
1 of 59Datorarkitektur Fö 2-3

THE MEMORY SYSTEM

1. Components of the Memory System

2. The Memory Hierarchy

3. Cache Memories

4. Cache Organization

5. Replacement Algorithms

6. Write Strategies

7. Virtual Memory

2 of 59Datorarkitektur Fö 2-3

Components of the Memory System

 Main memory: fast, random access, expensive, located close to the CPU.

Is used to store program and data which are currently

manipulated by the CPU.

 Secondary memory: slow, cheap, direct access, located remotely from the CPU.

3 of 59Datorarkitektur Fö 2-3

Problems with the Memory System

What do we need?

We need memory to fit very large programs and to work at a speed

comparable to that of the microprocessors.

Main problem:

 microprocessors are working at a very high clock rate and they need
large memories;

 memories are much slower than microprocessors;

Facts:

 the larger a memory, the slower it is;

 the faster the memory, the greater the cost/bit.

4 of 59Datorarkitektur Fö 2-3

A Solution

It is possible to build a composite memory system which combines a small, fast

memory and a large slow main memory and which behaves (most of the time)

like a large fast memory.

The two level principle above can be extended into a hierarchy of many levels
including the secondary memory (disk store).

The effectiveness of such a memory hierarchy is based on property of
programs called the principle of locality.

5 of 59Datorarkitektur Fö 2-3

The Memory Hierarchy

Register

Cache

Main memory

Magnetic Disk/Flash memory

Magnetic Tape & Optical Disk

in
cr

ea
si

ng
 c

os
t/b

it
increasing access tim

e

increasing capacity

6 of 59Datorarkitektur Fö 2-3

The Memory Hierarchy

The key to the success of a memory hierarchy is if data and instructions can be

distributed across the memory so that most of the time they are available, when

needed, on the top levels of the hierarchy.

Register

Cache

Main memory

Magnetic Disk/Flash memory

Magnetic Tape & Optical Disk

in
cr

ea
si

ng
 c

os
t/b

it
increasing access tim

e

increasing capacity

7 of 59Datorarkitektur Fö 2-3

The Memory Hierarchy

 The data which is held in the registers is under the direct control of the

compiler (or of the assembler programmer).

 The contents of the other levels of the hierarchy are managed automatically:

 migration of data/instructions to and from caches is performed under

hardware control;

 migration between main memory and backup store is controlled by the

operating system (with hardware support).

8 of 59Datorarkitektur Fö 2-3

Cache Memory

A cache memory is a small, very fast memory that retains copies of recently used
information from main memory. It operates transparently to the programmer,
automatically deciding which values to keep and which to overwrite.

instructions

data

instructions
and data

instructions
and data

address

address

processor memory

cache

copies of
instructions

copies
of data

registers

9 of 59Datorarkitektur Fö 2-3

Cache Memory

 The processor operates at its high clock rate only when the memory items it

requires are held in the cache.

The overall system performance depends strongly on the proportion of the

memory accesses which can be satisfied by the cache

 An access to an item which is in the cache: hit

An access to an item which is not in the cache: miss.

Proportion of memory accesses that are satisfied by the cache: hit ratio

Proportion of memory accesses that are not satisfied by the cache: miss ratio

 The miss ratio of a well-designed cache: few %

10 of 59Datorarkitektur Fö 2-3

Cache Memory

What we want by using caches is to obtain high memory performance; this
means short access time:

Average access time Ts :

 T1 : Access time to cache
 T2 : Access time to main memory
 H : Hit ratio

Increased hit ratio will reduce average access time; with high hit ratio (close
to 1), average memory access time converges towards the cache access time.

Ts H T1× 1 H–() T1 T2+()×+ T1 1 H–() T2×+= =

11 of 59Datorarkitektur Fö 2-3

Cache Memory

 Cache space (~KBytes) is much smaller than main memory (~GBytes);

Items have to be placed in the cache so that they are available there when

(and possibly only when) they are needed.

12 of 59Datorarkitektur Fö 2-3

Cache Memory

 Cache space (~KBytes) is much smaller than main memory (~GBytes);

Items have to be placed in the cache so that they are available there when

(and possibly only when) they are needed.

How can this work???

13 of 59Datorarkitektur Fö 2-3

Cache Memory

 Cache space (~KBytes) is much smaller than main memory (~GBytes);

Items have to be placed in the cache so that they are available there when

(and possibly only when) they are needed.

 The answer is: locality

During execution of a program, memory references by the processor, for
both instructions and data, tend to cluster: once an area of the program is
entered, there are repeated references to a small set of instructions and data.

 Temporal locality (locality in time): If an item is referenced, it will tend
to be referenced again soon (instructions inside a loop).

 Spacial locality (locality in space): If an item is referenced, items whose
addresses are close by will tend to be referenced soon (a sequence of
instructions under execution; elements of an array during sorting).

14 of 59Datorarkitektur Fö 2-3

Cache Memory

Problems concerning cache memories:

 Instruction and data in the same cache or not?

 How to determine at a read if we have a miss or hit?

 If there is a miss where to place the new item in the cache? Which
information should be replaced?

 How to preserve consistency between cache and main memory at write?

15 of 59Datorarkitektur Fö 2-3

Unified Instruction and Data Cache

instructions

data

instructions
and data

instructions
and data

address

address

processor memory

cache

copies of
instructions

copies
of data

registers

16 of 59Datorarkitektur Fö 2-3

Separate Data and Instruction Caches

It is common to split the cache into one dedicated to instructions and one
dedicated to data.

instructions

data

copies
of data

dataaddress

address

p
ro

c
es

so
r

memory

data cache

copies of
instructions

instructions

instructions

address

address

instruction
cache

data

registers

17 of 59Datorarkitektur Fö 2-3

Separate Data and Instruction Caches

 Advantages of unified caches:

 they are able to better balance the load between instruction and data

fetches depending on the dynamics of the program execution;

 design and implementation are cheaper.

 Advantages of split caches (Harvard Architectures):

 competition for the cache between instruction processing and

execution units is eliminated  instruction fetch can proceed in

parallel with memory access from the execution unit.

18 of 59Datorarkitektur Fö 2-3

Cache Memory

Problems concerning cache memories:

 Instruction and data in the same cache or not?

 How to determine at a read if we have a miss or hit?

 If there is a miss where to place the new item in the cache? Which
information should be replaced?

 How to preserve consistency between cache and main memory at write?

19 of 59Datorarkitektur Fö 2-3

Cache Organization

Example:
 a cache of 64 Kbytes

 data transfer between cache and main memory is in blocks of 4 bytes;
we say the cache is organized in lines of 4 bytes;

 a main memory of 16 Mbytes; each byte is addressable by a 24-bit
address (224=16M)

- the cache consists of 214 (16K) lines

- the main memory consists of 222 (4M) blocks

20 of 59Datorarkitektur Fö 2-3

Cache Organization

Example:
 a cache of 64 Kbytes

 data transfer between cache and main memory is in blocks of 4 bytes;
we say the cache is organized in lines of 4 bytes;

 a main memory of 16 Mbytes; each byte is addressable by a 24-bit
address (224=16M)

- the cache consists of 214 (16K) lines

- the main memory consists of 222 (4M) blocks

Questions:
 when we bring a block from main memory into the cache where (in

which line) do we put it?

 when we look for the content of a certain memory address

- in which cache line do we look for it?

- how do we know if we have found the right information (hit)

or not (miss)?

21 of 59Datorarkitektur Fö 2-3

Direct Mapping
 14 bits are needed to identify the cache line
 22 bits are needed to address a block in main memory
 tag size is 22 - 14 = 8 bits

8bit 14bit 2bit

8bit 4bytes

tag

4bytes
memory

cache

Line 0
Line 1

Line 214-1

Block 0
Block 1

Block 222-1

if hit
if miss

misshit
cmp

If miss, the block is placed in the
cache line corresponding to the 14 bits
in the memory address of the block:

8bit 14bit

22 of 59Datorarkitektur Fö 2-3

Direct Mapping

 A memory block is mapped into a unique cache line, depending on the
memory address of the respective block.

 A memory address is considered to be composed of three fields:

1. the least significant bits (2 in example) identify the byte within the block;

2. the rest of the address (22 bits in example) identify the block in main
memory; for the cache logic, this part is interpreted as two fields:

2a. the least significant bits (14 in example) specify the cache line;

2b. the most significant bits (8 in example) represent the tag, which is
stored in the cache together with the line.

 Tags are stored in the cache in order to distinguish among blocks which fit
into the same cache line.

23 of 59Datorarkitektur Fö 2-3

Direct Mapping

Advantages:

 simple and cheap;
 the tag field is short; only those bits have to be stored which are not

used to address the cache (compare with the following approaches);
 access is very fast.

Disadvantage:

 A given block is assigned into a fixed cache location  a given cache
line will be replaced whenever there is a reference to another memory
block which fits to the same line, regardless what the status of the
other cache lines is.

This can produce a low hit ratio, even if only a very small part of the
cache is actually used.

24 of 59Datorarkitektur Fö 2-3

Set Associative Mapping
Two-way set associative cache

 13 bits are needed to identify the cache set
 22 bits are needed to address a block in main memory
 tag size is 22 - 13 = 9 bits

9bit 13bit 2bit

9bit 4bytes

4bytes
memory

cache

Set 0

Set 213-1

if hit if miss
cmp

tag

Block 0
Block 1

Block 222-1

If miss, the block is placed in one of
the two cache lines in the set corre-
sponding to the 13 bits field in the
memory address. The replacement
algorithm decides which line to use.

25 of 59Datorarkitektur Fö 2-3

Set Associative Mapping

 A memory block is mapped into any of the lines of a set. The set is determined
by the memory address, but the line inside the set can be any one.

 If a block has to be placed in the cache, the particular line of the set will be
determined according to a replacement algorithm.

 The memory address is interpreted as three fields by the cache logic, similar
to direct mapping.
However, a smaller number of bits (13 in example) are used to identify the set
of lines in the cache  the tag field will be larger (9 bits in example).

 Several tags (corresponding to all lines in the set) have to be checked in order
to determine if we have a hit or miss. If we have a hit, the cache logic finally
points to the actual line in the cache.

 The number of lines in a set is determined by the designer;
2 lines/set: two-way set associative mapping
4 lines/set: four-way set associative mapping
8

26 of 59Datorarkitektur Fö 2-3

Set Associative Mapping

 Set associative mapping keeps most of the advantages of direct mapping:

 short tag field

 fast access

 relatively simple

 Set associative mapping tries to eliminate the main shortcoming of direct
mapping; a certain flexibility is given concerning the line to be replaced when a
new block is read into the cache.

 Cache hardware is more complex for set associative mapping than for direct
mapping.

 In practice 2 and 4-way set associative mapping are used with very good results.

 If a set consists of a single line  direct mapping;

If there is one single set consisting of all lines  associative mapping.

27 of 59Datorarkitektur Fö 2-3

Associative Mapping

If we had a miss, the block will be placed in one of the 214 cache lines.
The replacement algorithm decides which line to use.

22 bit 2bit

4bytes

tag

4bytes
memory

cache

Line 0
Line 1

Line 214-1

Bl. 0
Bl. 1

Bl. 222-1

if hit
if missmiss hit

cmp

22 bit

28 of 59Datorarkitektur Fö 2-3

Associative Mapping

 A memory block can be mapped to any cache line.

 If a block has to be placed in the cache, the particular line will be determined
according to a replacement algorithm.

 The memory address is interpreted as two fields by the cache logic.
The least significant bits (2 in example) identify the byte within the block; all
the rest of the address (22 bits in example) is interpreted by the cache logic as
a tag.

 All tags, corresponding to every line in the cache memory, have to be checked
in order to determine if we have a hit or miss. If we have a hit, the cache logic
finally points to the actual line in the cache.

The cache line is retrieved based on a portion of its content (the tag field) rather
than its address. Such a memory structure is called associative memory.

29 of 59Datorarkitektur Fö 2-3

Associative Mapping

Advantages:

 Associative mapping provides the highest flexibility concerning the
line to be replaced when a new block is read into the cache.

Disadvantages:

 complex

 the tag field is long

 fast access can be achieved only using high performance associative
memories for the cache, which is difficult and expensive.

30 of 59Datorarkitektur Fö 2-3

Cache Memory

Problems concerning cache memories:

 Instruction and data in the same cache or not?

 How to determine at a read if we have a miss or hit?

 If there is a miss where to place the new item in the cache? Which
information should be replaced?

 How to preserve consistency between cache and main memory at write?

31 of 59Datorarkitektur Fö 2-3

Replacement Algorithms

When a new block is to be placed into the cache, the block stored in one of the
cache lines has to be replaced.

 With direct mapping there is no choice.

 With associative or set-associative mapping a replacement algorithm is
needed in order to determine which block to replace (and, implicitly, in which
cache line to place the block);

 with set-associative mapping, the candidate lines are those in the
selected set;

 with associative mapping, all lines of the cache are potential
candidates;

32 of 59Datorarkitektur Fö 2-3

Replacement Algorithms

 Random replacement: One of the candidate lines is selected randomly.

All the other policies are based on information concerning the usage history of
the blocks in the cache.

 Least recently used (LRU):

The candidate line is selected which holds the block that has been in the
cache the longest without being referenced.

 First-in-first-out (FIFO):

The candidate line is selected which holds the block that has been in the
cache the longest.

 Least frequently used (LFU):

The candidate line is selected which holds the block that has got the
fewest references.

33 of 59Datorarkitektur Fö 2-3

Replacement Algorithms

 Replacement algorithms for cache management have to be implemented in
hardware in order to be effective.

 LRU is the most efficient: relatively simple to implement and good results.

 FIFO is simple to implement.

 Random replacement is the simplest to implement and results sometimes are
surprisingly good.

34 of 59Datorarkitektur Fö 2-3

Cache Memory

Problems concerning cache memories:

 Instruction and data in the same cache or not?

 How to determine at a read if we have a miss or hit?

 If there is a miss where to place the new item in the cache? Which
information should be replaced?

 How to preserve consistency between cache and main memory at write?

35 of 59Datorarkitektur Fö 2-3

Write Strategies

The problem:

How to keep cache content and the content of main memory consistent

without losing too much performance?

 Problems arise when a write is issued to a memory address, and the content

of the respective address is potentially changed.

36 of 59Datorarkitektur Fö 2-3

Write Strategies

 Write-through

All write operations are passed to main memory; if the addressed location is
currently hold in the cache, the cache is updated so that it is coherent with
the main memory.

For writes, the processor always slows down to main memory speed.

37 of 59Datorarkitektur Fö 2-3

Write Strategies

 Write-through

All write operations are passed to main memory; if the addressed location is
currently hold in the cache, the cache is updated so that it is coherent with
the main memory.

For writes, the processor always slows down to main memory speed.

 Write-through with buffered write

The same as write-through, but instead of slowing the processor down by
writing directly to main memory, the write address and data are stored in a
high-speed write buffer; the write buffer transfers data to main memory while
the processor continues it’s task.

Higher speed, more complex hardware

38 of 59Datorarkitektur Fö 2-3

Write Strategies

 Copy-back

Write operations update only the cache memory which is not kept coherent
with main memory; cache lines have to remember if they have been updated;
if such a line is replaced from the cache, its content has to be copied back to
memory.

Good performance (usually several writes are performed on a cache line
before it is replaced and has to be copied into main memory), more complex
hardware.

39 of 59Datorarkitektur Fö 2-3

Write Strategies

 Copy-back

Write operations update only the cache memory which is not kept coherent
with main memory; cache lines have to remember if they have been updated;
if such a line is replaced from the cache, its content has to be copied back to
memory.

Good performance (usually several writes are performed on a cache line
before it is replaced and has to be copied into main memory), more complex
hardware.

Cache coherence problems are very complex and difficult to solve in
multiprocessor systems!

40 of 59Datorarkitektur Fö 2-3

Some Cache Architectures

 Intel 80486
 a single on-chip cache of 8 Kbytes

 line size: 16 bytes

 4-way set associative organization

 Pentium
 two on-chip caches, for data and instructions.

 each cache: 8 Kbytes

 line size: 32 bytes (64 bytes in Pentium 4)

 2-way set associative organization
(4-way in Pentium 4)

 PowerPC 601
 a single on-chip cache of 32 Kbytes

 line size: 32 bytes

 8-way set associative organization

41 of 59Datorarkitektur Fö 2-3

Some Cache Architectures

 PowerPC 603
 two on-chip caches, for data and instructions

 each cache: 8 Kbytes

 line size: 32 bytes

 2-way set associative organization
(simpler cache organization than the 601 but stronger processor)

 PowerPC 604
 two on-chip caches, for data and instructions

 each cache: 16 Kbytes

 line size: 32 bytes

 4-way set associative organization

 PowerPC 620
 two on-chip caches, for data and instructions

 each cache: 32 Kbytes

 line size: 64 bytes

 8-way set associative organization

42 of 59Datorarkitektur Fö 2-3

Pentium 4 Cache Organization

Execution
control

Integer & FP register files

Functional units
(ALUs, Load&Store units)

L1 data cache (16KB)

L1 instruction
cache (150KB)

L2 cache
(512KB)

L3 cache
(1MB)

Instruction
fetch/decode

System Bus/External Memory

43 of 59Datorarkitektur Fö 2-3

Pentium 4 Cache Organization
 L1 data cache:

16KB, line size: 64 bytes, 4-way set associative.
Copy-back policy

 The Pentium 4 L1 instruction cache (150 KB, 8-way set associative) is often
called trace cache.

 The Pentium 4 fetches groups of x86 instructions from the L2 cache,
decodes them into strings of microoperations (traces), and stores the
traces into the L1 instruction cache.

 The instructions in the cache are already decoded and, for execution,
they only are fetched from the cache. Thus, decoding is done only
once, even if the instruction is executed several times (e.g. in loops).

 The fetch unit also performs address calculation and branch prediction
when constructing the traces to be stored in the cache.

 L2 cache:
512 KB, line size: 128 bytes, 8-way set associative.

 L3 cache:
1 MB, line size: 128 bytes, 8-way set associative.

 The L2 and L3 cache are unified instruction/data caches.
 Instruction/data are fetched from external main memory only if absent from

L1, L2, and L3 cache.

44 of 59Datorarkitektur Fö 2-3

ARM Cache Organization
 ARM3 and ARM 6 had a 4KB unified cache.

 ARM 7 has a 8 KB unified cache.

 Starting with ARM9 there are separate data/instr. caches:

 ARM9, ARM10, ARM11, Cortex: up to
128/128KB instruction and data cache.

 StrongARM: 16/16KB instruction and data cache.

 Xscale: 32/32KB instruction and data cache.

 Line size: 8 (32bit) words, except ARM7 and StrongArm with 4 words.

 Set associativity:

 4-way: ARM7, ARM9E, ARM10EJ-S, ARM11

 64-way: ARM9T, ARM10E

 32-way: StrongARM, Xscale

 various options: Cortex

 With the Cortex, an L2 internal cache is introduced

 Write strategy: write through with buffered write

45 of 59Datorarkitektur Fö 2-3

Virtual Memory

The memory space needed and seen by a program is usually much larger than
the available main memory.

Only one part of the program fits into main memory; the rest is stored on
secondary memory (such as hard disk).

 In order to be executed or data to be accessed, a certain segment of the
program has to be first loaded into main memory; in this case it has to
replace another segment already in memory.

 Movement of code and data, between main memory and secondary
storage, is performed automatically by the operating system. These
techniques are called virtual-memory techniques.

46 of 59Datorarkitektur Fö 2-3

Virtual Memory

The memory space needed and seen by a program is usually much larger than
the available main memory.

Only one part of the program fits into main memory; the rest is stored on
secondary memory (such as hard disk).

 In order to be executed or data to be accessed, a certain segment of the
program has to be first loaded into main memory; in this case it has to
replace another segment already in memory.

 Movement of code and data, between main memory and secondary
storage, is performed automatically by the operating system. These
techniques are called virtual-memory techniques.

 The binary address issued by the processor is a virtual (logical)
address; it considers a virtual address space, much larger than the
physical one available in main memory.

47 of 59Datorarkitektur Fö 2-3

Virtual Memory Organization

 The virtual memory space associated to a program (instructions + data) is
divided into equal, fixed-size chunks called pages.

 Physical main memory is organized as a sequence of frames; a page can be
assigned to an available frame in order to be stored (page size = frame size).

 The page is the basic unit of information which is moved between main
memory and secondary memory by the virtual memory system.

 Common page sizes are: 2 - 16Kbytes.

48 of 59Datorarkitektur Fö 2-3

Demand Paging

 The program consists of a large amount of pages stored on secondary
memory; at any time, only a few pages need to be stored in main memory.

 The operating system is responsible for loading/replacing pages so that the
number of page faults is minimized.

 We have a page fault when the CPU refers to a location in a page that is not in
main memory; this page has then to be loaded and, if there is no available
frame, it has to replace a page which previously was in memory.

pages on the disk

frames in main
memory

pages

49 of 59Datorarkitektur Fö 2-3

Demand Paging

Processor

virtual address

physical address

Cache

physical address

Main memory

Disk
storage

transfer if
reference not in
main memory

MMU

data/instructions

da
ta

/in
st

ru
ct

io
ns
 If a virtual address refers to an item

that is currently in the main memory,
then the appropriate location is
accessed immediately using the
respective physical address; if this
is not the case, the page containing
the item has to be transferred first
from secondary memory.

 A special hardware unit, Memory
Management Unit (MMU), translates
virtual addresses into physical ones.

50 of 59Datorarkitektur Fö 2-3

Address Translation

 Accessing a word in memory involves the translation of a virtual address into
a physical one:

 virtual address: page number + offset

 physical address: frame number + offset

 Address translation is performed by the MMU using a page table.

pages on the disk

frames in main
memory

pages

offsetpage nmbr.
virtual address

- - -
- - -

offsetframe nr

physical address

51 of 59Datorarkitektur Fö 2-3

Address Translation

 Accessing a word in memory involves the translation of a virtual address into
a physical one:

 virtual address: page number + offset

 physical address: frame number + offset

 Address translation is performed by the MMU using a page table.

Example:

 Virtual memory space: 2 Gbytes
(31 address bits; 231 = 2 G)

 Physical memory space: 16 Mbytes (224=16M)

 Page length: 2Kbytes (211 = 2K)

Total number of pages: 220 = 1M

Total number of frames: 213 = 8K

52 of 59Datorarkitektur Fö 2-3

Address Translation

20bit 11bit

main memory

Frame 0
Frame 1

Frame 213-1

offsetpage nmbr.

virtual address

13bit 11bit

offsetframe nr

2 Kbytes

physical address

secondary memory

53 of 59Datorarkitektur Fö 2-3

Address Translation

20bit 11bit

Ctrl
bits

frame nr
in mem.

main memory
page table

Entry 0
Entry 1

Entry 220-1

Frame 0
Frame 1

Frame 213-1

offsetpage nmbr.

virtual address

13bit 11bit

offsetframe nr

2 Kbytes

physical address

If page fault
then OS is
activated in
order to load
missed page

54 of 59Datorarkitektur Fö 2-3

The Page Table

 The page table has one entry for each page of the virtual memory space.

 Each entry of the page table holds the address of the memory frame which
stores the respective page, if that page is in main memory.

 Each entry of the page table also includes some control bits which describe
the status of the page:

 whether the page is actually loaded into main memory or not;

 if since the last loading the page has been modified;

 information concerning the frequency of access, etc.

55 of 59Datorarkitektur Fö 2-3

The Page Table
Problems:

 The page table is very large (number of pages in virtual memory space
is very large).

 Access to the page table has to be very fast  the page table has to be
stored in very fast memory, on chip.

 A special cache is used for page table entries, called translation lookaside
buffer (TLB); it works in the same way as an ordinary memory cache and
contains those page table entries which have been most recently used.

56 of 59Datorarkitektur Fö 2-3

The Page Table
Problems:

 The page table is very large (number of pages in virtual memory space
is very large).

 Access to the page table has to be very fast  the page table has to be
stored in very fast memory, on chip.

 A special cache is used for page table entries, called translation lookaside
buffer (TLB); it works in the same way as an ordinary memory cache and
contains those page table entries which have been most recently used.

 The page table is often too large to be stored in main memory. Virtual memory
techniques are used to store the page table itself  only part of the page
table is stored in main memory at a given moment.

The page table itself is distributed along the memory hierarchy:
 TLB (cache)
 main memory
 disk

57 of 59Datorarkitektur Fö 2-3

Memory Reference with Virtual Memory and TLB

Check TLB

request access to
virtual address

Page table
entry in TLB?

Access page table
(if entry not in main memory,
a page fault is produced and
OS loads missed part of the
page table)

Page in main
memory?

update TLB

OS activated:
- loads missed page
into main memory;
- if memory is full,
replaces an "old" page;
- updates page table

generate physical address

access cache and, if
miss main memory

No

No
(page fault)

Yes

Yes

(pages surely in
main memory)

58 of 59Datorarkitektur Fö 2-3

Memory Reference with Virtual Memory and TLB

 Memory access is solved by hardware except the page fault sequence which

is executed by the OS software.

 The hardware unit which is responsible for translation of a virtual address

into a physical one is the Memory Management Unit (MMU).

59 of 59Datorarkitektur Fö 2-3

Page Replacement

 When a new page is loaded into main memory and there is no free memory
frame, an existing page has to be replaced.
The decision on which page to replace is based on the same speculations
like those for replacement of blocks in cache memory.

LRU strategy is often used to decide on which page to replace.

 When the content of a page, which is loaded into main memory, has been
modified as result of a write, it has to be written back on the disk before its
replacement.
One of the control bits in the page table is used in order to signal that the
page has been modified.

