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CISC vs. RISC

CISC

Q
Q

O O0O0D0 Do

Complex Instruction Set Computer

Memory operands for arithmetic and
logical operations possible

M(r1+r2) € M(r1+r2) * M(r3+disp)

L

&

Many instructions

Complex instructions

Few registers, not symmetric
Variable instruction size

Instruction decoding (often done in
microcode) takes much silicon
overhead

Example: 80x86, 680x0
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RISC
Reduced Instruction Set Computer

Arithmetic/logical operations only on
registers

add r1, r2, r1
load (r1), r4
load r3+disp, rd
mul r4, r5
store r5, (r1)

Fewer, simple instructions

Many registers, all general-purpose
typically, 32 ... 256 registers

Fixed instruction size and format
Instruction decoding hardwired

Example: POWER, HP-PA RISC,
MIPS, ARM, SPARC,
Apple M1-M3



Instruction-Level Parallel (ILP) architectures Ilou

LINKOPINGS UNIVERSITET

Single-Issue: (can start at most one instruction per clock cycle)

a Simple, pipelined RISC processors
with one or multiple functional units

o e.g. ARM9E, DLX

Multiple-lssue: (can start several instructions per clock cycle)

O Superscalar processors
o e.g. Sun SPARC, MIPS R10K, Alpha 21264, IBM Power2, Pentium

3 VLIW processors (Very Long Instruction Word)

o e.g. Multiflow Trace, Cydrome Cydra-5, Intel i860,
HP Lx, Transmeta Crusoe;
most DSPs, e.g. Philips Trimedia TM32, Tl ‘C6x

O EPIC processors (Explicitly Parallel Instruction Computing)
o e.g. Intel ltanium family (I1A-64)

TDDD55/TDDEG6, IDA, LiU, 2025 12.4



Processors with/without Pipelining Il'"

Traditional processor without pipelining

One instruction takes 4 processor cycles, i.e. 0.25 instructions/cycle

Processorcycleno. 1 2 3 4 5 6 7 8 9 10 11

Instr. retrieval # #2 #3
Instr. decoding #1 #2 #3
Execution #1 #2
Store result #1 #2
Instr 1 Instr 2 Instr 3

TDDDS55/TDDEG66, IDA, LiU, 2025 12.5



Processor with Simple Pipelining

An instruction takes 1 cycle on average with pipeline

i.e. 1 instruction/cycle

This pipeline achieves 4-way parallelism

Processorcycleno. 1 2 3 4 5 6 7 8 9 10 11
Instr. retrieval #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 |#9

Instr. decoding #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9
Execution #1 (#2 [#3 |#4 |#5 [#6 |#7 |#8
Store result #1 |#2 |#3 |#4 |#5 (#6 |#T7 (#8

Instr Instr Instr Instr Instr
1 2 3 4 5

TDDDS55/TDDEG66, IDA, LiU, 2025 12.6
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Processor with Super-Pipelining Il'"

A new instruction can begin before the previous one is finished.

Thus, you manage on average 3 instr/cycle when the pipeline is full.

Processor cycle no. 1 2 3 4 5 6 7 8 9 10 1

Instruction 1 starts — R1 D1 E1 S1 ~4——— Instruction 1 ready

R= Instr. retrieval

D= Instr. decoding
E= Execution

S= Store result

TDDDS55/TDDEG66, IDA, LiU, 2025 12.7



A Processor with Parallel Pipelines ||.||

TDDDS55/TDDEG66, IDA, LiU, 2025
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A1 _ A2 _ WB _
write-
o| 12991 | [8992 | | back | | Floating-point
add
_>_ | | | | | |
M1 _ M2 _ M3 _ WB _
" |
mult. 1 | | mult. 2 | | mult. 3 \t’,vgcﬁ Floating-
> > > > > [point
mult.
IF D | [TL | | | |
i fetch| |i decode
g
_EX _[ME _ WB _
execute | |laccess \évargi Load/store
> > - ™| linstructions
L _ EX _ WB _
o
> |execute ‘{)";'CE Integer
> - > | instructions
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Problems using Branch Instructions on ||.||
Simple Pipelined Processors

Branch instructions force the pipeline to restart and thus reduce performance.

The diagram below shows execution of a branch
(cbr = conditional branch) to instruction #3, which makes the pipeline restart.

The grey area indicates lost performance.
Only 4 instructions start in 6 cycles instead of the maximum of 6.

Processor cycle no. 1

Instr. retrieval #1

Instr. decoding

Execution

Store result

TDDDS55/TDDEG66, IDA, LiU, 2025 12.9



Summary Pipelined RISC Architectures [1.U
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a A single instruction is issued per clock cycle
O Possibly several parallel functional units / resources

O Execution of different phases of subsequent instructions overlaps in time.
This makes them prone to:

o data hazards (may have to delay op until operands ready),
o control hazards (may need to flush pipeline after wrongly predicted branch),

o structural hazards (required resource(s)/ e.g. functional units, bus, register,
must not be occupied)

O Static scheduling (insert NOPs to avoid hazards)
vs. Run-time treatment by pipeline stalling

issue |cycle | PM Decoder ALU; DM/ALU, Regs
IF I 1 IF
[D fg 2 IFQ IDI
EX v |4l m B wew
4 4 3 2 1
MEM/EX2 s > | IFs iD, EXs MEM, WB
} W5 Is 6 |IFs, IDs EX, MEM; WB,

TDDDS55/TDDEG66, IDA, LiU, 2025



Reservation Table, Scheduling Hazards Il U
[ _

(avoid hazards = resource collisions)
add- AL0 MULTIPLIER _
bead | vead | slagd slage slage slage slage slage wile Rese rvatlon table
sicl |s0c? |0 1 o 1 2 3 esall . .
e | ophd| opnd bos specifies required resource
o occupations
1
2 [Davidson 19795]
3

If we start add at t+2, the bus
write will appear at cycle t+5

aLi MULTILPLIER

mul:
Y 00 P I B i t: mul ...
Timme |©phd|opnd bus .

q t+1: ...

1 t+2: add . é
2

3 ‘e structural
+ hazard
5 at t=5




Comparison between Superscalar Processors Il U
and VLIW processors e ot

Superscalar Processors VLIW PFOCGSS_OFS
(Very Long Instruction Word)

with multiple loading of instructions

(multi-issue) | |
Instruction flow [
v \l

o

Several processor units are loaded

NI
\
simultaneously be different operations in

the same instructions.

E.g. the multiflow machine,

1024 bits, 28 operations,

or specialized graphics processors

TDDDS55/TDDEG66, IDA, LiU, 2025 12.12



Superscalar Processors ll.ll

Q

Q
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A superscalar processor has several function units that can work in parallel, and which can
load more than 1 instruction per cycle.

The word superscalar comes from the fact that the processor executes more than 1
instruction per cycle.

The diagram below shows how a maximum of 4 units can work in parallel, which in theory
means they work 4 times faster.

The type of parallelism used depends on the type of instruction and dependencies between
instructions.

Processor cycle no: 1 2 3 4 5 6 7 8 9 10 M
Instruction 1starts  —— R, | D, | E, | Sy | = Instruction 1 ready
Ro| D2 | Ez| S
R3| D3| E3| S3
Rg| Dg | Eq| S4

Rs | Ds| E5 | S5
Rs| Ds | Es | Se
R7| D7 | E7 | S7
D= Instr decoding Re| s | Es | Ss
E= Execution Rg | Dg | Eg| Sg
S= Store result

TDDDS55/TDDEG66, IDA, LiU, 2025 12.13



Superscalar Processor

LINKOPINGS UNIVERSITET

3 Run-time scheduling by instruction dispatcher

o convenient (sequential instruction stream — as usual)

o limited look-ahead buffer to analyze dependences, reorder instr.

o high silicon overhead, high energy consumption

ad Example: Motorola MC 88110

2-way, in-order issue
superscalar

TDDDS55/TDDEG66, IDA, LiU, 2025

I-cache
1™

AN

¥ placel A place? DISPATCHER
Iﬂ

internal instruction
buffer (2 instructions)

\ _




A Parallel Superscalar Pipeline

IF

i fetch
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bs _ Ib _ A1 _ A2 WB _
instruction .
dispatch | |i decode| | add 1 add 2 | | Write- _ |
> > > »| | Pack | | Floating-point
add
(S
— _b_ L] L} ]
D] _ M1 _ M2 _ M3 _ wB Floating-
__ point
. write
i dedode| [ mult. 1 | [ mult. 2 | [ mult. 3| | pack mult.
> > > 1 >
.’V
> —>
- A1 _ A2 _ WB _
write-
o 2941 | ]2dd2 | | back, | | Floating-point
] D _ EX _[ME _ WB _ add
] ] 1 i
" | write- M1 M2 M3 _ WB
iy - i decode | | execute | [memory | pgck | [Load/store 1 oo
> ] > ) ac - . . write )
instructions | [ muit 1| {muit 2 | | mut.3 || back ;giarﬂng.
L mult.
IF ID L L L L
- - - — — — i fetch| |i decode
_EX _|[ME _ WB _
ID EX WB execute | |laccess \ggi(t;i- Load/store
] |—>_ B ] > - - ™! linstructions
. write- i L i i
i decode| |execute | | pack | |Integer )
> > > > |instructions B
] > |execute \ganéﬁ— Integer
> > > instructions

TDDDS55/TDDEG66, IDA, LiU, 2025
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Branch Effects on Performance for Deeply

Pipelined Superscalar Processors

Branch-instructions force the pipeline to restart and thus reduce

performance. Worse on deeply pipelined superscalar processors.

The diagram shows ~ Cycleno. 1

execution of a branch #1
. Instr. retr. |#2 cbr

(cbr = conditional

branch) to instruction

#3, which makes the

pipeline restart.

Instr. decode 1

Instr. decode 2
The grey area

indicates lost

performance. Execution 1
Only 6 instructions
start during 5 cycles
instead of a
maximum of 20.

Execution 2

Store

TDDDS55/TDDEG66, IDA, LiU, 2025

#1
#2 cbr

#1
#2 cbr

#1
#2 cbr
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#3
#4
#5
#6

#1

#3
#4
#5
#6

#3
#4
#5
#6

#3
#4
#5
#6
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#3
#4
#5
#6




VLIW (Very Long Instruction Word) architectures Il'u

3 Multiple slots for instructions in long instruction-word
o Direct control of functional units and resources — low decoding OH
ad Compiler (or assembler-level programmer)
must determine the schedule statically
o Independence, unit availability, packing into long instruction words

o Challenging! But the compiler has more information on the program
than an on-line scheduler with a limited lookahead window.

o Silicon- and
energy-efficient REGISTER FILE
(YA AT TAC &

TDDDS55/TDDEG66, IDA, LiU, 2025




EPIC Architectures Il U
(Explicitly Parallel Instruction Computing) prt et

d Based on VLIW

ad Compiler groups instructions to LIW’s (bundles)

ad Compiler takes care of resource and latency constraints
3 Compiler marks sequences of independent instructions

d Dynamic scheduler assigns resources and reloads new
bundles as required

LIW 1 LIW 2 ...

Instr 1

Instr 2

LIW 2 cont LIW 3 otc.

TDDDS55/TDDEG66, IDA, LiU, 2025 12.18
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2. Instruction Scheduling
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The Instruction Scheduling Problem Il'"

O Schedule the instructions in such an order that parallel
function units are used to the greatest possible degree.

a Input:
o Instructions to be scheduled
o A data dependency graph
o A processor architecture
o Register allocation has (typically) been performed

3 Output:
o A scheduling of instructions which minimizes execution time

or energy

TDDDS55/TDDEG66, IDA, LiU, 2025 12.20



Example Instructions to be Scheduled Il'"

Instructions

(01l) mov
(02) mov
(03) mul
(04) mov
(05) push
(06) call
(07) inc
(08) dec
(09) mov
(10) movw
(11) ret

rax, 5

rcx, [rbp-16]
rax, 8
[rcx-64], rax
4

L6

[rbp-8]
[rbp+8]

rdx, [rsp-32]
[rsp-40], rdx

TDDDS55/TDDEG66, IDA, LiU, 2025
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Instruction Scheduling (1) Il'"

d Map instructions to time slots on issue units (and resources),
such that no hazards occur
> Global reservation table, resource usage map

d Example without data dependences:

lsse bead | lead| ALU MULTILPLLIER | whie

ahit 1 sicl | sic? | slage slage slage slage slagd slagd resull
Trioe opnd epndl @ [1 [0 |1 |2 |3 |bus
£: mul ...

t+l: add ... 1 [X]
E+2: nop ... N

|-2 —

¥ ¥

Ln 4= L




Instruction Scheduling (2) Il'"

d Data dependences imply latency constraints
> target-level data flow graph / data dependence graph

lead |bead | ALD MULTIPLIER | wnie

it 1 sicl | s1c? | slage slage stage slage slage stagd resolt
Ture oprd|opnd|0 |1 |0 |1 |2 |3 |bus

t: mul R1, ... 0

t+l: nop ... =l =024
E+2: nop ... > 4N
I 1.6...
t+4: nop ... o ﬁg:" _______
5
.......... Y......
£+6: add ...,R1 ... <l L

TDDDS55/TDDEG66, IDA, LiU, 2025 12.23



Instruction Scheduling Il'"

Generic Resource model - tead [tead| ALU | MULTIPLIER |wiite
. hnit 1 sicl | sic2 | slage slage slage slage :ugc slagg Lesoll
O Reservation table t:  mul RL,... o oprdopnd 0 (3 1B 1 2 3 bus
t+l: nop ... =<
. t+2: nop ... - 4
Local Scheduling s T
(f. Basic blocks / DAGs) tt4: nop ... -
O Data dependences t+6: add ...,Rl1 ... A —
—> Topological sorting
o List Scheduling

(diverse heuristics)

Global Scheduling
O Trace scheduling, Region scheduling, ...
O Cyclic scheduling (Software pipelining)

There exist retargetable schedulers
and scheduler generators, e.g. for GCC since 2003

TDDD55/TDDEG6, IDA, LiU, 2025 12.24



Example of List Scheduling Algorithm v
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d The level of a task (i.e., Example of Highest Level First algorithm on a
instruction) node is the tree structured task graph, 3 processor units

maximal number of nodes  task priority  task number
that are passed on the
way to the final node, itself
included.

task execution time

] 4\ 1 time P1 P2 P3
0
10 9 8

3 The algorithm:

o The level of each node
IS used as priority.

o When a
processor/function unit
is free, assign the
unexecuted task which

has highest priority, @
and which is ready to !
be executed. Task Graph Gantt Chart

TDDDS55/TDDEG66, IDA, LiU, 2025 12.25



Example: Topological Sorting (0) Il v
According to Data Dependencies e ot

‘ Not yet considered
' Data ready (zero indegree set)
O Already scheduled, still live

O Already scheduled, no longer referenced

TDDDS55/TDDEG66, IDA, LiU, 2025 12.26



Example: Topological Sorting (1) Il U
According to Data Dependencies e ot

‘ Not yet considered
' Data ready (zero indegree set)
O Already scheduled, still live

O Already scheduled, no longer referenced

TDDDS55/TDDEG66, IDA, LiU, 2025 12.27



Example: Topological Sorting (2) Il U
According to Data Dependencies e ot

‘ Not yet considered
' Data ready (zero indegree set)
O Already scheduled, still live

O Already scheduled, no longer referenced

TDDDS55/TDDEG66, IDA, LiU, 2025 12.28



Example: Topological Sorting (3) Il v
According to Data Dependencies e ot

‘ Not yet considered
' Data ready (zero indegree set)
O Already scheduled, still live

O Already scheduled, no longer referenced

TDDDS55/TDDEG66, IDA, LiU, 2025 12.29



Example: Topological Sorting (4) Il U
According to Data Dependencies e ot

‘ Not yet considered
' Data ready (zero indegree set)
O Already scheduled, still live

O Already scheduled, no longer referenced

ab d and so on...

TDDDS55/TDDEG66, IDA, LiU, 2025 12.30



Topological Sorting and Scheduling Il'“

d Construct schedule incrementally
in topological (= causal) order

o "Appending” instructions to partial code sequence:
close up in target schedule reservation table
(as in "Tetris”)

o ldea: Find optimal target-schedule by enumerating
all topological sorting options ...
» Beware of scheduling anomalies
with complex reservation tables!

Instruction needing
3 functional units

TDDD55{:) ke 0 I-'O CJ' 12.31



Software Pipelining Il'"

for i (=1 to n
get values;
compute;
store;
end for
iter 1 iter 2 iter 3 iter ...
get values 1 get values 2 get values 3
compute 1 compute 2

In parallel
store 1

/

TDDDS55/TDDEG66, IDA, LiU, 2025 12.32



Software Pipelining of Loops (1) Il'“

11—

time
loop:
e
dependence
unroll once
reschedule 1™ 2 3% 4 S5%06
locally

infinite unrolling not realistic...

ERINNSNNNNNNY

prologue epilogue
"pattern”, "kernel" for 1 iteration of the modified loop

TDDDS55/TDDEG66, IDA, LiU, 2025 12.33



Software Pipelining of Loops (2) Il'“

'j"l Unit1  Unit2 Unit3
B
. e Prologue: A
Cp A B,
D B,
| 2
ST [ Cp A
LE P2 B | bi B2
E -E_1 D0 =1, n—2
F & Pattern:
- E'l EEOE WL
3 A F Dy Biso
Fy By :
Epilogue: Eqn Cp
D, B, n—| n
E 1 |Cn I'l'::n
l:n—l Dy I
EI'I
FI'I

- More about Software Pipelining in TDDC86
Compiler Optimizations and Code Generation
TDDD55/TDDEG66, IDA, LiU, 2025 12.34



Software Pipelining of Loops (3)
Modulo Scheduling

Assume: 4 units, fully pipelined Ul U2

LINKOPINGS UNIVERSITET

U3 U4

A\
\

delay=2 for all instructions I A

pdan

LS

Assume 2 processor cycles /fv

=\

NGt
ANAN
\

7 instructions

ANAN
AN

A B, C,D,.G

:r‘n\
H
iy

No dependence cycles ResMIl = Resource

ResMII = ceil( 7/4) = 2 Constrained Minimum
B N Initiation Interval

3
\
NN

AN

Begin with II = ResMII = 2

\
N\

Apply some local scheduling heuristic

»

ANAN
\

e.g.: list scheduling (ABCDEFG)
Apply some placement heuristic

c.g.: as early as possible
Mark occupied slots in all ita:raticuns,,,/ il Bt

il

If not possible, increase 1I and try again...

TDDDS55/TDDEG66, IDA, LiU, 2025 12.35
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Global Register Allocation Il'"

a

[ Wy Wy Ny N

Register Allocation: Determines values (variables, temporaries,
constants) to be kept when in registers.

Register Assignment:. Determine in which physical register such a value
should reside.

Essential for Load-Store Architectures
Reduce memory traffic (= memory / cache latency, energy)
Limited resource
Values that are live simultaneously cannot be kept in the same register
Strong interdependence with instruction scheduling
o scheduling determines live ranges
o spill code needs to be scheduled

Local register allocation (for a single basic block) can be done in linear
time (see previous lecture)

Global register allocation on whole procedure body (with minimal spill
code) is NP-complete.
Can be modeled as a graph coloring problem [Ershov’'62] [Cocke'71].

TDDDS55/TDDEG66, IDA, LiU, 2025 12.37



When do Register Allocation Il'"

O Register allocation is normally performed at the end of
global optimization, when the final structure of the code and
all potential use of registers is known.

3 It is performed on abstract machine code where you have
access to an unlimited number of registers or some other
intermediary form of program.

O The code is divided into sequential blocks (basic blocks) with
accompanying control flow graph.

TDDDS55/TDDEG66, IDA, LiU, 2025 12.38



Live Range Il'"

(Here, variable = program variable or temporary)

3 A variable is being defined at a program point if it is written
(given a value) there.

a A variable is used at a program point if it is read (referenced
in an expression) there.

3 A variable is live at a point if it is referenced there or at some

following point that has not (may not have) been preceded by
any definition.

d A variable is reaching a point if an (arbitrary) definition of it,

or usage (because a variable can be used before it is defined)
reaches the point.

a A variable’s live range is the area of code (set of instructions)
where the variable is both live and reaching.

o does not need to be consecutive in program text.

TDDDS55/TDDEG66, IDA, LiU, 2025 12.39



Live Range Example Il'"

X is defined
X /

X := 5+u;
/ Use of x
Live range for x " z := 3+x;

/ Last use of x

y := 35+x+z;

TDDD55/TDDEG6, IDA, LiU, 2025 12.40



Interference Graphs Il'"

d The live ranges of two
variables interfere if their
Intersection is not empty. X

d Each live range builds a I

node in the interference -} f
graph (or conflict graph)

3 If two live ranges
interfere, an edge is
drawn betweenthe
nodes.

0

d Two adjacent nodes
(connected by a vertex) in
the graph can not be
assigned the same
register.

TDDD55/TDDEG6, IDA, LiU, 2025 12.41
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Register Allocation vs Graph Coloring Il'"

d Register allocation can be compared with the classic coloring
problem.

o That s, to find a way of coloring - with a maximum of k colors -
the interference graph which does not assign the same color to
two adjacent nodes.

d k = the number of registers.

o On a RISC-machine there are, for example, 16 or 32 general
registers. Certain methods use some registers for other tasks.
e.g., for spill code.

d Determining whether a graph is colorable using k colors is
NP-complete for k>3

o In other words, it is unmanageable always to find an optimal
solution.

TDDD55/TDDEG6, IDA, LiU, 2025 12.42



Register Allocation by Graph Coloring Il'“

a Step 1: Given a program with symbolic registers s1, s2, ...

o Determine live ranges of all variables

i = ct4; load 8(fp), sl ! ¢ sl
nop
addi s1, #4, s2 S2
store s2,4(fp) i

d = c-2; subi sl,#2,s3 s3
store s3,12(fp) !' d l

c = ¢*i; muli sl,s2,s4 Yy sS4
store s4,8(fp) ' ¢ l

TDDDS55/TDDEG66, IDA, LiU, 2025 12.43



Register Allocation by Graph Coloring Il'“

O Step 2: Build the Register Interference Graph

o Undirected edge connects two symbolic registers (si, sj)
if live ranges of si and sj overlap in time

o Reserved registers (e.g. fp) interfere with all si

physical
symbolic registers  registers

i = c+4; load 8(fp),sl ! e sl @
nop
addi s1, #4,s2 S2 @ @
store s2,4(fp) ! i \e

d = c-2; subi sl1,#2,s3 S 3 @
store s3,12(fp) ! d | e \

c = c*i; muli sl1,s2,s4 Yy s4 @

store s4,8(fp) ' ¢ i @

TDDDS55/TDDEG66, IDA, LiU, 2025 12.44



Reg. Alloc. by Graph Coloring Cont. Il'“

0 Step 3: Color the register interference graph with k colors,
where k = #available registers.

o If not possible: pick a victim si to spill, generate spill code
(store after def., reload before use)

» This may remove some interferences.
Rebuild the register interference graph + repeat Step 3...

ct+4; load 8(fp),sl ! ¢ sl

nop @
addi sl1,#4,s2 s2 @ @
store s2,4(fp) ! i \e

d = c-2; subi s1,#2,s3 s3 @
store s3,12(fp) ! d | e \

c = c*i; muli sl1,s2,s4 s4 @

store s4,8(fp) ' ¢

Fl
il

This register interference graph cannot be colored

with less than 4 colors, as it contains a 4-clique
TDDD55/TDDEG66, IDA, 1o, zuzo TZ.45




Coloring a Graph with k Colors Il'"

U

NP-complete for k>3
Chromatic number y(G) = minimum number of colors to color a graph G
v(G) >= ¢ if the graph contains a c-clique

o A c-clique is a completely connected subgraph of ¢ nodes

U O

O Chaitin’s heuristic (1981):

S < {s1,s2,...} [/l setof spill candidates
while (S not empty )
choose some s in S.
if s has less than k neighbors in the graph
then // there will be some color left for s:
delete s (and incident edges) from the graph
else modify the graph (spill, split, coalesce ... nodes)
and restart.
// once we arrive here, the graph is empty:
color the nodes greedily in reverse order of removal.

TDDD55/TDDEG6, IDA, LiU, 2025 12.46



Chaitin’s Register Allocator (1981) Il'“

find live ranges;
systematically rename them

v

build interference graph G

v

coalesce copies
¢"='--..._,__
i::iﬁrst estimate cost of spill
for each live range While G nonempty:
l if ex.node n with degree <k
remove n from G and push it on the stack
[simr.tlifll,r (changes G else
. l pick a node n to spill and remove it from G
any spills? _
select
While stack is non-empty
l pop n; insert n into G; assigna colorto n

TDDDS55/TDDEG66, IDA, LiU, 2025 12.47



Register Allocation for Loops (1) Il'"

O Interference graphs have some weaknesses:
o Imprecise information on how and when live ranges interfere.

o No special consideration is taken of loop variables’ live ranges (except
when calculating priority).

d Instead, in a cyclic interval graph:
o The time relationships between the live ranges are explicit.

o Live ranges are represented for a variable whose live range crosses
iteration limits by cyclic intervals.

O Notation for cyclic live intervals for loops:

o Intervals for loop variables which do not cross the iteration limit are
included precisely once.

o Intervals which cross the iteration limit are represented as an interval
pair, cyclic interval.

([O’ t’)’ [t’ tend])
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Register Allocation for Loops (2) Il'"

Circular edge graph
Only 3 interferences at the same time
x 3
Traditional interference graph, 5
all variables interfere, 4 registers needed
x1

NS
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Register Allocation for Loops (3)

LINKOPINGS UNIVERSITET

Live ranges (loop only):
cyclic intervals

Example: Control flow graph e.g. fori: [0, 5), [5, 6]
x3 =7 3= x1:[2,4) x2:[3,95)
. Al x3: ([0, 3), [4, 6])
fori=11to 100 { v ] 1 x2 X3
x1=x3 +2 =1
X2 =x1+x3 = ,‘ .
. i<=100 |- e [ R
X3 = x2 + x1 -”\H
} - x1=x3+2 |- R R S R
y = x3 +42 : ¢ :
- X2=x1+x3 |- CHRE: I I BN AR S
: ! :
| Tas — | ¥ v
All variables = :
interfere with o i=i+1 1 T LIt SNt
_ . — -
r?acgzt:]er? Illlllllllll!—-'-l-l'l'l'l'ﬂll.
\nee €gs: y=x3+i+42 6 At most 3 values live at a time
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Live Range Splitting Il'“

3 Instead of spilling completely (reload before each use),
it may be sufficient to split a live range at one position
where register pressure is highest

o save, and reload once

~ tv) t{e ) ti,) t{u ;) te ) t(u, )
v [, I [t T I,
fr f: f.? f,: fﬁ fx
1) fiu,) t(u,) t{u ystore t(u tu, )
v iy (L] [&5 4 .
I I I oad g =
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Live Range Coalescing/Combining Il U
(Reduces Register Needs) it

d For a copy instruction sj < si

o Where si and sj do not interfere

o and si and s are not rewritten after the copy operation
d Merge siand sy

o patch (rename) all occurrences of si to sj

o update the register interference graph

d and remove the copy operation.

S2 & ... S3 & ...
s3 € s2 Sl
33 ...S3 ...
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TDDD55 Compilers and Interpreters (opt.)

TDDE66 Compiler Construction II."
LINKOPINGS UNIVERSITET

4. Phase Ordering Problems
and Integrated Code Generation

IDA, Linkdpings universitet, 2025



Phase Ordering Problems Il'“

@/@

gcc,
lcc

Instruction
selection

Register
allocation
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Phase Ordering Problems (1) v

LINKOPINGS UNIVERSITET

Instruction scheduling vs. register allocation

(a) Scheduling first: (b) Register allocation first:
determines Live-Ranges Reuse of same register by different
- Register need, values introduces "artificial”
possibly spill-code to be data dependences
inserted afterwards —> constrains scheduler
a = ... a
b = ...
= ..b..
t1
a = ... *a @
- T S, [alb d
RN ®@ ® 54
= ..b.. S, lalcBld]
£ 23 4
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5. Integrated Code Generation Il'“

Instruction
selection

» ( Target
code

Register
allocation

Instruction scheduling
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Project at PELAB (Kessler): OPTIMIST II'"

Retargetable integrated code source program
generator (C, C++, Fortran)
Open Source: C front end
IR generator LCC, ORC
ORC HL opt.

LCC-IR

OPTIMIST
retargetable Integrated code generation

(TTTTT] (TT10T
NFANTAANFANG ADML optimlzation englnes: DP, ILP ({CPLEX)
parser

archltecture description

functlonal units
reglster sets parametr,
memory modules
Instruction set

InADML

asm code
emitter

Avallable speclfications:

- TI €201
- ARM 9E assembler
— Motorola MC56K lInker

executlon/simulation
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http://www.ida.liu.se/~chrke/optimist

Thank you! Il'"

3 Any questions?
d L13 — Error Management in Compilers and Run-time Systems
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