
REDUCED INSTRUCTION SET COMPUTERS
(RISC)

1. Why do we need RISCs?

2. Some Typical Features of Current Programs

3. Main Characteristics of RISC Architectures

4. Are RISCs Really Better than CISCs?

5. Examples
1 of 34Datorarkitektur Fö 6

What are RISCs and why do we need them?

 RISC architectures represent an important innovation in the area of
computer organization.

 The RISC architecture is an attempt to produce more CPU power
by simplifying the instruction set of the CPU.

 The opposed trend to RISC is that of complex instruction set computers
(CISC).

Both RISC and CISC architectures have been developed as an attempt to cover
the semantic gap.
2 of 34Datorarkitektur Fö 6

The Semantic Gap

 In order to improve the efficiency of software development, new and
powerful programming languages have been developed (Ada, C++, Java).
They provide: high level of abstraction, conciseness, power.

 By this evolution the semantic gap grows.

gr
ow

in
g

ab
st

ra
ct

io
n

le
ve

l

Machine language (machine architecture fully visible)

High-level language (HLL)

th
e

se
m

an
tic

 g
ap
3 of 34Datorarkitektur Fö 6

The Semantic Gap

Problem: How should new HLL programs be compiled and executed efficiently
on a processor architecture?
4 of 34Datorarkitektur Fö 6

The Semantic Gap

Problem: How should new HLL programs be compiled and executed efficiently
on a processor architecture?

Two possible solutions:

1. The CISC approach: design very complex architectures including a large
number of instructions and addressing modes; include also instructions
close to those present in HLL.

2. The RISC approach: simplify the instruction set and adapt it to the real
requirements of user programs.
5 of 34Datorarkitektur Fö 6

Evaluation of Program Execution
or

What are Programs Doing Most of the Time?

 Several studies have been conducted to determine the execution
characteristics of machine instruction sequences generated from HLL
programs.

 Aspects of interest:
1. The frequency of operations performed.
2. The types of operands and their frequency of use.
3. Execution sequencing (frequency of jumps, loops, subprogram calls).
6 of 34Datorarkitektur Fö 6

Frequency of Instructions Executed

 Frequency distribution of executed machine instructions:

 moves: 33%
 conditional branch: 20%
 arithmetic/logic: 16%
 others: Between 0.1% and 10%

 Addressing modes:
 the overwhelming majority of instructions uses simple addressing

modes, in which the address can be calculated in a single cycle
(register, register indirect, displacement);

 complex addressing modes (memory indirect, indexed+indirect,
displacement+indexed, stack) are used only by ~18% of the
instructions.
7 of 34Datorarkitektur Fö 6

Operand Types

 74 to 80% of the operands are scalars (integers, reals, characters, etc.) which
can be hold in registers;

 the rest (20-26%) are arrays/structures; 90% of them are global variables;

 80% of the scalars are local variables.

The majority of operands are local variables of scalar type, which can be
stored in registers.
8 of 34Datorarkitektur Fö 6

Function Calls

 Investigations have been also performed about the percentage of the total
execution time spent executing a certain HLL instruction.

 It turned out that comparing HLL instructions, most of the time is spent
executing function CALLs and RETURNs.

 Even if only 15% of the executed HLL instructions is a CALL or
RETURN, they are executed most of the time, because of their
complexity.

 A CALL or RETURN is compiled into a relatively long sequence of
machine instructions with a lot of memory references.
9 of 34Datorarkitektur Fö 6

Function Calls

 Investigations have been also performed about the percentage of the total
execution time spent executing a certain HLL instruction.

 It turned out that comparing HLL instructions, most of the time is spent
executing function CALLs and RETURNs.

 Even if only 15% of the executed HLL instructions is a CALL or
RETURN, they are executed most of the time, because of their
complexity.

 A CALL or RETURN is compiled into a relatively long sequence of
machine instructions with a lot of memory references.

 Only 1.25% of called functions have more than six parameters.

 Only 6.7% of called functions have more than six local variables.
10 of 34Datorarkitektur Fö 6

Conclusions from Evaluation of Program
Execution

 An overwhelming preponderance of simple (ALU and move) operations over
complex operations.

 Preponderance of simple addressing modes.

 Large frequency of operand accesses; on average each instruction
references 1.9 operands.

 Most of the referenced operands are scalars (so they can be stored in a
register) and are local variables or parameters.

 Optimizing the procedure CALL/RETURN mechanism promises large
benefits in speed.
11 of 34Datorarkitektur Fö 6

Conclusions from Evaluation of Program
Execution

 An overwhelming preponderance of simple (ALU and move) operations over
complex operations.

 Preponderance of simple addressing modes.

 Large frequency of operand accesses; on average each instruction
references 1.9 operands.

 Most of the referenced operands are scalars (so they can be stored in a
register) and are local variables or parameters.

 Optimizing the procedure CALL/RETURN mechanism promises large
benefits in speed.

These conclusions have been at the starting point to the Reduced Instruction
Set Computer (RISC) approach.
12 of 34Datorarkitektur Fö 6

13 of 34Datorarkitektur Fö 6

Main Characteristics of RISC Architectures

 The instruction set is limited and includes only simple instructions.

 Load-and-store architecture

 Instructions use only few addressing modes

 Instructions are of fixed length and uniform format

 A large number of registers is available

Main Characteristics of RISC Architectures
 The instruction set is limited and includes only simple instructions.

 The goal is to create an instruction set containing instructions that
execute quickly; most of the RISC instructions are executed in a single
cycle (after fetched and decoded).
- Pipeline operation (without memory reference):

FI DI EI
14 of 34Datorarkitektur Fö 6

Main Characteristics of RISC Architectures
 The instruction set is limited and includes only simple instructions.

 The goal is to create an instruction set containing instructions that
execute quickly; most of the RISC instructions are executed in a single
cycle (after fetched and decoded).
- Pipeline operation (without memory reference):

 RISC instructions, being simple, are hard-wired, while CISC
architectures have to use microprogramming in order to implement
complex instructions.

 Having only simple instructions results in reduced complexity of the
control unit and the data path; as a consequence, the processor can
work at a high clock frequency.

 The pipelines are used efficiently if instructions are simple and of
similar execution time.

FI DI EI
15 of 34Datorarkitektur Fö 6

Main Characteristics of RISC Architectures
 The instruction set is limited and includes only simple instructions.

 The goal is to create an instruction set containing instructions that
execute quickly; most of the RISC instructions are executed in a single
cycle (after fetched and decoded).
- Pipeline operation (without memory reference):

 RISC instructions, being simple, are hard-wired, while CISC
architectures have to use microprogramming in order to implement
complex instructions.

 Having only simple instructions results in reduced complexity of the
control unit and the data path; as a consequence, the processor can
work at a high clock frequency.

 The pipelines are used efficiently if instructions are simple and of
similar execution time.

 Complex operations on RISCs are executed as a sequence of simple
RISC instructions. In the case of CISCs they are executed as one single
or a few complex instruction.

FI DI EI
16 of 34Datorarkitektur Fö 6

Main Characteristics of RISC Architectures
Let’s see some small example:
Assume:

 we have a program with 80% of executed instructions being simple and
20% complex;

 on a CISC machine simple instructions take 4 cycles, complex
instructions take 8 cycles; cycle time is 100 ns (10-7 s);

 on a RISC machine simple instructions are executed in one cycle;
complex operations are implemented as a sequence of instructions;
we consider on average 14 instructions (14 cycles) for a complex
operation; cycle time is 75 ns (0.75 * 10-7 s).
17 of 34Datorarkitektur Fö 6

Main Characteristics of RISC Architectures
Let’s see some small example:
Assume:

 we have a program with 80% of executed instructions being simple and
20% complex;

 on a CISC machine simple instructions take 4 cycles, complex
instructions take 8 cycles; cycle time is 100 ns (10-7 s);

 on a RISC machine simple instructions are executed in one cycle;
complex operations are implemented as a sequence of instructions;
we consider on average 14 instructions (14 cycles) for a complex
operation; cycle time is 75 ns (0.75 * 10-7 s).

How much time takes a program of 1 000 000 instructions?
CISC: (106*0.80*4 + 106*0.20*8)*10-7 = 0.48 s
18 of 34Datorarkitektur Fö 6

Main Characteristics of RISC Architectures
Let’s see some small example:
Assume:

 we have a program with 80% of executed instructions being simple and
20% complex;

 on a CISC machine simple instructions take 4 cycles, complex
instructions take 8 cycles; cycle time is 100 ns (10-7 s);

 on a RISC machine simple instructions are executed in one cycle;
complex operations are implemented as a sequence of instructions;
we consider on average 14 instructions (14 cycles) for a complex
operation; cycle time is 75 ns (0.75 * 10-7 s).

How much time takes a program of 1 000 000 instructions?
CISC: (106*0.80*4 + 106*0.20*8)*10-7 = 0.48 s
RISC: (106*0.80*1 + 106*0.20*14)*0.75*10-7 = 0.27 s

 complex operations take longer on the RISC, but their number is small;
 because of its simplicity, the RISC works at a smaller cycle time; with

the CISC, simple instructions are slowed down because of the in-
creased data path length and the increased control complexity.
19 of 34Datorarkitektur Fö 6

Main Characteristics of RISC Architectures
 Load-and-store architecture

 Only LOAD and STORE instructions reference data in memory; all
other instructions operate only with registers (are register-to-register
instructions)  only the few instructions accessing memory need
more than one cycle to execute (after fetched and decoded). Pipeline
operation with memory reference:

FI DI CA TR
CA: compute address
TR: transfer
20 of 34Datorarkitektur Fö 6

Main Characteristics of RISC Architectures
 Load-and-store architecture

 Only LOAD and STORE instructions reference data in memory; all
other instructions operate only with registers (are register-to-register
instructions)  only the few instructions accessing memory need
more than one cycle to execute (after fetched and decoded).Pipeline
operation with memory reference:

 Instructions use only few addressing modes

 Usually: register, direct, register indirect, displacement.

FI DI CA TR
CA: compute address
TR: transfer
21 of 34Datorarkitektur Fö 6

Main Characteristics of RISC Architectures
 Load-and-store architecture

 Only LOAD and STORE instructions reference data in memory; all
other instructions operate only with registers (are register-to-register
instructions)  only the few instructions accessing memory need
more than one cycle to execute (after fetched and decoded).Pipeline
operation with memory reference:

 Instructions use only few addressing modes

 Usually: register, direct, register indirect, displacement.

 Instructions are of fixed length and uniform format

 This makes the loading and decoding of instructions simple and fast; it
is not needed to wait until the length of an instruction is known in
order to start decoding the following one; opcode and address fields
are located in the same position for all instructions.

FI DI CA TR
CA: compute address
TR: transfer
22 of 34Datorarkitektur Fö 6

Main Characteristics of RISC Architectures

 A large number of registers is available

 Variables and intermediate results can be stored in registers and do
not require repeated loads and stores from/to memory.

 All local variables of procedures and the passed parameters can be
stored in registers.
23 of 34Datorarkitektur Fö 6

The delayed load Problem

 LOAD instructions (similar to the STORE) require memory access and their
execution cannot be completed in a single clock cycle.
However, in the next cycle a new instruction is started by the processor.

LOAD R1,X
ADD R2,R1
ADD R4,R3

FI DI EI

FI

stall

DI EI

FI DI CA TR
24 of 34Datorarkitektur Fö 6

The delayed load Problem

 LOAD instructions (similar to the STORE) require memory access and their
execution cannot be completed in a single clock cycle.
However, in the next cycle a new instruction is started by the processor.

 Using a smart compiler, it can be possible to avoid the stall in the pipeline.
The solution, that has similarities with the delayed branching, is called
delayed load.

LOAD R1,X
ADD R2,R1
ADD R4,R3

FI DI EI

FI

stall

DI EI

FI DI CA TR
25 of 34Datorarkitektur Fö 6

The delayed load Problem
Let us consider the following sequence:

LOAD R1,X loads from address X into R1
ADD R2,R1 R2 ← R2 + R1
ADD R4,R3 R4 ← R4 + R3
SUB R5,R4 R5 ← R5 - R4
26 of 34Datorarkitektur Fö 6

The delayed load Problem
Let us consider the following sequence:

LOAD R1,X loads from address X into R1
ADD R2,R1 R2 ← R2 + R1
ADD R4,R3 R4 ← R4 + R3
SUB R5,R4 R5 ← R5 - R4

This happens in the pipeline:

But a smart compiler can do something with this code!

FI DI EI

LOAD R1,X
ADD R2,R1
ADD R4,R3
SUB R5,R4

FI DI EI

FI

stall

DI EI

FI DI CA TR
27 of 34Datorarkitektur Fö 6

The delayed load Problem
The compiler reorganises the code and tries to find an instruction that does not
depend on the loaded value and that can be placed after the LOAD:

LOAD R1,X loads from address X into R1
ADD R4,R3 R4 ← R4 + R3
ADD R2,R1 R2 ← R2 + R1
SUB R5,R4 R5 ← R5 - R4

No stall in the pipeline:

FI DI EI

FI DI CA TR

FI DI EI

FI DI EI

LOAD R1,X
ADD R4,R3
ADD R2,R1
SUB R5,R4
28 of 34Datorarkitektur Fö 6

The delayed load Problem
The compiler reorganises the code and tries to find an instruction that does not
depend on the loaded value and that can be placed after the LOAD:

LOAD R1,X loads from address X into R1
ADD R4,R3 R4 ← R4 + R3
ADD R2,R1 R2 ← R2 + R1
SUB R5,R4 R5 ← R5 - R4

No stall in the pipeline:

If there is no instruction to move after the LOAD, like in the following sequence,
the stall is unavoidable:

LOAD R1,X loads from address X into R1
ADD R2,R1 R2 ← R2 + R1
ADD R4,R2 R4 ← R4 + R2
SUB R3,R4 R3 ← R3 - R4

FI DI EI

FI DI CA TR

FI DI EI

FI DI EI

LOAD R1,X
ADD R4,R3
ADD R2,R1
SUB R5,R4
29 of 34Datorarkitektur Fö 6

Are RISCs Really Better than CISCs?
 RISC architectures have several advantages and they were discussed

throughout this lecture. However, a definitive answer to the above question
is difficult to give.

 A lot of performance comparisons have shown that benchmark programs are
really running faster on RISC processors than on processors with CISC
characteristics.

 However, it is difficult to identify which feature of a processor produces the
higher performance. Some "CISC fans" argue that the higher speed is not
produced by the typical RISC features but because of technology, better
compilers, etc.

 An argument in favour of the CISC: the simpler instruction set of RISC
processors results in a larger memory requirement compared to the similar
program compiled for a CISC architecture.
30 of 34Datorarkitektur Fö 6

Are RISCs Really Better than CISCs?
 RISC architectures have several advantages and they were discussed

throughout this lecture. However, a definitive answer to the above question
is difficult to give.

 A lot of performance comparisons have shown that benchmark programs are
really running faster on RISC processors than on processors with CISC
characteristics.

 However, it is difficult to identify which feature of a processor produces the
higher performance. Some "CISC fans" argue that the higher speed is not
produced by the typical RISC features but because of technology, better
compilers, etc.

 An argument in favour of the CISC: the simpler instruction set of RISC
processors results in a larger memory requirement compared to the similar
program compiled for a CISC architecture.

Most of the current processors are not typical RISCs or CISCs but try to
combine advantages of both approaches
31 of 34Datorarkitektur Fö 6

Some Processor Examples
CISC Architectures:

 VAX 11/780

 Nr. of instructions: 303
 Instruction size: 2 - 57
 Instruction format: not fixed
 Addressing modes: 22
 Number of general purpose registers: 16

 Pentium

 Nr. of instructions: 235
 Instruction size: 1 - 11
 Instruction format: not fixed
 Addressing modes: 11
 Number of general purpose registers: 8 (32-bit mode), 16 (64-bit mode)
32 of 34Datorarkitektur Fö 6

Some Processor Examples

RISC Architectures:

 Sun SPARC
 Nr. of instructions: 52
 Instruction size: 4
 Instruction format: fixed
 Addressing modes: 2
 Number of general purpose registers: up to 520

 PowerPC
 Nr. of instructions: 206
 Instruction size: 4
 Instruction format: not fixed (but small differences)
 Addressing modes: 2
 Number of general purpose registers: 32
33 of 34Datorarkitektur Fö 6

Some Processor Examples

 ARM
 Nr. of instructions (in the standard set): 122
 Instruction size: 4 (standard), 2 (Thumb instruction set)
 Instruction format: fixed (different between regular and Thumb)
 Addressing modes: 3
 Number of general purpose registers: 27 (16 can be used at a time)

Current ARM processors can execute both the standard 32 bit instruction set
and the 16 bit Thumb instruction set. Thumb contains a subset of the 32-bit set,
encoded into 16-bit instructions.
34 of 34Datorarkitektur Fö 6

	Reduced Instruction Set ComputerS (RISC)
	What are RISCs and why do we need them?
	RISC architectures represent an important innovation in the area of computer organization.
	The RISC architecture is an attempt to produce more CPU power by simplifying the instruction set of the CPU.
	The opposed trend to RISC is that of complex instruction set computers (CISC).

	The Semantic Gap
	In order to improve the efficiency of software development, new and powerful programming languages have been developed (Ada, C++, Java). They provide: high level of abstraction, conciseness, power.
	By this evolution the semantic gap grows.

	The Semantic Gap
	The Semantic Gap
	Evaluation of Program Execution
	Several studies have been conducted to determine the execution characteristics of machine instruction sequences generated from HLL programs.
	Aspects of interest:

	Frequency of Instructions Executed
	Frequency distribution of executed machine instructions:
	moves: 33%
	conditional branch: 20%
	arithmetic/logic: 16%
	others: Between 0.1% and 10%

	Addressing modes:
	the overwhelming majority of instructions uses simple addressing modes, in which the address can be calculated in a single cycle (register, register indirect, displacement);
	complex addressing modes (memory indirect, indexed+indirect, displacement+indexed, stack) are used only by ~18% of the instructions.

	Operand Types
	74 to 80% of the operands are scalars (integers, reals, characters, etc.) which can be hold in registers;
	the rest (20-26%) are arrays/structures; 90% of them are global variables;
	80% of the scalars are local variables.

	Function Calls
	Investigations have been also performed about the percentage of the total execution time spent executing a certain HLL instruction.
	It turned out that comparing HLL instructions, most of the time is spent executing function CALLs and RETURNs.
	Even if only 15% of the executed HLL instructions is a CALL or RETURN, they are executed most of the time, because of their complexity.
	A CALL or RETURN is compiled into a relatively long sequence of machine instructions with a lot of memory references.

	Function Calls
	Investigations have been also performed about the percentage of the total execution time spent executing a certain HLL instruction.
	It turned out that comparing HLL instructions, most of the time is spent executing function CALLs and RETURNs.
	Even if only 15% of the executed HLL instructions is a CALL or RETURN, they are executed most of the time, because of their complexity.
	A CALL or RETURN is compiled into a relatively long sequence of machine instructions with a lot of memory references.

	Only 1.25% of called functions have more than six parameters.
	Only 6.7% of called functions have more than six local variables.

	Conclusions from Evaluation of Program Execution
	An overwhelming preponderance of simple (ALU and move) operations over complex operations.
	Preponderance of simple addressing modes.
	Large frequency of operand accesses; on average each instruction references 1.9 operands.
	Most of the referenced operands are scalars (so they can be stored in a register) and are local variables or parameters.
	Optimizing the procedure CALL/RETURN mechanism promises large benefits in speed.

	Conclusions from Evaluation of Program Execution
	An overwhelming preponderance of simple (ALU and move) operations over complex operations.
	Preponderance of simple addressing modes.
	Large frequency of operand accesses; on average each instruction references 1.9 operands.
	Most of the referenced operands are scalars (so they can be stored in a register) and are local variables or parameters.
	Optimizing the procedure CALL/RETURN mechanism promises large benefits in speed.

	Main Characteristics of RISC Architectures
	The instruction set is limited and includes only simple instructions.
	The goal is to create an instruction set containing instructions that execute quickly; most of the RISC instructions are executed in a single cycle (after fetched and decoded).

	- Pipeline operation (without memory reference):

	Main Characteristics of RISC Architectures
	The instruction set is limited and includes only simple instructions.
	The goal is to create an instruction set containing instructions that execute quickly; most of the RISC instructions are executed in a single cycle (after fetched and decoded).

	- Pipeline operation (without memory reference):
	RISC instructions, being simple, are hard-wired, while CISC architectures have to use microprogramming in order to implement complex instructions.
	Having only simple instructions results in reduced complexity of the control unit and the data path; as a consequence, the processor can work at a high clock frequency.
	The pipelines are used efficiently if instructions are simple and of similar execution time.

	Main Characteristics of RISC Architectures
	The instruction set is limited and includes only simple instructions.
	The goal is to create an instruction set containing instructions that execute quickly; most of the RISC instructions are executed in a single cycle (after fetched and decoded).

	- Pipeline operation (without memory reference):
	RISC instructions, being simple, are hard-wired, while CISC architectures have to use microprogramming in order to implement complex instructions.
	Having only simple instructions results in reduced complexity of the control unit and the data path; as a consequence, the processor can work at a high clock frequency.
	The pipelines are used efficiently if instructions are simple and of similar execution time.
	Complex operations on RISCs are executed as a sequence of simple RISC instructions. In the case of CISCs they are executed as one single or a few complex instruction.

	Main Characteristics of RISC Architectures
	we have a program with 80% of executed instructions being simple and 20% complex;
	on a CISC machine simple instructions take 4 cycles, complex instructions take 8 cycles; cycle time is 100 ns (10-7 s);
	on a RISC machine simple instructions are executed in one cycle; complex operations are implemented as a sequence of instructions; we consider on average 14 instructions (14 cycles) for a complex operation; cycle time is 75 ns (0.75 * 10-7 s).

	Main Characteristics of RISC Architectures
	we have a program with 80% of executed instructions being simple and 20% complex;
	on a CISC machine simple instructions take 4 cycles, complex instructions take 8 cycles; cycle time is 100 ns (10-7 s);
	on a RISC machine simple instructions are executed in one cycle; complex operations are implemented as a sequence of instructions; we consider on average 14 instructions (14 cycles) for a complex operation; cycle time is 75 ns (0.75 * 10-7 s).

	Main Characteristics of RISC Architectures
	we have a program with 80% of executed instructions being simple and 20% complex;
	on a CISC machine simple instructions take 4 cycles, complex instructions take 8 cycles; cycle time is 100 ns (10-7 s);
	on a RISC machine simple instructions are executed in one cycle; complex operations are implemented as a sequence of instructions; we consider on average 14 instructions (14 cycles) for a complex operation; cycle time is 75 ns (0.75 * 10-7 s).
	complex operations take longer on the RISC, but their number is small;
	because of its simplicity, the RISC works at a smaller cycle time; with the CISC, simple instructions are slowed down because of the increased data path length and the increased control complexity.

	Main Characteristics of RISC Architectures
	Load-and-store architecture
	Only LOAD and STORE instructions reference data in memory; all other instructions operate only with registers (are register-to-register instructions) Þ only the few instructions accessing memory need more than one cycle to execute (after fetched and...

	Main Characteristics of RISC Architectures
	Load-and-store architecture
	Only LOAD and STORE instructions reference data in memory; all other instructions operate only with registers (are register-to-register instructions) Þ only the few instructions accessing memory need more than one cycle to execute (after fetched and...

	Instructions use only few addressing modes
	Usually: register, direct, register indirect, displacement.

	Main Characteristics of RISC Architectures
	Load-and-store architecture
	Only LOAD and STORE instructions reference data in memory; all other instructions operate only with registers (are register-to-register instructions) Þ only the few instructions accessing memory need more than one cycle to execute (after fetched and...

	Instructions use only few addressing modes
	Usually: register, direct, register indirect, displacement.

	Instructions are of fixed length and uniform format
	This makes the loading and decoding of instructions simple and fast; it is not needed to wait until the length of an instruction is known in order to start decoding the following one; opcode and address fields are located in the same position for all...

	Main Characteristics of RISC Architectures
	A large number of registers is available
	Variables and intermediate results can be stored in registers and do not require repeated loads and stores from/to memory.
	All local variables of procedures and the passed parameters can be stored in registers.

	The delayed load Problem
	LOAD instructions (similar to the STORE) require memory access and their execution cannot be completed in a single clock cycle. However, in the next cycle a new instruction is started by the processor.

	The delayed load Problem
	LOAD instructions (similar to the STORE) require memory access and their execution cannot be completed in a single clock cycle. However, in the next cycle a new instruction is started by the processor.
	Using a smart compiler, it can be possible to avoid the stall in the pipeline. The solution, that has similarities with the delayed branching, is called delayed load.

	The delayed load Problem
	The delayed load Problem
	The delayed load Problem
	The delayed load Problem
	Are RISCs Really Better than CISCs?
	RISC architectures have several advantages and they were discussed throughout this lecture. However, a definitive answer to the above question is difficult to give.
	A lot of performance comparisons have shown that benchmark programs are really running faster on RISC processors than on processors with CISC characteristics.
	However, it is difficult to identify which feature of a processor produces the higher performance. Some "CISC fans" argue that the higher speed is not produced by the typical RISC features but because of technology, better compilers, etc.
	An argument in favour of the CISC: the simpler instruction set of RISC processors results in a larger memory requirement compared to the similar program compiled for a CISC architecture.

	Are RISCs Really Better than CISCs?
	RISC architectures have several advantages and they were discussed throughout this lecture. However, a definitive answer to the above question is difficult to give.
	A lot of performance comparisons have shown that benchmark programs are really running faster on RISC processors than on processors with CISC characteristics.
	However, it is difficult to identify which feature of a processor produces the higher performance. Some "CISC fans" argue that the higher speed is not produced by the typical RISC features but because of technology, better compilers, etc.
	An argument in favour of the CISC: the simpler instruction set of RISC processors results in a larger memory requirement compared to the similar program compiled for a CISC architecture.

	Some Processor Examples
	VAX 11/780
	Nr. of instructions: 303
	Instruction size: 2 - 57
	Instruction format: not fixed
	Addressing modes: 22
	Number of general purpose registers: 16

	Pentium
	Nr. of instructions: 235
	Instruction size: 1 - 11
	Instruction format: not fixed
	Addressing modes: 11
	Number of general purpose registers: 8 (32-bit mode), 16 (64-bit mode)

	Some Processor Examples
	Sun SPARC
	Nr. of instructions: 52
	Instruction size: 4
	Instruction format: fixed
	Addressing modes: 2
	Number of general purpose registers: up to 520

	PowerPC
	Nr. of instructions: 206
	Instruction size: 4
	Instruction format: not fixed (but small differences)
	Addressing modes: 2
	Number of general purpose registers: 32

	Some Processor Examples
	ARM
	Nr. of instructions (in the standard set): 122
	Instruction size: 4 (standard), 2 (Thumb instruction set)
	Instruction format: fixed (different between regular and Thumb)
	Addressing modes: 3
	Number of general purpose registers: 27 (16 can be used at a time)

	Main Characteristics of RISC Architectures
	The instruction set is limited and includes only simple instructions.
	Load-and-store architecture
	Instructions use only few addressing modes
	Instructions are of fixed length and uniform format
	A large number of registers is available

