of the code. Calculate the speedup (relative to
execution on a single processor) that is achieved.

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

. . .
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -

0.25*T*9

0.75*T

S17
TS
T17P
----------- 3T

T17P
-----------= =

T17P 0,25 9
17------ T× 0,75 T×+× 0,88= =
66 of 67Datorarkitektur Se 2

T

Problem 4
An application program is executed on a nine-processor cluster. The program
took time T on this cluster. Further, it was found that 25% of T was time in which
the application was running simultaneously on all nine processors. The
remaining time, the application had to run on a single processor.
b. Suppose that we are able to effectively use 17 processors rather than 9 on

the parallelized portion of the code. Calculate the speedup (relative to
execution on a single processor) that is achieved.

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -
- - - - - -

. . .
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -

0.75*T

S17
TS
T17P
----------- 3T

T17P
-----------= =

T17P 0,25 9
17------ T× 0,75 T×+× 0,88= =

S17 3T
0,88T-------------- 3,4= =
67 of 67Datorarkitektur Se 2

	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 1
	Problem 1
	t: duration of one cycle
	n: number of instructions to execute
	k: number of pipeline stages
	Tk,n: total time to execute n instructions on a pipeline with k stages
	Sk,n: (theoretical) speedup produced by a pipeline with k stages when executing n instructions

	Problem 1
	t: duration of one cycle
	n: number of instructions to execute
	k: number of pipeline stages
	Tk,n: total time to execute n instructions on a pipeline with k stages
	Sk,n: (theoretical) speedup produced by a pipeline with k stages when executing n instructions

	Problem 1
	Problem 2
	Problem 2
	Problem 2
	Problem 2
	Problem 2
	Problem 2
	Problem 2
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 3
	Problem 4
	Problem 4
	Problem 4
	Problem 4
	Problem 4
	Problem 4
	Problem 4
	Problem 4
	Problem 4

