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The Instruction Cycle

Fetch
instruction

Decode

Fetch
operand

Execute
instruction

FI

DI

- Calculate operand address (CO)
- Fetch operand (FO)

- Execute instruction (EI)
- Write back operand (WO)
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Instruction Pipelining
 Instruction execution is extremely complex and involves several operations 

which are executed successively. This implies a large amount of hardware, but 
only one part of this hardware works at a given moment.

 Pipelining is an implementation technique whereby multiple instructions are 
overlapped in execution. This is solved without additional hardware, only letting 
different parts of the hardware work for different instructions at the same time.

 The pipeline organization of a CPU is similar to an assembly line: the work to be 
done in an instruction is broken into smaller steps (pieces), each of which takes 
a fraction of the time needed to complete the entire instruction. Each of these 
steps is a pipe stage (or a pipe segment).

 Pipe stages are connected to form a pipe:

Stage 1 Stage 2 Stage n
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Acceleration by Pipelining
Two stage pipeline: FI: fetch instruction

EI: execute instruction

We consider that each instruction takes execution time Tex.

Execution time for the 7 instructions, with pipelining: (Tex/2)8= 4Tex

 Acceleration: 7Tex /4Tex = 7/4

FI EI
FI EI

FI EI
FI EI

FI EI

FI EI
FI EI

1 2 83 4 5 6 7cycle →

Instr. i
Instr. i+1
Instr. i+2
Instr. i+3
Instr. i+4
Instr. i+5
Instr. i+6
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Acceleration by Pipelining
Six stage pipeline: FI: fetch instruction FO:fetch operand

DI:decode instruction EI:execute instruction
CO:calculate operand address WO:write operand

Execution time for the 7 instructions, with pipelining: (Tex/6)12= 2Tex

FI DI

1 2 83 4 5 6 7cycle →

Instr. i
Instr. i+1
Instr. i+2
Instr. i+3
Instr. i+4
Instr. i+5
Instr. i+6

COFO EI WO
FI DI COFO EI WO

FI DI COFO EI WO
FI DI COFO EI WO

FI DI COFO EI WO

FI DI COFO EI WO

FI DI COFO EI WO

9 10 11 12
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Acceleration by Pipelining
Six stage pipeline: FI: fetch instruction FO:fetch operand

DI:decode instruction EI:execute instruction
CO:calculate operand address WO:write operand

Execution time for the 7 instructions, with pipelining: (Tex/6)12= 2Tex

 Acceleration: 7Tex /2Tex = 7/2

 After a certain time (N-1 cycles) all the N stages of the pipeline are working: the 
pipeline is filled. Now, theoretically, the pipeline works providing maximal 
parallelism (N instructions are active simultaneously).

FI DI

1 2 83 4 5 6 7cycle →

Instr. i
Instr. i+1
Instr. i+2
Instr. i+3
Instr. i+4
Instr. i+5
Instr. i+6

COFO EI WO
FI DI COFO EI WO

FI DI COFO EI WO
FI DI COFO EI WO

FI DI COFO EI WO

FI DI COFO EI WO

FI DI COFO EI WO

9 10 11 12



Acceleration by Pipelining
 τ: duration of one cycle
 n: number of instructions to execute
 k: number of pipeline stages
 Tk,n: total time to execute n instructions on a pipeline with k stages
 Sk,n: (theoretical) speedup produced by a pipeline with k stages when 

executing n instructions
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Acceleration by Pipelining
 τ: duration of one cycle
 n: number of instructions to execute
 k: number of pipeline stages
 Tk,n: total time to execute n instructions on a pipeline with k stages
 Sk,n: (theoretical) speedup produced by a pipeline with k stages when 

executing n instructions

- The first instruction takes k  τ to finish
- The following n − 1 instructions produce one result per cycle.

On a non-pipelined processor each instruction takes k  τ,  
and n instructions take Tn = n  k  τ 

For large number of instructions (n → ∞) the speedup approaches k (nr. of stages).

Tk n, k n 1–( )+[ ] τ×=

Sk n,
Tn
Tk n,
---------- n k× τ×

k n 1–( )+[ ] τ×
--------------------------------------- n k×

k n 1–( )+-------------------------= = =



Acceleration by Pipelining
 Apparently a greater number of stages always provides better performance. 

However:

 a greater number of stages increases the overhead in moving information 
between stages and synchronization between stages.

 with the number of stages the complexity of the CPU grows.
 it is difficult to keep a large pipeline at maximum rate because of pipeline 

hazards.
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Acceleration by Pipelining
 Apparently a greater number of stages always provides better performance. 

However:

 a greater number of stages increases the overhead in moving information 
between stages and synchronization between stages.

 with the number of stages the complexity of the CPU grows.
 it is difficult to keep a large pipeline at maximum rate because of pipeline 

hazards.

80486 and Pentium: five-stage pipeline for integer instructions
eight-stage pipeline for FP instructions

PowerPC: four-stage pipeline for integer instructions
six-stage pipeline for FP instructions
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Pipeline Hazards

 Pipeline hazards are situations that prevent the next instruction in the 
instruction stream from executing during its designated clock cycle. The 
instruction is said to be stalled. 

 When an instruction is stalled, all instructions later in the pipeline than 
the stalled instruction are also stalled. Instructions earlier than the stalled 
one can continue. No new instructions are fetched during the stall.
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Pipeline Hazards

 Pipeline hazards are situations that prevent the next instruction in the 
instruction stream from executing during its designated clock cycle. The 
instruction is said to be stalled. 

 When an instruction is stalled, all instructions later in the pipeline than 
the stalled instruction are also stalled. Instructions earlier than the stalled 
one can continue. No new instructions are fetched during the stall.

 Types of hazards:

1. Structural hazards
2. Data hazards
3. Control hazards
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Structural Hazards
 Structural hazards occur when a certain resource (memory, functional unit) is 

requested by more than one instruction at the same time.

Consider Instruction ADD R4,X 

FI DI

1 2 83 4 5 6 7cycle →

ADD R4,X
Instr. i+1
Instr. i+2
Instr. i+3
Instr. i+4

COFO EI WO
FI DI COFO EI WO

FI DI COFO EI WO
FI DI COFO EI WO

FI DI COFO EI WO

9 10 11 12

stall
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Structural Hazards
 Structural hazards occur when a certain resource (memory, functional unit) is 

requested by more than one instruction at the same time.

Consider Instruction ADD R4,X 
It fetches in the FO stage operand X from memory. 

FI DI

1 2 83 4 5 6 7cycle →

ADD R4,X
Instr. i+1
Instr. i+2
Instr. i+3
Instr. i+4

COFO EI WO
FI DI COFO EI WO

FI DI COFO EI WO
FI DI COFO EI WO

FI DI COFO EI WO

9 10 11 12

stall
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Structural Hazards
 Structural hazards occur when a certain resource (memory, functional unit) is 

requested by more than one instruction at the same time.

Consider Instruction ADD R4,X 
It fetches in the FO stage operand X from memory. 

The memory doesn’t accept another access during 
that cycle.

FI DI

1 2 83 4 5 6 7cycle →

ADD R4,X
Instr. i+1
Instr. i+2
Instr. i+3
Instr. i+4

COFO EI WO
FI DI COFO EI WO

FI DI COFO EI WO
FI DI COFO EI WO

FI DI COFO EI WO

9 10 11 12

stall

Penalty: 1 cycle
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Structural Hazards
 Structural hazards occur when a certain resource (memory, functional unit) is 

requested by more than one instruction at the same time.

Consider Instruction ADD R4,X 
It fetches in the FO stage operand X from memory. 

The memory doesn’t accept another access during 
that cycle.

FI DI

1 2 83 4 5 6 7cycle →

ADD R4,X
Instr. i+1
Instr. i+2
Instr. i+3
Instr. i+4

COFO EI WO
FI DI COFO EI WO

FI DI COFO EI WO
FI DI COFO EI WO

FI DI COFO EI WO

9 10 11 12

stall

Penalty: 1 cycle

Certain resources are duplicated in 
order to avoid structural hazards. 
Functional units (ALU, FP unit) can 
be pipelined themselves in order 
to support several instructions at a 
time. A classical way to avoid 
hazards at memory access is by 
providing separate data and 
instruction caches.
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Data Hazards
 We have two instructions, I1 and I2. The execution of I2 starts before I1 has 

terminated. If I2 needs the result produced by I1, but this result has not yet been 
generated, we have a data hazard.

I1: MUL R2,R3 R2 ← R2 * R3
I2: ADD R1,R2 R1 ← R1 + R2
17 of  68Datorarkitektur  Fö 4-5



Data Hazards
 We have two instructions, I1 and I2. The execution of I2 starts before I1 has 

terminated. If I2 needs the result produced by I1, but this result has not yet been 
generated, we have a data hazard.

I1: MUL R2,R3 R2 ← R2 * R3
I2: ADD R1,R2 R1 ← R1 + R2

Before executing its FO stage, the ADD instruction is stalled until the MUL 
instruction has written the result into R2.

Penalty: 2 cycles

FI DI

1 2 83 4 5 6 7cycle →

MUL R2,R3
ADD R1,R2
Instr. i+2

COFO EI WO
FI DI CO FO EI WO

FI DI COFO EI WO

9 10 11 12

stall stall
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Data Hazards

 Some of the penalty produced by data hazards can be avoided using a 
technique called forwarding (bypassing).

 If the hardware detects that the value needed for the current operation is 
the one produced by the ALU in the previous operation (but which has not 
yet been written back) it uses directly the value from the output of the 
ALU, instead of waiting that the result is written back to the register.
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Data Hazards
Our previous example

I1: MUL R2,R3 R2 ← R2 * R3
I2: ADD R1,R2 R1 ← R1 + R2
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Data Hazards
Our previous example

I1: MUL R2,R3 R2 ← R2 * R3
I2: ADD R1,R2 R1 ← R1 + R2

Without forwarding:

FI DI

1 2 83 4 5 6 7cycle →

MUL R2,R3
ADD R1,R2
Instr. i+2

COFO EI WO
FI DI CO FO EI WO

FI DI COFO EI WO

9 10 11 12

stall stall

Penalty: 2 cycles
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Data Hazards
Our previous example

I1: MUL R2,R3 R2 ← R2 * R3
I2: ADD R1,R2 R1 ← R1 + R2

Without forwarding:

With forwarding

FI DI

1 2 83 4 5 6 7cycle →

MUL R2,R3
ADD R1,R2
Instr. i+2

COFO EI WO
FI DI CO FO EI WO

FI DI COFO EI WO

9 10 11 12

stall stall

FI DI

1 2 83 4 5 6 7cycle →

MUL R2,R3
ADD R1,R2

COFO EI WO
FI DI CO

9 10 11 12

stall FO EI WO

Penalty: 2 cycles

Penalty: 1 cycle
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Control Hazards
 Control hazards are produced by branch instructions.

Unconditional branch
- - - - - - - - - - - - - -
BR TARGET
- - - - - - - - - - - - - -

TARGET - - - - - - - - - - - - - -
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Control Hazards
 Control hazards are produced by branch instructions.

Unconditional branch
- - - - - - - - - - - - - -
BR TARGET
- - - - - - - - - - - - - -

TARGET - - - - - - - - - - - - - -

FI DI

1 2 83 4 5 6 7cycle →

BR TARGET
FI

9 10 11 12

?

The instruction that 
follows BR is fetched!
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Control Hazards
 Control hazards are produced by branch instructions.

Unconditional branch
- - - - - - - - - - - - - -
BR TARGET
- - - - - - - - - - - - - -

TARGET - - - - - - - - - - - - - -

FI DI

1 2 83 4 5 6 7cycle →

BR TARGET COFO
FI

9 10 11 12

stall stall

After the FO stage of the branch in-
struction the address of the target 
is known and it can be fetched
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Control Hazards
 Control hazards are produced by branch instructions.

Unconditional branch
- - - - - - - - - - - - - -
BR TARGET
- - - - - - - - - - - - - -

TARGET - - - - - - - - - - - - - -

FI DI

1 2 83 4 5 6 7cycle →

BR TARGET
target
target+1

COFO EI WO
FI

FI DI COFO EI WO

9 10 11 12

stall stall FI DI COFO EI WO

The fetched instruction is discarded
and the target instruction is fetched!

After the FO stage of the branch in-
struction the address of the target 
is known and it can be fetched

Penalty: 3 cycles
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Control Hazards
Conditional branch

ADD R1,R2 R1 ← R1 + R2
BEZ TARGET branch if zero
instruction i+1
- - - - - - - - - - - - -

TARGET - - - - - - - - - - - - -



Control Hazards
Conditional branch

ADD R1,R2 R1 ← R1 + R2
BEZ TARGET branch if zero
instruction i+1
- - - - - - - - - - - - -

TARGET - - - - - - - - - - - - -

Branch is taken

?

instruction i+1 (that 
follows BEZ) is fetched!

FI DI

1 2 83 4 5 6 7cycle →

ADD R1,R2
BEZ TARGET

CO
FI DI

9 10 11 12

FI
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Control Hazards
Conditional branch

ADD R1,R2 R1 ← R1 + R2
BEZ TARGET branch if zero
instruction i+1
- - - - - - - - - - - - -

TARGET - - - - - - - - - - - - -

Branch is taken

FI DI

1 2 83 4 5 6 7cycle →

ADD R1,R2
BEZ TARGET

COFO EI
FI DI COFO

9 10 11 12

FI stall stall

At this moment, both the con-
dition (set by ADD) and the 
target address are known.
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Control Hazards
Conditional branch

ADD R1,R2 R1 ← R1 + R2
BEZ TARGET branch if zero
instruction i+1
- - - - - - - - - - - - -

TARGET - - - - - - - - - - - - -

Branch is taken

FI DI

1 2 83 4 5 6 7cycle →

ADD R1,R2
BEZ TARGET
target

COFO EI WO
FI DI COFO EI WO

9 10 11 12

FI stall stall FI DI COFO EI WO

At this moment, both the con-
dition (set by ADD) and the 
target address are known.

Penalty: 3 cycles

The fetched instruction is discarded
and the target instruction is fetched!
30 of  68Datorarkitektur  Fö 4-5



Control Hazards
Conditional branch

ADD R1,R2 R1 ← R1 + R2
BEZ TARGET branch if zero
instruction i+1
- - - - - - - - - - - - -

TARGET - - - - - - - - - - - - -

Branch is not taken

?

instruction i+1 (that 
follows BEZ) is fetched!

FI DI

1 2 83 4 5 6 7cycle →

ADD R1,R2
BEZ TARGET

CO
FI DI

9 10 11 12

FI
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Control Hazards
Conditional branch

ADD R1,R2 R1 ← R1 + R2
BEZ TARGET branch if zero
instruction i+1
- - - - - - - - - - - - -

TARGET - - - - - - - - - - - - -

Branch is not taken

FI DI

1 2 83 4 5 6 7cycle →

ADD R1,R2
BEZ TARGET

COFO EI
FI DI COFO

9 10 11 12

FI stall stall

At this moment the condition 
(set by ADD) is known and 
instruction i+1 can go on.
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Control Hazards
Conditional branch

ADD R1,R2 R1 ← R1 + R2
BEZ TARGET branch if zero
instruction i+1
- - - - - - - - - - - - -

TARGET - - - - - - - - - - - - -

Branch is not taken

FI DI

1 2 83 4 5 6 7cycle →

ADD R1,R2
BEZ TARGET
instruction i+1

COFO EI WO
FI DI COFO EI WO

9 10 11 12

FI stall stall DI COFO EI WO

Penalty: 2 cycles

The pipeline continues with 
the fetched instruction!

At this moment the condition 
(set by ADD) is known and 
instruction i+1 can go on.
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Control Hazards

 With conditional branch we have a penalty even if the branch has not been 
taken. This is because we have to wait until the branch condition is available.

 Branch instructions represent a major problem in assuring an optimal flow 
through the pipeline. Several approaches have been taken for reducing branch 
penalties.
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Reducing Pipeline Branch Penalties

 Branch instructions can dramatically affect pipeline performance. Control 
operations (conditional and unconditional branch) are very frequent in current 
programs.

 Some statistics:

 20% - 35% of the instructions executed are branches (conditional and 
unconditional).

 Conditional branches are much more frequent than unconditional ones 
(more than two times). More than 50% of conditional branches are taken.

 It is very important to reduce the penalties produced by branches.
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Instruction Fetch Unit and Instruction Queue
 Most processors employ sophisticated fetch units that fetch instructions before 

they are needed and store them in a queue.

 The fetch unit also has the ability to recognize branch instructions and to 
generate the target address.  
 
 
 
The penalty produced by unconditional branches can be drastically reduced: 
the fetch unit computes the target address and continues to fetch instructions 
from that address, which are sent to the queue. Thus, the rest of the pipeline 
gets a continuous stream of instructions, without stalling.

Instruction
Fetch Unit

Instruction Queue
Rest of the 
pipeline

Instruction
cache
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Instruction Fetch Unit and Instruction Queue

 The rate at which instructions can be read (from the instruction cache) must be 
sufficiently high to avoid an empty queue.

 With conditional branches penalties can not be avoided. The branch condition, 
which usually depends on the result of the preceding instruction, has to be 
known in order to determine the following instruction. 

Observation
In the Pentium 4, the instruction cache (trace cache) is located between the 
fetch unit and the instruction queue (See lecture on cache memory).
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Delayed Branching
The pipeline sequences for a conditional branch instruction:

Branch is taken

Branch is not taken

FI DI

1 2 83 4 5 6 7cycle →

ADD R1,R2
BEZ TARGET
target

COFO EI WO
FI DI COFO EI WO

9 10 11 12

FI stall stall FI DI COFO EI WO

At this moment, both the con-
dition (set by ADD) and the 
target address are known.

Penalty: 3 cycles

FI DI

1 2 83 4 5 6 7cycle →

ADD R1,R2
BEZ TARGET
instruction i+1

COFO EI WO
FI DI COFO EI WO

9 10 11 12

FI stall stall DI COFO EI WO

Penalty: 2 cycles

At this moment the condition 
(set by ADD) is known and 
instruction i+1 can go on.
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Delayed Branching
The pipeline sequences for a conditional branch instruction:

Branch is taken

Branch is not taken

FI DI

1 2 83 4 5 6 7cycle →

ADD R1,R2
BEZ TARGET
target

COFO EI WO
FI DI COFO EI WO

9 10 11 12

FI stall stall FI DI COFO EI WO

At this moment, both the con-
dition (set by ADD) and the 
target address are known.

Penalty: 3 cycles

FI DI

1 2 83 4 5 6 7cycle →

ADD R1,R2
BEZ TARGET
instruction i+1

COFO EI WO
FI DI COFO EI WO

9 10 11 12

FI stall stall DI COFO EI WO

Penalty: 2 cycles

At this moment the condition 
(set by ADD) is known and 
instruction i+1 can go on.

Let the machine do 
something useful 
during this time!
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Delayed Branching

 The idea with delayed branching is to let the CPU do some useful work during 
some of the cycles which are shown above to be stalled.

 With delayed branching the CPU always executes the instruction that 
immediately follows after the branch and only then alters (if necessary) the 
sequence of execution. The instruction after the branch is said to be in the 
branch delay slot.
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Delayed Branching
This code is produced by a compiler, for a machine without delayed branching:

MUL R3,R4 R3 ← R3*R4
SUB #1,R2 R2 ← R2-1
ADD R1,R2 R1 ← R1+R2
BEZ TAR branch if zero
MOVE  #10,R1 R1 ← 10
- - - - - - - - - - - - -

TAR - - - - - - - - - - - - -

 The compiler (assembler) has to find an instruction which can be moved from 
its original place into the branch delay slot after the branch and which will be 
executed regardless of the outcome of the branch.

This instruction should 
be executed only if the 
branch is not taken.
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Delayed Branching
This code is produced by a compiler, for a machine without delayed branching:

MUL R3,R4 R3 ← R3*R4
SUB #1,R2 R2 ← R2-1
ADD R1,R2 R1 ← R1+R2
BEZ TAR branch if zero
MOVE  #10,R1 R1 ← 10
- - - - - - - - - - - - -

TAR - - - - - - - - - - - - -

 The compiler (assembler) has to find an instruction which can be moved from 
its original place into the branch delay slot after the branch and which will be 
executed regardless of the outcome of the branch.

Doesn’t influence any of the 
following instructions until the 
branch; also doesn’t influence 
the outcome of the branch.
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Delayed Branching
This code is produced by a compiler, for a machine without delayed branching:

MUL R3,R4 R3 ← R3*R4
SUB #1,R2 R2 ← R2-1
ADD R1,R2 R1 ← R1+R2
BEZ TAR branch if zero
MOVE  #10,R1 R1 ← 10
- - - - - - - - - - - - -

TAR - - - - - - - - - - - - -

This code is produced by a compiler, for a machine with delayed branching:

SUB #1,R2 R2 ← R2-1
ADD R1,R2 R1 ← R1+R2
BEZ TAR branch if zero
MUL R3,R4 R3 ← R3*R4
MOVE #10,R1 R1 ← 10
- - - - - - - - - - - - -

TAR - - - - - - - - - - - - -

Doesn’t influence any of the 
following instructions until the 
branch; also doesn’t influence 
the outcome of the branch.

Executed regardless 
of the condition.

Executed only if 
branch not taken.
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Delayed Branching
The pipeline sequences with delayed branching:

Branch is taken

Branch is not taken

FI DI

1 2 83 4 5 6 7cycle →

ADD R1,R2
BEZ TAR
MUL R3,R4

COFO EI WO
FI DI COFO EI WO

9 10 11 12

FI DI COFO EI WO

FI DI

1 2 83 4 5 6 7cycle →

ADD R1,R2
BEZ TAR

MOVE #10,R1

COFO EI WO
FI DI COFO EI WO

9 10 11 12

FI stall DI COFO EI WO

the target FI stall FI DI COFO EI WO

At this moment the condition (set by 
ADD) and the target address are known.

MUL R3,R4 FI DI COFO EI WO

At this moment the condition is 
known and the MOVE can go on.

Penalty: 2 cycles

Penalty: 1 cycle
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Delayed Branching
 What happens if the compiler is not able to find an instruction to be moved after 

the branch, into the branch delay slot?
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Delayed Branching
 What happens if the compiler is not able to find an instruction to be moved after 

the branch, into the branch delay slot?

In this case a NOP instruction (an instruction that does nothing) has to be 
placed after the branch. In this case the penalty will be the same as without 
delayed branching.

MUL R2,R4
SUB #1,R2
ADD R1,R2
BEZ TAR
NOP
MOVE #10,R1
- - - - - - - - - - - - -

TAR - - - - - - - - - - - - -

 Some statistics show that for between 60% and 85% of branches, sophisticated 
compilers are able to find an instruction to be moved into the branch delay slot.

Now, with R2, this instruction in-
fluences the following ones and 
cannot be moved from its place.
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Branch Prediction

 In the last example we have considered (predicted) that the branch will not be 
taken and we fetched the instruction following the branch; in the case the 
branch was taken the fetched instruction was discarded. As result, we had: 

 

 
branch penalty of

1 if the branch is not taken
(prediction fulfilled)

2 if the branch is taken
(prediction not fulfilled)
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Branch Prediction
 Let us consider the opposite prediction: branch taken. For this solution it is need-

ed that the target address is computed in advance by an instruction fetch unit.

Branch is taken

Branch is not taken

FI DI

1 2 83 4 5 6 7cycle →

ADD R1,R2
BEZ TAR
MUL R3,R4

COFO EI WO
FI DI COFO EI WO

9 10 11 12

FI DI COFO EI WO

FI DI

1 2 83 4 5 6 7cycle →

ADD R1,R2
BEZ TAR

MOVE #10,R1

COFO EI WO
FI DI COFO EI WO

9 10 11 12

FI stall DI COFO EI WOthe target

FI stall FI DI COFO EI WO

At this moment the condition (set by 
ADD) and the target address are known.

MUL R3,R4 FI DI COFO EI WO

At this moment the condition is 
known and the MOVE can go on.

Penalty: 1 cycle 
(prediction fulfilled)

Penalty: 2 cycles 
(prediction not fulfilled)
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Branch Prediction
 Correct branch prediction is very important and can produce substantial 

performance improvements.

 Based on the predicted outcome, the respective instruction can be fetched, as 
well as the instructions following it, and they can be placed into the instruction 
queue. If, after the branch condition is computed, it turns out that the prediction 
was correct, execution continues. On the other hand, if the prediction is not 
fulfilled, the fetched instruction(s) must be discarded and the correct 
instruction must be fetched.
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Branch Prediction
 Correct branch prediction is very important and can produce substantial 

performance improvements.

 Based on the predicted outcome, the respective instruction can be fetched, as 
well as the instructions following it, and they can be placed into the instruction 
queue. If, after the branch condition is computed, it turns out that the prediction 
was correct, execution continues. On the other hand, if the prediction is not 
fulfilled, the fetched instruction(s) must be discarded and the correct 
instruction must be fetched.

 To take full advantage of branch prediction, we can have the instructions not 
only fetched but also begin execution. This is known as speculative execution.

 Speculative execution means that instructions are executed before the 
processor is certain that they are in the correct execution path. If it turns out that 
the prediction was correct, execution goes on without introducing any branch 
penalty. If, however, the prediction is not fulfilled, the instruction(s) started in 
advance and all their associated data must be purged and the state previous to 
their execution restored.
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Branch Prediction

Branch prediction strategies:

1. Static prediction

2. Dynamic prediction
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Static Branch Prediction

 Static prediction techniques do not take into consideration execution history.

Static approaches:

 Predict never taken (Motorola 68020): assumes that the branch is not taken.

 Predict always taken: assumes that the branch is taken.

 Predict depending on the branch direction (PowerPC 601):
- predict branch taken for backward branches;
- predict branch not taken for forward branches.
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One-Bit Prediction Scheme
 One-bit is used in order to record if the last execution resulted in a branch 

taken or not. The system predicts the same behavior as for the last time.
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Dynamic Branch Prediction
 Dynamic prediction techniques improve the accuracy of the prediction by 

recording the history of conditional branches.

One-Bit Prediction Scheme
 One-bit is used in order to record if the last execution resulted in a branch 

taken or not. The system predicts the same behavior as for the last time.

Sometimes it does not work so very well:
When a branch is almost always taken, then when it is not taken, we will 
predict incorrectly twice, rather than once:

- - - - - - - - - - -
LOOP - - - - - - - - - - -

- - - - - - - - - - -
BNZ LOOP
- - - - - - - - - - -

 In this case the result is even worse than with static prediction consider-
ing that backward loops are always taken (PowerPC 601 approach).

After the loop has been executed for the first 
time and left, it will be remembered that BNZ 
has not been taken. Now, when the loop is 
executed again, after the first iteration there 
will be a false prediction; following predic-
tions are OK until the last iteration, when 
there will be a second false prediction.



Dynamic Branch Prediction
Two-Bit Prediction Scheme
 With a two-bit scheme predictions can be made depending on the last two 

instances of execution.
 A typical scheme is to change the prediction only if there have been two 

incorrect predictions in a row.
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Dynamic Branch Prediction
Two-Bit Prediction Scheme
 With a two-bit scheme predictions can be made depending on the last two 

instances of execution.
 A typical scheme is to change the prediction only if there have been two 

incorrect predictions in a row.

not taken

not taken

not taken

taken

taken

taken

taken

prd.: not taken
00

prd.: not taken

prd.: taken prd.: taken

10

11 01
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Dynamic Branch Prediction
Two-Bit Prediction Scheme
 With a two-bit scheme predictions can be made depending on the last two 

instances of execution.
 A typical scheme is to change the prediction only if there have been two 

incorrect predictions in a row.

not taken

not taken

not taken

taken

taken

taken

taken

prd.: not taken
00

prd.: not taken

prd.: taken prd.: taken

10

11 01

- - - - - - - - - - -
LOOP - - - - - - - - - - -

- - - - - - - - - - -
BNZ LOOP
- - - - - - - - - - -

After the first execution of the 
loop the bits attached to BNZ will 
be 01; now, there will be always 
one false prediction for the loop, 
at its exit.
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Branch History Table
 Address where to fetch from: If the branch instruction is not in the table the 

next instruction (address PC+1) is to be fetched. If the branch instruction is in 
the table first of all a prediction based on the prediction bits is made. 
Depending on the prediction outcome the next instruction (address PC+1) or 
the instruction at the target address is to be fetched.

 Update entry: If the branch instruction has been in the table, the respective 
entry has to be updated to reflect the correct or incorrect prediction.

 Add new entry: If the branch instruction has not been in the table, it is added to 
the table with the corresponding information concerning branch outcome and 
target address. If needed one of the existing table entries is discarded. 
Replacement algorithms similar to those for cache memories are used.

 Using dynamic branch prediction with history tables up to 90% of predictions 
can be correct.

 Both Pentium and PowerPC 620, for example, use speculative execution with 
dynamic branch prediction based on a branch history table.
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The Intel 80486 Pipeline

 The 80486 is the last x86 processor that is not superscalar. It is a typical 
example of an advanced non-superscalar pipeline.

 The 80486 has a five stage pipeline.

 No branch prediction or, in fact, always not taken.
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The Intel 80486 Pipeline

Fetch
instructions

Decode_1

Execute

Write back

Decode_2

 Fetch: instructions fetched from cache and 
placed into instruction queue (organised 
as two prefetch buffers). 
Operates independently of the other stages 
and tries to keep the prefetch buffers full.

 Decode_1: Takes the first 3 bytes of the 
instruction and decodes opcode, 
addressing-mode, instruction length; rest 
of the instruction is decoded by Decode_2.

 Decode_2: decodes the rest of the 
instruction and produces control signals; 
preforms address computation.

 Execute: ALU operations; cache access for 
operands.

 Write back: updates registers, status flags; 
for memory update sends values to cache 
and to write buffers.
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Some ARM pipelines

Fetch

Execute

Decode

 Fetch: instructions fetched from cache.

 Decode: instructions and operand registers 
decoded.

 Execute: registers read; shift and ALU 
operations; results or loaded data from 
memory written back to register.

ARM7 pipeline
63 of  68Datorarkitektur  Fö 4-5



Some ARM pipelines

Fetch

Execute

Decode

 Fetch: instructions fetched from I-cache.

 Decode: instructions and operand registers 
decoded; registers read.

 Execute: shift and ALU operations (if load/store, 
then memory address computed).

 Data memory access: fetch/store data from/to  
D-cache (if no memory access, the ALU result is 
buffered for one cycle; this is lost time!).

 Register write: results or loaded data written back to 
register.

Register
write

Data memory 
access

ARM9 pipeline
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Some ARM pipelines

Fetch

Execute

Decode

Register
write

Data memory 
access

ARM9 pipeline

The performance of the ARM9 is significantly superior 
to the ARM7:

 Higher clock speed due to larger number of 
pipeline stages.

 More even distribution of tasks among pipeline 
stages; tasks have been moved away from the 
execute stage.

 Fetch: instructions fetched from I-cache.

 Decode: instructions and operand registers 
decoded; registers read.

 Execute: shift and ALU operations (if load/store, 
then memory address computed).

 Data memory access: fetch/store data from/to  
D-cache (if no memory access, the ALU result is 
buffered for one cycle; this is lost time!).

 Register write: results or loaded data written back to 
register.
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Some ARM pipelines

Fetch 1

ALU/
Memory 1

Decode

Writeback

Fetch 2

Issue

Shift/
Address

ALU/
Memory 2

ARM11 pipeline
The performance of ARM11 is further enhanced by:

 Higher clock speed due to larger number of 
pipeline stages; more even distribution of tasks 
among pipeline stages.

 Branch prediction:
- Dynamic two bits prediction based on a 64 

entry branch history table (branch target 
address cache - BTAC).

- If the instruction is not in the BTAC, static 
prediction is done: taken if backward, not 
taken if forward.
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Some ARM pipelines

Fetch 1

ALU/
Memory 1

Decode

Writeback

Fetch 2

Issue

Shift/
Address

ALU/
Memory 2

ARM11 pipeline
The performance of ARM11 is further enhanced by:

 Higher clock speed due to larger number of 
pipeline stages; more even distribution of tasks 
among pipeline stages.

 Branch prediction:
- Dynamic two bits prediction based on a 64 

entry branch history table (branch target 
address cache - BTAC).

- If the instruction is not in the BTAC, static 
prediction is done: taken if backward, not 
taken if forward.

 Decoupling of the load/store pipeline from the 
ALU&MAC (multiply-accumulate) pipeline: ALU 
operations can work for one instruction while 
load/store operations complete for another one.
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Some ARM pipelines

Fetch 1

Decode

Fetch 2

Issue

ALU 1

Writeback

Shift

ALU 2

Memory 1

Writeback

Address

Memory 2

ARM11 pipeline

 Fetch 1, 2: instructions 
fetched from I-cache; 
dynamic branch prediction.

 Decode: instructions decod-
ed; static branch prediction 
(if needed).

 Issue: instruction issued; 
registers read.

 Address: address 
calculation.

 Memory 1,2: data 
memory access.

 Writeback: write 
loaded data to reg.; 
commit store.

 Shift: register shift/
rotate.

 ALU 1,2: ALU/MAC 
operations.

 Writeback: results 
written to register.
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	INSTRUCTION PIPELINING
	The Instruction Cycle
	Instruction Pipelining
	Instruction execution is extremely complex and involves several operations which are executed successively. This implies a large amount of hardware, but only one part of this hardware works at a given moment.
	Pipelining is an implementation technique whereby multiple instructions are overlapped in execution. This is solved without additional hardware, only letting different parts of the hardware work for different instructions at the same time.
	The pipeline organization of a CPU is similar to an assembly line: the work to be done in an instruction is broken into smaller ...
	Pipe stages are connected to form a pipe:

	Acceleration by Pipelining
	Acceleration: 7rTex /4rTex = 7/4

	Acceleration by Pipelining
	Acceleration by Pipelining
	Acceleration: 7rTex /2rTex = 7/2
	After a certain time (N-1 cycles) all the N stages of the pipeline are working: the pipeline is filled. Now, theoretically, the pipeline works providing maximal parallelism (N instructions are active simultaneously).

	Acceleration by Pipelining
	t: duration of one cycle
	n: number of instructions to execute
	k: number of pipeline stages
	Tk,n: total time to execute n instructions on a pipeline with k stages
	Sk,n: (theoretical) speedup produced by a pipeline with k stages when executing n instructions

	Acceleration by Pipelining
	Apparently a greater number of stages always provides better performance. However:
	a greater number of stages increases the overhead in moving information between stages and synchronization between stages.
	with the number of stages the complexity of the CPU grows.
	it is difficult to keep a large pipeline at maximum rate because of pipeline hazards.
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	a greater number of stages increases the overhead in moving information between stages and synchronization between stages.
	with the number of stages the complexity of the CPU grows.
	it is difficult to keep a large pipeline at maximum rate because of pipeline hazards.


	Pipeline Hazards
	Pipeline hazards are situations that prevent the next instruction in the instruction stream from executing during its designated clock cycle. The instruction is said to be stalled.
	When an instruction is stalled, all instructions later in the pipeline than the stalled instruction are also stalled. Instructions earlier than the stalled one can continue. No new instructions are fetched during the stall.


	Pipeline Hazards
	Pipeline hazards are situations that prevent the next instruction in the instruction stream from executing during its designated clock cycle. The instruction is said to be stalled.
	When an instruction is stalled, all instructions later in the pipeline than the stalled instruction are also stalled. Instructions earlier than the stalled one can continue. No new instructions are fetched during the stall.

	Types of hazards:

	Structural Hazards
	Structural hazards occur when a certain resource (memory, functional unit) is requested by more than one instruction at the same time.

	Structural Hazards
	Structural hazards occur when a certain resource (memory, functional unit) is requested by more than one instruction at the same time.

	Structural Hazards
	Structural hazards occur when a certain resource (memory, functional unit) is requested by more than one instruction at the same time.

	Structural Hazards
	Structural hazards occur when a certain resource (memory, functional unit) is requested by more than one instruction at the same time.

	Data Hazards
	We have two instructions, I1 and I2. The execution of I2 starts before I1 has terminated. If I2 needs the result produced by I1, but this result has not yet been generated, we have a data hazard.

	Data Hazards
	We have two instructions, I1 and I2. The execution of I2 starts before I1 has terminated. If I2 needs the result produced by I1, but this result has not yet been generated, we have a data hazard.

	Data Hazards
	Some of the penalty produced by data hazards can be avoided using a technique called forwarding (bypassing).
	If the hardware detects that the value needed for the current operation is the one produced by the ALU in the previous operation...


	Data Hazards
	Data Hazards
	Data Hazards
	Control Hazards
	Control hazards are produced by branch instructions.

	Control Hazards
	Control hazards are produced by branch instructions.

	Control Hazards
	Control hazards are produced by branch instructions.

	Control Hazards
	Control hazards are produced by branch instructions.

	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	With conditional branch we have a penalty even if the branch has not been taken. This is because we have to wait until the branch condition is available.
	Branch instructions represent a major problem in assuring an optimal flow through the pipeline. Several approaches have been taken for reducing branch penalties.

	Reducing Pipeline Branch Penalties
	Branch instructions can dramatically affect pipeline performance. Control operations (conditional and unconditional branch) are very frequent in current programs.
	Some statistics:
	20% - 35% of the instructions executed are branches (conditional and unconditional).
	Conditional branches are much more frequent than unconditional ones (more than two times). More than 50% of conditional branches are taken.

	It is very important to reduce the penalties produced by branches.

	Instruction Fetch Unit and Instruction Queue
	Most processors employ sophisticated fetch units that fetch instructions before they are needed and store them in a queue.
	The fetch unit also has the ability to recognize branch instructions and to generate the target address. The penalty produced by...

	Instruction Fetch Unit and Instruction Queue
	The rate at which instructions can be read (from the instruction cache) must be sufficiently high to avoid an empty queue.
	With conditional branches penalties can not be avoided. The branch condition, which usually depends on the result of the preceding instruction, has to be known in order to determine the following instruction.

	Delayed Branching
	Delayed Branching
	Delayed Branching
	The idea with delayed branching is to let the CPU do some useful work during some of the cycles which are shown above to be stalled.
	With delayed branching the CPU always executes the instruction that immediately follows after the branch and only then alters (if necessary) the sequence of execution. The instruction after the branch is said to be in the branch delay slot.

	Delayed Branching
	The compiler (assembler) has to find an instruction which can be moved from its original place into the branch delay slot after the branch and which will be executed regardless of the outcome of the branch.

	Delayed Branching
	The compiler (assembler) has to find an instruction which can be moved from its original place into the branch delay slot after the branch and which will be executed regardless of the outcome of the branch.

	Delayed Branching
	Delayed Branching
	Delayed Branching
	What happens if the compiler is not able to find an instruction to be moved after the branch, into the branch delay slot?

	Delayed Branching
	What happens if the compiler is not able to find an instruction to be moved after the branch, into the branch delay slot?
	Some statistics show that for between 60% and 85% of branches, sophisticated compilers are able to find an instruction to be moved into the branch delay slot.

	Branch Prediction
	In the last example we have considered (predicted) that the branch will not be taken and we fetched the instruction following the branch; in the case the branch was taken the fetched instruction was discarded. As result, we had:

	Branch Prediction
	Let us consider the opposite prediction: branch taken. For this solution it is needed that the target address is computed in advance by an instruction fetch unit.
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	Correct branch prediction is very important and can produce substantial performance improvements.
	Based on the predicted outcome, the respective instruction can be fetched, as well as the instructions following it, and they ca...

	Branch Prediction
	Correct branch prediction is very important and can produce substantial performance improvements.
	Based on the predicted outcome, the respective instruction can be fetched, as well as the instructions following it, and they ca...
	To take full advantage of branch prediction, we can have the instructions not only fetched but also begin execution. This is known as speculative execution.
	Speculative execution means that instructions are executed before the processor is certain that they are in the correct executio...

	Branch Prediction
	Static Branch Prediction
	Static prediction techniques do not take into consideration execution history.
	Predict never taken (Motorola 68020): assumes that the branch is not taken.
	Predict always taken: assumes that the branch is taken.
	Predict depending on the branch direction (PowerPC 601):

	- predict branch taken for backward branches;
	- predict branch not taken for forward branches.
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	Dynamic prediction techniques improve the accuracy of the prediction by recording the history of conditional branches.
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	Dynamic Branch Prediction
	Dynamic prediction techniques improve the accuracy of the prediction by recording the history of conditional branches.
	One-bit is used in order to record if the last execution resulted in a branch taken or not. The system predicts the same behavior as for the last time.
	In this case the result is even worse than with static prediction considering that backward loops are always taken (PowerPC 601 approach).
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	A typical scheme is to change the prediction only if there have been two incorrect predictions in a row.
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	Dynamic Branch Prediction
	With a two-bit scheme predictions can be made depending on the last two instances of execution.
	A typical scheme is to change the prediction only if there have been two incorrect predictions in a row.

	Branch History Table
	Branch History Table
	Address where to fetch from: If the branch instruction is not in the table the next instruction (address PC+1) is to be fetched....
	Update entry: If the branch instruction has been in the table, the respective entry has to be updated to reflect the correct or incorrect prediction.
	Add new entry: If the branch instruction has not been in the table, it is added to the table with the corresponding information ...
	Using dynamic branch prediction with history tables up to 90% of predictions can be correct.
	Both Pentium and PowerPC 620, for example, use speculative execution with dynamic branch prediction based on a branch history table.

	The Intel 80486 Pipeline
	The 80486 is the last x86 processor that is not superscalar. It is a typical example of an advanced non-superscalar pipeline.
	The 80486 has a five stage pipeline.
	No branch prediction or, in fact, always not taken.

	The Intel 80486 Pipeline
	Some ARM pipelines
	Some ARM pipelines
	Some ARM pipelines
	Some ARM pipelines
	Some ARM pipelines
	Some ARM pipelines
	Fetch: instructions fetched from I-cache.
	Decode: instructions and operand registers decoded; registers read.
	Execute: shift and ALU operations (if load/store, then memory address computed).
	Data memory access: fetch/store data from/to D-cache (if no memory access, the ALU result is buffered for one cycle; this is lost time!).
	Register write: results or loaded data written back to register.

	Acceleration by Pipelining
	t: duration of one cycle
	n: number of instructions to execute
	k: number of pipeline stages
	Tk,n: total time to execute n instructions on a pipeline with k stages
	Sk,n: (theoretical) speedup produced by a pipeline with k stages when executing n instructions
	- The first instruction takes k r t to finish
	- The following n - 1 instructions produce one result per cycle.

	Control Hazards
	Fetch: instructions fetched from cache and placed into instruction queue (organised as two prefetch buffers). Operates independently of the other stages and tries to keep the prefetch buffers full.
	Decode_1: Takes the first 3 bytes of the instruction and decodes opcode, addressing-mode, instruction length; rest of the instruction is decoded by Decode_2.
	Decode_2: decodes the rest of the instruction and produces control signals; preforms address computation.
	Execute: ALU operations; cache access for operands.
	Write back: updates registers, status flags; for memory update sends values to cache and to write buffers.
	Fetch: instructions fetched from cache.
	Decode: instructions and operand registers decoded.
	Execute: registers read; shift and ALU operations; results or loaded data from memory written back to register.
	Fetch: instructions fetched from I-cache.
	Decode: instructions and operand registers decoded; registers read.
	Execute: shift and ALU operations (if load/store, then memory address computed).
	Data memory access: fetch/store data from/to D-cache (if no memory access, the ALU result is buffered for one cycle; this is lost time!).
	Register write: results or loaded data written back to register.
	Higher clock speed due to larger number of pipeline stages.
	More even distribution of tasks among pipeline stages; tasks have been moved away from the execute stage.
	Higher clock speed due to larger number of pipeline stages; more even distribution of tasks among pipeline stages.
	Branch prediction:
	- Dynamic two bits prediction based on a 64 entry branch history table (branch target address cache - BTAC).
	- If the instruction is not in the BTAC, static prediction is done: taken if backward, not taken if forward.
	Higher clock speed due to larger number of pipeline stages; more even distribution of tasks among pipeline stages.
	Branch prediction:

	- Dynamic two bits prediction based on a 64 entry branch history table (branch target address cache - BTAC).
	- If the instruction is not in the BTAC, static prediction is done: taken if backward, not taken if forward.
	Decoupling of the load/store pipeline from the ALU&MAC (multiply-accumulate) pipeline: ALU operations can work for one instruction while load/store operations complete for another one.
	Fetch 1, 2: instructions fetched from I-cache; dynamic branch prediction.
	Decode: instructions decoded; static branch prediction (if needed).
	Issue: instruction issued; registers read.
	Address: address calculation.
	Memory 1,2: data memory access.
	Writeback: write loaded data to reg.; commit store.
	Shift: register shift/ rotate.
	ALU 1,2: ALU/MAC operations.
	Writeback: results written to register.



