
TDDD55 Compilers and Interpreters (opt.)

TDDE66 Compiler Construction

IDA, Linköpings universitet, 2025

Code Generation

for RISC and Instruction-Level Parallel

Processors

RISC/ILP Processor Architecture Issues

Instruction Scheduling

Register Allocation

Phase Ordering Problems

Integrated Code Generation

TDDD55 Compilers and Interpreters (opt.)

TDDE66 Compiler Construction

IDA, Linköpings universitet, 2025

1. RISC and Instruction-Level

Parallel Target Architectures

12.3TDDD55/TDDE66, IDA, LiU, 2025

CISC vs. RISC

CISC

❑ Complex Instruction Set Computer

❑ Memory operands for arithmetic and
logical operations possible

❑ M(r1+r2)  M(r1+r2) * M(r3+disp)

❑ Many instructions

❑ Complex instructions

❑ Few registers, not symmetric

❑ Variable instruction size

❑ Instruction decoding (often done in
microcode) takes much silicon
overhead

❑ Example: 80x86, 680x0

❑ RISC

❑ Reduced Instruction Set Computer

❑ Arithmetic/logical operations only on
registers

❑ add r1, r2, r1
load (r1), r4
load r3+disp, r5
mul r4, r5
store r5, (r1)

❑ Fewer, simple instructions

❑ Many registers, all general-purpose
typically, 32 ... 256 registers

❑ Fixed instruction size and format

❑ Instruction decoding hardwired

❑ Example: POWER, HP-PA RISC,
MIPS, ARM, SPARC,
Apple M1-M3

12.4TDDD55/TDDE66, IDA, LiU, 2025

Instruction-Level Parallel (ILP) architectures

Single-Issue: (can start at most one instruction per clock cycle)

❑ Simple, pipelined RISC processors
with one or multiple functional units

o e.g. ARM9E, DLX

Multiple-Issue: (can start several instructions per clock cycle)

❑ Superscalar processors

o e.g. Sun SPARC, MIPS R10K, Alpha 21264, IBM Power2, Pentium

❑ VLIW processors (Very Long Instruction Word)

o e.g. Multiflow Trace, Cydrome Cydra-5, Intel i860,
HP Lx, Transmeta Crusoe;
most DSPs, e.g. Philips Trimedia TM32, TI ‘C6x

❑ EPIC processors (Explicitly Parallel Instruction Computing)

o e.g. Intel Itanium family (IA-64)

12.5TDDD55/TDDE66, IDA, LiU, 2025

Processors with/without Pipelining

Processor cycle no.

Instr. retrieval

Instr. decoding

Execution

Store result

#1

#1

#1

#1

#2

#2

#2

#2

#1#3

#3

Instr 1 Instr 2 Instr 3

1 2 3 4 6 7 8 9 10 115

Traditional processor without pipelining

One instruction takes 4 processor cycles, i.e. 0.25 instructions/cycle

12.6TDDD55/TDDE66, IDA, LiU, 2025

Processor with Simple Pipelining

An instruction takes 1 cycle on average with pipeline

i.e. 1 instruction/cycle

This pipeline achieves 4-way parallelism

Processor cycle no.

Instr. retrieval

Instr. decoding

Execution

Store result

#1

#1

#1

#1

#1#9

#9

1 2 3 4 6 7 8 9 10 11

Instr

#2

#2

#2

#2

#3

#3

#3

#3

#4

#4

#4

#4

#5

#5

#5

#5

#6

#6

#6

#6

#7

#7

#7

#7

#8

#8

#8

#8

5

 1

Instr

 2

Instr

 3

Instr

 4

Instr

 5

12.7TDDD55/TDDE66, IDA, LiU, 2025

Processor with Super-Pipelining

A new instruction can begin before the previous one is finished.

Thus, you manage on average 3 instr/cycle when the pipeline is full.

Processor cycle no.

R= Instr. retrieval

D= Instr. decoding

E= Execution

S= Store result

R1

1 2 3 4 6 7 8 9 10 11

D1 E1 S1

5

R2 D2 E2 S2

R3 D3 E3 S3

R4 D4 E4 S4

R5 D5 E5 S5

R6 D6 E6 S6

Instruction 1 readyInstruction 1 starts

12.8TDDD55/TDDE66, IDA, LiU, 2025

A Processor with Parallel Pipelines

IF

i fetch i decode

ID

A1 A2 WB

add 1 add 2
write-
back

EX ME WB

EX WB

M1 M2 M3

mult. 1 mult. 2 mult. 3
write
back

WB

execute access

execute
write-
back

Floating-
point
mult.

Floating-point
add

Load/store
instructions

Integer
instructions

write-
back

12.9TDDD55/TDDE66, IDA, LiU, 2025

Problems using Branch Instructions on

Simple Pipelined Processors

Branch instructions force the pipeline to restart and thus reduce performance.

The diagram below shows execution of a branch

(cbr = conditional branch) to instruction #3, which makes the pipeline restart.

The grey area indicates lost performance.

Only 4 instructions start in 6 cycles instead of the maximum of 6.

Processor cycle no.

Instr. retrieval

Instr. decoding

Execution

Store result

#1

#1

#1

#1

1 2 3 4 6 7 8

#2 cbr

#2 cbr

#2 cbr

#2

#3

#3

 #3

#3

#4

#4

#4

5

12.10TDDD55/TDDE66, IDA, LiU, 2025

Summary Pipelined RISC Architectures
❑ A single instruction is issued per clock cycle

❑ Possibly several parallel functional units / resources

❑ Execution of different phases of subsequent instructions overlaps in time.

This makes them prone to:

o data hazards (may have to delay op until operands ready),

o control hazards (may need to flush pipeline after wrongly predicted branch),

o structural hazards (required resource(s)/ e.g. functional units, bus, register,

must not be occupied)

❑ Static scheduling (insert NOPs to avoid hazards)

vs. Run-time treatment by pipeline stalling

IF

ID

EX

MEM/EX2

WB

12.11TDDD55/TDDE66, IDA, LiU, 2025

Reservation Table, Scheduling Hazards
(avoid hazards = resource collisions)

Reservation table

specifies required resource

occupations

[Davidson 1975]

If we start add at t+2, the bus

write will appear at cycle t+5

12.12TDDD55/TDDE66, IDA, LiU, 2025

Comparison between Superscalar Processors

and VLIW processors

PU PU PU PU

Instruction flow

PU PU PU PU

VLIW Processors
(Very Long Instruction Word)

Superscalar Processors

with multiple loading of instructions

(multi-issue)

Several processor units are loaded

simultaneously be different operations in

the same instructions.

E.g. the multiflow machine,

1024 bits, 28 operations,

or specialized graphics processors

12.13TDDD55/TDDE66, IDA, LiU, 2025

Superscalar Processors
❑ A superscalar processor has several function units that can work in parallel, and which can

load more than 1 instruction per cycle.

❑ The word superscalar comes from the fact that the processor executes more than 1

instruction per cycle.

❑ The diagram below shows how a maximum of 4 units can work in parallel, which in theory

means they work 4 times faster.

❑ The type of parallelism used depends on the type of instruction and dependencies between

instructions.

12.14TDDD55/TDDE66, IDA, LiU, 2025

Superscalar Processor

❑ Run-time scheduling by instruction dispatcher

o convenient (sequential instruction stream – as usual)

o limited look-ahead buffer to analyze dependences, reorder instr.

o high silicon overhead, high energy consumption

❑ Example: Motorola MC 88110
2-way, in-order issue

superscalar

12.15TDDD55/TDDE66, IDA, LiU, 2025

A Parallel Superscalar Pipeline

IF

i fetch

A1 A2 WB

add 1 add 2
write-
back

EX ME WB

EX WB

M1 M2 M3

mult. 1 mult. 2 mult. 3
write
back

WB

execute memory

execute
write-
back

Floating-
point

mult.

Floating-point

add

Load/store

instructions

Integer

instructions

write-
back

i decode

i dec ode

i decode

i decode

ID

ID

ID

ID

instruction
dispatch

DS

IF

i fetch i decode

ID

A1 A2 WB

add 1 add 2
write-
back

EX ME WB

EX WB

M1 M2 M3

mult. 1 mult. 2 mult. 3
write
back

WB

execute access

execute
write-
back

Floating-
point
mult.

Floating-point
add

Load/store
instructions

Integer
instructions

write-
back

12.16TDDD55/TDDE66, IDA, LiU, 2025

Branch Effects on Performance for Deeply

Pipelined Superscalar Processors

Branch-instructions force the pipeline to restart and thus reduce

performance. Worse on deeply pipelined superscalar processors.

Cycle no.

Instr. retr.

Instr. decode 1

Store

1 2 3 4 6 7 85

#1 #3

#2 cbr #4

#5

#6

#1 #3

#2 cbr #4

#5

#6

#1 #3

#2 cbr #4

#5

#6

#1 #3

#4

#5

#6

#1 #3

#2 cbr #4

#5

#6

Instr. decode 2

Execution 1

Execution 2

The diagram shows

execution of a branch

(cbr = conditional

branch) to instruction

#3, which makes the

pipeline restart.

The grey area

indicates lost

performance.

Only 6 instructions

start during 5 cycles

instead of a

maximum of 20.

12.17TDDD55/TDDE66, IDA, LiU, 2025

VLIW (Very Long Instruction Word) architectures

❑ Multiple slots for instructions in long instruction-word

o Direct control of functional units and resources – low decoding OH

❑ Compiler (or assembler-level programmer)
must determine the schedule statically

o independence, unit availability, packing into long instruction words

o Challenging! But the compiler has more information on the program
than an on-line scheduler with a limited lookahead window.

o Silicon- and
energy-efficient

12.18TDDD55/TDDE66, IDA, LiU, 2025

EPIC Architectures
(Explicitly Parallel Instruction Computing)

❑ Based on VLIW

❑ Compiler groups instructions to LIW’s (bundles)

❑ Compiler takes care of resource and latency constraints

❑ Compiler marks sequences of independent instructions

❑ Dynamic scheduler assigns resources and reloads new

bundles as required

LIW 1 LIW 2 ...

LIW 2 cont LIW 3

Instr 1

Instr 2

etc.

TDDD55 Compilers and Interpreters (opt.)

TDDE66 Compiler Construction

IDA, Linköpings universitet, 2025

2. Instruction Scheduling

12.20TDDD55/TDDE66, IDA, LiU, 2025

The Instruction Scheduling Problem

❑ Schedule the instructions in such an order that parallel

function units are used to the greatest possible degree.

❑ Input:

o Instructions to be scheduled

o A data dependency graph

o A processor architecture

o Register allocation has (typically) been performed

❑ Output:

o A scheduling of instructions which minimizes execution time

or energy

12.21TDDD55/TDDE66, IDA, LiU, 2025

Example Instructions to be Scheduled

1

2

3

4

5 6

7

8

9 10

11

mov rax, 5

mov rcx, [rbp-16]

mul rax, 8

mov [rcx-64], rax

push 4

call L6

inc [rbp-8]

dec [rbp+8]

mov rdx, [rsp-32]

mov [rsp-40], rdx

ret

(01)

(02)

(03)

(04)

(05)

(06)

(07)

(08)

(09)

(10)

(11)

Dependency graphInstructions

12.22TDDD55/TDDE66, IDA, LiU, 2025

Instruction Scheduling (1)

❑ Map instructions to time slots on issue units (and resources),

such that no hazards occur

→ Global reservation table, resource usage map

❑ Example without data dependences:

12.23TDDD55/TDDE66, IDA, LiU, 2025

Instruction Scheduling (2)

❑ Data dependences imply latency constraints

→ target-level data flow graph / data dependence graph

latency(mul) = 6 add

mul 6

6

12.24TDDD55/TDDE66, IDA, LiU, 2025

Instruction Scheduling

Generic Resource model

❑ Reservation table

Local Scheduling
(f. Basic blocks / DAGs)

❑ Data dependences
→ Topological sorting

o List Scheduling
(diverse heuristics)

Global Scheduling

❑ Trace scheduling, Region scheduling, ...

❑ Cyclic scheduling (Software pipelining)

There exist retargetable schedulers
and scheduler generators, e.g. for GCC since 2003

12.25TDDD55/TDDE66, IDA, LiU, 2025

Example of List Scheduling Algorithm

❑ The level of a task (i.e.,

instruction) node is the

maximal number of nodes

that are passed on the

way to the final node, itself

included.

❑ The algorithm:

o The level of each node

is used as priority.

o When a

processor/function unit

is free, assign the

unexecuted task which

has highest priority,

and which is ready to

be executed.

Example of Highest Level First algorithm on a

tree structured task graph, 3 processor units

task number

task execution time

task priority

12.26TDDD55/TDDE66, IDA, LiU, 2025

Example: Topological Sorting (0)

According to Data Dependencies

d

a b c

e

Not yet considered

Data ready (zero indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

12.27TDDD55/TDDE66, IDA, LiU, 2025

Example: Topological Sorting (1)

According to Data Dependencies

d

a b c

e

Not yet considered

Data ready (zero indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

a

12.28TDDD55/TDDE66, IDA, LiU, 2025

Example: Topological Sorting (2)

According to Data Dependencies

d

a b c

e

Not yet considered

Data ready (zero indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

ba

12.29TDDD55/TDDE66, IDA, LiU, 2025

Example: Topological Sorting (3)

According to Data Dependencies

d

a b c

e

Not yet considered

Data ready (zero indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

da b

12.30TDDD55/TDDE66, IDA, LiU, 2025

Example: Topological Sorting (4)

According to Data Dependencies

d

a b c

f

e

Not yet considered

Data ready (zero indegree set)

Already scheduled, still live

Already scheduled, no longer referenced

and so on...a b d

12.31TDDD55/TDDE66, IDA, LiU, 2025

Topological Sorting and Scheduling

❑ Construct schedule incrementally
in topological (= causal) order

o ”Appending” instructions to partial code sequence:
close up in target schedule reservation table
(as in ”Tetris”)

o Idea: Find optimal target-schedule by enumerating
all topological sorting options ...

Beware of scheduling anomalies
with complex reservation tables!

Instruction needing

3 functional units

12.32TDDD55/TDDE66, IDA, LiU, 2025

Software Pipelining

for i := 1 to n

 get values;

 compute;

 store;

end for

}
get values 1 get values 2 get values 3

 compute 1 compute 2

 store 1
In parallel

iter 1 iter 2 iter 3 iter ...

12.33TDDD55/TDDE66, IDA, LiU, 2025

Software Pipelining of Loops (1)

12.34TDDD55/TDDE66, IDA, LiU, 2025

Software Pipelining of Loops (2)

→ More about Software Pipelining in TDDC86

Compiler Optimizations and Code Generation

12.35TDDD55/TDDE66, IDA, LiU, 2025

Software Pipelining of Loops (3)

Modulo Scheduling

7 instructions

A, B, C, D,...G

ResMII = Resource

Constrained Minimum

Initiation Interval

Assume 2 processor cycles

TDDD55 Compilers and Interpreters (opt.)

TDDE66 Compiler Construction

IDA, Linköpings universitet, 2025

3. Register Allocation

12.37TDDD55/TDDE66, IDA, LiU, 2025

Global Register Allocation
❑ Register Allocation: Determines values (variables, temporaries,

constants) to be kept when in registers.

❑ Register Assignment: Determine in which physical register such a value
should reside.

❑ Essential for Load-Store Architectures

❑ Reduce memory traffic (→ memory / cache latency, energy)

❑ Limited resource

❑ Values that are live simultaneously cannot be kept in the same register

❑ Strong interdependence with instruction scheduling

o scheduling determines live ranges

o spill code needs to be scheduled

❑ Local register allocation (for a single basic block) can be done in linear
time (see previous lecture)

❑ Global register allocation on whole procedure body (with minimal spill
code) is NP-complete.
Can be modeled as a graph coloring problem [Ershov’62] [Cocke’71].

12.38TDDD55/TDDE66, IDA, LiU, 2025

When do Register Allocation

❑ Register allocation is normally performed at the end of

global optimization, when the final structure of the code and

all potential use of registers is known.

❑ It is performed on abstract machine code where you have

access to an unlimited number of registers or some other

intermediary form of program.

❑ The code is divided into sequential blocks (basic blocks) with

accompanying control flow graph.

12.39TDDD55/TDDE66, IDA, LiU, 2025

Live Range

(Here, variable = program variable or temporary)

❑ A variable is being defined at a program point if it is written
(given a value) there.

❑ A variable is used at a program point if it is read (referenced
in an expression) there.

❑ A variable is live at a point if it is referenced there or at some
following point that has not (may not have) been preceded by
any definition.

❑ A variable is reaching a point if an (arbitrary) definition of it,
or usage (because a variable can be used before it is defined)
reaches the point.

❑ A variable’s live range is the area of code (set of instructions)
where the variable is both live and reaching.

o does not need to be consecutive in program text.

12.40TDDD55/TDDE66, IDA, LiU, 2025

Live Range Example

x

x := 5+u;

z := 3+x;

y := 35+x+z;

x is defined

Use of x

Last use of x

Live range for x

12.41TDDD55/TDDE66, IDA, LiU, 2025

Interference Graphs

❑ The live ranges of two

variables interfere if their

intersection is not empty.

❑ Each live range builds a

node in the interference

graph (or conflict graph)

❑ If two live ranges

interfere, an edge is

drawn between the

nodes.

❑ Two adjacent nodes

(connected by a vertex) in

the graph can not be

assigned the same

register.

x

y

z w

x y

wz

Interference graph:

12.42TDDD55/TDDE66, IDA, LiU, 2025

Register Allocation vs Graph Coloring

❑ Register allocation can be compared with the classic coloring

problem.

o That is, to find a way of coloring - with a maximum of k colors -

the interference graph which does not assign the same color to

two adjacent nodes.

❑ k = the number of registers.

o On a RISC-machine there are, for example, 16 or 32 general

registers. Certain methods use some registers for other tasks.

e.g., for spill code.

❑ Determining whether a graph is colorable using k colors is

NP-complete for k>3

o In other words, it is unmanageable always to find an optimal

solution.

12.43TDDD55/TDDE66, IDA, LiU, 2025

Register Allocation by Graph Coloring

❑ Step 1: Given a program with symbolic registers s1, s2, ...

o Determine live ranges of all variables

12.44TDDD55/TDDE66, IDA, LiU, 2025

Register Allocation by Graph Coloring

❑ Step 2: Build the Register Interference Graph

o Undirected edge connects two symbolic registers (si, sj)

if live ranges of si and sj overlap in time

o Reserved registers (e.g. fp) interfere with all si

symbolic registers
physical

registers

12.45TDDD55/TDDE66, IDA, LiU, 2025

Reg. Alloc. by Graph Coloring Cont.

❑ Step 3: Color the register interference graph with k colors,
where k = #available registers.

o If not possible: pick a victim si to spill, generate spill code
 (store after def., reload before use)

This may remove some interferences.
Rebuild the register interference graph + repeat Step 3...

This register interference graph cannot be colored

with less than 4 colors, as it contains a 4-clique

12.46TDDD55/TDDE66, IDA, LiU, 2025

Coloring a Graph with k Colors

❑ NP-complete for k > 3

❑ Chromatic number (G) = minimum number of colors to color a graph G

❑ (G) >= c if the graph contains a c-clique

o A c-clique is a completely connected subgraph of c nodes

❑ Chaitin’s heuristic (1981):

S  { s1, s2, ... } // set of spill candidates
while (S not empty)
 choose some s in S.
 if s has less than k neighbors in the graph
 then // there will be some color left for s:
 delete s (and incident edges) from the graph
 else modify the graph (spill, split, coalesce ... nodes)
 and restart.
// once we arrive here, the graph is empty:
color the nodes greedily in reverse order of removal.

12.47TDDD55/TDDE66, IDA, LiU, 2025

Chaitin’s Register Allocator (1981)

12.48TDDD55/TDDE66, IDA, LiU, 2025

Register Allocation for Loops (1)

❑ Interference graphs have some weaknesses:

o Imprecise information on how and when live ranges interfere.

o No special consideration is taken of loop variables’ live ranges (except

when calculating priority).

❑ Instead, in a cyclic interval graph:

o The time relationships between the live ranges are explicit.

o Live ranges are represented for a variable whose live range crosses

iteration limits by cyclic intervals.

❑ Notation for cyclic live intervals for loops:

o Intervals for loop variables which do not cross the iteration limit are

included precisely once.

o Intervals which cross the iteration limit are represented as an interval

pair, cyclic interval:

 ([0, t’), [t, tend])

12.49TDDD55/TDDE66, IDA, LiU, 2025

Register Allocation for Loops (2)

i

x1

x2

x3

Circular edge graph

Only 3 interferences at the same time

x1

i x2

x3

Traditional interference graph,

all variables interfere, 4 registers needed

12.50TDDD55/TDDE66, IDA, LiU, 2025

Register Allocation for Loops (3)

Example:

x3 = 7

for i = 1 to 100 {

 x1 = x3 + 2

 x2 = x1 + x3

 x3 = x2 + x1

}

y = x3 + 42

x3 = 7

i = 1

i <= 100

x1 = x3 + 2

x2 = x1 + x3

x3 = x2 + x1

i = i + 1

y = x3 + i + 42

Control flow graph

FT

i x2x1 x3

Live ranges (loop only):

cyclic intervals

e.g. for i: [0, 5), [5, 6]

x1: [2, 4) x2: [3, 5)

x3: ([0, 3), [4, 6])

At most 3 values live at a time

→ 3 registers sufficient

All variables

interfere with

each other –

need 4 regs?

X X

X

X

0

1

3

2

4

5

6

12.51TDDD55/TDDE66, IDA, LiU, 2025

Live Range Splitting

❑ Instead of spilling completely (reload before each use),

it may be sufficient to split a live range at one position

where register pressure is highest

o save, and reload once

store

load

12.52TDDD55/TDDE66, IDA, LiU, 2025

Live Range Coalescing/Combining
(Reduces Register Needs)

❑ For a copy instruction sj  si

o where si and sj do not interfere

o and si and sj are not rewritten after the copy operation

❑ Merge si and sj:

o patch (rename) all occurrences of si to sj

o update the register interference graph

❑ and remove the copy operation.

s2  ...

...

s3  s2

...

... s3 ...

s3  ...

...

s3  s3

...

... s3 ...

TDDD55 Compilers and Interpreters (opt.)

TDDE66 Compiler Construction

IDA, Linköpings universitet, 2025

4. Phase Ordering Problems

and Integrated Code Generation

12.54TDDD55/TDDE66, IDA, LiU, 2025

Phase Ordering Problems

IR

Target

code

Instruction

selection

Instruction scheduling
Register

allocation

gcc,

lcc

12.55TDDD55/TDDE66, IDA, LiU, 2025

Phase Ordering Problems (1)

Instruction scheduling vs. register allocation

(a) Scheduling first:

 determines Live-Ranges

 → Register need,

 possibly spill-code to be

 inserted afterwards

(b) Register allocation first:

 Reuse of same register by different

 values introduces ”artificial”

 data dependences

 → constrains scheduler

12.56TDDD55/TDDE66, IDA, LiU, 2025

5. Integrated Code Generation

IR

Target

code

Instruction

selection

Instruction scheduling
Register

allocation

Combination of several NP-complete optimization problems !

12.57TDDD55/TDDE66, IDA, LiU, 2025

Project at PELAB (Kessler): OPTIMIST

Retargetable integrated code

generator

Open Source:

www.ida.liu.se/~chrke/optimist

x

x

http://www.ida.liu.se/~chrke/optimist

12.58TDDD55/TDDE66, IDA, LiU, 2025

Thank you!

❑ Any questions?

❑ L13 – Error Management in Compilers and Run-time Systems

	Slide 1: Code Generation for RISC and Instruction-Level Parallel Processors
	Slide 2: 1. RISC and Instruction-Level Parallel Target Architectures
	Slide 3: CISC vs. RISC
	Slide 4: Instruction-Level Parallel (ILP) architectures
	Slide 5: Processors with/without Pipelining
	Slide 6: Processor with Simple Pipelining
	Slide 7: Processor with Super-Pipelining
	Slide 8: A Processor with Parallel Pipelines
	Slide 9: Problems using Branch Instructions on Simple Pipelined Processors
	Slide 10: Summary Pipelined RISC Architectures
	Slide 11: Reservation Table, Scheduling Hazards (avoid hazards = resource collisions)
	Slide 12: Comparison between Superscalar Processors and VLIW processors
	Slide 13: Superscalar Processors
	Slide 14: Superscalar Processor
	Slide 15: A Parallel Superscalar Pipeline
	Slide 16: Branch Effects on Performance for Deeply Pipelined Superscalar Processors
	Slide 17: VLIW (Very Long Instruction Word) architectures
	Slide 18: EPIC Architectures (Explicitly Parallel Instruction Computing)
	Slide 19: 2. Instruction Scheduling
	Slide 20: The Instruction Scheduling Problem
	Slide 21: Example Instructions to be Scheduled
	Slide 22: Instruction Scheduling (1)
	Slide 23: Instruction Scheduling (2)
	Slide 24: Instruction Scheduling
	Slide 25: Example of List Scheduling Algorithm
	Slide 26: Example: Topological Sorting (0) According to Data Dependencies
	Slide 27: Example: Topological Sorting (1) According to Data Dependencies
	Slide 28: Example: Topological Sorting (2) According to Data Dependencies
	Slide 29: Example: Topological Sorting (3) According to Data Dependencies
	Slide 30: Example: Topological Sorting (4) According to Data Dependencies
	Slide 31: Topological Sorting and Scheduling
	Slide 32: Software Pipelining
	Slide 33: Software Pipelining of Loops (1)
	Slide 34: Software Pipelining of Loops (2)
	Slide 35: Software Pipelining of Loops (3) Modulo Scheduling
	Slide 36: 3. Register Allocation
	Slide 37: Global Register Allocation
	Slide 38: When do Register Allocation
	Slide 39: Live Range
	Slide 40: Live Range Example
	Slide 41: Interference Graphs
	Slide 42: Register Allocation vs Graph Coloring
	Slide 43: Register Allocation by Graph Coloring
	Slide 44: Register Allocation by Graph Coloring
	Slide 45: Reg. Alloc. by Graph Coloring Cont.
	Slide 46: Coloring a Graph with k Colors
	Slide 47: Chaitin’s Register Allocator (1981)
	Slide 48: Register Allocation for Loops (1)
	Slide 49: Register Allocation for Loops (2)
	Slide 50: Register Allocation for Loops (3)
	Slide 51: Live Range Splitting
	Slide 52: Live Range Coalescing/Combining (Reduces Register Needs)
	Slide 53: 4. Phase Ordering Problems and Integrated Code Generation
	Slide 54: Phase Ordering Problems
	Slide 55: Phase Ordering Problems (1)
	Slide 56: 5. Integrated Code Generation
	Slide 57: Project at PELAB (Kessler): OPTIMIST
	Slide 58: Thank you!

